numam-dpdk/drivers/net/mlx5/mlx5_txq.c
Michael Baum c06f77aece net/mlx5: optimize queue type checks
The RxQ/TxQ control structure has a field named type. This type is enum
with values for standard and hairpin.
The use of this field is to check whether the queue is of the hairpin
type or standard.

This patch replaces it with a boolean variable that saves whether it is
a hairpin.

Signed-off-by: Michael Baum <michaelba@nvidia.com>
Acked-by: Matan Azrad <matan@nvidia.com>
2022-02-25 17:33:31 +01:00

1321 lines
36 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2015 6WIND S.A.
* Copyright 2015 Mellanox Technologies, Ltd
*/
#include <stddef.h>
#include <errno.h>
#include <string.h>
#include <stdint.h>
#include <unistd.h>
#include <inttypes.h>
#include <rte_mbuf.h>
#include <rte_malloc.h>
#include <ethdev_driver.h>
#include <rte_bus_pci.h>
#include <rte_common.h>
#include <rte_eal_paging.h>
#include <mlx5_common.h>
#include <mlx5_common_mr.h>
#include <mlx5_malloc.h>
#include "mlx5_defs.h"
#include "mlx5_utils.h"
#include "mlx5.h"
#include "mlx5_tx.h"
#include "mlx5_rxtx.h"
#include "mlx5_autoconf.h"
/**
* Allocate TX queue elements.
*
* @param txq_ctrl
* Pointer to TX queue structure.
*/
void
txq_alloc_elts(struct mlx5_txq_ctrl *txq_ctrl)
{
const unsigned int elts_n = 1 << txq_ctrl->txq.elts_n;
unsigned int i;
for (i = 0; (i != elts_n); ++i)
txq_ctrl->txq.elts[i] = NULL;
DRV_LOG(DEBUG, "port %u Tx queue %u allocated and configured %u WRs",
PORT_ID(txq_ctrl->priv), txq_ctrl->txq.idx, elts_n);
txq_ctrl->txq.elts_head = 0;
txq_ctrl->txq.elts_tail = 0;
txq_ctrl->txq.elts_comp = 0;
}
/**
* Free TX queue elements.
*
* @param txq_ctrl
* Pointer to TX queue structure.
*/
void
txq_free_elts(struct mlx5_txq_ctrl *txq_ctrl)
{
const uint16_t elts_n = 1 << txq_ctrl->txq.elts_n;
const uint16_t elts_m = elts_n - 1;
uint16_t elts_head = txq_ctrl->txq.elts_head;
uint16_t elts_tail = txq_ctrl->txq.elts_tail;
struct rte_mbuf *(*elts)[elts_n] = &txq_ctrl->txq.elts;
DRV_LOG(DEBUG, "port %u Tx queue %u freeing WRs",
PORT_ID(txq_ctrl->priv), txq_ctrl->txq.idx);
txq_ctrl->txq.elts_head = 0;
txq_ctrl->txq.elts_tail = 0;
txq_ctrl->txq.elts_comp = 0;
while (elts_tail != elts_head) {
struct rte_mbuf *elt = (*elts)[elts_tail & elts_m];
MLX5_ASSERT(elt != NULL);
rte_pktmbuf_free_seg(elt);
#ifdef RTE_LIBRTE_MLX5_DEBUG
/* Poisoning. */
memset(&(*elts)[elts_tail & elts_m],
0x77,
sizeof((*elts)[elts_tail & elts_m]));
#endif
++elts_tail;
}
}
/**
* Returns the per-port supported offloads.
*
* @param dev
* Pointer to Ethernet device.
*
* @return
* Supported Tx offloads.
*/
uint64_t
mlx5_get_tx_port_offloads(struct rte_eth_dev *dev)
{
struct mlx5_priv *priv = dev->data->dev_private;
uint64_t offloads = (RTE_ETH_TX_OFFLOAD_MULTI_SEGS |
RTE_ETH_TX_OFFLOAD_VLAN_INSERT);
struct mlx5_port_config *config = &priv->config;
struct mlx5_dev_cap *dev_cap = &priv->sh->dev_cap;
if (dev_cap->hw_csum)
offloads |= (RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |
RTE_ETH_TX_OFFLOAD_UDP_CKSUM |
RTE_ETH_TX_OFFLOAD_TCP_CKSUM);
if (dev_cap->tso)
offloads |= RTE_ETH_TX_OFFLOAD_TCP_TSO;
if (priv->sh->config.tx_pp ||
priv->sh->cdev->config.hca_attr.wait_on_time)
offloads |= RTE_ETH_TX_OFFLOAD_SEND_ON_TIMESTAMP;
if (dev_cap->swp) {
if (dev_cap->swp & MLX5_SW_PARSING_CSUM_CAP)
offloads |= RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM;
if (dev_cap->swp & MLX5_SW_PARSING_TSO_CAP)
offloads |= (RTE_ETH_TX_OFFLOAD_IP_TNL_TSO |
RTE_ETH_TX_OFFLOAD_UDP_TNL_TSO);
}
if (dev_cap->tunnel_en) {
if (dev_cap->hw_csum)
offloads |= RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM;
if (dev_cap->tso) {
if (dev_cap->tunnel_en &
MLX5_TUNNELED_OFFLOADS_VXLAN_CAP)
offloads |= RTE_ETH_TX_OFFLOAD_VXLAN_TNL_TSO;
if (dev_cap->tunnel_en &
MLX5_TUNNELED_OFFLOADS_GRE_CAP)
offloads |= RTE_ETH_TX_OFFLOAD_GRE_TNL_TSO;
if (dev_cap->tunnel_en &
MLX5_TUNNELED_OFFLOADS_GENEVE_CAP)
offloads |= RTE_ETH_TX_OFFLOAD_GENEVE_TNL_TSO;
}
}
if (!config->mprq.enabled)
offloads |= RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
return offloads;
}
/* Fetches and drops all SW-owned and error CQEs to synchronize CQ. */
static void
txq_sync_cq(struct mlx5_txq_data *txq)
{
volatile struct mlx5_cqe *cqe;
int ret, i;
i = txq->cqe_s;
do {
cqe = &txq->cqes[txq->cq_ci & txq->cqe_m];
ret = check_cqe(cqe, txq->cqe_s, txq->cq_ci);
if (unlikely(ret != MLX5_CQE_STATUS_SW_OWN)) {
if (likely(ret != MLX5_CQE_STATUS_ERR)) {
/* No new CQEs in completion queue. */
MLX5_ASSERT(ret == MLX5_CQE_STATUS_HW_OWN);
break;
}
}
++txq->cq_ci;
} while (--i);
/* Move all CQEs to HW ownership. */
for (i = 0; i < txq->cqe_s; i++) {
cqe = &txq->cqes[i];
cqe->op_own = MLX5_CQE_INVALIDATE;
}
/* Resync CQE and WQE (WQ in reset state). */
rte_io_wmb();
*txq->cq_db = rte_cpu_to_be_32(txq->cq_ci);
txq->cq_pi = txq->cq_ci;
rte_io_wmb();
}
/**
* Tx queue stop. Device queue goes to the idle state,
* all involved mbufs are freed from elts/WQ.
