numam-dpdk/app/test-pmd/testpmd.c
Dmitry Kozlyuk 13b196425c app/testpmd: fix external buffer allocation
External pinned buffer memory (--mp-alloc=xbuf)
was allocated as multiple IOVA-contiguous memzones
of 2M size and 2M alignment.
Due to the malloc overhead and the alignment requirement,
each 2M memzone consumed 4M of hugepage memory:
2M of usable memory + X of malloc overhead + (2M-X) padding.
The allocation often failed with 2M hugepages and IOVA-as-PA
if a PA-contiguous span of 2 hugepages could not be found.
Also, with any hugepage size and IOVA mode
memory consumption was almost 2x of the usable amount.

Alignment requirement of 2M for external buffers is redundant.
It was an attempt to ensure IOVA-contiguity
by forcing memzones to start at hugepage boundaries,
while 2M size intended to leave no unused space on the page.
As shown above, this in fact caused excessive memory consumption
and decreased the chance of a successful allocation.
RTE_MEMZONE_F_IOVA_CONTIG already ensures IOVA-contiguity.

Remove the alignment requirement.
Reduce the memzone size by the malloc overhead size (4 cache lines),
so that memory consumption for each memzone is
(2M-X) of usable memory + X of malloc overhead = 2M.
This also means that whenever there are free 2M hugepages,
an IOVA-contiguous memzone can always be allocated.

Fixes: 72512e1897 ("app/testpmd: add mempool with external data buffers")
Cc: stable@dpdk.org

Signed-off-by: Dmitry Kozlyuk <dkozlyuk@nvidia.com>
Signed-off-by: Viacheslav Ovsiienko <viacheslavo@nvidia.com>
2022-01-18 14:22:15 +01:00

4316 lines
105 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2017 Intel Corporation
*/
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <string.h>
#include <time.h>
#include <fcntl.h>
#ifndef RTE_EXEC_ENV_WINDOWS
#include <sys/mman.h>
#endif
#include <sys/types.h>
#include <errno.h>
#include <stdbool.h>
#include <sys/queue.h>
#include <sys/stat.h>
#include <stdint.h>
#include <unistd.h>
#include <inttypes.h>
#include <rte_common.h>
#include <rte_errno.h>
#include <rte_byteorder.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_cycles.h>
#include <rte_memory.h>
#include <rte_memcpy.h>
#include <rte_launch.h>
#include <rte_eal.h>
#include <rte_alarm.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_branch_prediction.h>
#include <rte_mempool.h>
#include <rte_malloc.h>
#include <rte_mbuf.h>
#include <rte_mbuf_pool_ops.h>
#include <rte_interrupts.h>
#include <rte_pci.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_dev.h>
#include <rte_string_fns.h>
#ifdef RTE_NET_IXGBE
#include <rte_pmd_ixgbe.h>
#endif
#ifdef RTE_LIB_PDUMP
#include <rte_pdump.h>
#endif
#include <rte_flow.h>
#ifdef RTE_LIB_METRICS
#include <rte_metrics.h>
#endif
#ifdef RTE_LIB_BITRATESTATS
#include <rte_bitrate.h>
#endif
#ifdef RTE_LIB_LATENCYSTATS
#include <rte_latencystats.h>
#endif
#ifdef RTE_EXEC_ENV_WINDOWS
#include <process.h>
#endif
#include "testpmd.h"
#ifndef MAP_HUGETLB
/* FreeBSD may not have MAP_HUGETLB (in fact, it probably doesn't) */
#define HUGE_FLAG (0x40000)
#else
#define HUGE_FLAG MAP_HUGETLB
#endif
#ifndef MAP_HUGE_SHIFT
/* older kernels (or FreeBSD) will not have this define */
#define HUGE_SHIFT (26)
#else
#define HUGE_SHIFT MAP_HUGE_SHIFT
#endif
#define EXTMEM_HEAP_NAME "extmem"
/*
* Zone size with the malloc overhead (max of debug and release variants)
* must fit into the smallest supported hugepage size (2M),
* so that an IOVA-contiguous zone of this size can always be allocated
* if there are free 2M hugepages.
*/
#define EXTBUF_ZONE_SIZE (RTE_PGSIZE_2M - 4 * RTE_CACHE_LINE_SIZE)
uint16_t verbose_level = 0; /**< Silent by default. */
int testpmd_logtype; /**< Log type for testpmd logs */
/* use main core for command line ? */
uint8_t interactive = 0;
uint8_t auto_start = 0;
uint8_t tx_first;
char cmdline_filename[PATH_MAX] = {0};
/*
* NUMA support configuration.
* When set, the NUMA support attempts to dispatch the allocation of the
* RX and TX memory rings, and of the DMA memory buffers (mbufs) for the
* probed ports among the CPU sockets 0 and 1.
* Otherwise, all memory is allocated from CPU socket 0.
*/
uint8_t numa_support = 1; /**< numa enabled by default */
/*
* In UMA mode,all memory is allocated from socket 0 if --socket-num is
* not configured.
*/
uint8_t socket_num = UMA_NO_CONFIG;
/*
* Select mempool allocation type:
* - native: use regular DPDK memory
* - anon: use regular DPDK memory to create mempool, but populate using
* anonymous memory (may not be IOVA-contiguous)
* - xmem: use externally allocated hugepage memory
*/
uint8_t mp_alloc_type = MP_ALLOC_NATIVE;
/*
* Store specified sockets on which memory pool to be used by ports
* is allocated.
*/
uint8_t port_numa[RTE_MAX_ETHPORTS];
/*
* Store specified sockets on which RX ring to be used by ports
* is allocated.
*/
uint8_t rxring_numa[RTE_MAX_ETHPORTS];
/*
* Store specified sockets on which TX ring to be used by ports
* is allocated.
*/
uint8_t txring_numa[RTE_MAX_ETHPORTS];
/*
* Record the Ethernet address of peer target ports to which packets are
* forwarded.
* Must be instantiated with the ethernet addresses of peer traffic generator
* ports.
*/
struct rte_ether_addr peer_eth_addrs[RTE_MAX_ETHPORTS];
portid_t nb_peer_eth_addrs = 0;
/*
* Probed Target Environment.
*/
struct rte_port *ports; /**< For all probed ethernet ports. */
portid_t nb_ports; /**< Number of probed ethernet ports. */
struct fwd_lcore **fwd_lcores; /**< For all probed logical cores. */
lcoreid_t nb_lcores; /**< Number of probed logical cores. */
portid_t ports_ids[RTE_MAX_ETHPORTS]; /**< Store all port ids. */
/*
* Test Forwarding Configuration.
* nb_fwd_lcores <= nb_cfg_lcores <= nb_lcores
* nb_fwd_ports <= nb_cfg_ports <= nb_ports
*/
lcoreid_t nb_cfg_lcores; /**< Number of configured logical cores. */
lcoreid_t nb_fwd_lcores; /**< Number of forwarding logical cores. */
portid_t nb_cfg_ports; /**< Number of configured ports. */
portid_t nb_fwd_ports; /**< Number of forwarding ports. */
unsigned int fwd_lcores_cpuids[RTE_MAX_LCORE]; /**< CPU ids configuration. */
portid_t fwd_ports_ids[RTE_MAX_ETHPORTS]; /**< Port ids configuration. */
struct fwd_stream **fwd_streams; /**< For each RX queue of each port. */
streamid_t nb_fwd_streams; /**< Is equal to (nb_ports * nb_rxq). */
/*
* Forwarding engines.
*/
struct fwd_engine * fwd_engines[] = {
&io_fwd_engine,
&mac_fwd_engine,
&mac_swap_engine,
&flow_gen_engine,
&rx_only_engine,
&tx_only_engine,
&csum_fwd_engine,
&icmp_echo_engine,
&noisy_vnf_engine,
&five_tuple_swap_fwd_engine,
#ifdef RTE_LIBRTE_IEEE1588
&ieee1588_fwd_engine,
#endif
&shared_rxq_engine,
NULL,
};
struct rte_mempool *mempools[RTE_MAX_NUMA_NODES * MAX_SEGS_BUFFER_SPLIT];
uint16_t mempool_flags;
struct fwd_config cur_fwd_config;
struct fwd_engine *cur_fwd_eng = &io_fwd_engine; /**< IO mode by default. */
uint32_t retry_enabled;
uint32_t burst_tx_delay_time = BURST_TX_WAIT_US;
uint32_t burst_tx_retry_num = BURST_TX_RETRIES;
uint32_t mbuf_data_size_n = 1; /* Number of specified mbuf sizes. */
uint16_t mbuf_data_size[MAX_SEGS_BUFFER_SPLIT] = {
DEFAULT_MBUF_DATA_SIZE
}; /**< Mbuf data space size. */
uint32_t param_total_num_mbufs = 0; /**< number of mbufs in all pools - if
* specified on command-line. */
uint16_t stats_period; /**< Period to show statistics (disabled by default) */
/** Extended statistics to show. */
struct rte_eth_xstat_name *xstats_display;
unsigned int xstats_display_num; /**< Size of extended statistics to show */
/*
* In container, it cannot terminate the process which running with 'stats-period'
* option. Set flag to exit stats period loop after received SIGINT/SIGTERM.
*/
uint8_t f_quit;
/*
* Max Rx frame size, set by '--max-pkt-len' parameter.
*/
uint32_t max_rx_pkt_len;
/*
* Configuration of packet segments used to scatter received packets
* if some of split features is configured.
*/
uint16_t rx_pkt_seg_lengths[MAX_SEGS_BUFFER_SPLIT];
uint8_t rx_pkt_nb_segs; /**< Number of segments to split */
uint16_t rx_pkt_seg_offsets[MAX_SEGS_BUFFER_SPLIT];
uint8_t rx_pkt_nb_offs; /**< Number of specified offsets */
/*
* Configuration of packet segments used by the "txonly" processing engine.
*/
uint16_t tx_pkt_length = TXONLY_DEF_PACKET_LEN; /**< TXONLY packet length. */
uint16_t tx_pkt_seg_lengths[RTE_MAX_SEGS_PER_PKT] = {
TXONLY_DEF_PACKET_LEN,
};
uint8_t tx_pkt_nb_segs = 1; /**< Number of segments in TXONLY packets */
enum tx_pkt_split tx_pkt_split = TX_PKT_SPLIT_OFF;
/**< Split policy for packets to TX. */
uint8_t txonly_multi_flow;
/**< Whether multiple flows are generated in TXONLY mode. */
uint32_t tx_pkt_times_inter;
/**< Timings for send scheduling in TXONLY mode, time between bursts. */
uint32_t tx_pkt_times_intra;
/**< Timings for send scheduling in TXONLY mode, time between packets. */
uint16_t nb_pkt_per_burst = DEF_PKT_BURST; /**< Number of packets per burst. */
uint16_t nb_pkt_flowgen_clones; /**< Number of Tx packet clones to send in flowgen mode. */
int nb_flows_flowgen = 1024; /**< Number of flows in flowgen mode. */
uint16_t mb_mempool_cache = DEF_MBUF_CACHE; /**< Size of mbuf mempool cache. */
/* current configuration is in DCB or not,0 means it is not in DCB mode */
uint8_t dcb_config = 0;
/*
* Configurable number of RX/TX queues.
*/
queueid_t nb_hairpinq; /**< Number of hairpin queues per port. */
queueid_t nb_rxq = 1; /**< Number of RX queues per port. */
queueid_t nb_txq = 1; /**< Number of TX queues per port. */
/*
* Configurable number of RX/TX ring descriptors.
* Defaults are supplied by drivers via ethdev.
*/
#define RTE_TEST_RX_DESC_DEFAULT 0
#define RTE_TEST_TX_DESC_DEFAULT 0
uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; /**< Number of RX descriptors. */
uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; /**< Number of TX descriptors. */
#define RTE_PMD_PARAM_UNSET -1
/*
* Configurable values of RX and TX ring threshold registers.
*/
int8_t rx_pthresh = RTE_PMD_PARAM_UNSET;
int8_t rx_hthresh = RTE_PMD_PARAM_UNSET;
int8_t rx_wthresh = RTE_PMD_PARAM_UNSET;
int8_t tx_pthresh = RTE_PMD_PARAM_UNSET;
int8_t tx_hthresh = RTE_PMD_PARAM_UNSET;
int8_t tx_wthresh = RTE_PMD_PARAM_UNSET;
/*
* Configurable value of RX free threshold.
*/
int16_t rx_free_thresh = RTE_PMD_PARAM_UNSET;
/*
* Configurable value of RX drop enable.
*/
int8_t rx_drop_en = RTE_PMD_PARAM_UNSET;
/*
* Configurable value of TX free threshold.
*/
int16_t tx_free_thresh = RTE_PMD_PARAM_UNSET;
/*
* Configurable value of TX RS bit threshold.
*/
int16_t tx_rs_thresh = RTE_PMD_PARAM_UNSET;
/*
* Configurable value of buffered packets before sending.
*/
uint16_t noisy_tx_sw_bufsz;
/*
* Configurable value of packet buffer timeout.
*/
uint16_t noisy_tx_sw_buf_flush_time;
/*
* Configurable value for size of VNF internal memory area
* used for simulating noisy neighbour behaviour
*/
uint64_t noisy_lkup_mem_sz;
/*
* Configurable value of number of random writes done in
* VNF simulation memory area.
*/
uint64_t noisy_lkup_num_writes;
/*
* Configurable value of number of random reads done in
* VNF simulation memory area.
*/
uint64_t noisy_lkup_num_reads;
/*
* Configurable value of number of random reads/writes done in
* VNF simulation memory area.
*/
uint64_t noisy_lkup_num_reads_writes;
/*
* Receive Side Scaling (RSS) configuration.
*/
uint64_t rss_hf = RTE_ETH_RSS_IP; /* RSS IP by default. */
/*
* Port topology configuration
*/
uint16_t port_topology = PORT_TOPOLOGY_PAIRED; /* Ports are paired by default */
/*
* Avoids to flush all the RX streams before starts forwarding.
*/
uint8_t no_flush_rx = 0; /* flush by default */
/*
* Flow API isolated mode.
*/
uint8_t flow_isolate_all;
/*
* Avoids to check link status when starting/stopping a port.
*/
uint8_t no_link_check = 0; /* check by default */
/*
* Don't automatically start all ports in interactive mode.
*/
uint8_t no_device_start = 0;
/*
* Enable link status change notification
*/
uint8_t lsc_interrupt = 1; /* enabled by default */
/*
* Enable device removal notification.
*/
uint8_t rmv_interrupt = 1; /* enabled by default */
uint8_t hot_plug = 0; /**< hotplug disabled by default. */
/* After attach, port setup is called on event or by iterator */
bool setup_on_probe_event = true;
/* Clear ptypes on port initialization. */
uint8_t clear_ptypes = true;
/* Hairpin ports configuration mode. */
uint16_t hairpin_mode;
/* Pretty printing of ethdev events */
static const char * const eth_event_desc[] = {
[RTE_ETH_EVENT_UNKNOWN] = "unknown",
[RTE_ETH_EVENT_INTR_LSC] = "link state change",
[RTE_ETH_EVENT_QUEUE_STATE] = "queue state",
[RTE_ETH_EVENT_INTR_RESET] = "reset",
[RTE_ETH_EVENT_VF_MBOX] = "VF mbox",
[RTE_ETH_EVENT_IPSEC] = "IPsec",
[RTE_ETH_EVENT_MACSEC] = "MACsec",
[RTE_ETH_EVENT_INTR_RMV] = "device removal",
[RTE_ETH_EVENT_NEW] = "device probed",
[RTE_ETH_EVENT_DESTROY] = "device released",
[RTE_ETH_EVENT_FLOW_AGED] = "flow aged",
[RTE_ETH_EVENT_MAX] = NULL,
};
/*
* Display or mask ether events
* Default to all events except VF_MBOX
*/
uint32_t event_print_mask = (UINT32_C(1) << RTE_ETH_EVENT_UNKNOWN) |
(UINT32_C(1) << RTE_ETH_EVENT_INTR_LSC) |
(UINT32_C(1) << RTE_ETH_EVENT_QUEUE_STATE) |
(UINT32_C(1) << RTE_ETH_EVENT_INTR_RESET) |
(UINT32_C(1) << RTE_ETH_EVENT_IPSEC) |
(UINT32_C(1) << RTE_ETH_EVENT_MACSEC) |
(UINT32_C(1) << RTE_ETH_EVENT_INTR_RMV) |
(UINT32_C(1) << RTE_ETH_EVENT_FLOW_AGED);
/*
* Decide if all memory are locked for performance.
*/
int do_mlockall = 0;
/*
* NIC bypass mode configuration options.
*/
#if defined RTE_NET_IXGBE && defined RTE_LIBRTE_IXGBE_BYPASS
/* The NIC bypass watchdog timeout. */
uint32_t bypass_timeout = RTE_PMD_IXGBE_BYPASS_TMT_OFF;
#endif
#ifdef RTE_LIB_LATENCYSTATS
/*
* Set when latency stats is enabled in the commandline
*/
uint8_t latencystats_enabled;
/*
* Lcore ID to service latency statistics.
