9fac5ca8ed
The first "set txtimes" command parameter specifies the time
interval between scheduled send bursts for single queue. This
interval should be the same for all the forwarding ports.
It requires to maintain the timing related variables on per
queue basis instead of per core, as currently implemented.
This resulted in wrong burst intervals if two or more cores
were generating the scheduled traffic for two or more ports
in txonly mode.
This patch moves the timing variable to the fstream structure.
Only txonly forwarding mode with enabled send scheduling is
affected.
Fixes: 4940344dab
("app/testpmd: add Tx scheduling command")
Cc: stable@dpdk.org
Signed-off-by: Viacheslav Ovsiienko <viacheslavo@nvidia.com>
Acked-by: Ferruh Yigit <ferruh.yigit@intel.com>
513 lines
14 KiB
C
513 lines
14 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2010-2014 Intel Corporation
|
|
*/
|
|
|
|
#include <stdarg.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <errno.h>
|
|
#include <stdint.h>
|
|
#include <unistd.h>
|
|
#include <inttypes.h>
|
|
|
|
#include <sys/queue.h>
|
|
#include <sys/stat.h>
|
|
|
|
#include <rte_common.h>
|
|
#include <rte_byteorder.h>
|
|
#include <rte_log.h>
|
|
#include <rte_debug.h>
|
|
#include <rte_cycles.h>
|
|
#include <rte_memory.h>
|
|
#include <rte_memcpy.h>
|
|
#include <rte_launch.h>
|
|
#include <rte_eal.h>
|
|
#include <rte_per_lcore.h>
|
|
#include <rte_lcore.h>
|
|
#include <rte_branch_prediction.h>
|
|
#include <rte_mempool.h>
|
|
#include <rte_mbuf.h>
|
|
#include <rte_interrupts.h>
|
|
#include <rte_pci.h>
|
|
#include <rte_ether.h>
|
|
#include <rte_ethdev.h>
|
|
#include <rte_ip.h>
|
|
#include <rte_tcp.h>
|
|
#include <rte_udp.h>
|
|
#include <rte_string_fns.h>
|
|
#include <rte_flow.h>
|
|
|
|
#include "testpmd.h"
|
|
|
|
struct tx_timestamp {
|
|
rte_be32_t signature;
|
|
rte_be16_t pkt_idx;
|
|
rte_be16_t queue_idx;
|
|
rte_be64_t ts;
|
|
};
|
|
|
|
/* use RFC863 Discard Protocol */
|
|
uint16_t tx_udp_src_port = 9;
|
|
uint16_t tx_udp_dst_port = 9;
|
|
|
|
/* use RFC5735 / RFC2544 reserved network test addresses */
|
|
uint32_t tx_ip_src_addr = (198U << 24) | (18 << 16) | (0 << 8) | 1;
|
|
uint32_t tx_ip_dst_addr = (198U << 24) | (18 << 16) | (0 << 8) | 2;
|
|
|
|
#define IP_DEFTTL 64 /* from RFC 1340. */
|
|
|
|
static struct rte_ipv4_hdr pkt_ip_hdr; /**< IP header of transmitted packets. */
|
|
RTE_DEFINE_PER_LCORE(uint8_t, _ip_var); /**< IP address variation */
|
|
static struct rte_udp_hdr pkt_udp_hdr; /**< UDP header of tx packets. */
|
|
|
|
static uint64_t timestamp_mask; /**< Timestamp dynamic flag mask */
|
|