*
* @param dev
* Pointer to Ethernet device structure.
* @param idx
* Tx queue index.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
int
mlx5_tx_queue_stop_primary(struct rte_eth_dev *dev, uint16_t idx)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_txq_data *txq = (*priv->txqs)[idx];
struct mlx5_txq_ctrl *txq_ctrl =
container_of(txq, struct mlx5_txq_ctrl, txq);
int ret;
MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY);
/* Move QP to RESET state. */
ret = priv->obj_ops.txq_obj_modify(txq_ctrl->obj, MLX5_TXQ_MOD_RDY2RST,
(uint8_t)priv->dev_port);
if (ret)
return ret;
/* Handle all send completions. */
txq_sync_cq(txq);
/* Free elts stored in the SQ. */
txq_free_elts(txq_ctrl);
/* Prevent writing new pkts to SQ by setting no free WQE.*/
txq->wqe_ci = txq->wqe_s;
txq->wqe_pi = 0;
txq->elts_comp = 0;
/* Set the actual queue state. */
dev->data->tx_queue_state[idx] = RTE_ETH_QUEUE_STATE_STOPPED;
return 0;
}
/**
* Tx queue stop. Device queue goes to the idle state,
* all involved mbufs are freed from elts/WQ.
*
* @param dev
* Pointer to Ethernet device structure.
* @param idx
* Tx queue index.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
int
mlx5_tx_queue_stop(struct rte_eth_dev *dev, uint16_t idx)
{
int ret;
if (rte_eth_dev_is_tx_hairpin_queue(dev, idx)) {
DRV_LOG(ERR, "Hairpin queue can't be stopped");
rte_errno = EINVAL;
return -EINVAL;
}
if (dev->data->tx_queue_state[idx] == RTE_ETH_QUEUE_STATE_STOPPED)
return 0;
if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
ret = mlx5_mp_os_req_queue_control(dev, idx,
MLX5_MP_REQ_QUEUE_TX_STOP);
} else {
ret = mlx5_tx_queue_stop_primary(dev, idx);
}
return ret;
}
/**
* Rx queue start. Device queue goes to the ready state,
* all required mbufs are allocated and WQ is replenished.
*
* @param dev
* Pointer to Ethernet device structure.
* @param idx
* RX queue index.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
int
mlx5_tx_queue_start_primary(struct rte_eth_dev *dev, uint16_t idx)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_txq_data *txq = (*priv->txqs)[idx];
struct mlx5_txq_ctrl *txq_ctrl =
container_of(txq, struct mlx5_txq_ctrl, txq);
int ret;
MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY);
ret = priv->obj_ops.txq_obj_modify(txq_ctrl->obj,
MLX5_TXQ_MOD_RST2RDY,
(uint8_t)priv->dev_port);
if (ret)
return ret;
txq_ctrl->txq.wqe_ci = 0;
txq_ctrl->txq.wqe_pi = 0;
txq_ctrl->txq.elts_comp = 0;
/* Set the actual queue state. */
dev->data->tx_queue_state[idx] = RTE_ETH_QUEUE_STATE_STARTED;
return 0;
}
/**
* Rx queue start. Device queue goes to the ready state,
* all required mbufs are allocated and WQ is replenished.
*
* @param dev
* Pointer to Ethernet device structure.
* @param idx
* RX queue index.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
int
mlx5_tx_queue_start(struct rte_eth_dev *dev, uint16_t idx)
{
int ret;
if (rte_eth_dev_is_tx_hairpin_queue(dev, idx)) {
DRV_LOG(ERR, "Hairpin queue can't be started");
rte_errno = EINVAL;
return -EINVAL;
}
if (dev->data->tx_queue_state[idx] == RTE_ETH_QUEUE_STATE_STARTED)
return 0;
if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
ret = mlx5_mp_os_req_queue_control(dev, idx,
MLX5_MP_REQ_QUEUE_TX_START);
} else {
ret = mlx5_tx_queue_start_primary(dev, idx);
}
return ret;
}
/**
* Tx queue presetup checks.
*
* @param dev
* Pointer to Ethernet device structure.
* @param idx
* Tx queue index.