*/
lcoreid_t latencystats_lcore_id = -1;
#endif
/*
* Ethernet device configuration.
*/
struct rte_eth_rxmode rx_mode;
struct rte_eth_txmode tx_mode = {
.offloads = RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE,
};
struct rte_eth_fdir_conf fdir_conf = {
.mode = RTE_FDIR_MODE_NONE,
.pballoc = RTE_ETH_FDIR_PBALLOC_64K,
.status = RTE_FDIR_REPORT_STATUS,
.mask = {
.vlan_tci_mask = 0xFFEF,
.ipv4_mask = {
.src_ip = 0xFFFFFFFF,
.dst_ip = 0xFFFFFFFF,
},
.ipv6_mask = {
.src_ip = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF},
.dst_ip = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF},
},
.src_port_mask = 0xFFFF,
.dst_port_mask = 0xFFFF,
.mac_addr_byte_mask = 0xFF,
.tunnel_type_mask = 1,
.tunnel_id_mask = 0xFFFFFFFF,
},
.drop_queue = 127,
};
volatile int test_done = 1; /* stop packet forwarding when set to 1. */
/*
* Display zero values by default for xstats
*/
uint8_t xstats_hide_zero;
/*
* Measure of CPU cycles disabled by default
*/
uint8_t record_core_cycles;
/*
* Display of RX and TX bursts disabled by default
*/
uint8_t record_burst_stats;
/*
* Number of ports per shared Rx queue group, 0 disable.
*/
uint32_t rxq_share;
unsigned int num_sockets = 0;
unsigned int socket_ids[RTE_MAX_NUMA_NODES];
#ifdef RTE_LIB_BITRATESTATS
/* Bitrate statistics */
struct rte_stats_bitrates *bitrate_data;
lcoreid_t bitrate_lcore_id;
uint8_t bitrate_enabled;
#endif
#ifdef RTE_LIB_GRO
struct gro_status gro_ports[RTE_MAX_ETHPORTS];
uint8_t gro_flush_cycles = GRO_DEFAULT_FLUSH_CYCLES;
#endif
/*
* hexadecimal bitmask of RX mq mode can be enabled.
*/
enum rte_eth_rx_mq_mode rx_mq_mode = RTE_ETH_MQ_RX_VMDQ_DCB_RSS;
/*
* Used to set forced link speed
*/
uint32_t eth_link_speed;
/*
* ID of the current process in multi-process, used to
* configure the queues to be polled.
*/
int proc_id;
/*
* Number of processes in multi-process, used to
* configure the queues to be polled.
*/
unsigned int num_procs = 1;
static void
eth_rx_metadata_negotiate_mp(uint16_t port_id)
{
uint64_t rx_meta_features = 0;
int ret;
if (!is_proc_primary())
return;
rx_meta_features |= RTE_ETH_RX_METADATA_USER_FLAG;
rx_meta_features |= RTE_ETH_RX_METADATA_USER_MARK;
rx_meta_features |= RTE_ETH_RX_METADATA_TUNNEL_ID;
ret = rte_eth_rx_metadata_negotiate(port_id, &rx_meta_features);
if (ret == 0) {
if (!(rx_meta_features & RTE_ETH_RX_METADATA_USER_FLAG)) {
TESTPMD_LOG(DEBUG, "Flow action FLAG will not affect Rx mbufs on port %u\n",
port_id);
}
if (!(rx_meta_features & RTE_ETH_RX_METADATA_USER_MARK)) {
TESTPMD_LOG(DEBUG, "Flow action MARK will not affect Rx mbufs on port %u\n",
port_id);
}
if (!(rx_meta_features & RTE_ETH_RX_METADATA_TUNNEL_ID)) {
TESTPMD_LOG(DEBUG, "Flow tunnel offload support might be limited or unavailable on port %u\n",
port_id);
}
} else if (ret != -ENOTSUP) {
rte_exit(EXIT_FAILURE, "Error when negotiating Rx meta features on port %u: %s\n",
port_id, rte_strerror(-ret));
}
}
static int
eth_dev_configure_mp(uint16_t port_id, uint16_t nb_rx_q, uint16_t nb_tx_q,
const struct rte_eth_conf *dev_conf)
{
if (is_proc_primary())
return rte_eth_dev_configure(port_id, nb_rx_q, nb_tx_q,
dev_conf);
return 0;
}
static int
eth_dev_start_mp(uint16_t port_id)
{
if (is_proc_primary())
return rte_eth_dev_start(port_id);
return 0;
}
static int
eth_dev_stop_mp(uint16_t port_id)
{
if (is_proc_primary())
return rte_eth_dev_stop(port_id);
return 0;
}
static void
mempool_free_mp(struct rte_mempool *mp)
{
if (is_proc_primary())
rte_mempool_free(mp);
}
static int
eth_dev_set_mtu_mp(uint16_t port_id, uint16_t mtu)
{
if (is_proc_primary())
return rte_eth_dev_set_mtu(port_id, mtu);
return 0;
}
/* Forward function declarations */
static void setup_attached_port(portid_t pi);
static void check_all_ports_link_status(uint32_t port_mask);
static int eth_event_callback(portid_t port_id,
enum rte_eth_event_type type,
void *param, void *ret_param);
static void dev_event_callback(const char *device_name,
enum rte_dev_event_type type,
void *param);
static void fill_xstats_display_info(void);
/*
* Check if all the ports are started.
* If yes, return positive value. If not, return zero.
*/
static int all_ports_started(void);
#ifdef RTE_LIB_GSO
struct gso_status gso_ports[RTE_MAX_ETHPORTS];
uint16_t gso_max_segment_size = RTE_ETHER_MAX_LEN - RTE_ETHER_CRC_LEN;
#endif
/* Holds the registered mbuf dynamic flags names. */
char dynf_names[64][RTE_MBUF_DYN_NAMESIZE];
/*
* Helper function to check if socket is already discovered.
* If yes, return positive value. If not, return zero.
*/
int
new_socket_id(unsigned int socket_id)
{
unsigned int i;
for (i = 0; i < num_sockets; i++) {
if (socket_ids[i] == socket_id)
return 0;
}
return 1;
}
/*
* Setup default configuration.
*/
static void
set_default_fwd_lcores_config(void)
{
unsigned int i;
unsigned int nb_lc;
unsigned int sock_num;
nb_lc = 0;
for (i = 0; i < RTE_MAX_LCORE; i++) {
if (!rte_lcore_is_enabled(i))
continue;
sock_num = rte_lcore_to_socket_id(i);
if (new_socket_id(sock_num)) {
if (num_sockets >= RTE_MAX_NUMA_NODES) {
rte_exit(EXIT_FAILURE,
"Total sockets greater than %u\n",
RTE_MAX_NUMA_NODES);
}
socket_ids[num_sockets++] = sock_num;
}
if (i == rte_get_main_lcore())
continue;
fwd_lcores_cpuids[nb_lc++] = i;
}
nb_lcores = (lcoreid_t) nb_lc;
nb_cfg_lcores = nb_lcores;
nb_fwd_lcores = 1;
}
static void
set_def_peer_eth_addrs(void)
{
portid_t i;
for (i = 0; i < RTE_MAX_ETHPORTS; i++) {
peer_eth_addrs[i].addr_bytes[0] = RTE_ETHER_LOCAL_ADMIN_ADDR;
peer_eth_addrs[i].addr_bytes[5] = i;
}
}
static void
set_default_fwd_ports_config(void)
{
portid_t pt_id;
int i = 0;
RTE_ETH_FOREACH_DEV(pt_id) {
fwd_ports_ids[i++] = pt_id;
/* Update sockets info according to the attached device */
int socket_id = rte_eth_dev_socket_id(pt_id);
if (socket_id >= 0 && new_socket_id(socket_id)) {
if (num_sockets >= RTE_MAX_NUMA_NODES) {
rte_exit(EXIT_FAILURE,
"Total sockets greater than %u\n",
RTE_MAX_NUMA_NODES);
}
socket_ids[num_sockets++] = socket_id;
}
}
nb_cfg_ports = nb_ports;
nb_fwd_ports = nb_ports;
}
void
set_def_fwd_config(void)
{
set_default_fwd_lcores_config();
set_def_peer_eth_addrs();
set_default_fwd_ports_config();
}
#ifndef RTE_EXEC_ENV_WINDOWS
/* extremely pessimistic estimation of memory required to create a mempool */
static int
calc_mem_size(uint32_t nb_mbufs, uint32_t mbuf_sz, size_t pgsz, size_t *out)
{
unsigned int n_pages, mbuf_per_pg, leftover;
uint64_t total_mem, mbuf_mem, obj_sz;
/* there is no good way to predict how much space the mempool will
* occupy because it will allocate chunks on the fly, and some of those
* will come from default DPDK memory while some will come from our
* external memory, so just assume 128MB will be enough for everyone.
*/
uint64_t hdr_mem = 128 << 20;
/* account for possible non-contiguousness */
obj_sz = rte_mempool_calc_obj_size(mbuf_sz, 0, NULL);
if (obj_sz > pgsz) {
TESTPMD_LOG(ERR, "Object size is bigger than page size\n");
return -1;
}
mbuf_per_pg = pgsz / obj_sz;
leftover = (nb_mbufs % mbuf_per_pg) > 0;
n_pages = (nb_mbufs / mbuf_per_pg) + leftover;
mbuf_mem = n_pages * pgsz;
total_mem = RTE_ALIGN(hdr_mem + mbuf_mem, pgsz);
if (total_mem > SIZE_MAX) {
TESTPMD_LOG(ERR, "Memory size too big\n");
return -1;
}
*out = (size_t)total_mem;
return 0;
}
static int
pagesz_flags(uint64_t page_sz)
{
/* as per mmap() manpage, all page sizes are log2 of page size
* shifted by MAP_HUGE_SHIFT
*/
int log2 = rte_log2_u64(page_sz);
return (log2 << HUGE_SHIFT);
}
static void *
alloc_mem(size_t memsz, size_t pgsz, bool huge)
{
void *addr;
int flags;
/* allocate anonymous hugepages */
flags = MAP_ANONYMOUS | MAP_PRIVATE;
if (huge)
flags |= HUGE_FLAG | pagesz_flags(pgsz);
addr = mmap(NULL, memsz, PROT_READ | PROT_WRITE, flags, -1, 0);
if (addr == MAP_FAILED)
return NULL;
return addr;
}
struct extmem_param {
void *addr;
size_t len;
size_t pgsz;
rte_iova_t *iova_table;
unsigned int iova_table_len;
};
static int
create_extmem(uint32_t nb_mbufs, uint32_t mbuf_sz, struct extmem_param *param,
bool huge)
{
uint64_t pgsizes[] = {RTE_PGSIZE_2M, RTE_PGSIZE_1G, /* x86_64, ARM */
RTE_PGSIZE_16M, RTE_PGSIZE_16G}; /* POWER */
unsigned int cur_page, n_pages, pgsz_idx;
size_t mem_sz, cur_pgsz;
rte_iova_t *iovas = NULL;
void *addr;
int ret;
for (pgsz_idx = 0; pgsz_idx < RTE_DIM(pgsizes); pgsz_idx++) {
/* skip anything that is too big */
if (pgsizes[pgsz_idx] > SIZE_MAX)
continue;
cur_pgsz = pgsizes[pgsz_idx];
/* if we were told not to allocate hugepages, override */
if (!huge)
cur_pgsz = sysconf(_SC_PAGESIZE);
ret = calc_mem_size(nb_mbufs, mbuf_sz, cur_pgsz, &mem_sz);
if (ret < 0) {
TESTPMD_LOG(ERR, "Cannot calculate memory size\n");
return -1;
}
/* allocate our memory */
addr = alloc_mem(mem_sz, cur_pgsz, huge);
/* if we couldn't allocate memory with a specified page size,
* that doesn't mean we can't do it with other page sizes, so
* try another one.
*/
if (addr == NULL)
continue;
/* store IOVA addresses for every page in this memory area */
n_pages = mem_sz / cur_pgsz;
iovas = malloc(sizeof(*iovas) * n_pages);
if (iovas == NULL) {
TESTPMD_LOG(ERR, "Cannot allocate memory for iova addresses\n");
goto fail;
}
/* lock memory if it's not huge pages */
if (!huge)
mlock(addr, mem_sz);
/* populate IOVA addresses */
for (cur_page = 0; cur_page < n_pages; cur_page++) {
rte_iova_t iova;
size_t offset;
void *cur;
offset = cur_pgsz * cur_page;
cur = RTE_PTR_ADD(addr, offset);
/* touch the page before getting its IOVA */
*(volatile char *)cur = 0;
iova = rte_mem_virt2iova(cur);
iovas[cur_page] = iova;
}
break;
}
/* if we couldn't allocate anything */
if (iovas == NULL)
return -1;
param->addr = addr;
param->len = mem_sz;
param->pgsz = cur_pgsz;
param->iova_table = iovas;
param->iova_table_len = n_pages;
return 0;
fail:
if (iovas)
free(iovas);
if (addr)
munmap(addr, mem_sz);
return -1;
}
static int
setup_extmem(uint32_t nb_mbufs, uint32_t mbuf_sz, bool huge)
{
struct extmem_param param;
int socket_id, ret;
memset(&param, 0, sizeof(param));
/* check if our heap exists */
socket_id = rte_malloc_heap_get_socket(EXTMEM_HEAP_NAME);
if (socket_id < 0) {
/* create our heap */
ret = rte_malloc_heap_create(EXTMEM_HEAP_NAME);
if (ret < 0) {
TESTPMD_LOG(ERR, "Cannot create heap\n");
return -1;
}
}
ret = create_extmem(nb_mbufs, mbuf_sz, &param, huge);
if (ret < 0) {
TESTPMD_LOG(ERR, "Cannot create memory area\n");
return -1;
}
/* we now have a valid memory area, so add it to heap */
ret = rte_malloc_heap_memory_add(EXTMEM_HEAP_NAME,
param.addr, param.len, param.iova_table,
param.iova_table_len, param.pgsz);
/* when using VFIO, memory is automatically mapped for DMA by EAL */
/* not needed any more */
free(param.iova_table);
if (ret < 0) {
TESTPMD_LOG(ERR, "Cannot add memory to heap\n");
munmap(param.addr, param.len);
return -1;
}
/* success */
TESTPMD_LOG(DEBUG, "Allocated %zuMB of external memory\n",
param.len >> 20);
return 0;
}
static void
dma_unmap_cb(struct rte_mempool *mp __rte_unused, void *opaque __rte_unused,
struct rte_mempool_memhdr *memhdr, unsigned mem_idx __rte_unused)
{
uint16_t pid = 0;
int ret;
RTE_ETH_FOREACH_DEV(pid) {
struct rte_eth_dev_info dev_info;
ret = eth_dev_info_get_print_err(pid, &dev_info);
if (ret != 0) {
TESTPMD_LOG(DEBUG,
"unable to get device info for port %d on addr 0x%p,"
"mempool unmapping will not be performed\n",
pid, memhdr->addr);
continue;
}
ret = rte_dev_dma_unmap(dev_info.device, memhdr->addr, 0, memhdr->len);
if (ret) {
TESTPMD_LOG(DEBUG,
"unable to DMA unmap addr 0x%p "
"for device %s\n",
memhdr->addr, dev_info.device->name);
}
}
ret = rte_extmem_unregister(memhdr->addr, memhdr->len);
if (ret) {
TESTPMD_LOG(DEBUG,
"unable to un-register addr 0x%p\n", memhdr->addr);
}
}
static void
dma_map_cb(struct rte_mempool *mp __rte_unused, void *opaque __rte_unused,
struct rte_mempool_memhdr *memhdr, unsigned mem_idx __rte_unused)
{
uint16_t pid = 0;
size_t page_size = sysconf(_SC_PAGESIZE);
int ret;
ret = rte_extmem_register(memhdr->addr, memhdr->len, NULL, 0,
page_size);
if (ret) {
TESTPMD_LOG(DEBUG,
"unable to register addr 0x%p\n", memhdr->addr);
return;
}
RTE_ETH_FOREACH_DEV(pid) {
struct rte_eth_dev_info dev_info;
ret = eth_dev_info_get_print_err(pid, &dev_info);
if (ret != 0) {
TESTPMD_LOG(DEBUG,
"unable to get device info for port %d on addr 0x%p,"
"mempool mapping will not be performed\n",
pid, memhdr->addr);
continue;
}
ret = rte_dev_dma_map(dev_info.device, memhdr->addr, 0, memhdr->len);
if (ret) {
TESTPMD_LOG(DEBUG,
"unable to DMA map addr 0x%p "
"for device %s\n",
memhdr->addr, dev_info.device->name);
}
}
}
#endif
static unsigned int
setup_extbuf(uint32_t nb_mbufs, uint16_t mbuf_sz, unsigned int socket_id,
char *pool_name, struct rte_pktmbuf_extmem **ext_mem)
{
struct rte_pktmbuf_extmem *xmem;
unsigned int ext_num, zone_num, elt_num;
uint16_t elt_size;
elt_size = RTE_ALIGN_CEIL(mbuf_sz, RTE_CACHE_LINE_SIZE);
elt_num = EXTBUF_ZONE_SIZE / elt_size;
zone_num = (nb_mbufs + elt_num - 1) / elt_num;
xmem = malloc(sizeof(struct rte_pktmbuf_extmem) * zone_num);
if (xmem == NULL) {
TESTPMD_LOG(ERR, "Cannot allocate memory for "
"external buffer descriptors\n");
*ext_mem = NULL;
return 0;
}
for (ext_num = 0; ext_num < zone_num; ext_num++) {
struct rte_pktmbuf_extmem *xseg = xmem + ext_num;
const struct rte_memzone *mz;
char mz_name[RTE_MEMZONE_NAMESIZE];
int ret;
ret = snprintf(mz_name, sizeof(mz_name),
RTE_MEMPOOL_MZ_FORMAT "_xb_%u", pool_name, ext_num);
if (ret < 0 || ret >= (int)sizeof(mz_name)) {
errno = ENAMETOOLONG;
ext_num = 0;
break;
}
mz = rte_memzone_reserve(mz_name, EXTBUF_ZONE_SIZE,
socket_id,
RTE_MEMZONE_IOVA_CONTIG |
RTE_MEMZONE_1GB |
RTE_MEMZONE_SIZE_HINT_ONLY);
if (mz == NULL) {
/*
* The caller exits on external buffer creation
* error, so there is no need to free memzones.