static int32_t timestamp_off; /**< Timestamp dynamic field offset */
|
|
static bool timestamp_enable; /**< Timestamp enable */
|
|
static uint64_t timestamp_initial[RTE_MAX_ETHPORTS];
|
|
|
|
static void
|
|
copy_buf_to_pkt_segs(void* buf, unsigned len, struct rte_mbuf *pkt,
|
|
unsigned offset)
|
|
{
|
|
struct rte_mbuf *seg;
|
|
void *seg_buf;
|
|
unsigned copy_len;
|
|
|
|
seg = pkt;
|
|
while (offset >= seg->data_len) {
|
|
offset -= seg->data_len;
|
|
seg = seg->next;
|
|
}
|
|
copy_len = seg->data_len - offset;
|
|
seg_buf = rte_pktmbuf_mtod_offset(seg, char *, offset);
|
|
while (len > copy_len) {
|
|
rte_memcpy(seg_buf, buf, (size_t) copy_len);
|
|
len -= copy_len;
|
|
buf = ((char*) buf + copy_len);
|
|
seg = seg->next;
|
|
seg_buf = rte_pktmbuf_mtod(seg, char *);
|
|
copy_len = seg->data_len;
|
|
}
|
|
rte_memcpy(seg_buf, buf, (size_t) len);
|
|
}
|
|
|
|
static inline void
|
|
copy_buf_to_pkt(void* buf, unsigned len, struct rte_mbuf *pkt, unsigned offset)
|
|
{
|
|
if (offset + len <= pkt->data_len) {
|
|
rte_memcpy(rte_pktmbuf_mtod_offset(pkt, char *, offset),
|
|
buf, (size_t) len);
|
|
return;
|
|
}
|
|
copy_buf_to_pkt_segs(buf, len, pkt, offset);
|
|
}
|
|
|
|
static void
|
|
setup_pkt_udp_ip_headers(struct rte_ipv4_hdr *ip_hdr,
|
|
struct rte_udp_hdr *udp_hdr,
|
|
uint16_t pkt_data_len)
|
|
{
|
|
uint16_t *ptr16;
|
|
uint32_t ip_cksum;
|
|
uint16_t pkt_len;
|
|
|
|
/*
|
|
* Initialize UDP header.
|
|
*/
|
|
pkt_len = (uint16_t) (pkt_data_len + sizeof(struct rte_udp_hdr));
|
|
udp_hdr->src_port = rte_cpu_to_be_16(tx_udp_src_port);
|
|
udp_hdr->dst_port = rte_cpu_to_be_16(tx_udp_dst_port);
|
|
udp_hdr->dgram_len = RTE_CPU_TO_BE_16(pkt_len);
|
|
udp_hdr->dgram_cksum = 0; /* No UDP checksum. */
|
|
|
|
/*
|
|
* Initialize IP header.
|
|
*/
|
|
pkt_len = (uint16_t) (pkt_len + sizeof(struct rte_ipv4_hdr));
|
|
ip_hdr->version_ihl = RTE_IPV4_VHL_DEF;
|
|
ip_hdr->type_of_service = 0;
|
|
ip_hdr->fragment_offset = 0;
|
|
ip_hdr->time_to_live = IP_DEFTTL;
|
|
ip_hdr->next_proto_id = IPPROTO_UDP;
|
|
ip_hdr->packet_id = 0;
|
|
ip_hdr->total_length = RTE_CPU_TO_BE_16(pkt_len);
|
|
ip_hdr->src_addr = rte_cpu_to_be_32(tx_ip_src_addr);
|
|
ip_hdr->dst_addr = rte_cpu_to_be_32(tx_ip_dst_addr);
|
|
|
|
/*
|
|
* Compute IP header checksum.
|
|
*/
|
|
ptr16 = (unaligned_uint16_t*) ip_hdr;
|
|
ip_cksum = 0;
|
|
ip_cksum += ptr16[0]; ip_cksum += ptr16[1];
|
|
ip_cksum += ptr16[2]; ip_cksum += ptr16[3];
|
|
ip_cksum += ptr16[4];
|
|
ip_cksum += ptr16[6]; ip_cksum += ptr16[7];
|
|
ip_cksum += ptr16[8]; ip_cksum += ptr16[9];
|
|
|
|
/*
|
|
* Reduce 32 bit checksum to 16 bits and complement it.