* @param desc
* Number of descriptors to configure in queue.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
static int
mlx5_tx_queue_pre_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t *desc)
{
struct mlx5_priv *priv = dev->data->dev_private;
if (*desc <= MLX5_TX_COMP_THRESH) {
DRV_LOG(WARNING,
"port %u number of descriptors requested for Tx queue"
" %u must be higher than MLX5_TX_COMP_THRESH, using %u"
" instead of %u", dev->data->port_id, idx,
MLX5_TX_COMP_THRESH + 1, *desc);
*desc = MLX5_TX_COMP_THRESH + 1;
}
if (!rte_is_power_of_2(*desc)) {
*desc = 1 << log2above(*desc);
DRV_LOG(WARNING,
"port %u increased number of descriptors in Tx queue"
" %u to the next power of two (%d)",
dev->data->port_id, idx, *desc);
}
DRV_LOG(DEBUG, "port %u configuring queue %u for %u descriptors",
dev->data->port_id, idx, *desc);
if (idx >= priv->txqs_n) {
DRV_LOG(ERR, "port %u Tx queue index out of range (%u >= %u)",
dev->data->port_id, idx, priv->txqs_n);
rte_errno = EOVERFLOW;
return -rte_errno;
}
if (!mlx5_txq_releasable(dev, idx)) {
rte_errno = EBUSY;
DRV_LOG(ERR, "port %u unable to release queue index %u",
dev->data->port_id, idx);
return -rte_errno;
}
mlx5_txq_release(dev, idx);
return 0;
}
/**
* DPDK callback to configure a TX queue.
*
* @param dev
* Pointer to Ethernet device structure.
* @param idx
* TX queue index.
* @param desc
* Number of descriptors to configure in queue.
* @param socket
* NUMA socket on which memory must be allocated.
* @param[in] conf
* Thresholds parameters.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
int
mlx5_tx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc,
unsigned int socket, const struct rte_eth_txconf *conf)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_txq_data *txq = (*priv->txqs)[idx];
struct mlx5_txq_ctrl *txq_ctrl =
container_of(txq, struct mlx5_txq_ctrl, txq);
int res;
res = mlx5_tx_queue_pre_setup(dev, idx, &desc);
if (res)
return res;
txq_ctrl = mlx5_txq_new(dev, idx, desc, socket, conf);
if (!txq_ctrl) {
DRV_LOG(ERR, "port %u unable to allocate queue index %u",
dev->data->port_id, idx);
return -rte_errno;
}
DRV_LOG(DEBUG, "port %u adding Tx queue %u to list",
dev->data->port_id, idx);
(*priv->txqs)[idx] = &txq_ctrl->txq;
return 0;
}
/**
* DPDK callback to configure a TX hairpin queue.
*
* @param dev
* Pointer to Ethernet device structure.
* @param idx
* TX queue index.
* @param desc
* Number of descriptors to configure in queue.
* @param[in] hairpin_conf
* The hairpin binding configuration.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
int
mlx5_tx_hairpin_queue_setup(struct rte_eth_dev *dev, uint16_t idx,
uint16_t desc,
const struct rte_eth_hairpin_conf *hairpin_conf)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_txq_data *txq = (*priv->txqs)[idx];
struct mlx5_txq_ctrl *txq_ctrl =
container_of(txq, struct mlx5_txq_ctrl, txq);
int res;
res = mlx5_tx_queue_pre_setup(dev, idx, &desc);
if (res)
return res;
if (hairpin_conf->peer_count != 1) {
rte_errno = EINVAL;
DRV_LOG(ERR, "port %u unable to setup Tx hairpin queue index %u"
" peer count is %u", dev->data->port_id,
idx, hairpin_conf->peer_count);
return -rte_errno;
}
if (hairpin_conf->peers[0].port == dev->data->port_id) {
if (hairpin_conf->peers[0].queue >= priv->rxqs_n) {
rte_errno = EINVAL;
DRV_LOG(ERR, "port %u unable to setup Tx hairpin queue"
" index %u, Rx %u is larger than %u",
dev->data->port_id, idx,
hairpin_conf->peers[0].queue, priv->txqs_n);
return -rte_errno;
}
} else {
if (hairpin_conf->manual_bind == 0 ||
hairpin_conf->tx_explicit == 0) {
rte_errno = EINVAL;
DRV_LOG(ERR, "port %u unable to setup Tx hairpin queue"
" index %u peer port %u with attributes %u %u",
dev->data->port_id, idx,
hairpin_conf->peers[0].port,
hairpin_conf->manual_bind,
hairpin_conf->tx_explicit);
return -rte_errno;
}
}
txq_ctrl = mlx5_txq_hairpin_new(dev, idx, desc, hairpin_conf);
if (!txq_ctrl) {
DRV_LOG(ERR, "port %u unable to allocate queue index %u",
dev->data->port_id, idx);
return -rte_errno;
}
DRV_LOG(DEBUG, "port %u adding Tx queue %u to list",
dev->data->port_id, idx);
(*priv->txqs)[idx] = &txq_ctrl->txq;
dev->data->tx_queue_state[idx] = RTE_ETH_QUEUE_STATE_HAIRPIN;
return 0;
}
/**
* DPDK callback to release a TX queue.
*
* @param dev
* Pointer to Ethernet device structure.
* @param qid
* Transmit queue index.
*/
void
mlx5_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
{
struct mlx5_txq_data *txq = dev->data->tx_queues[qid];
if (txq == NULL)
return;
DRV_LOG(DEBUG, "port %u removing Tx queue %u from list",
dev->data->port_id, qid);
mlx5_txq_release(dev, qid);
}
/**
* Remap UAR register of a Tx queue for secondary process.
*
* Remapped address is stored at the table in the process private structure of
* the device, indexed by queue index.
*
* @param txq_ctrl
* Pointer to Tx queue control structure.