*/
errno = ENOMEM;
ext_num = 0;
break;
}
xseg->buf_ptr = mz->addr;
xseg->buf_iova = mz->iova;
xseg->buf_len = EXTBUF_ZONE_SIZE;
xseg->elt_size = elt_size;
}
if (ext_num == 0 && xmem != NULL) {
free(xmem);
xmem = NULL;
}
*ext_mem = xmem;
return ext_num;
}
/*
* Configuration initialisation done once at init time.
*/
static struct rte_mempool *
mbuf_pool_create(uint16_t mbuf_seg_size, unsigned nb_mbuf,
unsigned int socket_id, uint16_t size_idx)
{
char pool_name[RTE_MEMPOOL_NAMESIZE];
struct rte_mempool *rte_mp = NULL;
#ifndef RTE_EXEC_ENV_WINDOWS
uint32_t mb_size;
mb_size = sizeof(struct rte_mbuf) + mbuf_seg_size;
#endif
mbuf_poolname_build(socket_id, pool_name, sizeof(pool_name), size_idx);
if (!is_proc_primary()) {
rte_mp = rte_mempool_lookup(pool_name);
if (rte_mp == NULL)
rte_exit(EXIT_FAILURE,
"Get mbuf pool for socket %u failed: %s\n",
socket_id, rte_strerror(rte_errno));
return rte_mp;
}
TESTPMD_LOG(INFO,
"create a new mbuf pool <%s>: n=%u, size=%u, socket=%u\n",
pool_name, nb_mbuf, mbuf_seg_size, socket_id);
switch (mp_alloc_type) {
case MP_ALLOC_NATIVE:
{
/* wrapper to rte_mempool_create() */
TESTPMD_LOG(INFO, "preferred mempool ops selected: %s\n",
rte_mbuf_best_mempool_ops());
rte_mp = rte_pktmbuf_pool_create(pool_name, nb_mbuf,
mb_mempool_cache, 0, mbuf_seg_size, socket_id);
break;
}
#ifndef RTE_EXEC_ENV_WINDOWS
case MP_ALLOC_ANON:
{
rte_mp = rte_mempool_create_empty(pool_name, nb_mbuf,
mb_size, (unsigned int) mb_mempool_cache,
sizeof(struct rte_pktmbuf_pool_private),
socket_id, mempool_flags);
if (rte_mp == NULL)
goto err;
if (rte_mempool_populate_anon(rte_mp) == 0) {
rte_mempool_free(rte_mp);
rte_mp = NULL;
goto err;
}
rte_pktmbuf_pool_init(rte_mp, NULL);
rte_mempool_obj_iter(rte_mp, rte_pktmbuf_init, NULL);
rte_mempool_mem_iter(rte_mp, dma_map_cb, NULL);
break;
}
case MP_ALLOC_XMEM:
case MP_ALLOC_XMEM_HUGE:
{
int heap_socket;
bool huge = mp_alloc_type == MP_ALLOC_XMEM_HUGE;
if (setup_extmem(nb_mbuf, mbuf_seg_size, huge) < 0)
rte_exit(EXIT_FAILURE, "Could not create external memory\n");
heap_socket =
rte_malloc_heap_get_socket(EXTMEM_HEAP_NAME);
if (heap_socket < 0)
rte_exit(EXIT_FAILURE, "Could not get external memory socket ID\n");
TESTPMD_LOG(INFO, "preferred mempool ops selected: %s\n",
rte_mbuf_best_mempool_ops());
rte_mp = rte_pktmbuf_pool_create(pool_name, nb_mbuf,
mb_mempool_cache, 0, mbuf_seg_size,
heap_socket);
break;
}
#endif
case MP_ALLOC_XBUF:
{
struct rte_pktmbuf_extmem *ext_mem;
unsigned int ext_num;
ext_num = setup_extbuf(nb_mbuf, mbuf_seg_size,
socket_id, pool_name, &ext_mem);
if (ext_num == 0)
rte_exit(EXIT_FAILURE,
"Can't create pinned data buffers\n");
TESTPMD_LOG(INFO, "preferred mempool ops selected: %s\n",
rte_mbuf_best_mempool_ops());
rte_mp = rte_pktmbuf_pool_create_extbuf
(pool_name, nb_mbuf, mb_mempool_cache,
0, mbuf_seg_size, socket_id,
ext_mem, ext_num);
free(ext_mem);
break;
}
default:
{
rte_exit(EXIT_FAILURE, "Invalid mempool creation mode\n");
}
}
#ifndef RTE_EXEC_ENV_WINDOWS
err:
#endif
if (rte_mp == NULL) {
rte_exit(EXIT_FAILURE,
"Creation of mbuf pool for socket %u failed: %s\n",
socket_id, rte_strerror(rte_errno));
} else if (verbose_level > 0) {
rte_mempool_dump(stdout, rte_mp);
}
return rte_mp;
}
/*
* Check given socket id is valid or not with NUMA mode,
* if valid, return 0, else return -1
*/
static int
check_socket_id(const unsigned int socket_id)
{
static int warning_once = 0;
if (new_socket_id(socket_id)) {
if (!warning_once && numa_support)
fprintf(stderr,
"Warning: NUMA should be configured manually by using --port-numa-config and --ring-numa-config parameters along with --numa.\n");
warning_once = 1;
return -1;
}
return 0;
}
/*
* Get the allowed maximum number of RX queues.
* *pid return the port id which has minimal value of
* max_rx_queues in all ports.
*/
queueid_t
get_allowed_max_nb_rxq(portid_t *pid)
{
queueid_t allowed_max_rxq = RTE_MAX_QUEUES_PER_PORT;
bool max_rxq_valid = false;
portid_t pi;
struct rte_eth_dev_info dev_info;
RTE_ETH_FOREACH_DEV(pi) {
if (eth_dev_info_get_print_err(pi, &dev_info) != 0)
continue;
max_rxq_valid = true;
if (dev_info.max_rx_queues < allowed_max_rxq) {
allowed_max_rxq = dev_info.max_rx_queues;
*pid = pi;
}
}
return max_rxq_valid ? allowed_max_rxq : 0;
}
/*
* Check input rxq is valid or not.
* If input rxq is not greater than any of maximum number
* of RX queues of all ports, it is valid.
* if valid, return 0, else return -1
*/
int
check_nb_rxq(queueid_t rxq)
{
queueid_t allowed_max_rxq;
portid_t pid = 0;
allowed_max_rxq = get_allowed_max_nb_rxq(&pid);
if (rxq > allowed_max_rxq) {
fprintf(stderr,
"Fail: input rxq (%u) can't be greater than max_rx_queues (%u) of port %u\n",
rxq, allowed_max_rxq, pid);
return -1;
}
return 0;
}
/*
* Get the allowed maximum number of TX queues.
* *pid return the port id which has minimal value of
* max_tx_queues in all ports.
*/
queueid_t
get_allowed_max_nb_txq(portid_t *pid)
{
queueid_t allowed_max_txq = RTE_MAX_QUEUES_PER_PORT;
bool max_txq_valid = false;
portid_t pi;
struct rte_eth_dev_info dev_info;
RTE_ETH_FOREACH_DEV(pi) {
if (eth_dev_info_get_print_err(pi, &dev_info) != 0)
continue;
max_txq_valid = true;
if (dev_info.max_tx_queues < allowed_max_txq) {
allowed_max_txq = dev_info.max_tx_queues;
*pid = pi;
}
}
return max_txq_valid ? allowed_max_txq : 0;
}
/*
* Check input txq is valid or not.
* If input txq is not greater than any of maximum number
* of TX queues of all ports, it is valid.
* if valid, return 0, else return -1
*/
int
check_nb_txq(queueid_t txq)
{
queueid_t allowed_max_txq;
portid_t pid = 0;
allowed_max_txq = get_allowed_max_nb_txq(&pid);
if (txq > allowed_max_txq) {
fprintf(stderr,
"Fail: input txq (%u) can't be greater than max_tx_queues (%u) of port %u\n",
txq, allowed_max_txq, pid);
return -1;
}
return 0;
}
/*
* Get the allowed maximum number of RXDs of every rx queue.
* *pid return the port id which has minimal value of
* max_rxd in all queues of all ports.
*/
static uint16_t
get_allowed_max_nb_rxd(portid_t *pid)
{
uint16_t allowed_max_rxd = UINT16_MAX;
portid_t pi;
struct rte_eth_dev_info dev_info;
RTE_ETH_FOREACH_DEV(pi) {
if (eth_dev_info_get_print_err(pi, &dev_info) != 0)
continue;
if (dev_info.rx_desc_lim.nb_max < allowed_max_rxd) {
allowed_max_rxd = dev_info.rx_desc_lim.nb_max;
*pid = pi;
}
}
return allowed_max_rxd;
}
/*
* Get the allowed minimal number of RXDs of every rx queue.
* *pid return the port id which has minimal value of
* min_rxd in all queues of all ports.
*/
static uint16_t
get_allowed_min_nb_rxd(portid_t *pid)
{
uint16_t allowed_min_rxd = 0;
portid_t pi;
struct rte_eth_dev_info dev_info;
RTE_ETH_FOREACH_DEV(pi) {
if (eth_dev_info_get_print_err(pi, &dev_info) != 0)
continue;
if (dev_info.rx_desc_lim.nb_min > allowed_min_rxd) {
allowed_min_rxd = dev_info.rx_desc_lim.nb_min;
*pid = pi;
}
}
return allowed_min_rxd;
}
/*
* Check input rxd is valid or not.
* If input rxd is not greater than any of maximum number
* of RXDs of every Rx queues and is not less than any of
* minimal number of RXDs of every Rx queues, it is valid.
* if valid, return 0, else return -1
*/
int
check_nb_rxd(queueid_t rxd)
{
uint16_t allowed_max_rxd;
uint16_t allowed_min_rxd;
portid_t pid = 0;
allowed_max_rxd = get_allowed_max_nb_rxd(&pid);
if (rxd > allowed_max_rxd) {
fprintf(stderr,
"Fail: input rxd (%u) can't be greater than max_rxds (%u) of port %u\n",
rxd, allowed_max_rxd, pid);
return -1;
}
allowed_min_rxd = get_allowed_min_nb_rxd(&pid);
if (rxd < allowed_min_rxd) {
fprintf(stderr,
"Fail: input rxd (%u) can't be less than min_rxds (%u) of port %u\n",
rxd, allowed_min_rxd, pid);
return -1;
}
return 0;
}
/*
* Get the allowed maximum number of TXDs of every rx queues.
* *pid return the port id which has minimal value of
* max_txd in every tx queue.
*/
static uint16_t
get_allowed_max_nb_txd(portid_t *pid)
{
uint16_t allowed_max_txd = UINT16_MAX;
portid_t pi;
struct rte_eth_dev_info dev_info;
RTE_ETH_FOREACH_DEV(pi) {
if (eth_dev_info_get_print_err(pi, &dev_info) != 0)
continue;
if (dev_info.tx_desc_lim.nb_max < allowed_max_txd) {
allowed_max_txd = dev_info.tx_desc_lim.nb_max;
*pid = pi;
}
}
return allowed_max_txd;
}
/*
* Get the allowed maximum number of TXDs of every tx queues.
* *pid return the port id which has minimal value of
* min_txd in every tx queue.
*/
static uint16_t
get_allowed_min_nb_txd(portid_t *pid)
{
uint16_t allowed_min_txd = 0;
portid_t pi;
struct rte_eth_dev_info dev_info;
RTE_ETH_FOREACH_DEV(pi) {
if (eth_dev_info_get_print_err(pi, &dev_info) != 0)
continue;
if (dev_info.tx_desc_lim.nb_min > allowed_min_txd) {
allowed_min_txd = dev_info.tx_desc_lim.nb_min;
*pid = pi;
}
}
return allowed_min_txd;
}
/*
* Check input txd is valid or not.
* If input txd is not greater than any of maximum number
* of TXDs of every Rx queues, it is valid.
* if valid, return 0, else return -1
*/
int
check_nb_txd(queueid_t txd)
{
uint16_t allowed_max_txd;
uint16_t allowed_min_txd;
portid_t pid = 0;
allowed_max_txd = get_allowed_max_nb_txd(&pid);
if (txd > allowed_max_txd) {
fprintf(stderr,
"Fail: input txd (%u) can't be greater than max_txds (%u) of port %u\n",
txd, allowed_max_txd, pid);
return -1;
}
allowed_min_txd = get_allowed_min_nb_txd(&pid);
if (txd < allowed_min_txd) {
fprintf(stderr,
"Fail: input txd (%u) can't be less than min_txds (%u) of port %u\n",
txd, allowed_min_txd, pid);
return -1;
}
return 0;
}
/*
* Get the allowed maximum number of hairpin queues.
* *pid return the port id which has minimal value of
* max_hairpin_queues in all ports.
*/
queueid_t
get_allowed_max_nb_hairpinq(portid_t *pid)
{
queueid_t allowed_max_hairpinq = RTE_MAX_QUEUES_PER_PORT;
portid_t pi;
struct rte_eth_hairpin_cap cap;
RTE_ETH_FOREACH_DEV(pi) {
if (rte_eth_dev_hairpin_capability_get(pi, &cap) != 0) {
*pid = pi;
return 0;
}
if (cap.max_nb_queues < allowed_max_hairpinq) {
allowed_max_hairpinq = cap.max_nb_queues;
*pid = pi;
}
}
return allowed_max_hairpinq;
}
/*
* Check input hairpin is valid or not.
* If input hairpin is not greater than any of maximum number
* of hairpin queues of all ports, it is valid.
* if valid, return 0, else return -1
*/
int
check_nb_hairpinq(queueid_t hairpinq)
{
queueid_t allowed_max_hairpinq;
portid_t pid = 0;
allowed_max_hairpinq = get_allowed_max_nb_hairpinq(&pid);
if (hairpinq > allowed_max_hairpinq) {
fprintf(stderr,
"Fail: input hairpin (%u) can't be greater than max_hairpin_queues (%u) of port %u\n",
hairpinq, allowed_max_hairpinq, pid);
return -1;
}
return 0;
}
static int
get_eth_overhead(struct rte_eth_dev_info *dev_info)
{
uint32_t eth_overhead;
if (dev_info->max_mtu != UINT16_MAX &&
dev_info->max_rx_pktlen > dev_info->max_mtu)
eth_overhead = dev_info->max_rx_pktlen - dev_info->max_mtu;
else
eth_overhead = RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN;
return eth_overhead;
}
static void
init_config_port_offloads(portid_t pid, uint32_t socket_id)
{
struct rte_port *port = &ports[pid];
int ret;
int i;
eth_rx_metadata_negotiate_mp(pid);
port->dev_conf.txmode = tx_mode;
port->dev_conf.rxmode = rx_mode;
ret = eth_dev_info_get_print_err(pid, &port->dev_info);
if (ret != 0)
rte_exit(EXIT_FAILURE, "rte_eth_dev_info_get() failed\n");
if (!(port->dev_info.tx_offload_capa & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE))
port->dev_conf.txmode.offloads &=
~RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
/* Apply Rx offloads configuration */
for (i = 0; i < port->dev_info.max_rx_queues; i++)
port->rx_conf[i].offloads = port->dev_conf.rxmode.offloads;
/* Apply Tx offloads configuration */
for (i = 0; i < port->dev_info.max_tx_queues; i++)
port->tx_conf[i].offloads = port->dev_conf.txmode.offloads;
if (eth_link_speed)
port->dev_conf.link_speeds = eth_link_speed;
if (max_rx_pkt_len)
port->dev_conf.rxmode.mtu = max_rx_pkt_len -
get_eth_overhead(&port->dev_info);
/* set flag to initialize port/queue */
port->need_reconfig = 1;
port->need_reconfig_queues = 1;
port->socket_id = socket_id;
port->tx_metadata = 0;
/*
* Check for maximum number of segments per MTU.
