e2cbb38450
Add test cases to verify copy DF and set DF options with lookaside IPsec offload. Signed-off-by: Anoob Joseph <anoobj@marvell.com> Acked-by: Akhil Goyal <gakhil@marvell.com>
977 lines
24 KiB
C
977 lines
24 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(C) 2021 Marvell.
|
|
*/
|
|
|
|
#include <rte_common.h>
|
|
#include <rte_cryptodev.h>
|
|
#include <rte_esp.h>
|
|
#include <rte_ip.h>
|
|
#include <rte_security.h>
|
|
#include <rte_tcp.h>
|
|
#include <rte_udp.h>
|
|
|
|
#include "test.h"
|
|
#include "test_cryptodev_security_ipsec.h"
|
|
|
|
#define IV_LEN_MAX 16
|
|
|
|
struct crypto_param_comb alg_list[RTE_DIM(aead_list) +
|
|
(RTE_DIM(cipher_list) *
|
|
RTE_DIM(auth_list))];
|
|
|
|
static bool
|
|
is_valid_ipv4_pkt(const struct rte_ipv4_hdr *pkt)
|
|
{
|
|
/* The IP version number must be 4 */
|
|
if (((pkt->version_ihl) >> 4) != 4)
|
|
return false;
|
|
/*
|
|
* The IP header length field must be large enough to hold the
|
|
* minimum length legal IP datagram (20 bytes = 5 words).
|
|
*/
|
|
if ((pkt->version_ihl & 0xf) < 5)
|
|
return false;
|
|
|
|
/*
|
|
* The IP total length field must be large enough to hold the IP
|
|
* datagram header, whose length is specified in the IP header length
|
|
* field.
|
|
*/
|
|
if (rte_cpu_to_be_16(pkt->total_length) < sizeof(struct rte_ipv4_hdr))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
is_valid_ipv6_pkt(const struct rte_ipv6_hdr *pkt)
|
|
{
|
|
/* The IP version number must be 6 */
|
|
if ((rte_be_to_cpu_32((pkt->vtc_flow)) >> 28) != 6)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void
|
|
test_ipsec_alg_list_populate(void)
|
|
{
|
|
unsigned long i, j, index = 0;
|
|
|
|
for (i = 0; i < RTE_DIM(aead_list); i++) {
|
|
alg_list[index].param1 = &aead_list[i];
|
|
alg_list[index].param2 = NULL;
|
|
index++;
|
|
}
|
|
|
|
for (i = 0; i < RTE_DIM(cipher_list); i++) {
|
|
for (j = 0; j < RTE_DIM(auth_list); j++) {
|
|
alg_list[index].param1 = &cipher_list[i];
|
|
alg_list[index].param2 = &auth_list[j];
|
|
index++;
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
test_ipsec_sec_caps_verify(struct rte_security_ipsec_xform *ipsec_xform,
|
|
const struct rte_security_capability *sec_cap,
|
|
bool silent)
|
|
{
|
|
/* Verify security capabilities */
|
|
|
|
if (ipsec_xform->options.esn == 1 && sec_cap->ipsec.options.esn == 0) {
|
|
if (!silent)
|
|
RTE_LOG(INFO, USER1, "ESN is not supported\n");
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
if (ipsec_xform->options.udp_encap == 1 &&
|
|
sec_cap->ipsec.options.udp_encap == 0) {
|
|
if (!silent)
|
|
RTE_LOG(INFO, USER1, "UDP encapsulation is not supported\n");
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
if (ipsec_xform->options.udp_ports_verify == 1 &&
|
|
sec_cap->ipsec.options.udp_ports_verify == 0) {
|
|
if (!silent)
|
|
RTE_LOG(INFO, USER1, "UDP encapsulation ports "
|
|
"verification is not supported\n");
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
if (ipsec_xform->options.copy_dscp == 1 &&
|
|
sec_cap->ipsec.options.copy_dscp == 0) {
|
|
if (!silent)
|
|
RTE_LOG(INFO, USER1, "Copy DSCP is not supported\n");
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
if (ipsec_xform->options.copy_flabel == 1 &&
|
|
sec_cap->ipsec.options.copy_flabel == 0) {