* @param fd
* Verbs file descriptor to map UAR pages.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
static int
txq_uar_init_secondary(struct mlx5_txq_ctrl *txq_ctrl, int fd)
{
struct mlx5_priv *priv = txq_ctrl->priv;
struct mlx5_proc_priv *ppriv = MLX5_PROC_PRIV(PORT_ID(priv));
struct mlx5_proc_priv *primary_ppriv = priv->sh->pppriv;
struct mlx5_txq_data *txq = &txq_ctrl->txq;
void *addr;
uintptr_t uar_va;
uintptr_t offset;
const size_t page_size = rte_mem_page_size();
if (page_size == (size_t)-1) {
DRV_LOG(ERR, "Failed to get mem page size");
rte_errno = ENOMEM;
return -rte_errno;
}
if (txq_ctrl->is_hairpin)
return 0;
MLX5_ASSERT(ppriv);
/*
* As rdma-core, UARs are mapped in size of OS page
* size. Ref to libmlx5 function: mlx5_init_context()
*/
uar_va = (uintptr_t)primary_ppriv->uar_table[txq->idx].db;
offset = uar_va & (page_size - 1); /* Offset in page. */
addr = rte_mem_map(NULL, page_size, RTE_PROT_WRITE, RTE_MAP_SHARED,
fd, txq_ctrl->uar_mmap_offset);
if (!addr) {
DRV_LOG(ERR, "Port %u mmap failed for BF reg of txq %u.",
txq->port_id, txq->idx);
rte_errno = ENXIO;
return -rte_errno;
}
addr = RTE_PTR_ADD(addr, offset);
ppriv->uar_table[txq->idx].db = addr;
#ifndef RTE_ARCH_64
ppriv->uar_table[txq->idx].sl_p =
primary_ppriv->uar_table[txq->idx].sl_p;
#endif
return 0;
}
/**
* Unmap UAR register of a Tx queue for secondary process.
*
* @param txq_ctrl
* Pointer to Tx queue control structure.
*/
static void
txq_uar_uninit_secondary(struct mlx5_txq_ctrl *txq_ctrl)
{
struct mlx5_proc_priv *ppriv = MLX5_PROC_PRIV(PORT_ID(txq_ctrl->priv));
void *addr;
const size_t page_size = rte_mem_page_size();
if (page_size == (size_t)-1) {
DRV_LOG(ERR, "Failed to get mem page size");
rte_errno = ENOMEM;
}
if (txq_ctrl->is_hairpin)
return;
addr = ppriv->uar_table[txq_ctrl->txq.idx].db;
rte_mem_unmap(RTE_PTR_ALIGN_FLOOR(addr, page_size), page_size);
}
/**
* Deinitialize Tx UAR registers for secondary process.
*
* @param dev
* Pointer to Ethernet device.
*/
void
mlx5_tx_uar_uninit_secondary(struct rte_eth_dev *dev)
{
struct mlx5_proc_priv *ppriv = (struct mlx5_proc_priv *)
dev->process_private;
const size_t page_size = rte_mem_page_size();
void *addr;
unsigned int i;
if (page_size == (size_t)-1) {
DRV_LOG(ERR, "Failed to get mem page size");
return;
}
MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_SECONDARY);
for (i = 0; i != ppriv->uar_table_sz; ++i) {
if (!ppriv->uar_table[i].db)
continue;
addr = ppriv->uar_table[i].db;
rte_mem_unmap(RTE_PTR_ALIGN_FLOOR(addr, page_size), page_size);
}
}
/**
* Initialize Tx UAR registers for secondary process.
*
* @param dev
* Pointer to Ethernet device.
* @param fd
* Verbs file descriptor to map UAR pages.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
int
mlx5_tx_uar_init_secondary(struct rte_eth_dev *dev, int fd)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_txq_data *txq;
struct mlx5_txq_ctrl *txq_ctrl;
unsigned int i;
int ret;
MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_SECONDARY);
for (i = 0; i != priv->txqs_n; ++i) {
if (!(*priv->txqs)[i])
continue;
txq = (*priv->txqs)[i];
txq_ctrl = container_of(txq, struct mlx5_txq_ctrl, txq);
if (txq_ctrl->is_hairpin)
continue;
MLX5_ASSERT(txq->idx == (uint16_t)i);
ret = txq_uar_init_secondary(txq_ctrl, fd);
if (ret)
goto error;
}
return 0;
error:
/* Rollback. */
do {
if (!(*priv->txqs)[i])
continue;
txq = (*priv->txqs)[i];
txq_ctrl = container_of(txq, struct mlx5_txq_ctrl, txq);
txq_uar_uninit_secondary(txq_ctrl);
} while (i--);
return -rte_errno;
}
/**
* Verify the Verbs Tx queue list is empty
*
* @param dev
* Pointer to Ethernet device.
*
* @return
* The number of object not released.
*/
int
mlx5_txq_obj_verify(struct rte_eth_dev *dev)
{
struct mlx5_priv *priv = dev->data->dev_private;
int ret = 0;
struct mlx5_txq_obj *txq_obj;
LIST_FOREACH(txq_obj, &priv->txqsobj, next) {
DRV_LOG(DEBUG, "port %u Verbs Tx queue %u still referenced",
dev->data->port_id, txq_obj->txq_ctrl->txq.idx);
++ret;
}
return ret;
}
/**
* Calculate the total number of WQEBB for Tx queue.
*
* Simplified version of calc_sq_size() in rdma-core.
*
* @param txq_ctrl
* Pointer to Tx queue control structure.
*
* @return
* The number of WQEBB.
*/
static int
txq_calc_wqebb_cnt(struct mlx5_txq_ctrl *txq_ctrl)
{
unsigned int wqe_size;
const unsigned int desc = 1 << txq_ctrl->txq.elts_n;
wqe_size = MLX5_WQE_CSEG_SIZE +
MLX5_WQE_ESEG_SIZE +
MLX5_WSEG_SIZE -
MLX5_ESEG_MIN_INLINE_SIZE +
txq_ctrl->max_inline_data;
return rte_align32pow2(wqe_size * desc) / MLX5_WQE_SIZE;
}
/**
* Calculate the maximal inline data size for Tx queue.
*
* @param txq_ctrl
* Pointer to Tx queue control structure.
*
* @return
* The maximal inline data size.
*/
static unsigned int
txq_calc_inline_max(struct mlx5_txq_ctrl *txq_ctrl)
{
const unsigned int desc = 1 << txq_ctrl->txq.elts_n;
struct mlx5_priv *priv = txq_ctrl->priv;
unsigned int wqe_size;
wqe_size = priv->sh->dev_cap.max_qp_wr / desc;
if (!wqe_size)
return 0;
/*
* This calculation is derived from tthe source of
* mlx5_calc_send_wqe() in rdma_core library.