* Accordingly update the mbuf data size.
*/
if (port->dev_info.rx_desc_lim.nb_mtu_seg_max != UINT16_MAX &&
port->dev_info.rx_desc_lim.nb_mtu_seg_max != 0) {
uint32_t eth_overhead = get_eth_overhead(&port->dev_info);
uint16_t mtu;
if (rte_eth_dev_get_mtu(pid, &mtu) == 0) {
uint16_t data_size = (mtu + eth_overhead) /
port->dev_info.rx_desc_lim.nb_mtu_seg_max;
uint16_t buffer_size = data_size + RTE_PKTMBUF_HEADROOM;
if (buffer_size > mbuf_data_size[0]) {
mbuf_data_size[0] = buffer_size;
TESTPMD_LOG(WARNING,
"Configured mbuf size of the first segment %hu\n",
mbuf_data_size[0]);
}
}
}
}
static void
init_config(void)
{
portid_t pid;
struct rte_mempool *mbp;
unsigned int nb_mbuf_per_pool;
lcoreid_t lc_id;
#ifdef RTE_LIB_GRO
struct rte_gro_param gro_param;
#endif
#ifdef RTE_LIB_GSO
uint32_t gso_types;
#endif
/* Configuration of logical cores. */
fwd_lcores = rte_zmalloc("testpmd: fwd_lcores",
sizeof(struct fwd_lcore *) * nb_lcores,
RTE_CACHE_LINE_SIZE);
if (fwd_lcores == NULL) {
rte_exit(EXIT_FAILURE, "rte_zmalloc(%d (struct fwd_lcore *)) "
"failed\n", nb_lcores);
}
for (lc_id = 0; lc_id < nb_lcores; lc_id++) {
fwd_lcores[lc_id] = rte_zmalloc("testpmd: struct fwd_lcore",
sizeof(struct fwd_lcore),
RTE_CACHE_LINE_SIZE);
if (fwd_lcores[lc_id] == NULL) {
rte_exit(EXIT_FAILURE, "rte_zmalloc(struct fwd_lcore) "
"failed\n");
}
fwd_lcores[lc_id]->cpuid_idx = lc_id;
}
RTE_ETH_FOREACH_DEV(pid) {
uint32_t socket_id;
if (numa_support) {
socket_id = port_numa[pid];
if (port_numa[pid] == NUMA_NO_CONFIG) {
socket_id = rte_eth_dev_socket_id(pid);
/*
* if socket_id is invalid,
* set to the first available socket.
*/
if (check_socket_id(socket_id) < 0)
socket_id = socket_ids[0];
}
} else {
socket_id = (socket_num == UMA_NO_CONFIG) ?
0 : socket_num;
}
/* Apply default TxRx configuration for all ports */
init_config_port_offloads(pid, socket_id);
}
/*
* Create pools of mbuf.
* If NUMA support is disabled, create a single pool of mbuf in
* socket 0 memory by default.
* Otherwise, create a pool of mbuf in the memory of sockets 0 and 1.
*
* Use the maximum value of nb_rxd and nb_txd here, then nb_rxd and
* nb_txd can be configured at run time.
*/
if (param_total_num_mbufs)
nb_mbuf_per_pool = param_total_num_mbufs;
else {
nb_mbuf_per_pool = RTE_TEST_RX_DESC_MAX +
(nb_lcores * mb_mempool_cache) +
RTE_TEST_TX_DESC_MAX + MAX_PKT_BURST;
nb_mbuf_per_pool *= RTE_MAX_ETHPORTS;
}
if (numa_support) {
uint8_t i, j;
for (i = 0; i < num_sockets; i++)
for (j = 0; j < mbuf_data_size_n; j++)
mempools[i * MAX_SEGS_BUFFER_SPLIT + j] =
mbuf_pool_create(mbuf_data_size[j],
nb_mbuf_per_pool,
socket_ids[i], j);
} else {
uint8_t i;
for (i = 0; i < mbuf_data_size_n; i++)
mempools[i] = mbuf_pool_create
(mbuf_data_size[i],
nb_mbuf_per_pool,
socket_num == UMA_NO_CONFIG ?
0 : socket_num, i);
}
init_port_config();
#ifdef RTE_LIB_GSO
gso_types = RTE_ETH_TX_OFFLOAD_TCP_TSO | RTE_ETH_TX_OFFLOAD_VXLAN_TNL_TSO |
RTE_ETH_TX_OFFLOAD_GRE_TNL_TSO | RTE_ETH_TX_OFFLOAD_UDP_TSO;
#endif
/*
* Records which Mbuf pool to use by each logical core, if needed.
*/
for (lc_id = 0; lc_id < nb_lcores; lc_id++) {
mbp = mbuf_pool_find(
rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]), 0);
if (mbp == NULL)
mbp = mbuf_pool_find(0, 0);
fwd_lcores[lc_id]->mbp = mbp;
#ifdef RTE_LIB_GSO
/* initialize GSO context */
fwd_lcores[lc_id]->gso_ctx.direct_pool = mbp;
fwd_lcores[lc_id]->gso_ctx.indirect_pool = mbp;
fwd_lcores[lc_id]->gso_ctx.gso_types = gso_types;
fwd_lcores[lc_id]->gso_ctx.gso_size = RTE_ETHER_MAX_LEN -
RTE_ETHER_CRC_LEN;
fwd_lcores[lc_id]->gso_ctx.flag = 0;
#endif
}
fwd_config_setup();
#ifdef RTE_LIB_GRO
/* create a gro context for each lcore */
gro_param.gro_types = RTE_GRO_TCP_IPV4;
gro_param.max_flow_num = GRO_MAX_FLUSH_CYCLES;
gro_param.max_item_per_flow = MAX_PKT_BURST;
for (lc_id = 0; lc_id < nb_lcores; lc_id++) {
gro_param.socket_id = rte_lcore_to_socket_id(
fwd_lcores_cpuids[lc_id]);
fwd_lcores[lc_id]->gro_ctx = rte_gro_ctx_create(&gro_param);
if (fwd_lcores[lc_id]->gro_ctx == NULL) {
rte_exit(EXIT_FAILURE,
"rte_gro_ctx_create() failed\n");
}
}
#endif
}
void
reconfig(portid_t new_port_id, unsigned socket_id)
{
/* Reconfiguration of Ethernet ports. */
init_config_port_offloads(new_port_id, socket_id);
init_port_config();
}
int
init_fwd_streams(void)
{
portid_t pid;
struct rte_port *port;
streamid_t sm_id, nb_fwd_streams_new;
queueid_t q;
/* set socket id according to numa or not */
RTE_ETH_FOREACH_DEV(pid) {
port = &ports[pid];
if (nb_rxq > port->dev_info.max_rx_queues) {
fprintf(stderr,
"Fail: nb_rxq(%d) is greater than max_rx_queues(%d)\n",
nb_rxq, port->dev_info.max_rx_queues);
return -1;
}
if (nb_txq > port->dev_info.max_tx_queues) {
fprintf(stderr,
"Fail: nb_txq(%d) is greater than max_tx_queues(%d)\n",
nb_txq, port->dev_info.max_tx_queues);
return -1;
}
if (numa_support) {
if (port_numa[pid] != NUMA_NO_CONFIG)
port->socket_id = port_numa[pid];
else {
port->socket_id = rte_eth_dev_socket_id(pid);
/*
* if socket_id is invalid,
* set to the first available socket.
*/
if (check_socket_id(port->socket_id) < 0)
port->socket_id = socket_ids[0];
}
}
else {
if (socket_num == UMA_NO_CONFIG)
port->socket_id = 0;
else
port->socket_id = socket_num;
}
}
q = RTE_MAX(nb_rxq, nb_txq);
if (q == 0) {
fprintf(stderr,
"Fail: Cannot allocate fwd streams as number of queues is 0\n");
return -1;
}
nb_fwd_streams_new = (streamid_t)(nb_ports * q);
if (nb_fwd_streams_new == nb_fwd_streams)
return 0;
/* clear the old */
if (fwd_streams != NULL) {
for (sm_id = 0; sm_id < nb_fwd_streams; sm_id++) {
if (fwd_streams[sm_id] == NULL)
continue;
rte_free(fwd_streams[sm_id]);
fwd_streams[sm_id] = NULL;
}
rte_free(fwd_streams);
fwd_streams = NULL;
}
/* init new */
nb_fwd_streams = nb_fwd_streams_new;
if (nb_fwd_streams) {
fwd_streams = rte_zmalloc("testpmd: fwd_streams",
sizeof(struct fwd_stream *) * nb_fwd_streams,
RTE_CACHE_LINE_SIZE);
if (fwd_streams == NULL)
rte_exit(EXIT_FAILURE, "rte_zmalloc(%d"
" (struct fwd_stream *)) failed\n",
nb_fwd_streams);
for (sm_id = 0; sm_id < nb_fwd_streams; sm_id++) {
fwd_streams[sm_id] = rte_zmalloc("testpmd:"
" struct fwd_stream", sizeof(struct fwd_stream),
RTE_CACHE_LINE_SIZE);
if (fwd_streams[sm_id] == NULL)
rte_exit(EXIT_FAILURE, "rte_zmalloc"
"(struct fwd_stream) failed\n");
}
}
return 0;
}
static void
pkt_burst_stats_display(const char *rx_tx, struct pkt_burst_stats *pbs)
{
uint64_t total_burst, sburst;
uint64_t nb_burst;
uint64_t burst_stats[4];
uint16_t pktnb_stats[4];
uint16_t nb_pkt;
int burst_percent[4], sburstp;
int i;
/*
* First compute the total number of packet bursts and the
* two highest numbers of bursts of the same number of packets.
*/
memset(&burst_stats, 0x0, sizeof(burst_stats));
memset(&pktnb_stats, 0x0, sizeof(pktnb_stats));
/* Show stats for 0 burst size always */
total_burst = pbs->pkt_burst_spread[0];
burst_stats[0] = pbs->pkt_burst_spread[0];
pktnb_stats[0] = 0;
/* Find the next 2 burst sizes with highest occurrences. */
for (nb_pkt = 1; nb_pkt < MAX_PKT_BURST + 1; nb_pkt++) {
nb_burst = pbs->pkt_burst_spread[nb_pkt];
if (nb_burst == 0)
continue;
total_burst += nb_burst;
if (nb_burst > burst_stats[1]) {
burst_stats[2] = burst_stats[1];
pktnb_stats[2] = pktnb_stats[1];
burst_stats[1] = nb_burst;
pktnb_stats[1] = nb_pkt;
} else if (nb_burst > burst_stats[2]) {
burst_stats[2] = nb_burst;
pktnb_stats[2] = nb_pkt;
}
}
if (total_burst == 0)
return;
printf(" %s-bursts : %"PRIu64" [", rx_tx, total_burst);
for (i = 0, sburst = 0, sburstp = 0; i < 4; i++) {
if (i == 3) {
printf("%d%% of other]\n", 100 - sburstp);
return;
}
sburst += burst_stats[i];
if (sburst == total_burst) {
printf("%d%% of %d pkts]\n",
100 - sburstp, (int) pktnb_stats[i]);
return;
}
burst_percent[i] =
(double)burst_stats[i] / total_burst * 100;
printf("%d%% of %d pkts + ",
burst_percent[i], (int) pktnb_stats[i]);
sburstp += burst_percent[i];
}
}
static void
fwd_stream_stats_display(streamid_t stream_id)
{
struct fwd_stream *fs;
static const char *fwd_top_stats_border = "-------";
fs = fwd_streams[stream_id];
if ((fs->rx_packets == 0) && (fs->tx_packets == 0) &&
(fs->fwd_dropped == 0))
return;
printf("\n %s Forward Stats for RX Port=%2d/Queue=%2d -> "
"TX Port=%2d/Queue=%2d %s\n",
fwd_top_stats_border, fs->rx_port, fs->rx_queue,
fs->tx_port, fs->tx_queue, fwd_top_stats_border);
printf(" RX-packets: %-14"PRIu64" TX-packets: %-14"PRIu64
" TX-dropped: %-14"PRIu64,
fs->rx_packets, fs->tx_packets, fs->fwd_dropped);
/* if checksum mode */
if (cur_fwd_eng == &csum_fwd_engine) {
printf(" RX- bad IP checksum: %-14"PRIu64
" Rx- bad L4 checksum: %-14"PRIu64
" Rx- bad outer L4 checksum: %-14"PRIu64"\n",
fs->rx_bad_ip_csum, fs->rx_bad_l4_csum,
fs->rx_bad_outer_l4_csum);
printf(" RX- bad outer IP checksum: %-14"PRIu64"\n",
fs->rx_bad_outer_ip_csum);
} else {
printf("\n");
}
if (record_burst_stats) {
pkt_burst_stats_display("RX", &fs->rx_burst_stats);
pkt_burst_stats_display("TX", &fs->tx_burst_stats);
}
}
void
fwd_stats_display(void)
{
static const char *fwd_stats_border = "----------------------";
static const char *acc_stats_border = "+++++++++++++++";
struct {
struct fwd_stream *rx_stream;
struct fwd_stream *tx_stream;
uint64_t tx_dropped;
uint64_t rx_bad_ip_csum;
uint64_t rx_bad_l4_csum;
uint64_t rx_bad_outer_l4_csum;
uint64_t rx_bad_outer_ip_csum;
} ports_stats[RTE_MAX_ETHPORTS];
uint64_t total_rx_dropped = 0;
uint64_t total_tx_dropped = 0;
uint64_t total_rx_nombuf = 0;
struct rte_eth_stats stats;
uint64_t fwd_cycles = 0;
uint64_t total_recv = 0;
uint64_t total_xmit = 0;
struct rte_port *port;
streamid_t sm_id;
portid_t pt_id;
int i;
memset(ports_stats, 0, sizeof(ports_stats));
for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) {
struct fwd_stream *fs = fwd_streams[sm_id];
if (cur_fwd_config.nb_fwd_streams >
cur_fwd_config.nb_fwd_ports) {
fwd_stream_stats_display(sm_id);
} else {
ports_stats[fs->tx_port].tx_stream = fs;
ports_stats[fs->rx_port].rx_stream = fs;
}
ports_stats[fs->tx_port].tx_dropped += fs->fwd_dropped;
ports_stats[fs->rx_port].rx_bad_ip_csum += fs->rx_bad_ip_csum;
ports_stats[fs->rx_port].rx_bad_l4_csum += fs->rx_bad_l4_csum;
ports_stats[fs->rx_port].rx_bad_outer_l4_csum +=
fs->rx_bad_outer_l4_csum;
ports_stats[fs->rx_port].rx_bad_outer_ip_csum +=
fs->rx_bad_outer_ip_csum;
if (record_core_cycles)
fwd_cycles += fs->core_cycles;
}
for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) {
pt_id = fwd_ports_ids[i];
port = &ports[pt_id];
rte_eth_stats_get(pt_id, &stats);
stats.ipackets -= port->stats.ipackets;
stats.opackets -= port->stats.opackets;
stats.ibytes -= port->stats.ibytes;
stats.obytes -= port->stats.obytes;
stats.imissed -= port->stats.imissed;
stats.oerrors -= port->stats.oerrors;
stats.rx_nombuf -= port->stats.rx_nombuf;
total_recv += stats.ipackets;
total_xmit += stats.opackets;
total_rx_dropped += stats.imissed;
total_tx_dropped += ports_stats[pt_id].tx_dropped;
total_tx_dropped += stats.oerrors;
total_rx_nombuf += stats.rx_nombuf;
printf("\n %s Forward statistics for port %-2d %s\n",
fwd_stats_border, pt_id, fwd_stats_border);
printf(" RX-packets: %-14"PRIu64" RX-dropped: %-14"PRIu64
"RX-total: %-"PRIu64"\n", stats.ipackets, stats.imissed,
stats.ipackets + stats.imissed);
if (cur_fwd_eng == &csum_fwd_engine) {
printf(" Bad-ipcsum: %-14"PRIu64
" Bad-l4csum: %-14"PRIu64
"Bad-outer-l4csum: %-14"PRIu64"\n",
ports_stats[pt_id].rx_bad_ip_csum,
ports_stats[pt_id].rx_bad_l4_csum,
ports_stats[pt_id].rx_bad_outer_l4_csum);
printf(" Bad-outer-ipcsum: %-14"PRIu64"\n",
ports_stats[pt_id].rx_bad_outer_ip_csum);
}
if (stats.ierrors + stats.rx_nombuf > 0) {
printf(" RX-error: %-"PRIu64"\n", stats.ierrors);
printf(" RX-nombufs: %-14"PRIu64"\n", stats.rx_nombuf);
}
printf(" TX-packets: %-14"PRIu64" TX-dropped: %-14"PRIu64
"TX-total: %-"PRIu64"\n",
stats.opackets, ports_stats[pt_id].tx_dropped,
stats.opackets + ports_stats[pt_id].tx_dropped);
if (record_burst_stats) {
if (ports_stats[pt_id].rx_stream)
pkt_burst_stats_display("RX",
&ports_stats[pt_id].rx_stream->rx_burst_stats);
if (ports_stats[pt_id].tx_stream)
pkt_burst_stats_display("TX",
&ports_stats[pt_id].tx_stream->tx_burst_stats);
}
printf(" %s--------------------------------%s\n",
fwd_stats_border, fwd_stats_border);
}
printf("\n %s Accumulated forward statistics for all ports"
"%s\n",
acc_stats_border, acc_stats_border);
printf(" RX-packets: %-14"PRIu64" RX-dropped: %-14"PRIu64"RX-total: "
"%-"PRIu64"\n"
" TX-packets: %-14"PRIu64" TX-dropped: %-14"PRIu64"TX-total: "
"%-"PRIu64"\n",
total_recv, total_rx_dropped, total_recv + total_rx_dropped,
total_xmit, total_tx_dropped, total_xmit + total_tx_dropped);
if (total_rx_nombuf > 0)
printf(" RX-nombufs: %-14"PRIu64"\n", total_rx_nombuf);
printf(" %s++++++++++++++++++++++++++++++++++++++++++++++"
"%s\n",
acc_stats_border, acc_stats_border);
if (record_core_cycles) {
#define CYC_PER_MHZ 1E6
if (total_recv > 0 || total_xmit > 0) {
uint64_t total_pkts = 0;
if (strcmp(cur_fwd_eng->fwd_mode_name, "txonly") == 0 ||
strcmp(cur_fwd_eng->fwd_mode_name, "flowgen") == 0)
total_pkts = total_xmit;
else
total_pkts = total_recv;
printf("\n CPU cycles/packet=%.2F (total cycles="
"%"PRIu64" / total %s packets=%"PRIu64") at %"PRIu64
" MHz Clock\n",
(double) fwd_cycles / total_pkts,
fwd_cycles, cur_fwd_eng->fwd_mode_name, total_pkts,
(uint64_t)(rte_get_tsc_hz() / CYC_PER_MHZ));
}
}
}
void
fwd_stats_reset(void)
{
streamid_t sm_id;
portid_t pt_id;
int i;
for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) {
pt_id = fwd_ports_ids[i];
rte_eth_stats_get(pt_id, &ports[pt_id].stats);
}
for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) {
struct fwd_stream *fs = fwd_streams[sm_id];
fs->rx_packets = 0;
fs->tx_packets = 0;
fs->fwd_dropped = 0;
fs->rx_bad_ip_csum = 0;
fs->rx_bad_l4_csum = 0;
fs->rx_bad_outer_l4_csum = 0;
fs->rx_bad_outer_ip_csum = 0;
memset(&fs->rx_burst_stats, 0, sizeof(fs->rx_burst_stats));
memset(&fs->tx_burst_stats, 0, sizeof(fs->tx_burst_stats));
fs->core_cycles = 0;
}
}
static void
flush_fwd_rx_queues(void)
{
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
portid_t rxp;
portid_t port_id;
queueid_t rxq;
uint16_t nb_rx;
uint16_t i;
uint8_t j;
uint64_t prev_tsc = 0, diff_tsc, cur_tsc, timer_tsc = 0;
uint64_t timer_period;
if (num_procs > 1) {
printf("multi-process not support for flushing fwd Rx queues, skip the below lines and return.\n");
return;
}
/* convert to number of cycles */
timer_period = rte_get_timer_hz(); /* 1 second timeout */
for (j = 0; j < 2; j++) {
for (rxp = 0; rxp < cur_fwd_config.nb_fwd_ports; rxp++) {
for (rxq = 0; rxq < nb_rxq; rxq++) {
port_id = fwd_ports_ids[rxp];
/**
* testpmd can stuck in the below do while loop
* if rte_eth_rx_burst() always returns nonzero
* packets. So timer is added to exit this loop
* after 1sec timer expiry.