|
|
*/
|
|
ip_cksum = ((ip_cksum & 0xFFFF0000) >> 16) +
|
|
(ip_cksum & 0x0000FFFF);
|
|
if (ip_cksum > 65535)
|
|
ip_cksum -= 65535;
|
|
ip_cksum = (~ip_cksum) & 0x0000FFFF;
|
|
if (ip_cksum == 0)
|
|
ip_cksum = 0xFFFF;
|
|
ip_hdr->hdr_checksum = (uint16_t) ip_cksum;
|
|
}
|
|
|
|
static inline void
|
|
update_pkt_header(struct rte_mbuf *pkt, uint32_t total_pkt_len)
|
|
{
|
|
struct rte_ipv4_hdr *ip_hdr;
|
|
struct rte_udp_hdr *udp_hdr;
|
|
uint16_t pkt_data_len;
|
|
uint16_t pkt_len;
|
|
|
|
pkt_data_len = (uint16_t) (total_pkt_len - (
|
|
sizeof(struct rte_ether_hdr) +
|
|
sizeof(struct rte_ipv4_hdr) +
|
|
sizeof(struct rte_udp_hdr)));
|
|
/* update UDP packet length */
|
|
udp_hdr = rte_pktmbuf_mtod_offset(pkt, struct rte_udp_hdr *,
|
|
sizeof(struct rte_ether_hdr) +
|
|
sizeof(struct rte_ipv4_hdr));
|
|
pkt_len = (uint16_t) (pkt_data_len + sizeof(struct rte_udp_hdr));
|
|
udp_hdr->dgram_len = RTE_CPU_TO_BE_16(pkt_len);
|
|
|
|
/* update IP packet length and checksum */
|
|
ip_hdr = rte_pktmbuf_mtod_offset(pkt, struct rte_ipv4_hdr *,
|
|
sizeof(struct rte_ether_hdr));
|
|
ip_hdr->hdr_checksum = 0;
|
|
pkt_len = (uint16_t) (pkt_len + sizeof(struct rte_ipv4_hdr));
|
|
ip_hdr->total_length = RTE_CPU_TO_BE_16(pkt_len);
|
|
ip_hdr->hdr_checksum = rte_ipv4_cksum(ip_hdr);
|
|
}
|
|
|
|
static inline bool
|
|
pkt_burst_prepare(struct rte_mbuf *pkt, struct rte_mempool *mbp,
|
|
struct rte_ether_hdr *eth_hdr, const uint16_t vlan_tci,
|
|
const uint16_t vlan_tci_outer, const uint64_t ol_flags,
|
|
const uint16_t idx, struct fwd_stream *fs)
|
|
{
|
|
struct rte_mbuf *pkt_segs[RTE_MAX_SEGS_PER_PKT];
|
|
struct rte_mbuf *pkt_seg;
|
|
uint32_t nb_segs, pkt_len;
|
|
uint8_t i;
|
|
|
|
if (unlikely(tx_pkt_split == TX_PKT_SPLIT_RND))
|
|
nb_segs = rte_rand() % tx_pkt_nb_segs + 1;
|
|
else
|
|
nb_segs = tx_pkt_nb_segs;
|
|
|
|
if (nb_segs > 1) {
|
|
if (rte_mempool_get_bulk(mbp, (void **)pkt_segs, nb_segs - 1))
|
|
return false;
|
|
}
|
|
|
|
rte_pktmbuf_reset_headroom(pkt);
|
|
pkt->data_len = tx_pkt_seg_lengths[0];
|
|
pkt->ol_flags &= RTE_MBUF_F_EXTERNAL;
|
|
pkt->ol_flags |= ol_flags;
|
|
pkt->vlan_tci = vlan_tci;
|
|
pkt->vlan_tci_outer = vlan_tci_outer;
|
|
pkt->l2_len = sizeof(struct rte_ether_hdr);
|
|
pkt->l3_len = sizeof(struct rte_ipv4_hdr);
|
|
|
|
pkt_len = pkt->data_len;
|
|
pkt_seg = pkt;
|
|
for (i = 1; i < nb_segs; i++) {
|
|
pkt_seg->next = pkt_segs[i - 1];
|
|
pkt_seg = pkt_seg->next;
|
|
pkt_seg->data_len = tx_pkt_seg_lengths[i];
|
|
pkt_len += pkt_seg->data_len;
|
|
}
|
|
pkt_seg->next = NULL; /* Last segment of packet. */
|
|
/*
|
|
* Copy headers in first packet segment(s).
|
|
*/
|
|
copy_buf_to_pkt(eth_hdr, sizeof(*eth_hdr), pkt, 0);
|
|
copy_buf_to_pkt(&pkt_ip_hdr, sizeof(pkt_ip_hdr), pkt,
|
|
sizeof(struct rte_ether_hdr));
|
|
if (txonly_multi_flow) {
|
|
uint8_t ip_var = RTE_PER_LCORE(_ip_var);
|
|
struct rte_ipv4_hdr *ip_hdr;
|
|
uint32_t addr;
|
|
|
|
ip_hdr = rte_pktmbuf_mtod_offset(pkt,
|
|
struct rte_ipv4_hdr *,
|
|
sizeof(struct rte_ether_hdr));
|
|
/*
|
|
* Generate multiple flows by varying IP src addr. This
|
|
* enables packets are well distributed by RSS in
|
|
* receiver side if any and txonly mode can be a decent
|
|
* packet generator for developer's quick performance
|
|
* regression test.