*/
wqe_size = wqe_size * MLX5_WQE_SIZE -
MLX5_WQE_CSEG_SIZE -
MLX5_WQE_ESEG_SIZE -
MLX5_WSEG_SIZE -
MLX5_WSEG_SIZE +
MLX5_DSEG_MIN_INLINE_SIZE;
return wqe_size;
}
/**
* Set Tx queue parameters from device configuration.
*
* @param txq_ctrl
* Pointer to Tx queue control structure.
*/
static void
txq_set_params(struct mlx5_txq_ctrl *txq_ctrl)
{
struct mlx5_priv *priv = txq_ctrl->priv;
struct mlx5_port_config *config = &priv->config;
struct mlx5_dev_cap *dev_cap = &priv->sh->dev_cap;
unsigned int inlen_send; /* Inline data for ordinary SEND.*/
unsigned int inlen_empw; /* Inline data for enhanced MPW. */
unsigned int inlen_mode; /* Minimal required Inline data. */
unsigned int txqs_inline; /* Min Tx queues to enable inline. */
uint64_t dev_txoff = priv->dev_data->dev_conf.txmode.offloads;
bool tso = txq_ctrl->txq.offloads & (RTE_ETH_TX_OFFLOAD_TCP_TSO |
RTE_ETH_TX_OFFLOAD_VXLAN_TNL_TSO |
RTE_ETH_TX_OFFLOAD_GRE_TNL_TSO |
RTE_ETH_TX_OFFLOAD_IP_TNL_TSO |
RTE_ETH_TX_OFFLOAD_UDP_TNL_TSO);
bool vlan_inline;
unsigned int temp;
txq_ctrl->txq.fast_free =
!!((txq_ctrl->txq.offloads & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE) &&
!(txq_ctrl->txq.offloads & RTE_ETH_TX_OFFLOAD_MULTI_SEGS) &&
!config->mprq.enabled);
if (config->txqs_inline == MLX5_ARG_UNSET)
txqs_inline =
#if defined(RTE_ARCH_ARM64)
(priv->pci_dev && priv->pci_dev->id.device_id ==
PCI_DEVICE_ID_MELLANOX_CONNECTX5BF) ?
MLX5_INLINE_MAX_TXQS_BLUEFIELD :
#endif
MLX5_INLINE_MAX_TXQS;
else
txqs_inline = (unsigned int)config->txqs_inline;
inlen_send = (config->txq_inline_max == MLX5_ARG_UNSET) ?
MLX5_SEND_DEF_INLINE_LEN :
(unsigned int)config->txq_inline_max;
inlen_empw = (config->txq_inline_mpw == MLX5_ARG_UNSET) ?
MLX5_EMPW_DEF_INLINE_LEN :
(unsigned int)config->txq_inline_mpw;
inlen_mode = (config->txq_inline_min == MLX5_ARG_UNSET) ?
0 : (unsigned int)config->txq_inline_min;
if (config->mps != MLX5_MPW_ENHANCED && config->mps != MLX5_MPW)
inlen_empw = 0;
/*
* If there is requested minimal amount of data to inline
* we MUST enable inlining. This is a case for ConnectX-4
* which usually requires L2 inlined for correct operating
* and ConnectX-4 Lx which requires L2-L4 inlined to
* support E-Switch Flows.
*/
if (inlen_mode) {
if (inlen_mode <= MLX5_ESEG_MIN_INLINE_SIZE) {
/*
* Optimize minimal inlining for single
* segment packets to fill one WQEBB
* without gaps.
*/
temp = MLX5_ESEG_MIN_INLINE_SIZE;
} else {
temp = inlen_mode - MLX5_ESEG_MIN_INLINE_SIZE;
temp = RTE_ALIGN(temp, MLX5_WSEG_SIZE) +
MLX5_ESEG_MIN_INLINE_SIZE;
temp = RTE_MIN(temp, MLX5_SEND_MAX_INLINE_LEN);
}
if (temp != inlen_mode) {
DRV_LOG(INFO,
"port %u minimal required inline setting"
" aligned from %u to %u",
PORT_ID(priv), inlen_mode, temp);
inlen_mode = temp;
}
}
/*
* If port is configured to support VLAN insertion and device
* does not support this feature by HW (for NICs before ConnectX-5
* or in case of wqe_vlan_insert flag is not set) we must enable
* data inline on all queues because it is supported by single
* tx_burst routine.
*/
txq_ctrl->txq.vlan_en = config->hw_vlan_insert;
vlan_inline = (dev_txoff & RTE_ETH_TX_OFFLOAD_VLAN_INSERT) &&
!config->hw_vlan_insert;
/*
* If there are few Tx queues it is prioritized
* to save CPU cycles and disable data inlining at all.
*/
if (inlen_send && priv->txqs_n >= txqs_inline) {
/*
* The data sent with ordinal MLX5_OPCODE_SEND
* may be inlined in Ethernet Segment, align the
* length accordingly to fit entire WQEBBs.
*/
temp = RTE_MAX(inlen_send,
MLX5_ESEG_MIN_INLINE_SIZE + MLX5_WQE_DSEG_SIZE);
temp -= MLX5_ESEG_MIN_INLINE_SIZE + MLX5_WQE_DSEG_SIZE;
temp = RTE_ALIGN(temp, MLX5_WQE_SIZE);
temp += MLX5_ESEG_MIN_INLINE_SIZE + MLX5_WQE_DSEG_SIZE;
temp = RTE_MIN(temp, MLX5_WQE_SIZE_MAX +
MLX5_ESEG_MIN_INLINE_SIZE -
MLX5_WQE_CSEG_SIZE -
MLX5_WQE_ESEG_SIZE -
MLX5_WQE_DSEG_SIZE * 2);
temp = RTE_MIN(temp, MLX5_SEND_MAX_INLINE_LEN);
temp = RTE_MAX(temp, inlen_mode);
if (temp != inlen_send) {
DRV_LOG(INFO,
"port %u ordinary send inline setting"
" aligned from %u to %u",
PORT_ID(priv), inlen_send, temp);
inlen_send = temp;
}
/*
* Not aligned to cache lines, but to WQEs.