*/
prev_tsc = rte_rdtsc();
do {
nb_rx = rte_eth_rx_burst(port_id, rxq,
pkts_burst, MAX_PKT_BURST);
for (i = 0; i < nb_rx; i++)
rte_pktmbuf_free(pkts_burst[i]);
cur_tsc = rte_rdtsc();
diff_tsc = cur_tsc - prev_tsc;
timer_tsc += diff_tsc;
} while ((nb_rx > 0) &&
(timer_tsc < timer_period));
timer_tsc = 0;
}
}
rte_delay_ms(10); /* wait 10 milli-seconds before retrying */
}
}
static void
run_pkt_fwd_on_lcore(struct fwd_lcore *fc, packet_fwd_t pkt_fwd)
{
struct fwd_stream **fsm;
streamid_t nb_fs;
streamid_t sm_id;
#ifdef RTE_LIB_BITRATESTATS
uint64_t tics_per_1sec;
uint64_t tics_datum;
uint64_t tics_current;
uint16_t i, cnt_ports;
cnt_ports = nb_ports;
tics_datum = rte_rdtsc();
tics_per_1sec = rte_get_timer_hz();
#endif
fsm = &fwd_streams[fc->stream_idx];
nb_fs = fc->stream_nb;
do {
for (sm_id = 0; sm_id < nb_fs; sm_id++)
(*pkt_fwd)(fsm[sm_id]);
#ifdef RTE_LIB_BITRATESTATS
if (bitrate_enabled != 0 &&
bitrate_lcore_id == rte_lcore_id()) {
tics_current = rte_rdtsc();
if (tics_current - tics_datum >= tics_per_1sec) {
/* Periodic bitrate calculation */
for (i = 0; i < cnt_ports; i++)
rte_stats_bitrate_calc(bitrate_data,
ports_ids[i]);
tics_datum = tics_current;
}
}
#endif
#ifdef RTE_LIB_LATENCYSTATS
if (latencystats_enabled != 0 &&
latencystats_lcore_id == rte_lcore_id())
rte_latencystats_update();
#endif
} while (! fc->stopped);
}
static int
start_pkt_forward_on_core(void *fwd_arg)
{
run_pkt_fwd_on_lcore((struct fwd_lcore *) fwd_arg,
cur_fwd_config.fwd_eng->packet_fwd);
return 0;
}
/*
* Run the TXONLY packet forwarding engine to send a single burst of packets.
* Used to start communication flows in network loopback test configurations.
*/
static int
run_one_txonly_burst_on_core(void *fwd_arg)
{
struct fwd_lcore *fwd_lc;
struct fwd_lcore tmp_lcore;
fwd_lc = (struct fwd_lcore *) fwd_arg;
tmp_lcore = *fwd_lc;
tmp_lcore.stopped = 1;
run_pkt_fwd_on_lcore(&tmp_lcore, tx_only_engine.packet_fwd);
return 0;
}
/*
* Launch packet forwarding:
* - Setup per-port forwarding context.
* - launch logical cores with their forwarding configuration.
*/
static void
launch_packet_forwarding(lcore_function_t *pkt_fwd_on_lcore)
{
unsigned int i;
unsigned int lc_id;
int diag;
for (i = 0; i < cur_fwd_config.nb_fwd_lcores; i++) {
lc_id = fwd_lcores_cpuids[i];
if ((interactive == 0) || (lc_id != rte_lcore_id())) {
fwd_lcores[i]->stopped = 0;
diag = rte_eal_remote_launch(pkt_fwd_on_lcore,
fwd_lcores[i], lc_id);
if (diag != 0)
fprintf(stderr,
"launch lcore %u failed - diag=%d\n",
lc_id, diag);
}
}
}
/*
* Launch packet forwarding configuration.
*/
void
start_packet_forwarding(int with_tx_first)
{
port_fwd_begin_t port_fwd_begin;
port_fwd_end_t port_fwd_end;
unsigned int i;
if (strcmp(cur_fwd_eng->fwd_mode_name, "rxonly") == 0 && !nb_rxq)
rte_exit(EXIT_FAILURE, "rxq are 0, cannot use rxonly fwd mode\n");
if (strcmp(cur_fwd_eng->fwd_mode_name, "txonly") == 0 && !nb_txq)
rte_exit(EXIT_FAILURE, "txq are 0, cannot use txonly fwd mode\n");
if ((strcmp(cur_fwd_eng->fwd_mode_name, "rxonly") != 0 &&
strcmp(cur_fwd_eng->fwd_mode_name, "txonly") != 0) &&
(!nb_rxq || !nb_txq))
rte_exit(EXIT_FAILURE,
"Either rxq or txq are 0, cannot use %s fwd mode\n",
cur_fwd_eng->fwd_mode_name);
if (all_ports_started() == 0) {
fprintf(stderr, "Not all ports were started\n");
return;
}
if (test_done == 0) {
fprintf(stderr, "Packet forwarding already started\n");
return;
}
fwd_config_setup();
pkt_fwd_config_display(&cur_fwd_config);
if (!pkt_fwd_shared_rxq_check())
return;
port_fwd_begin = cur_fwd_config.fwd_eng->port_fwd_begin;
if (port_fwd_begin != NULL) {
for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) {
if (port_fwd_begin(fwd_ports_ids[i])) {
fprintf(stderr,
"Packet forwarding is not ready\n");
return;
}
}
}
if (with_tx_first) {
port_fwd_begin = tx_only_engine.port_fwd_begin;
if (port_fwd_begin != NULL) {
for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) {
if (port_fwd_begin(fwd_ports_ids[i])) {
fprintf(stderr,
"Packet forwarding is not ready\n");
return;
}
}
}
}
test_done = 0;
if(!no_flush_rx)
flush_fwd_rx_queues();
rxtx_config_display();
fwd_stats_reset();
if (with_tx_first) {
while (with_tx_first--) {
launch_packet_forwarding(
run_one_txonly_burst_on_core);
rte_eal_mp_wait_lcore();
}
port_fwd_end = tx_only_engine.port_fwd_end;
if (port_fwd_end != NULL) {
for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++)
(*port_fwd_end)(fwd_ports_ids[i]);
}
}
launch_packet_forwarding(start_pkt_forward_on_core);
}
void
stop_packet_forwarding(void)
{
port_fwd_end_t port_fwd_end;
lcoreid_t lc_id;
portid_t pt_id;
int i;
if (test_done) {
fprintf(stderr, "Packet forwarding not started\n");
return;
}
printf("Telling cores to stop...");
for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++)
fwd_lcores[lc_id]->stopped = 1;
printf("\nWaiting for lcores to finish...\n");
rte_eal_mp_wait_lcore();
port_fwd_end = cur_fwd_config.fwd_eng->port_fwd_end;
if (port_fwd_end != NULL) {
for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) {
pt_id = fwd_ports_ids[i];
(*port_fwd_end)(pt_id);
}
}
fwd_stats_display();
printf("\nDone.\n");
test_done = 1;
}
void
dev_set_link_up(portid_t pid)
{
if (rte_eth_dev_set_link_up(pid) < 0)
fprintf(stderr, "\nSet link up fail.\n");
}
void
dev_set_link_down(portid_t pid)
{
if (rte_eth_dev_set_link_down(pid) < 0)
fprintf(stderr, "\nSet link down fail.\n");
}
static int
all_ports_started(void)
{
portid_t pi;
struct rte_port *port;
RTE_ETH_FOREACH_DEV(pi) {
port = &ports[pi];
/* Check if there is a port which is not started */
if ((port->port_status != RTE_PORT_STARTED) &&
(port->slave_flag == 0))
return 0;
}
/* No port is not started */
return 1;
}
int
port_is_stopped(portid_t port_id)
{
struct rte_port *port = &ports[port_id];
if ((port->port_status != RTE_PORT_STOPPED) &&
(port->slave_flag == 0))
return 0;
return 1;
}
int
all_ports_stopped(void)
{
portid_t pi;
RTE_ETH_FOREACH_DEV(pi) {
if (!port_is_stopped(pi))
return 0;
}
return 1;
}
int
port_is_started(portid_t port_id)
{
if (port_id_is_invalid(port_id, ENABLED_WARN))
return 0;
if (ports[port_id].port_status != RTE_PORT_STARTED)
return 0;
return 1;
}
/* Configure the Rx and Tx hairpin queues for the selected port. */
static int
setup_hairpin_queues(portid_t pi, portid_t p_pi, uint16_t cnt_pi)
{
queueid_t qi;
struct rte_eth_hairpin_conf hairpin_conf = {
.peer_count = 1,
};
int i;
int diag;
struct rte_port *port = &ports[pi];
uint16_t peer_rx_port = pi;
uint16_t peer_tx_port = pi;
uint32_t manual = 1;
uint32_t tx_exp = hairpin_mode & 0x10;
if (!(hairpin_mode & 0xf)) {
peer_rx_port = pi;
peer_tx_port = pi;
manual = 0;
} else if (hairpin_mode & 0x1) {
peer_tx_port = rte_eth_find_next_owned_by(pi + 1,
RTE_ETH_DEV_NO_OWNER);
if (peer_tx_port >= RTE_MAX_ETHPORTS)
peer_tx_port = rte_eth_find_next_owned_by(0,
RTE_ETH_DEV_NO_OWNER);
if (p_pi != RTE_MAX_ETHPORTS) {
peer_rx_port = p_pi;
} else {
uint16_t next_pi;
/* Last port will be the peer RX port of the first. */
RTE_ETH_FOREACH_DEV(next_pi)
peer_rx_port = next_pi;
}
manual = 1;
} else if (hairpin_mode & 0x2) {
if (cnt_pi & 0x1) {
peer_rx_port = p_pi;
} else {
peer_rx_port = rte_eth_find_next_owned_by(pi + 1,
RTE_ETH_DEV_NO_OWNER);
if (peer_rx_port >= RTE_MAX_ETHPORTS)
peer_rx_port = pi;
}
peer_tx_port = peer_rx_port;
manual = 1;
}
for (qi = nb_txq, i = 0; qi < nb_hairpinq + nb_txq; qi++) {
hairpin_conf.peers[0].port = peer_rx_port;
hairpin_conf.peers[0].queue = i + nb_rxq;
hairpin_conf.manual_bind = !!manual;
hairpin_conf.tx_explicit = !!tx_exp;
diag = rte_eth_tx_hairpin_queue_setup
(pi, qi, nb_txd, &hairpin_conf);
i++;
if (diag == 0)
continue;
/* Fail to setup rx queue, return */
if (port->port_status == RTE_PORT_HANDLING)
port->port_status = RTE_PORT_STOPPED;
else
fprintf(stderr,
"Port %d can not be set back to stopped\n", pi);
fprintf(stderr, "Fail to configure port %d hairpin queues\n",
pi);
/* try to reconfigure queues next time */
port->need_reconfig_queues = 1;
return -1;
}
for (qi = nb_rxq, i = 0; qi < nb_hairpinq + nb_rxq; qi++) {
hairpin_conf.peers[0].port = peer_tx_port;
hairpin_conf.peers[0].queue = i + nb_txq;
hairpin_conf.manual_bind = !!manual;
hairpin_conf.tx_explicit = !!tx_exp;
diag = rte_eth_rx_hairpin_queue_setup
(pi, qi, nb_rxd, &hairpin_conf);
i++;
if (diag == 0)
continue;
/* Fail to setup rx queue, return */
if (port->port_status == RTE_PORT_HANDLING)
port->port_status = RTE_PORT_STOPPED;
else
fprintf(stderr,
"Port %d can not be set back to stopped\n", pi);
fprintf(stderr, "Fail to configure port %d hairpin queues\n",
pi);
/* try to reconfigure queues next time */
port->need_reconfig_queues = 1;
return -1;
}
return 0;
}
/* Configure the Rx with optional split. */
int
rx_queue_setup(uint16_t port_id, uint16_t rx_queue_id,
uint16_t nb_rx_desc, unsigned int socket_id,
struct rte_eth_rxconf *rx_conf, struct rte_mempool *mp)
{
union rte_eth_rxseg rx_useg[MAX_SEGS_BUFFER_SPLIT] = {};
unsigned int i, mp_n;
int ret;
if (rx_pkt_nb_segs <= 1 ||
(rx_conf->offloads & RTE_ETH_RX_OFFLOAD_BUFFER_SPLIT) == 0) {
rx_conf->rx_seg = NULL;
rx_conf->rx_nseg = 0;
ret = rte_eth_rx_queue_setup(port_id, rx_queue_id,
nb_rx_desc, socket_id,
rx_conf, mp);
return ret;
}
for (i = 0; i < rx_pkt_nb_segs; i++) {
struct rte_eth_rxseg_split *rx_seg = &rx_useg[i].split;
struct rte_mempool *mpx;
/*
* Use last valid pool for the segments with number
* exceeding the pool index.