|
|
*/
|
|
addr = (tx_ip_dst_addr | (ip_var++ << 8)) + rte_lcore_id();
|
|
ip_hdr->src_addr = rte_cpu_to_be_32(addr);
|
|
RTE_PER_LCORE(_ip_var) = ip_var;
|
|
}
|
|
copy_buf_to_pkt(&pkt_udp_hdr, sizeof(pkt_udp_hdr), pkt,
|
|
sizeof(struct rte_ether_hdr) +
|
|
sizeof(struct rte_ipv4_hdr));
|
|
|
|
if (unlikely(tx_pkt_split == TX_PKT_SPLIT_RND) || txonly_multi_flow)
|
|
update_pkt_header(pkt, pkt_len);
|
|
|
|
if (unlikely(timestamp_enable)) {
|
|
uint64_t skew = fs->ts_skew;
|
|
struct tx_timestamp timestamp_mark;
|
|
|
|
if (unlikely(!skew)) {
|
|
struct rte_eth_dev_info dev_info;
|
|
unsigned int txqs_n;
|
|
uint64_t phase;
|
|
int ret;
|
|
|
|
ret = eth_dev_info_get_print_err(fs->tx_port, &dev_info);
|
|
if (ret != 0) {
|
|
TESTPMD_LOG(ERR,
|
|
"Failed to get device info for port %d,"
|
|
"could not finish timestamp init",
|
|
fs->tx_port);
|
|
return false;
|
|
}
|
|
txqs_n = dev_info.nb_tx_queues;
|
|
phase = tx_pkt_times_inter * fs->tx_queue /
|
|
(txqs_n ? txqs_n : 1);
|
|
/*
|
|
* Initialize the scheduling time phase shift
|
|
* depending on queue index.
|
|
*/
|
|
skew = timestamp_initial[fs->tx_port] +
|
|
tx_pkt_times_inter + phase;
|
|
fs->ts_skew = skew;
|
|
}
|
|
timestamp_mark.pkt_idx = rte_cpu_to_be_16(idx);
|
|
timestamp_mark.queue_idx = rte_cpu_to_be_16(fs->tx_queue);
|
|
timestamp_mark.signature = rte_cpu_to_be_32(0xBEEFC0DE);
|
|
if (unlikely(!idx)) {
|
|
skew += tx_pkt_times_inter;
|
|
pkt->ol_flags |= timestamp_mask;
|
|
*RTE_MBUF_DYNFIELD
|
|
(pkt, timestamp_off, uint64_t *) = skew;
|
|
fs->ts_skew = skew;
|
|
timestamp_mark.ts = rte_cpu_to_be_64(skew);
|
|
} else if (tx_pkt_times_intra) {
|
|
skew += tx_pkt_times_intra;
|
|
pkt->ol_flags |= timestamp_mask;
|
|
*RTE_MBUF_DYNFIELD
|
|
(pkt, timestamp_off, uint64_t *) = skew;
|
|
fs->ts_skew = skew;
|
|
timestamp_mark.ts = rte_cpu_to_be_64(skew);
|
|
} else {
|
|
timestamp_mark.ts = RTE_BE64(0);
|
|
}
|
|
copy_buf_to_pkt(×tamp_mark, sizeof(timestamp_mark), pkt,
|
|
sizeof(struct rte_ether_hdr) +
|
|
sizeof(struct rte_ipv4_hdr) +
|
|
sizeof(pkt_udp_hdr));
|
|
}
|
|
/*
|
|
* Complete first mbuf of packet and append it to the
|
|
* burst of packets to be transmitted.
|
|
*/
|
|
pkt->nb_segs = nb_segs;
|
|
pkt->pkt_len = pkt_len;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Transmit a burst of multi-segments packets.