* First bytes of data (initial alignment)
* is going to be copied explicitly at the
* beginning of inlining buffer in Ethernet
* Segment.
*/
MLX5_ASSERT(inlen_send >= MLX5_ESEG_MIN_INLINE_SIZE);
MLX5_ASSERT(inlen_send <= MLX5_WQE_SIZE_MAX +
MLX5_ESEG_MIN_INLINE_SIZE -
MLX5_WQE_CSEG_SIZE -
MLX5_WQE_ESEG_SIZE -
MLX5_WQE_DSEG_SIZE * 2);
} else if (inlen_mode) {
/*
* If minimal inlining is requested we must
* enable inlining in general, despite the
* number of configured queues. Ignore the
* txq_inline_max devarg, this is not
* full-featured inline.
*/
inlen_send = inlen_mode;
inlen_empw = 0;
} else if (vlan_inline) {
/*
* Hardware does not report offload for
* VLAN insertion, we must enable data inline
* to implement feature by software.
*/
inlen_send = MLX5_ESEG_MIN_INLINE_SIZE;
inlen_empw = 0;
} else {
inlen_send = 0;
inlen_empw = 0;
}
txq_ctrl->txq.inlen_send = inlen_send;
txq_ctrl->txq.inlen_mode = inlen_mode;
txq_ctrl->txq.inlen_empw = 0;
if (inlen_send && inlen_empw && priv->txqs_n >= txqs_inline) {
/*
* The data sent with MLX5_OPCODE_ENHANCED_MPSW
* may be inlined in Data Segment, align the
* length accordingly to fit entire WQEBBs.
*/
temp = RTE_MAX(inlen_empw,
MLX5_WQE_SIZE + MLX5_DSEG_MIN_INLINE_SIZE);
temp -= MLX5_DSEG_MIN_INLINE_SIZE;
temp = RTE_ALIGN(temp, MLX5_WQE_SIZE);
temp += MLX5_DSEG_MIN_INLINE_SIZE;
temp = RTE_MIN(temp, MLX5_WQE_SIZE_MAX +
MLX5_DSEG_MIN_INLINE_SIZE -
MLX5_WQE_CSEG_SIZE -
MLX5_WQE_ESEG_SIZE -
MLX5_WQE_DSEG_SIZE);
temp = RTE_MIN(temp, MLX5_EMPW_MAX_INLINE_LEN);
if (temp != inlen_empw) {
DRV_LOG(INFO,
"port %u enhanced empw inline setting"
" aligned from %u to %u",
PORT_ID(priv), inlen_empw, temp);
inlen_empw = temp;
}
MLX5_ASSERT(inlen_empw >= MLX5_ESEG_MIN_INLINE_SIZE);
MLX5_ASSERT(inlen_empw <= MLX5_WQE_SIZE_MAX +
MLX5_DSEG_MIN_INLINE_SIZE -
MLX5_WQE_CSEG_SIZE -
MLX5_WQE_ESEG_SIZE -
MLX5_WQE_DSEG_SIZE);
txq_ctrl->txq.inlen_empw = inlen_empw;
}
txq_ctrl->max_inline_data = RTE_MAX(inlen_send, inlen_empw);
if (tso) {
txq_ctrl->max_tso_header = MLX5_MAX_TSO_HEADER;
txq_ctrl->max_inline_data = RTE_MAX(txq_ctrl->max_inline_data,
MLX5_MAX_TSO_HEADER);
txq_ctrl->txq.tso_en = 1;
}
if (((RTE_ETH_TX_OFFLOAD_VXLAN_TNL_TSO & txq_ctrl->txq.offloads) &&
(dev_cap->tunnel_en & MLX5_TUNNELED_OFFLOADS_VXLAN_CAP)) |
((RTE_ETH_TX_OFFLOAD_GRE_TNL_TSO & txq_ctrl->txq.offloads) &&
(dev_cap->tunnel_en & MLX5_TUNNELED_OFFLOADS_GRE_CAP)) |
((RTE_ETH_TX_OFFLOAD_GENEVE_TNL_TSO & txq_ctrl->txq.offloads) &&
(dev_cap->tunnel_en & MLX5_TUNNELED_OFFLOADS_GENEVE_CAP)) |
(dev_cap->swp & MLX5_SW_PARSING_TSO_CAP))
txq_ctrl->txq.tunnel_en = 1;
txq_ctrl->txq.swp_en = (((RTE_ETH_TX_OFFLOAD_IP_TNL_TSO |
RTE_ETH_TX_OFFLOAD_UDP_TNL_TSO) &
txq_ctrl->txq.offloads) && (dev_cap->swp &
MLX5_SW_PARSING_TSO_CAP)) |
((RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM &
txq_ctrl->txq.offloads) && (dev_cap->swp &
MLX5_SW_PARSING_CSUM_CAP));
}
/**
* Adjust Tx queue data inline parameters for large queue sizes.
* The data inline feature requires multiple WQEs to fit the packets,
* and if the large amount of Tx descriptors is requested by application
* the total WQE amount may exceed the hardware capabilities. If the
* default inline setting are used we can try to adjust these ones and
* meet the hardware requirements and not exceed the queue size.
*
* @param txq_ctrl
* Pointer to Tx queue control structure.
*
* @return
* Zero on success, otherwise the parameters can not be adjusted.
*/
static int
txq_adjust_params(struct mlx5_txq_ctrl *txq_ctrl)
{
struct mlx5_priv *priv = txq_ctrl->priv;
struct mlx5_port_config *config = &priv->config;
unsigned int max_inline;
max_inline = txq_calc_inline_max(txq_ctrl);
if (!txq_ctrl->txq.inlen_send) {
/*
* Inline data feature is not engaged at all.
* There is nothing to adjust.
*/
return 0;
}
if (txq_ctrl->max_inline_data <= max_inline) {
/*
* The requested inline data length does not
* exceed queue capabilities.