*/
mp_n = (i > mbuf_data_size_n) ? mbuf_data_size_n - 1 : i;
mpx = mbuf_pool_find(socket_id, mp_n);
/* Handle zero as mbuf data buffer size. */
rx_seg->length = rx_pkt_seg_lengths[i] ?
rx_pkt_seg_lengths[i] :
mbuf_data_size[mp_n];
rx_seg->offset = i < rx_pkt_nb_offs ?
rx_pkt_seg_offsets[i] : 0;
rx_seg->mp = mpx ? mpx : mp;
}
rx_conf->rx_nseg = rx_pkt_nb_segs;
rx_conf->rx_seg = rx_useg;
ret = rte_eth_rx_queue_setup(port_id, rx_queue_id, nb_rx_desc,
socket_id, rx_conf, NULL);
rx_conf->rx_seg = NULL;
rx_conf->rx_nseg = 0;
return ret;
}
static int
alloc_xstats_display_info(portid_t pi)
{
uint64_t **ids_supp = &ports[pi].xstats_info.ids_supp;
uint64_t **prev_values = &ports[pi].xstats_info.prev_values;
uint64_t **curr_values = &ports[pi].xstats_info.curr_values;
if (xstats_display_num == 0)
return 0;
*ids_supp = calloc(xstats_display_num, sizeof(**ids_supp));
if (*ids_supp == NULL)
goto fail_ids_supp;
*prev_values = calloc(xstats_display_num,
sizeof(**prev_values));
if (*prev_values == NULL)
goto fail_prev_values;
*curr_values = calloc(xstats_display_num,
sizeof(**curr_values));
if (*curr_values == NULL)
goto fail_curr_values;
ports[pi].xstats_info.allocated = true;
return 0;
fail_curr_values:
free(*prev_values);
fail_prev_values:
free(*ids_supp);
fail_ids_supp:
return -ENOMEM;
}
static void
free_xstats_display_info(portid_t pi)
{
if (!ports[pi].xstats_info.allocated)
return;
free(ports[pi].xstats_info.ids_supp);
free(ports[pi].xstats_info.prev_values);
free(ports[pi].xstats_info.curr_values);
ports[pi].xstats_info.allocated = false;
}
/** Fill helper structures for specified port to show extended statistics. */
static void
fill_xstats_display_info_for_port(portid_t pi)
{
unsigned int stat, stat_supp;
const char *xstat_name;
struct rte_port *port;
uint64_t *ids_supp;
int rc;
if (xstats_display_num == 0)
return;
if (pi == (portid_t)RTE_PORT_ALL) {
fill_xstats_display_info();
return;
}
port = &ports[pi];
if (port->port_status != RTE_PORT_STARTED)
return;
if (!port->xstats_info.allocated && alloc_xstats_display_info(pi) != 0)
rte_exit(EXIT_FAILURE,
"Failed to allocate xstats display memory\n");
ids_supp = port->xstats_info.ids_supp;
for (stat = stat_supp = 0; stat < xstats_display_num; stat++) {
xstat_name = xstats_display[stat].name;
rc = rte_eth_xstats_get_id_by_name(pi, xstat_name,
ids_supp + stat_supp);
if (rc != 0) {
fprintf(stderr, "No xstat '%s' on port %u - skip it %u\n",
xstat_name, pi, stat);
continue;
}
stat_supp++;
}
port->xstats_info.ids_supp_sz = stat_supp;
}
/** Fill helper structures for all ports to show extended statistics. */
static void
fill_xstats_display_info(void)
{
portid_t pi;
if (xstats_display_num == 0)
return;
RTE_ETH_FOREACH_DEV(pi)
fill_xstats_display_info_for_port(pi);
}
int
start_port(portid_t pid)
{
int diag, need_check_link_status = -1;
portid_t pi;
portid_t p_pi = RTE_MAX_ETHPORTS;
portid_t pl[RTE_MAX_ETHPORTS];
portid_t peer_pl[RTE_MAX_ETHPORTS];
uint16_t cnt_pi = 0;
uint16_t cfg_pi = 0;
int peer_pi;
queueid_t qi;
struct rte_port *port;
struct rte_eth_hairpin_cap cap;
if (port_id_is_invalid(pid, ENABLED_WARN))
return 0;
RTE_ETH_FOREACH_DEV(pi) {
if (pid != pi && pid != (portid_t)RTE_PORT_ALL)
continue;
need_check_link_status = 0;
port = &ports[pi];
if (port->port_status == RTE_PORT_STOPPED)
port->port_status = RTE_PORT_HANDLING;
else {
fprintf(stderr, "Port %d is now not stopped\n", pi);
continue;
}
if (port->need_reconfig > 0) {
struct rte_eth_conf dev_conf;
int k;
port->need_reconfig = 0;
if (flow_isolate_all) {
int ret = port_flow_isolate(pi, 1);
if (ret) {
fprintf(stderr,
"Failed to apply isolated mode on port %d\n",
pi);
return -1;
}
}
configure_rxtx_dump_callbacks(0);
printf("Configuring Port %d (socket %u)\n", pi,
port->socket_id);
if (nb_hairpinq > 0 &&
rte_eth_dev_hairpin_capability_get(pi, &cap)) {
fprintf(stderr,
"Port %d doesn't support hairpin queues\n",
pi);
return -1;
}
/* configure port */
diag = eth_dev_configure_mp(pi, nb_rxq + nb_hairpinq,
nb_txq + nb_hairpinq,
&(port->dev_conf));
if (diag != 0) {
if (port->port_status == RTE_PORT_HANDLING)
port->port_status = RTE_PORT_STOPPED;
else
fprintf(stderr,
"Port %d can not be set back to stopped\n",
pi);
fprintf(stderr, "Fail to configure port %d\n",
pi);
/* try to reconfigure port next time */
port->need_reconfig = 1;
return -1;
}
/* get device configuration*/
if (0 !=
eth_dev_conf_get_print_err(pi, &dev_conf)) {
fprintf(stderr,
"port %d can not get device configuration\n",
pi);
return -1;
}
/* Apply Rx offloads configuration */
if (dev_conf.rxmode.offloads !=
port->dev_conf.rxmode.offloads) {
port->dev_conf.rxmode.offloads |=
dev_conf.rxmode.offloads;
for (k = 0;
k < port->dev_info.max_rx_queues;
k++)
port->rx_conf[k].offloads |=
dev_conf.rxmode.offloads;
}
/* Apply Tx offloads configuration */
if (dev_conf.txmode.offloads !=
port->dev_conf.txmode.offloads) {
port->dev_conf.txmode.offloads |=
dev_conf.txmode.offloads;
for (k = 0;
k < port->dev_info.max_tx_queues;
k++)
port->tx_conf[k].offloads |=
dev_conf.txmode.offloads;
}
}
if (port->need_reconfig_queues > 0 && is_proc_primary()) {
port->need_reconfig_queues = 0;
/* setup tx queues */
for (qi = 0; qi < nb_txq; qi++) {
if ((numa_support) &&
(txring_numa[pi] != NUMA_NO_CONFIG))
diag = rte_eth_tx_queue_setup(pi, qi,
port->nb_tx_desc[qi],
txring_numa[pi],
&(port->tx_conf[qi]));
else
diag = rte_eth_tx_queue_setup(pi, qi,
port->nb_tx_desc[qi],
port->socket_id,
&(port->tx_conf[qi]));
if (diag == 0)
continue;
/* Fail to setup tx queue, return */
if (port->port_status == RTE_PORT_HANDLING)
port->port_status = RTE_PORT_STOPPED;
else
fprintf(stderr,
"Port %d can not be set back to stopped\n",
pi);
fprintf(stderr,
"Fail to configure port %d tx queues\n",
pi);
/* try to reconfigure queues next time */
port->need_reconfig_queues = 1;
return -1;
}
for (qi = 0; qi < nb_rxq; qi++) {
/* setup rx queues */
if ((numa_support) &&
(rxring_numa[pi] != NUMA_NO_CONFIG)) {
struct rte_mempool * mp =
mbuf_pool_find
(rxring_numa[pi], 0);
if (mp == NULL) {
fprintf(stderr,
"Failed to setup RX queue: No mempool allocation on the socket %d\n",
rxring_numa[pi]);
return -1;
}
diag = rx_queue_setup(pi, qi,
port->nb_rx_desc[qi],
rxring_numa[pi],
&(port->rx_conf[qi]),
mp);
} else {
struct rte_mempool *mp =
mbuf_pool_find
(port->socket_id, 0);
if (mp == NULL) {
fprintf(stderr,
"Failed to setup RX queue: No mempool allocation on the socket %d\n",
port->socket_id);
return -1;
}
diag = rx_queue_setup(pi, qi,
port->nb_rx_desc[qi],
port->socket_id,
&(port->rx_conf[qi]),
mp);
}
if (diag == 0)
continue;
/* Fail to setup rx queue, return */
if (port->port_status == RTE_PORT_HANDLING)
port->port_status = RTE_PORT_STOPPED;
else
fprintf(stderr,
"Port %d can not be set back to stopped\n",
pi);
fprintf(stderr,
"Fail to configure port %d rx queues\n",
pi);
/* try to reconfigure queues next time */
port->need_reconfig_queues = 1;
return -1;
}
/* setup hairpin queues */
if (setup_hairpin_queues(pi, p_pi, cnt_pi) != 0)
return -1;
}
configure_rxtx_dump_callbacks(verbose_level);
if (clear_ptypes) {
diag = rte_eth_dev_set_ptypes(pi, RTE_PTYPE_UNKNOWN,
NULL, 0);
if (diag < 0)
fprintf(stderr,
"Port %d: Failed to disable Ptype parsing\n",
pi);
}
p_pi = pi;
cnt_pi++;
/* start port */
diag = eth_dev_start_mp(pi);
if (diag < 0) {
fprintf(stderr, "Fail to start port %d: %s\n",
pi, rte_strerror(-diag));
/* Fail to setup rx queue, return */
if (port->port_status == RTE_PORT_HANDLING)
port->port_status = RTE_PORT_STOPPED;
else
fprintf(stderr,
"Port %d can not be set back to stopped\n",
pi);
continue;
}
if (port->port_status == RTE_PORT_HANDLING)
port->port_status = RTE_PORT_STARTED;
else
fprintf(stderr, "Port %d can not be set into started\n",
pi);
if (eth_macaddr_get_print_err(pi, &port->eth_addr) == 0)
printf("Port %d: " RTE_ETHER_ADDR_PRT_FMT "\n", pi,
RTE_ETHER_ADDR_BYTES(&port->eth_addr));
/* at least one port started, need checking link status */
need_check_link_status = 1;
pl[cfg_pi++] = pi;
}
if (need_check_link_status == 1 && !no_link_check)
check_all_ports_link_status(RTE_PORT_ALL);
else if (need_check_link_status == 0)
fprintf(stderr, "Please stop the ports first\n");
if (hairpin_mode & 0xf) {
uint16_t i;
int j;
/* bind all started hairpin ports */
for (i = 0; i < cfg_pi; i++) {
pi = pl[i];
/* bind current Tx to all peer Rx */
peer_pi = rte_eth_hairpin_get_peer_ports(pi, peer_pl,
RTE_MAX_ETHPORTS, 1);
if (peer_pi < 0)
return peer_pi;
for (j = 0; j < peer_pi; j++) {
if (!port_is_started(peer_pl[j]))
continue;
diag = rte_eth_hairpin_bind(pi, peer_pl[j]);
if (diag < 0) {
fprintf(stderr,
"Error during binding hairpin Tx port %u to %u: %s\n",
pi, peer_pl[j],
rte_strerror(-diag));
return -1;
}
}
/* bind all peer Tx to current Rx */
peer_pi = rte_eth_hairpin_get_peer_ports(pi, peer_pl,
RTE_MAX_ETHPORTS, 0);
if (peer_pi < 0)
return peer_pi;
for (j = 0; j < peer_pi; j++) {
if (!port_is_started(peer_pl[j]))
continue;
diag = rte_eth_hairpin_bind(peer_pl[j], pi);
if (diag < 0) {
fprintf(stderr,
"Error during binding hairpin Tx port %u to %u: %s\n",
peer_pl[j], pi,
rte_strerror(-diag));
return -1;
}
}
}
}
fill_xstats_display_info_for_port(pid);
printf("Done\n");
return 0;
}
void
stop_port(portid_t pid)
{
portid_t pi;
struct rte_port *port;
int need_check_link_status = 0;
portid_t peer_pl[RTE_MAX_ETHPORTS];
int peer_pi;
if (port_id_is_invalid(pid, ENABLED_WARN))
return;
printf("Stopping ports...\n");
RTE_ETH_FOREACH_DEV(pi) {
if (pid != pi && pid != (portid_t)RTE_PORT_ALL)
continue;
if (port_is_forwarding(pi) != 0 && test_done == 0) {
fprintf(stderr,
"Please remove port %d from forwarding configuration.\n",
pi);
continue;
}
if (port_is_bonding_slave(pi)) {
fprintf(stderr,
"Please remove port %d from bonded device.\n",
pi);
continue;
}
port = &ports[pi];
if (port->port_status == RTE_PORT_STARTED)
port->port_status = RTE_PORT_HANDLING;
else
continue;
if (hairpin_mode & 0xf) {
int j;
rte_eth_hairpin_unbind(pi, RTE_MAX_ETHPORTS);
/* unbind all peer Tx from current Rx */
peer_pi = rte_eth_hairpin_get_peer_ports(pi, peer_pl,
RTE_MAX_ETHPORTS, 0);
if (peer_pi < 0)
continue;
for (j = 0; j < peer_pi; j++) {
if (!port_is_started(peer_pl[j]))
continue;
rte_eth_hairpin_unbind(peer_pl[j], pi);
}
}
if (port->flow_list)
port_flow_flush(pi);
if (eth_dev_stop_mp(pi) != 0)
RTE_LOG(ERR, EAL, "rte_eth_dev_stop failed for port %u\n",
pi);
if (port->port_status == RTE_PORT_HANDLING)
port->port_status = RTE_PORT_STOPPED;
else
fprintf(stderr, "Port %d can not be set into stopped\n",
pi);
need_check_link_status = 1;
}
if (need_check_link_status && !no_link_check)
check_all_ports_link_status(RTE_PORT_ALL);
printf("Done\n");
}
static void
remove_invalid_ports_in(portid_t *array, portid_t *total)
{
portid_t i;
portid_t new_total = 0;
for (i = 0; i < *total; i++)
if (!port_id_is_invalid(array[i], DISABLED_WARN)) {
array[new_total] = array[i];
new_total++;
}
*total = new_total;
}
static void
remove_invalid_ports(void)
{
remove_invalid_ports_in(ports_ids, &nb_ports);
remove_invalid_ports_in(fwd_ports_ids, &nb_fwd_ports);
nb_cfg_ports = nb_fwd_ports;
}
void
close_port(portid_t pid)
{
portid_t pi;
struct rte_port *port;
if (port_id_is_invalid(pid, ENABLED_WARN))
return;
printf("Closing ports...\n");
RTE_ETH_FOREACH_DEV(pi) {
if (pid != pi && pid != (portid_t)RTE_PORT_ALL)
continue;
if (port_is_forwarding(pi) != 0 && test_done == 0) {
fprintf(stderr,
"Please remove port %d from forwarding configuration.\n",
pi);
continue;
}
if (port_is_bonding_slave(pi)) {
fprintf(stderr,
"Please remove port %d from bonded device.\n",
pi);
continue;
}
port = &ports[pi];
if (port->port_status == RTE_PORT_CLOSED) {
fprintf(stderr, "Port %d is already closed\n", pi);
continue;
}
if (is_proc_primary()) {
port_flow_flush(pi);
port_flex_item_flush(pi);
rte_eth_dev_close(pi);
}
free_xstats_display_info(pi);
}
remove_invalid_ports();
printf("Done\n");
}
void
reset_port(portid_t pid)
{
int diag;
portid_t pi;
struct rte_port *port;
if (port_id_is_invalid(pid, ENABLED_WARN))
return;
if ((pid == (portid_t)RTE_PORT_ALL && !all_ports_stopped()) ||
(pid != (portid_t)RTE_PORT_ALL && !port_is_stopped(pid))) {
fprintf(stderr,
"Can not reset port(s), please stop port(s) first.\n");
return;
}
printf("Resetting ports...\n");
RTE_ETH_FOREACH_DEV(pi) {
if (pid != pi && pid != (portid_t)RTE_PORT_ALL)
continue;
if (port_is_forwarding(pi) != 0 && test_done == 0) {
fprintf(stderr,
"Please remove port %d from forwarding configuration.\n",
pi);
continue;
}
if (port_is_bonding_slave(pi)) {
fprintf(stderr,
"Please remove port %d from bonded device.\n",
pi);
continue;
}
diag = rte_eth_dev_reset(pi);
if (diag == 0) {
port = &ports[pi];
port->need_reconfig = 1;
port->need_reconfig_queues = 1;
} else {
fprintf(stderr, "Failed to reset port %d. diag=%d\n",
pi, diag);
}
}
printf("Done\n");
}
void
attach_port(char *identifier)
{
portid_t pi;
struct rte_dev_iterator iterator;
printf("Attaching a new port...\n");
if (identifier == NULL) {
fprintf(stderr, "Invalid parameters are specified\n");
return;
}
if (rte_dev_probe(identifier) < 0) {
TESTPMD_LOG(ERR, "Failed to attach port %s\n", identifier);
return;
}
/* first attach mode: event */
if (setup_on_probe_event) {
/* new ports are detected on RTE_ETH_EVENT_NEW event */
for (pi = 0; pi < RTE_MAX_ETHPORTS; pi++)
if (ports[pi].port_status == RTE_PORT_HANDLING &&
ports[pi].need_setup != 0)
setup_attached_port(pi);
return;
}
/* second attach mode: iterator */
RTE_ETH_FOREACH_MATCHING_DEV(pi, identifier, &iterator) {
/* setup ports matching the devargs used for probing */
if (port_is_forwarding(pi))
continue; /* port was already attached before */
setup_attached_port(pi);
}
}
static void
setup_attached_port(portid_t pi)
{
unsigned int socket_id;
int ret;
socket_id = (unsigned)rte_eth_dev_socket_id(pi);
/* if socket_id is invalid, set to the first available socket. */