|
|
*/
|
|
static void
|
|
pkt_burst_transmit(struct fwd_stream *fs)
|
|
{
|
|
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
|
|
struct rte_port *txp;
|
|
struct rte_mbuf *pkt;
|
|
struct rte_mempool *mbp;
|
|
struct rte_ether_hdr eth_hdr;
|
|
uint16_t nb_tx;
|
|
uint16_t nb_pkt;
|
|
uint16_t vlan_tci, vlan_tci_outer;
|
|
uint32_t retry;
|
|
uint64_t ol_flags = 0;
|
|
uint64_t tx_offloads;
|
|
uint64_t start_tsc = 0;
|
|
|
|
get_start_cycles(&start_tsc);
|
|
|
|
mbp = current_fwd_lcore()->mbp;
|
|
txp = &ports[fs->tx_port];
|
|
tx_offloads = txp->dev_conf.txmode.offloads;
|
|
vlan_tci = txp->tx_vlan_id;
|
|
vlan_tci_outer = txp->tx_vlan_id_outer;
|
|
if (tx_offloads & RTE_ETH_TX_OFFLOAD_VLAN_INSERT)
|
|
ol_flags = RTE_MBUF_F_TX_VLAN;
|
|
if (tx_offloads & RTE_ETH_TX_OFFLOAD_QINQ_INSERT)
|
|
ol_flags |= RTE_MBUF_F_TX_QINQ;
|
|
if (tx_offloads & RTE_ETH_TX_OFFLOAD_MACSEC_INSERT)
|
|
ol_flags |= RTE_MBUF_F_TX_MACSEC;
|
|
|
|
/*
|
|
* Initialize Ethernet header.
|
|
*/
|
|
rte_ether_addr_copy(&peer_eth_addrs[fs->peer_addr], ð_hdr.dst_addr);
|
|
rte_ether_addr_copy(&ports[fs->tx_port].eth_addr, ð_hdr.src_addr);
|
|
eth_hdr.ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
|
|
|
|
if (rte_mempool_get_bulk(mbp, (void **)pkts_burst,
|
|
nb_pkt_per_burst) == 0) {
|
|
for (nb_pkt = 0; nb_pkt < nb_pkt_per_burst; nb_pkt++) {
|
|
if (unlikely(!pkt_burst_prepare(pkts_burst[nb_pkt], mbp,
|
|
ð_hdr, vlan_tci,
|
|
vlan_tci_outer,
|
|
ol_flags,
|
|
nb_pkt, fs))) {
|
|
rte_mempool_put_bulk(mbp,
|
|
(void **)&pkts_burst[nb_pkt],
|
|
nb_pkt_per_burst - nb_pkt);
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
for (nb_pkt = 0; nb_pkt < nb_pkt_per_burst; nb_pkt++) {
|
|
pkt = rte_mbuf_raw_alloc(mbp);
|
|
if (pkt == NULL)
|
|
break;
|
|
if (unlikely(!pkt_burst_prepare(pkt, mbp, ð_hdr,
|
|
vlan_tci,
|
|
vlan_tci_outer,
|
|
ol_flags,
|
|
nb_pkt, fs))) {
|
|
rte_pktmbuf_free(pkt);
|
|
break;
|
|
}
|
|
pkts_burst[nb_pkt] = pkt;
|
|
}
|
|
}
|
|
|
|
if (nb_pkt == 0)
|
|
return;
|
|
|
|
nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, pkts_burst, nb_pkt);
|
|
|
|
/*
|
|
* Retry if necessary
|
|
*/
|
|
if (unlikely(nb_tx < nb_pkt) && fs->retry_enabled) {
|
|
retry = 0;
|
|
while (nb_tx < nb_pkt && retry++ < burst_tx_retry_num) {
|
|
rte_delay_us(burst_tx_delay_time);
|
|
nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue,
|
|
&pkts_burst[nb_tx], nb_pkt - nb_tx);
|
|
}
|
|
}
|
|
fs->tx_packets += nb_tx;
|
|
|
|
if (txonly_multi_flow)
|
|
RTE_PER_LCORE(_ip_var) -= nb_pkt - nb_tx;
|
|
|
|
inc_tx_burst_stats(fs, nb_tx);
|
|
if (unlikely(nb_tx < nb_pkt)) {
|
|