*/
return 0;
}
if (txq_ctrl->txq.inlen_mode > max_inline) {
DRV_LOG(ERR,
"minimal data inline requirements (%u) are not"
" satisfied (%u) on port %u, try the smaller"
" Tx queue size (%d)",
txq_ctrl->txq.inlen_mode, max_inline,
priv->dev_data->port_id, priv->sh->dev_cap.max_qp_wr);
goto error;
}
if (txq_ctrl->txq.inlen_send > max_inline &&
config->txq_inline_max != MLX5_ARG_UNSET &&
config->txq_inline_max > (int)max_inline) {
DRV_LOG(ERR,
"txq_inline_max requirements (%u) are not"
" satisfied (%u) on port %u, try the smaller"
" Tx queue size (%d)",
txq_ctrl->txq.inlen_send, max_inline,
priv->dev_data->port_id, priv->sh->dev_cap.max_qp_wr);
goto error;
}
if (txq_ctrl->txq.inlen_empw > max_inline &&
config->txq_inline_mpw != MLX5_ARG_UNSET &&
config->txq_inline_mpw > (int)max_inline) {
DRV_LOG(ERR,
"txq_inline_mpw requirements (%u) are not"
" satisfied (%u) on port %u, try the smaller"
" Tx queue size (%d)",
txq_ctrl->txq.inlen_empw, max_inline,
priv->dev_data->port_id, priv->sh->dev_cap.max_qp_wr);
goto error;
}
if (txq_ctrl->txq.tso_en && max_inline < MLX5_MAX_TSO_HEADER) {
DRV_LOG(ERR,
"tso header inline requirements (%u) are not"
" satisfied (%u) on port %u, try the smaller"
" Tx queue size (%d)",
MLX5_MAX_TSO_HEADER, max_inline,
priv->dev_data->port_id, priv->sh->dev_cap.max_qp_wr);
goto error;
}
if (txq_ctrl->txq.inlen_send > max_inline) {
DRV_LOG(WARNING,
"adjust txq_inline_max (%u->%u)"
" due to large Tx queue on port %u",
txq_ctrl->txq.inlen_send, max_inline,
priv->dev_data->port_id);
txq_ctrl->txq.inlen_send = max_inline;
}
if (txq_ctrl->txq.inlen_empw > max_inline) {
DRV_LOG(WARNING,
"adjust txq_inline_mpw (%u->%u)"
"due to large Tx queue on port %u",
txq_ctrl->txq.inlen_empw, max_inline,
priv->dev_data->port_id);
txq_ctrl->txq.inlen_empw = max_inline;
}
txq_ctrl->max_inline_data = RTE_MAX(txq_ctrl->txq.inlen_send,
txq_ctrl->txq.inlen_empw);
MLX5_ASSERT(txq_ctrl->max_inline_data <= max_inline);
MLX5_ASSERT(txq_ctrl->txq.inlen_mode <= max_inline);
MLX5_ASSERT(txq_ctrl->txq.inlen_mode <= txq_ctrl->txq.inlen_send);
MLX5_ASSERT(txq_ctrl->txq.inlen_mode <= txq_ctrl->txq.inlen_empw ||
!txq_ctrl->txq.inlen_empw);
return 0;
error:
rte_errno = ENOMEM;
return -ENOMEM;
}
/**
* Create a DPDK Tx queue.
*
* @param dev
* Pointer to Ethernet device.
* @param idx
* TX queue index.
* @param desc
* Number of descriptors to configure in queue.
* @param socket
* NUMA socket on which memory must be allocated.
* @param[in] conf
* Thresholds parameters.
*
* @return
* A DPDK queue object on success, NULL otherwise and rte_errno is set.
*/
struct mlx5_txq_ctrl *
mlx5_txq_new(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc,
unsigned int socket, const struct rte_eth_txconf *conf)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_txq_ctrl *tmpl;
tmpl = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, sizeof(*tmpl) +
desc * sizeof(struct rte_mbuf *), 0, socket);
if (!tmpl) {
rte_errno = ENOMEM;
return NULL;
}
if (mlx5_mr_ctrl_init(&tmpl->txq.mr_ctrl,
&priv->sh->cdev->mr_scache.dev_gen, socket)) {
/* rte_errno is already set. */
goto error;
}
MLX5_ASSERT(desc > MLX5_TX_COMP_THRESH);
tmpl->txq.offloads = conf->offloads |
dev->data->dev_conf.txmode.offloads;
tmpl->priv = priv;
tmpl->socket = socket;
tmpl->txq.elts_n = log2above(desc);
tmpl->txq.elts_s = desc;
tmpl->txq.elts_m = desc - 1;
tmpl->txq.port_id = dev->data->port_id;
tmpl->txq.idx = idx;
txq_set_params(tmpl);
if (txq_adjust_params(tmpl))
goto error;
if (txq_calc_wqebb_cnt(tmpl) >
priv->sh->dev_cap.max_qp_wr) {
DRV_LOG(ERR,
"port %u Tx WQEBB count (%d) exceeds the limit (%d),"
" try smaller queue size",
dev->data->port_id, txq_calc_wqebb_cnt(tmpl),
priv->sh->dev_cap.max_qp_wr);
rte_errno = ENOMEM;
goto error;
}
__atomic_fetch_add(&tmpl->refcnt, 1, __ATOMIC_RELAXED);
tmpl->is_hairpin = false;
LIST_INSERT_HEAD(&priv->txqsctrl, tmpl, next);
return tmpl;
error:
mlx5_mr_btree_free(&tmpl->txq.mr_ctrl.cache_bh);
mlx5_free(tmpl);
return NULL;
}
/**
* Create a DPDK Tx hairpin queue.
*
* @param dev
* Pointer to Ethernet device.
* @param idx
* TX queue index.
* @param desc
* Number of descriptors to configure in queue.
* @param hairpin_conf
* The hairpin configuration.
*
* @return
* A DPDK queue object on success, NULL otherwise and rte_errno is set.