if (check_socket_id(socket_id) < 0)
socket_id = socket_ids[0];
reconfig(pi, socket_id);
ret = rte_eth_promiscuous_enable(pi);
if (ret != 0)
fprintf(stderr,
"Error during enabling promiscuous mode for port %u: %s - ignore\n",
pi, rte_strerror(-ret));
ports_ids[nb_ports++] = pi;
fwd_ports_ids[nb_fwd_ports++] = pi;
nb_cfg_ports = nb_fwd_ports;
ports[pi].need_setup = 0;
ports[pi].port_status = RTE_PORT_STOPPED;
printf("Port %d is attached. Now total ports is %d\n", pi, nb_ports);
printf("Done\n");
}
static void
detach_device(struct rte_device *dev)
{
portid_t sibling;
if (dev == NULL) {
fprintf(stderr, "Device already removed\n");
return;
}
printf("Removing a device...\n");
RTE_ETH_FOREACH_DEV_OF(sibling, dev) {
if (ports[sibling].port_status != RTE_PORT_CLOSED) {
if (ports[sibling].port_status != RTE_PORT_STOPPED) {
fprintf(stderr, "Port %u not stopped\n",
sibling);
return;
}
port_flow_flush(sibling);
}
}
if (rte_dev_remove(dev) < 0) {
TESTPMD_LOG(ERR, "Failed to detach device %s\n", dev->name);
return;
}
remove_invalid_ports();
printf("Device is detached\n");
printf("Now total ports is %d\n", nb_ports);
printf("Done\n");
return;
}
void
detach_port_device(portid_t port_id)
{
int ret;
struct rte_eth_dev_info dev_info;
if (port_id_is_invalid(port_id, ENABLED_WARN))
return;
if (ports[port_id].port_status != RTE_PORT_CLOSED) {
if (ports[port_id].port_status != RTE_PORT_STOPPED) {
fprintf(stderr, "Port not stopped\n");
return;
}
fprintf(stderr, "Port was not closed\n");
}
ret = eth_dev_info_get_print_err(port_id, &dev_info);
if (ret != 0) {
TESTPMD_LOG(ERR,
"Failed to get device info for port %d, not detaching\n",
port_id);
return;
}
detach_device(dev_info.device);
}
void
detach_devargs(char *identifier)
{
struct rte_dev_iterator iterator;
struct rte_devargs da;
portid_t port_id;
printf("Removing a device...\n");
memset(&da, 0, sizeof(da));
if (rte_devargs_parsef(&da, "%s", identifier)) {
fprintf(stderr, "cannot parse identifier\n");
return;
}
RTE_ETH_FOREACH_MATCHING_DEV(port_id, identifier, &iterator) {
if (ports[port_id].port_status != RTE_PORT_CLOSED) {
if (ports[port_id].port_status != RTE_PORT_STOPPED) {
fprintf(stderr, "Port %u not stopped\n",
port_id);
rte_eth_iterator_cleanup(&iterator);
rte_devargs_reset(&da);
return;
}
port_flow_flush(port_id);
}
}
if (rte_eal_hotplug_remove(da.bus->name, da.name) != 0) {
TESTPMD_LOG(ERR, "Failed to detach device %s(%s)\n",
da.name, da.bus->name);
rte_devargs_reset(&da);
return;
}
remove_invalid_ports();
printf("Device %s is detached\n", identifier);
printf("Now total ports is %d\n", nb_ports);
printf("Done\n");
rte_devargs_reset(&da);
}
void
pmd_test_exit(void)
{
portid_t pt_id;
unsigned int i;
int ret;
if (test_done == 0)
stop_packet_forwarding();
#ifndef RTE_EXEC_ENV_WINDOWS
for (i = 0 ; i < RTE_DIM(mempools) ; i++) {
if (mempools[i]) {
if (mp_alloc_type == MP_ALLOC_ANON)
rte_mempool_mem_iter(mempools[i], dma_unmap_cb,
NULL);
}
}
#endif
if (ports != NULL) {
no_link_check = 1;
RTE_ETH_FOREACH_DEV(pt_id) {
printf("\nStopping port %d...\n", pt_id);
fflush(stdout);
stop_port(pt_id);
}
RTE_ETH_FOREACH_DEV(pt_id) {
printf("\nShutting down port %d...\n", pt_id);
fflush(stdout);
close_port(pt_id);
}
}
if (hot_plug) {
ret = rte_dev_event_monitor_stop();
if (ret) {
RTE_LOG(ERR, EAL,
"fail to stop device event monitor.");
return;
}
ret = rte_dev_event_callback_unregister(NULL,
dev_event_callback, NULL);
if (ret < 0) {
RTE_LOG(ERR, EAL,
"fail to unregister device event callback.\n");
return;
}
ret = rte_dev_hotplug_handle_disable();
if (ret) {
RTE_LOG(ERR, EAL,
"fail to disable hotplug handling.\n");
return;
}
}
for (i = 0 ; i < RTE_DIM(mempools) ; i++) {
if (mempools[i])
mempool_free_mp(mempools[i]);
}
free(xstats_display);
printf("\nBye...\n");
}
typedef void (*cmd_func_t)(void);
struct pmd_test_command {
const char *cmd_name;
cmd_func_t cmd_func;
};
/* Check the link status of all ports in up to 9s, and print them finally */
static void
check_all_ports_link_status(uint32_t port_mask)
{
#define CHECK_INTERVAL 100 /* 100ms */
#define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
portid_t portid;
uint8_t count, all_ports_up, print_flag = 0;
struct rte_eth_link link;
int ret;
char link_status[RTE_ETH_LINK_MAX_STR_LEN];
printf("Checking link statuses...\n");
fflush(stdout);
for (count = 0; count <= MAX_CHECK_TIME; count++) {
all_ports_up = 1;
RTE_ETH_FOREACH_DEV(portid) {
if ((port_mask & (1 << portid)) == 0)
continue;
memset(&link, 0, sizeof(link));
ret = rte_eth_link_get_nowait(portid, &link);
if (ret < 0) {
all_ports_up = 0;
if (print_flag == 1)
fprintf(stderr,
"Port %u link get failed: %s\n",
portid, rte_strerror(-ret));
continue;
}
/* print link status if flag set */
if (print_flag == 1) {
rte_eth_link_to_str(link_status,
sizeof(link_status), &link);
printf("Port %d %s\n", portid, link_status);
continue;
}
/* clear all_ports_up flag if any link down */
if (link.link_status == RTE_ETH_LINK_DOWN) {
all_ports_up = 0;
break;
}
}
/* after finally printing all link status, get out */
if (print_flag == 1)
break;
if (all_ports_up == 0) {
fflush(stdout);
rte_delay_ms(CHECK_INTERVAL);
}
/* set the print_flag if all ports up or timeout */
if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
print_flag = 1;
}
if (lsc_interrupt)
break;
}
}
static void
rmv_port_callback(void *arg)
{
int need_to_start = 0;
int org_no_link_check = no_link_check;
portid_t port_id = (intptr_t)arg;
struct rte_eth_dev_info dev_info;
int ret;
RTE_ETH_VALID_PORTID_OR_RET(port_id);
if (!test_done && port_is_forwarding(port_id)) {
need_to_start = 1;
stop_packet_forwarding();
}
no_link_check = 1;
stop_port(port_id);
no_link_check = org_no_link_check;
ret = eth_dev_info_get_print_err(port_id, &dev_info);
if (ret != 0)
TESTPMD_LOG(ERR,
"Failed to get device info for port %d, not detaching\n",
port_id);
else {
struct rte_device *device = dev_info.device;
close_port(port_id);
detach_device(device); /* might be already removed or have more ports */
}
if (need_to_start)
start_packet_forwarding(0);
}
/* This function is used by the interrupt thread */
static int
eth_event_callback(portid_t port_id, enum rte_eth_event_type type, void *param,
void *ret_param)
{
RTE_SET_USED(param);
RTE_SET_USED(ret_param);
if (type >= RTE_ETH_EVENT_MAX) {
fprintf(stderr,
"\nPort %" PRIu16 ": %s called upon invalid event %d\n",
port_id, __func__, type);
fflush(stderr);
} else if (event_print_mask & (UINT32_C(1) << type)) {
printf("\nPort %" PRIu16 ": %s event\n", port_id,
eth_event_desc[type]);
fflush(stdout);
}
switch (type) {
case RTE_ETH_EVENT_NEW:
ports[port_id].need_setup = 1;
ports[port_id].port_status = RTE_PORT_HANDLING;
break;
case RTE_ETH_EVENT_INTR_RMV:
if (port_id_is_invalid(port_id, DISABLED_WARN))
break;
if (rte_eal_alarm_set(100000,
rmv_port_callback, (void *)(intptr_t)port_id))
fprintf(stderr,
"Could not set up deferred device removal\n");
break;
case RTE_ETH_EVENT_DESTROY:
ports[port_id].port_status = RTE_PORT_CLOSED;
printf("Port %u is closed\n", port_id);
break;
default:
break;
}
return 0;
}
static int
register_eth_event_callback(void)
{
int ret;
enum rte_eth_event_type event;
for (event = RTE_ETH_EVENT_UNKNOWN;
event < RTE_ETH_EVENT_MAX; event++) {
ret = rte_eth_dev_callback_register(RTE_ETH_ALL,
event,
eth_event_callback,
NULL);
if (ret != 0) {
TESTPMD_LOG(ERR, "Failed to register callback for "
"%s event\n", eth_event_desc[event]);
return -1;
}
}
return 0;
}
/* This function is used by the interrupt thread */
static void
dev_event_callback(const char *device_name, enum rte_dev_event_type type,
__rte_unused void *arg)
{
uint16_t port_id;
int ret;
if (type >= RTE_DEV_EVENT_MAX) {
fprintf(stderr, "%s called upon invalid event %d\n",
__func__, type);
fflush(stderr);
}
switch (type) {
case RTE_DEV_EVENT_REMOVE:
RTE_LOG(DEBUG, EAL, "The device: %s has been removed!\n",
device_name);
ret = rte_eth_dev_get_port_by_name(device_name, &port_id);
if (ret) {
RTE_LOG(ERR, EAL, "can not get port by device %s!\n",
device_name);
return;
}
/*
* Because the user's callback is invoked in eal interrupt
* callback, the interrupt callback need to be finished before
* it can be unregistered when detaching device. So finish
* callback soon and use a deferred removal to detach device
* is need. It is a workaround, once the device detaching be
* moved into the eal in the future, the deferred removal could
* be deleted.
*/
if (rte_eal_alarm_set(100000,
rmv_port_callback, (void *)(intptr_t)port_id))
RTE_LOG(ERR, EAL,
"Could not set up deferred device removal\n");
break;
case RTE_DEV_EVENT_ADD:
RTE_LOG(ERR, EAL, "The device: %s has been added!\n",
device_name);
/* TODO: After finish kernel driver binding,
* begin to attach port.
*/
break;
default:
break;
}
}
static void
rxtx_port_config(portid_t pid)
{
uint16_t qid;
uint64_t offloads;
struct rte_port *port = &ports[pid];
for (qid = 0; qid < nb_rxq; qid++) {
offloads = port->rx_conf[qid].offloads;
port->rx_conf[qid] = port->dev_info.default_rxconf;
if (rxq_share > 0 &&
(port->dev_info.dev_capa & RTE_ETH_DEV_CAPA_RXQ_SHARE)) {
/* Non-zero share group to enable RxQ share. */
port->rx_conf[qid].share_group = pid / rxq_share + 1;
port->rx_conf[qid].share_qid = qid; /* Equal mapping. */
}
if (offloads != 0)
port->rx_conf[qid].offloads = offloads;
/* Check if any Rx parameters have been passed */
if (rx_pthresh != RTE_PMD_PARAM_UNSET)
port->rx_conf[qid].rx_thresh.pthresh = rx_pthresh;
if (rx_hthresh != RTE_PMD_PARAM_UNSET)
port->rx_conf[qid].rx_thresh.hthresh = rx_hthresh;
if (rx_wthresh != RTE_PMD_PARAM_UNSET)
port->rx_conf[qid].rx_thresh.wthresh = rx_wthresh;
if (rx_free_thresh != RTE_PMD_PARAM_UNSET)
port->rx_conf[qid].rx_free_thresh = rx_free_thresh;
if (rx_drop_en != RTE_PMD_PARAM_UNSET)
port->rx_conf[qid].rx_drop_en = rx_drop_en;
port->nb_rx_desc[qid] = nb_rxd;
}
for (qid = 0; qid < nb_txq; qid++) {
offloads = port->tx_conf[qid].offloads;
port->tx_conf[qid] = port->dev_info.default_txconf;
if (offloads != 0)
port->tx_conf[qid].offloads = offloads;
/* Check if any Tx parameters have been passed */
if (tx_pthresh != RTE_PMD_PARAM_UNSET)
port->tx_conf[qid].tx_thresh.pthresh = tx_pthresh;
if (tx_hthresh != RTE_PMD_PARAM_UNSET)
port->tx_conf[qid].tx_thresh.hthresh = tx_hthresh;
if (tx_wthresh != RTE_PMD_PARAM_UNSET)
port->tx_conf[qid].tx_thresh.wthresh = tx_wthresh;
if (tx_rs_thresh != RTE_PMD_PARAM_UNSET)
port->tx_conf[qid].tx_rs_thresh = tx_rs_thresh;
if (tx_free_thresh != RTE_PMD_PARAM_UNSET)
port->tx_conf[qid].tx_free_thresh = tx_free_thresh;
port->nb_tx_desc[qid] = nb_txd;
}
}
/*
* Helper function to set MTU from frame size
*
* port->dev_info should be set before calling this function.
*
* return 0 on success, negative on error
*/
int
update_mtu_from_frame_size(portid_t portid, uint32_t max_rx_pktlen)
{
struct rte_port *port = &ports[portid];
uint32_t eth_overhead;
uint16_t mtu, new_mtu;
eth_overhead = get_eth_overhead(&port->dev_info);
if (rte_eth_dev_get_mtu(portid, &mtu) != 0) {
printf("Failed to get MTU for port %u\n", portid);
return -1;
}
new_mtu = max_rx_pktlen - eth_overhead;
if (mtu == new_mtu)
return 0;
if (eth_dev_set_mtu_mp(portid, new_mtu) != 0) {
fprintf(stderr,
"Failed to set MTU to %u for port %u\n",
new_mtu, portid);
return -1;
}
port->dev_conf.rxmode.mtu = new_mtu;
return 0;
}
void
init_port_config(void)
{
portid_t pid;
struct rte_port *port;
int ret, i;
RTE_ETH_FOREACH_DEV(pid) {
port = &ports[pid];
port->dev_conf.fdir_conf = fdir_conf;
ret = eth_dev_info_get_print_err(pid, &port->dev_info);
if (ret != 0)
return;
if (nb_rxq > 1) {
port->dev_conf.rx_adv_conf.rss_conf.rss_key = NULL;
port->dev_conf.rx_adv_conf.rss_conf.rss_hf =
rss_hf & port->dev_info.flow_type_rss_offloads;
} else {
port->dev_conf.rx_adv_conf.rss_conf.rss_key = NULL;
port->dev_conf.rx_adv_conf.rss_conf.rss_hf = 0;
}
if (port->dcb_flag == 0) {
if (port->dev_conf.rx_adv_conf.rss_conf.rss_hf != 0) {
port->dev_conf.rxmode.mq_mode =
(enum rte_eth_rx_mq_mode)
(rx_mq_mode & RTE_ETH_MQ_RX_RSS);
} else {
port->dev_conf.rxmode.mq_mode = RTE_ETH_MQ_RX_NONE;
port->dev_conf.rxmode.offloads &=
~RTE_ETH_RX_OFFLOAD_RSS_HASH;
for (i = 0;
i < port->dev_info.nb_rx_queues;
i++)
port->rx_conf[i].offloads &=
~RTE_ETH_RX_OFFLOAD_RSS_HASH;
}
}
rxtx_port_config(pid);
ret = eth_macaddr_get_print_err(pid, &port->eth_addr);
if (ret != 0)
return;
#if defined RTE_NET_IXGBE && defined RTE_LIBRTE_IXGBE_BYPASS
rte_pmd_ixgbe_bypass_init(pid);
#endif
if (lsc_interrupt && (*port->dev_info.dev_flags & RTE_ETH_DEV_INTR_LSC))
port->dev_conf.intr_conf.lsc = 1;
if (rmv_interrupt && (*port->dev_info.dev_flags & RTE_ETH_DEV_INTR_RMV))
port->dev_conf.intr_conf.rmv = 1;
}
}
void set_port_slave_flag(portid_t slave_pid)
{
struct rte_port *port;
port = &ports[slave_pid];
port->slave_flag = 1;
}
void clear_port_slave_flag(portid_t slave_pid)
{
struct rte_port *port;
port = &ports[slave_pid];
port->slave_flag = 0;
}
uint8_t port_is_bonding_slave(portid_t slave_pid)
{
struct rte_port *port;
struct rte_eth_dev_info dev_info;
int ret;
port = &ports[slave_pid];
ret = eth_dev_info_get_print_err(slave_pid, &dev_info);
if (ret != 0) {
TESTPMD_LOG(ERR,
"Failed to get device info for port id %d,"
"cannot determine if the port is a bonded slave",
slave_pid);
return 0;
}
if ((*dev_info.dev_flags & RTE_ETH_DEV_BONDED_SLAVE) || (port->slave_flag == 1))
return 1;
return 0;
}
const uint16_t vlan_tags[] = {
0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31
};
static int
get_eth_dcb_conf(portid_t pid, struct rte_eth_conf *eth_conf,
enum dcb_mode_enable dcb_mode,
enum rte_eth_nb_tcs num_tcs,
uint8_t pfc_en)
{
uint8_t i;
int32_t rc;
struct rte_eth_rss_conf rss_conf;
/*
* Builds up the correct configuration for dcb+vt based on the vlan tags array
* given above, and the number of traffic classes available for use.