if (verbose_level > 0 && fs->fwd_dropped == 0)
|
|
printf("port %d tx_queue %d - drop "
|
|
"(nb_pkt:%u - nb_tx:%u)=%u packets\n",
|
|
fs->tx_port, fs->tx_queue,
|
|
(unsigned) nb_pkt, (unsigned) nb_tx,
|
|
(unsigned) (nb_pkt - nb_tx));
|
|
fs->fwd_dropped += (nb_pkt - nb_tx);
|
|
do {
|
|
rte_pktmbuf_free(pkts_burst[nb_tx]);
|
|
} while (++nb_tx < nb_pkt);
|
|
}
|
|
|
|
get_end_cycles(fs, start_tsc);
|
|
}
|
|
|
|
static int
|
|
tx_only_begin(portid_t pi)
|
|
{
|
|
uint16_t pkt_hdr_len, pkt_data_len;
|
|
int dynf;
|
|
|
|
pkt_hdr_len = (uint16_t)(sizeof(struct rte_ether_hdr) +
|
|
sizeof(struct rte_ipv4_hdr) +
|
|
sizeof(struct rte_udp_hdr));
|
|
pkt_data_len = tx_pkt_length - pkt_hdr_len;
|
|
|
|
if ((tx_pkt_split == TX_PKT_SPLIT_RND || txonly_multi_flow) &&
|
|
tx_pkt_seg_lengths[0] < pkt_hdr_len) {
|
|
TESTPMD_LOG(ERR,
|
|
"Random segment number or multiple flow is enabled, "
|
|
"but tx_pkt_seg_lengths[0] %u < %u (needed)\n",
|
|
tx_pkt_seg_lengths[0], pkt_hdr_len);
|
|
return -EINVAL;
|
|
}
|
|
|
|
setup_pkt_udp_ip_headers(&pkt_ip_hdr, &pkt_udp_hdr, pkt_data_len);
|
|
|
|
timestamp_enable = false;
|
|
timestamp_mask = 0;
|
|
timestamp_off = -1;
|
|
dynf = rte_mbuf_dynflag_lookup
|
|
(RTE_MBUF_DYNFLAG_TX_TIMESTAMP_NAME, NULL);
|
|
if (dynf >= 0)
|
|
timestamp_mask = 1ULL << dynf;
|
|
dynf = rte_mbuf_dynfield_lookup
|
|
(RTE_MBUF_DYNFIELD_TIMESTAMP_NAME, NULL);
|
|
if (dynf >= 0)
|
|
timestamp_off = dynf;
|
|
timestamp_enable = tx_pkt_times_inter &&
|
|
timestamp_mask &&
|
|
timestamp_off >= 0 &&
|
|
!rte_eth_read_clock(pi, ×tamp_initial[pi]);
|
|
|
|
if (timestamp_enable) {
|
|
pkt_hdr_len += sizeof(struct tx_timestamp);
|
|
|
|
if (tx_pkt_split == TX_PKT_SPLIT_RND) {
|
|
if (tx_pkt_seg_lengths[0] < pkt_hdr_len) {
|
|
TESTPMD_LOG(ERR,
|
|
"Time stamp and random segment number are enabled, "
|
|
"but tx_pkt_seg_lengths[0] %u < %u (needed)\n",
|
|
tx_pkt_seg_lengths[0], pkt_hdr_len);
|
|
return -EINVAL;
|
|
}
|
|
} else {
|
|
uint16_t total = 0;
|
|
uint8_t i;
|
|
|
|
for (i = 0; i < tx_pkt_nb_segs; i++) {
|
|
total += tx_pkt_seg_lengths[i];
|
|
if (total >= pkt_hdr_len)
|
|
break;
|
|
}
|
|
|
|
if (total < pkt_hdr_len) {
|
|
TESTPMD_LOG(ERR,
|
|
"Not enough Tx segment space for time stamp info, "
|
|
"total %u < %u (needed)\n",
|
|
total, pkt_hdr_len);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Make sure all settings are visible on forwarding cores.*/
|
|
rte_wmb();
|
|
return 0;
|
|
}
|
|
|
|
struct fwd_engine tx_only_engine = {
|
|
.fwd_mode_name = "txonly",
|
|
.port_fwd_begin = tx_only_begin,
|
|
.port_fwd_end = NULL,
|
|
.packet_fwd = pkt_burst_transmit,
|
|
};
|