|
|
if (!silent)
|
|
RTE_LOG(INFO, USER1, "Copy Flow Label is not supported\n");
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
if (ipsec_xform->options.copy_df == 1 &&
|
|
sec_cap->ipsec.options.copy_df == 0) {
|
|
if (!silent)
|
|
RTE_LOG(INFO, USER1, "Copy DP bit is not supported\n");
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
if (ipsec_xform->options.dec_ttl == 1 &&
|
|
sec_cap->ipsec.options.dec_ttl == 0) {
|
|
if (!silent)
|
|
RTE_LOG(INFO, USER1, "Decrement TTL is not supported\n");
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
if (ipsec_xform->options.ecn == 1 && sec_cap->ipsec.options.ecn == 0) {
|
|
if (!silent)
|
|
RTE_LOG(INFO, USER1, "ECN is not supported\n");
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
if (ipsec_xform->options.stats == 1 &&
|
|
sec_cap->ipsec.options.stats == 0) {
|
|
if (!silent)
|
|
RTE_LOG(INFO, USER1, "Stats is not supported\n");
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
if ((ipsec_xform->direction == RTE_SECURITY_IPSEC_SA_DIR_EGRESS) &&
|
|
(ipsec_xform->options.iv_gen_disable == 1) &&
|
|
(sec_cap->ipsec.options.iv_gen_disable != 1)) {
|
|
if (!silent)
|
|
RTE_LOG(INFO, USER1,
|
|
"Application provided IV is not supported\n");
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
if ((ipsec_xform->direction == RTE_SECURITY_IPSEC_SA_DIR_INGRESS) &&
|
|
(ipsec_xform->options.tunnel_hdr_verify >
|
|
sec_cap->ipsec.options.tunnel_hdr_verify)) {
|
|
if (!silent)
|
|
RTE_LOG(INFO, USER1,
|
|
"Tunnel header verify is not supported\n");
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
if (ipsec_xform->options.ip_csum_enable == 1 &&
|
|
sec_cap->ipsec.options.ip_csum_enable == 0) {
|
|
if (!silent)
|
|
RTE_LOG(INFO, USER1,
|
|
"Inner IP checksum is not supported\n");
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
if (ipsec_xform->options.l4_csum_enable == 1 &&
|
|
sec_cap->ipsec.options.l4_csum_enable == 0) {
|
|
if (!silent)
|
|
RTE_LOG(INFO, USER1,
|
|
"Inner L4 checksum is not supported\n");
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
test_ipsec_crypto_caps_aead_verify(
|
|
const struct rte_security_capability *sec_cap,
|
|
struct rte_crypto_sym_xform *aead)
|
|
{
|
|
const struct rte_cryptodev_symmetric_capability *sym_cap;
|
|
const struct rte_cryptodev_capabilities *crypto_cap;
|
|
int j = 0;
|
|
|
|
while ((crypto_cap = &sec_cap->crypto_capabilities[j++])->op !=
|
|
RTE_CRYPTO_OP_TYPE_UNDEFINED) {
|
|
if (crypto_cap->op == RTE_CRYPTO_OP_TYPE_SYMMETRIC &&
|
|
crypto_cap->sym.xform_type == aead->type &&
|
|
crypto_cap->sym.aead.algo == aead->aead.algo) {
|
|
sym_cap = &crypto_cap->sym;
|
|
if (rte_cryptodev_sym_capability_check_aead(sym_cap,
|
|
aead->aead.key.length,
|
|
aead->aead.digest_length,
|
|
aead->aead.aad_length,
|
|
aead->aead.iv.length) == 0)
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
int
|
|
test_ipsec_crypto_caps_cipher_verify(
|
|
const struct rte_security_capability *sec_cap,
|
|
struct rte_crypto_sym_xform *cipher)
|
|
{
|
|
const struct rte_cryptodev_symmetric_capability *sym_cap;
|
|
const struct rte_cryptodev_capabilities *cap;
|
|
int j = 0;
|
|
|
|
while ((cap = &sec_cap->crypto_capabilities[j++])->op !=
|
|
RTE_CRYPTO_OP_TYPE_UNDEFINED) {
|
|