*/
if (dcb_mode == DCB_VT_ENABLED) {
struct rte_eth_vmdq_dcb_conf *vmdq_rx_conf =
&eth_conf->rx_adv_conf.vmdq_dcb_conf;
struct rte_eth_vmdq_dcb_tx_conf *vmdq_tx_conf =
&eth_conf->tx_adv_conf.vmdq_dcb_tx_conf;
/* VMDQ+DCB RX and TX configurations */
vmdq_rx_conf->enable_default_pool = 0;
vmdq_rx_conf->default_pool = 0;
vmdq_rx_conf->nb_queue_pools =
(num_tcs == RTE_ETH_4_TCS ? RTE_ETH_32_POOLS : RTE_ETH_16_POOLS);
vmdq_tx_conf->nb_queue_pools =
(num_tcs == RTE_ETH_4_TCS ? RTE_ETH_32_POOLS : RTE_ETH_16_POOLS);
vmdq_rx_conf->nb_pool_maps = vmdq_rx_conf->nb_queue_pools;
for (i = 0; i < vmdq_rx_conf->nb_pool_maps; i++) {
vmdq_rx_conf->pool_map[i].vlan_id = vlan_tags[i];
vmdq_rx_conf->pool_map[i].pools =
1 << (i % vmdq_rx_conf->nb_queue_pools);
}
for (i = 0; i < RTE_ETH_DCB_NUM_USER_PRIORITIES; i++) {
vmdq_rx_conf->dcb_tc[i] = i % num_tcs;
vmdq_tx_conf->dcb_tc[i] = i % num_tcs;
}
/* set DCB mode of RX and TX of multiple queues */
eth_conf->rxmode.mq_mode =
(enum rte_eth_rx_mq_mode)
(rx_mq_mode & RTE_ETH_MQ_RX_VMDQ_DCB);
eth_conf->txmode.mq_mode = RTE_ETH_MQ_TX_VMDQ_DCB;
} else {
struct rte_eth_dcb_rx_conf *rx_conf =
&eth_conf->rx_adv_conf.dcb_rx_conf;
struct rte_eth_dcb_tx_conf *tx_conf =
&eth_conf->tx_adv_conf.dcb_tx_conf;
memset(&rss_conf, 0, sizeof(struct rte_eth_rss_conf));
rc = rte_eth_dev_rss_hash_conf_get(pid, &rss_conf);
if (rc != 0)
return rc;
rx_conf->nb_tcs = num_tcs;
tx_conf->nb_tcs = num_tcs;
for (i = 0; i < RTE_ETH_DCB_NUM_USER_PRIORITIES; i++) {
rx_conf->dcb_tc[i] = i % num_tcs;
tx_conf->dcb_tc[i] = i % num_tcs;
}
eth_conf->rxmode.mq_mode =
(enum rte_eth_rx_mq_mode)
(rx_mq_mode & RTE_ETH_MQ_RX_DCB_RSS);
eth_conf->rx_adv_conf.rss_conf = rss_conf;
eth_conf->txmode.mq_mode = RTE_ETH_MQ_TX_DCB;
}
if (pfc_en)
eth_conf->dcb_capability_en =
RTE_ETH_DCB_PG_SUPPORT | RTE_ETH_DCB_PFC_SUPPORT;
else
eth_conf->dcb_capability_en = RTE_ETH_DCB_PG_SUPPORT;
return 0;
}
int
init_port_dcb_config(portid_t pid,
enum dcb_mode_enable dcb_mode,
enum rte_eth_nb_tcs num_tcs,
uint8_t pfc_en)
{
struct rte_eth_conf port_conf;
struct rte_port *rte_port;
int retval;
uint16_t i;
if (num_procs > 1) {
printf("The multi-process feature doesn't support dcb.\n");
return -ENOTSUP;
}
rte_port = &ports[pid];
/* retain the original device configuration. */
memcpy(&port_conf, &rte_port->dev_conf, sizeof(struct rte_eth_conf));
/*set configuration of DCB in vt mode and DCB in non-vt mode*/
retval = get_eth_dcb_conf(pid, &port_conf, dcb_mode, num_tcs, pfc_en);
if (retval < 0)
return retval;
port_conf.rxmode.offloads |= RTE_ETH_RX_OFFLOAD_VLAN_FILTER;
/* remove RSS HASH offload for DCB in vt mode */
if (port_conf.rxmode.mq_mode == RTE_ETH_MQ_RX_VMDQ_DCB) {
port_conf.rxmode.offloads &= ~RTE_ETH_RX_OFFLOAD_RSS_HASH;
for (i = 0; i < nb_rxq; i++)
rte_port->rx_conf[i].offloads &=
~RTE_ETH_RX_OFFLOAD_RSS_HASH;
}
/* re-configure the device . */
retval = rte_eth_dev_configure(pid, nb_rxq, nb_rxq, &port_conf);
if (retval < 0)
return retval;
retval = eth_dev_info_get_print_err(pid, &rte_port->dev_info);
if (retval != 0)
return retval;
/* If dev_info.vmdq_pool_base is greater than 0,
* the queue id of vmdq pools is started after pf queues.
*/
if (dcb_mode == DCB_VT_ENABLED &&
rte_port->dev_info.vmdq_pool_base > 0) {
fprintf(stderr,
"VMDQ_DCB multi-queue mode is nonsensical for port %d.\n",
pid);
return -1;
}
/* Assume the ports in testpmd have the same dcb capability
* and has the same number of rxq and txq in dcb mode
*/
if (dcb_mode == DCB_VT_ENABLED) {
if (rte_port->dev_info.max_vfs > 0) {
nb_rxq = rte_port->dev_info.nb_rx_queues;
nb_txq = rte_port->dev_info.nb_tx_queues;
} else {
nb_rxq = rte_port->dev_info.max_rx_queues;
nb_txq = rte_port->dev_info.max_tx_queues;
}
} else {
/*if vt is disabled, use all pf queues */
if (rte_port->dev_info.vmdq_pool_base == 0) {
nb_rxq = rte_port->dev_info.max_rx_queues;
nb_txq = rte_port->dev_info.max_tx_queues;
} else {
nb_rxq = (queueid_t)num_tcs;
nb_txq = (queueid_t)num_tcs;
}
}
rx_free_thresh = 64;
memcpy(&rte_port->dev_conf, &port_conf, sizeof(struct rte_eth_conf));
rxtx_port_config(pid);
/* VLAN filter */
rte_port->dev_conf.rxmode.offloads |= RTE_ETH_RX_OFFLOAD_VLAN_FILTER;
for (i = 0; i < RTE_DIM(vlan_tags); i++)
rx_vft_set(pid, vlan_tags[i], 1);
retval = eth_macaddr_get_print_err(pid, &rte_port->eth_addr);
if (retval != 0)
return retval;
rte_port->dcb_flag = 1;
/* Enter DCB configuration status */
dcb_config = 1;
return 0;
}
static void
init_port(void)
{
int i;
/* Configuration of Ethernet ports. */
ports = rte_zmalloc("testpmd: ports",
sizeof(struct rte_port) * RTE_MAX_ETHPORTS,
RTE_CACHE_LINE_SIZE);
if (ports == NULL) {
rte_exit(EXIT_FAILURE,
"rte_zmalloc(%d struct rte_port) failed\n",
RTE_MAX_ETHPORTS);
}
for (i = 0; i < RTE_MAX_ETHPORTS; i++)
ports[i].xstats_info.allocated = false;
for (i = 0; i < RTE_MAX_ETHPORTS; i++)
LIST_INIT(&ports[i].flow_tunnel_list);
/* Initialize ports NUMA structures */
memset(port_numa, NUMA_NO_CONFIG, RTE_MAX_ETHPORTS);
memset(rxring_numa, NUMA_NO_CONFIG, RTE_MAX_ETHPORTS);
memset(txring_numa, NUMA_NO_CONFIG, RTE_MAX_ETHPORTS);
}
static void
force_quit(void)
{
pmd_test_exit();
prompt_exit();
}
static void
print_stats(void)
{
uint8_t i;
const char clr[] = { 27, '[', '2', 'J', '\0' };
const char top_left[] = { 27, '[', '1', ';', '1', 'H', '\0' };
/* Clear screen and move to top left */
printf("%s%s", clr, top_left);
printf("\nPort statistics ====================================");
for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++)
nic_stats_display(fwd_ports_ids[i]);
fflush(stdout);
}
static void
signal_handler(int signum)
{
if (signum == SIGINT || signum == SIGTERM) {
fprintf(stderr, "\nSignal %d received, preparing to exit...\n",
signum);
#ifdef RTE_LIB_PDUMP
/* uninitialize packet capture framework */
rte_pdump_uninit();
#endif
#ifdef RTE_LIB_LATENCYSTATS
if (latencystats_enabled != 0)
rte_latencystats_uninit();
#endif
force_quit();
/* Set flag to indicate the force termination. */
f_quit = 1;
/* exit with the expected status */
#ifndef RTE_EXEC_ENV_WINDOWS
signal(signum, SIG_DFL);
kill(getpid(), signum);
#endif
}
}
int
main(int argc, char** argv)
{
int diag;
portid_t port_id;
uint16_t count;
int ret;
signal(SIGINT, signal_handler);
signal(SIGTERM, signal_handler);
testpmd_logtype = rte_log_register("testpmd");
if (testpmd_logtype < 0)
rte_exit(EXIT_FAILURE, "Cannot register log type");
rte_log_set_level(testpmd_logtype, RTE_LOG_DEBUG);
diag = rte_eal_init(argc, argv);
if (diag < 0)
rte_exit(EXIT_FAILURE, "Cannot init EAL: %s\n",
rte_strerror(rte_errno));
ret = register_eth_event_callback();
if (ret != 0)
rte_exit(EXIT_FAILURE, "Cannot register for ethdev events");
#ifdef RTE_LIB_PDUMP
/* initialize packet capture framework */
rte_pdump_init();
#endif
count = 0;
RTE_ETH_FOREACH_DEV(port_id) {
ports_ids[count] = port_id;
count++;
}
nb_ports = (portid_t) count;
if (nb_ports == 0)
TESTPMD_LOG(WARNING, "No probed ethernet devices\n");
/* allocate port structures, and init them */
init_port();
set_def_fwd_config();
if (nb_lcores == 0)
rte_exit(EXIT_FAILURE, "No cores defined for forwarding\n"
"Check the core mask argument\n");
/* Bitrate/latency stats disabled by default */
#ifdef RTE_LIB_BITRATESTATS
bitrate_enabled = 0;
#endif
#ifdef RTE_LIB_LATENCYSTATS
latencystats_enabled = 0;
#endif
/* on FreeBSD, mlockall() is disabled by default */
#ifdef RTE_EXEC_ENV_FREEBSD
do_mlockall = 0;
#else
do_mlockall = 1;
#endif
argc -= diag;
argv += diag;
if (argc > 1)
launch_args_parse(argc, argv);
#ifndef RTE_EXEC_ENV_WINDOWS
if (do_mlockall && mlockall(MCL_CURRENT | MCL_FUTURE)) {
TESTPMD_LOG(NOTICE, "mlockall() failed with error \"%s\"\n",
strerror(errno));
}
#endif
if (tx_first && interactive)
rte_exit(EXIT_FAILURE, "--tx-first cannot be used on "
"interactive mode.\n");
if (tx_first && lsc_interrupt) {
fprintf(stderr,
"Warning: lsc_interrupt needs to be off when using tx_first. Disabling.\n");
lsc_interrupt = 0;
}
if (!nb_rxq && !nb_txq)
fprintf(stderr,
"Warning: Either rx or tx queues should be non-zero\n");
if (nb_rxq > 1 && nb_rxq > nb_txq)
fprintf(stderr,
"Warning: nb_rxq=%d enables RSS configuration, but nb_txq=%d will prevent to fully test it.\n",
nb_rxq, nb_txq);
init_config();
if (hot_plug) {
ret = rte_dev_hotplug_handle_enable();
if (ret) {
RTE_LOG(ERR, EAL,
"fail to enable hotplug handling.");
return -1;
}
ret = rte_dev_event_monitor_start();
if (ret) {
RTE_LOG(ERR, EAL,
"fail to start device event monitoring.");
return -1;
}
ret = rte_dev_event_callback_register(NULL,
dev_event_callback, NULL);
if (ret) {
RTE_LOG(ERR, EAL,
"fail to register device event callback\n");
return -1;
}
}
if (!no_device_start && start_port(RTE_PORT_ALL) != 0)
rte_exit(EXIT_FAILURE, "Start ports failed\n");
/* set all ports to promiscuous mode by default */
RTE_ETH_FOREACH_DEV(port_id) {
ret = rte_eth_promiscuous_enable(port_id);
if (ret != 0)
fprintf(stderr,
"Error during enabling promiscuous mode for port %u: %s - ignore\n",
port_id, rte_strerror(-ret));
}
#ifdef RTE_LIB_METRICS
/* Init metrics library */
rte_metrics_init(rte_socket_id());
#endif
#ifdef RTE_LIB_LATENCYSTATS
if (latencystats_enabled != 0) {
int ret = rte_latencystats_init(1, NULL);
if (ret)
fprintf(stderr,
"Warning: latencystats init() returned error %d\n",
ret);
fprintf(stderr, "Latencystats running on lcore %d\n",
latencystats_lcore_id);
}
#endif
/* Setup bitrate stats */
#ifdef RTE_LIB_BITRATESTATS
if (bitrate_enabled != 0) {
bitrate_data = rte_stats_bitrate_create();
if (bitrate_data == NULL)
rte_exit(EXIT_FAILURE,
"Could not allocate bitrate data.\n");
rte_stats_bitrate_reg(bitrate_data);
}
#endif
#ifdef RTE_LIB_CMDLINE
if (strlen(cmdline_filename) != 0)
cmdline_read_from_file(cmdline_filename);
if (interactive == 1) {
if (auto_start) {
printf("Start automatic packet forwarding\n");
start_packet_forwarding(0);
}
prompt();
pmd_test_exit();
} else
#endif
{
char c;
int rc;
f_quit = 0;
printf("No commandline core given, start packet forwarding\n");
start_packet_forwarding(tx_first);
if (stats_period != 0) {
uint64_t prev_time = 0, cur_time, diff_time = 0;
uint64_t timer_period;
/* Convert to number of cycles */
timer_period = stats_period * rte_get_timer_hz();
while (f_quit == 0) {
cur_time = rte_get_timer_cycles();
diff_time += cur_time - prev_time;
if (diff_time >= timer_period) {
print_stats();
/* Reset the timer */
diff_time = 0;
}
/* Sleep to avoid unnecessary checks */
prev_time = cur_time;
rte_delay_us_sleep(US_PER_S);
}
}
printf("Press enter to exit\n");
rc = read(0, &c, 1);
pmd_test_exit();
if (rc < 0)
return 1;
}
ret = rte_eal_cleanup();
if (ret != 0)
rte_exit(EXIT_FAILURE,
"EAL cleanup failed: %s\n", strerror(-ret));
return EXIT_SUCCESS;
}