*/
struct mlx5_txq_ctrl *
mlx5_txq_hairpin_new(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc,
const struct rte_eth_hairpin_conf *hairpin_conf)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_txq_ctrl *tmpl;
tmpl = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, sizeof(*tmpl), 0,
SOCKET_ID_ANY);
if (!tmpl) {
rte_errno = ENOMEM;
return NULL;
}
tmpl->priv = priv;
tmpl->socket = SOCKET_ID_ANY;
tmpl->txq.elts_n = log2above(desc);
tmpl->txq.port_id = dev->data->port_id;
tmpl->txq.idx = idx;
tmpl->hairpin_conf = *hairpin_conf;
tmpl->is_hairpin = true;
__atomic_fetch_add(&tmpl->refcnt, 1, __ATOMIC_RELAXED);
LIST_INSERT_HEAD(&priv->txqsctrl, tmpl, next);
return tmpl;
}
/**
* Get a Tx queue.
*
* @param dev
* Pointer to Ethernet device.
* @param idx
* TX queue index.
*
* @return
* A pointer to the queue if it exists.
*/
struct mlx5_txq_ctrl *
mlx5_txq_get(struct rte_eth_dev *dev, uint16_t idx)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_txq_data *txq_data = (*priv->txqs)[idx];
struct mlx5_txq_ctrl *ctrl = NULL;
if (txq_data) {
ctrl = container_of(txq_data, struct mlx5_txq_ctrl, txq);
__atomic_fetch_add(&ctrl->refcnt, 1, __ATOMIC_RELAXED);
}
return ctrl;
}
/**
* Release a Tx queue.
*
* @param dev
* Pointer to Ethernet device.
* @param idx
* TX queue index.
*
* @return
* 1 while a reference on it exists, 0 when freed.
*/
int
mlx5_txq_release(struct rte_eth_dev *dev, uint16_t idx)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_txq_ctrl *txq_ctrl;
if (priv->txqs == NULL || (*priv->txqs)[idx] == NULL)
return 0;
txq_ctrl = container_of((*priv->txqs)[idx], struct mlx5_txq_ctrl, txq);
if (__atomic_sub_fetch(&txq_ctrl->refcnt, 1, __ATOMIC_RELAXED) > 1)
return 1;
if (txq_ctrl->obj) {
priv->obj_ops.txq_obj_release(txq_ctrl->obj);
LIST_REMOVE(txq_ctrl->obj, next);
mlx5_free(txq_ctrl->obj);
txq_ctrl->obj = NULL;
}
if (!txq_ctrl->is_hairpin) {
if (txq_ctrl->txq.fcqs) {
mlx5_free(txq_ctrl->txq.fcqs);
txq_ctrl->txq.fcqs = NULL;
}
txq_free_elts(txq_ctrl);
dev->data->tx_queue_state[idx] = RTE_ETH_QUEUE_STATE_STOPPED;
}
if (!__atomic_load_n(&txq_ctrl->refcnt, __ATOMIC_RELAXED)) {
if (!txq_ctrl->is_hairpin)
mlx5_mr_btree_free(&txq_ctrl->txq.mr_ctrl.cache_bh);
LIST_REMOVE(txq_ctrl, next);
mlx5_free(txq_ctrl);
(*priv->txqs)[idx] = NULL;
}
return 0;
}
/**
* Verify if the queue can be released.
*
* @param dev
* Pointer to Ethernet device.
* @param idx
* TX queue index.
*
* @return
* 1 if the queue can be released.
*/
int
mlx5_txq_releasable(struct rte_eth_dev *dev, uint16_t idx)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_txq_ctrl *txq;
if (!(*priv->txqs)[idx])
return -1;
txq = container_of((*priv->txqs)[idx], struct mlx5_txq_ctrl, txq);
return (__atomic_load_n(&txq->refcnt, __ATOMIC_RELAXED) == 1);
}
/**
* Verify the Tx Queue list is empty
*
* @param dev
* Pointer to Ethernet device.
*
* @return
* The number of object not released.
*/
int
mlx5_txq_verify(struct rte_eth_dev *dev)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_txq_ctrl *txq_ctrl;
int ret = 0;
LIST_FOREACH(txq_ctrl, &priv->txqsctrl, next) {
DRV_LOG(DEBUG, "port %u Tx queue %u still referenced",
dev->data->port_id, txq_ctrl->txq.idx);
++ret;
}
return ret;
}
/**
* Set the Tx queue dynamic timestamp (mask and offset)
*
* @param[in] dev
* Pointer to the Ethernet device structure.
*/
void
mlx5_txq_dynf_timestamp_set(struct rte_eth_dev *dev)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_dev_ctx_shared *sh = priv->sh;
struct mlx5_txq_data *data;
int off, nbit;
unsigned int i;
uint64_t mask = 0;
uint64_t ts_mask;
if (sh->dev_cap.rt_timestamp ||
!sh->cdev->config.hca_attr.dev_freq_khz)
ts_mask = MLX5_TS_MASK_SECS << 32;
else
ts_mask = rte_align64pow2(MLX5_TS_MASK_SECS * 1000ull *
sh->cdev->config.hca_attr.dev_freq_khz);
ts_mask = rte_cpu_to_be_64(ts_mask - 1ull);
nbit = rte_mbuf_dynflag_lookup
(RTE_MBUF_DYNFLAG_TX_TIMESTAMP_NAME, NULL);
off = rte_mbuf_dynfield_lookup
(RTE_MBUF_DYNFIELD_TIMESTAMP_NAME, NULL);
if (nbit >= 0 && off >= 0 &&
(sh->txpp.refcnt || priv->sh->cdev->config.hca_attr.wait_on_time))
mask = 1ULL << nbit;
for (i = 0; i != priv->txqs_n; ++i) {
data = (*priv->txqs)[i];
if (!data)
continue;
data->sh = sh;
data->ts_mask = mask;
data->ts_offset = off;
data->rt_timestamp = sh->dev_cap.rt_timestamp;
data->rt_timemask = (data->offloads &
RTE_ETH_TX_OFFLOAD_SEND_ON_TIMESTAMP) ?
ts_mask : 0;
}
}