if (cap->op == RTE_CRYPTO_OP_TYPE_SYMMETRIC &&
|
|
cap->sym.xform_type == cipher->type &&
|
|
cap->sym.cipher.algo == cipher->cipher.algo) {
|
|
sym_cap = &cap->sym;
|
|
if (rte_cryptodev_sym_capability_check_cipher(sym_cap,
|
|
cipher->cipher.key.length,
|
|
cipher->cipher.iv.length) == 0)
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
int
|
|
test_ipsec_crypto_caps_auth_verify(
|
|
const struct rte_security_capability *sec_cap,
|
|
struct rte_crypto_sym_xform *auth)
|
|
{
|
|
const struct rte_cryptodev_symmetric_capability *sym_cap;
|
|
const struct rte_cryptodev_capabilities *cap;
|
|
int j = 0;
|
|
|
|
while ((cap = &sec_cap->crypto_capabilities[j++])->op !=
|
|
RTE_CRYPTO_OP_TYPE_UNDEFINED) {
|
|
if (cap->op == RTE_CRYPTO_OP_TYPE_SYMMETRIC &&
|
|
cap->sym.xform_type == auth->type &&
|
|
cap->sym.auth.algo == auth->auth.algo) {
|
|
sym_cap = &cap->sym;
|
|
if (rte_cryptodev_sym_capability_check_auth(sym_cap,
|
|
auth->auth.key.length,
|
|
auth->auth.digest_length,
|
|
auth->auth.iv.length) == 0)
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
void
|
|
test_ipsec_td_in_from_out(const struct ipsec_test_data *td_out,
|
|
struct ipsec_test_data *td_in)
|
|
{
|
|
memcpy(td_in, td_out, sizeof(*td_in));
|
|
|
|
/* Populate output text of td_in with input text of td_out */
|
|
memcpy(td_in->output_text.data, td_out->input_text.data,
|
|
td_out->input_text.len);
|
|
td_in->output_text.len = td_out->input_text.len;
|
|
|
|
/* Populate input text of td_in with output text of td_out */
|
|
memcpy(td_in->input_text.data, td_out->output_text.data,
|
|
td_out->output_text.len);
|
|
td_in->input_text.len = td_out->output_text.len;
|
|
|
|
td_in->ipsec_xform.direction = RTE_SECURITY_IPSEC_SA_DIR_INGRESS;
|
|
|
|
if (td_in->aead) {
|
|
td_in->xform.aead.aead.op = RTE_CRYPTO_AEAD_OP_DECRYPT;
|
|
} else {
|
|
td_in->xform.chain.auth.auth.op = RTE_CRYPTO_AUTH_OP_VERIFY;
|
|
td_in->xform.chain.cipher.cipher.op =
|
|
RTE_CRYPTO_CIPHER_OP_DECRYPT;
|
|
}
|
|
}
|
|
|
|
static bool
|
|
is_ipv4(void *ip)
|
|
{
|
|
struct rte_ipv4_hdr *ipv4 = ip;
|
|
uint8_t ip_ver;
|
|
|
|
ip_ver = (ipv4->version_ihl & 0xf0) >> RTE_IPV4_IHL_MULTIPLIER;
|
|
if (ip_ver == IPVERSION)
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
static void
|
|
test_ipsec_csum_init(void *ip, bool l3, bool l4)
|
|
{
|
|
struct rte_ipv4_hdr *ipv4;
|
|
struct rte_tcp_hdr *tcp;
|
|
struct rte_udp_hdr *udp;
|
|
uint8_t next_proto;
|
|
uint8_t size;
|
|
|
|
if (is_ipv4(ip)) {
|
|
ipv4 = ip;
|
|
size = sizeof(struct rte_ipv4_hdr);
|
|
next_proto = ipv4->next_proto_id;
|
|
|
|
if (l3)
|
|
ipv4->hdr_checksum = 0;
|
|
} else {
|
|
size = sizeof(struct rte_ipv6_hdr);
|
|
next_proto = ((struct rte_ipv6_hdr *)ip)->proto;
|
|
}
|
|
|
|
if (l4) {
|
|
switch (next_proto) {
|
|
case IPPROTO_TCP:
|
|
tcp = (struct rte_tcp_hdr *)RTE_PTR_ADD(ip, size);
|
|
tcp->cksum = 0;
|
|
break;
|
|
case IPPROTO_UDP:
|
|
udp = (struct rte_udp_hdr *)RTE_PTR_ADD(ip, size);
|
|
udp->dgram_cksum = 0;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
test_ipsec_td_prepare(const struct crypto_param *param1,
|
|
const struct crypto_param *param2,
|
|
const struct ipsec_test_flags *flags,
|
|
struct ipsec_test_data *td_array,
|
|
int nb_td)
|
|
|
|
{
|
|
struct ipsec_test_data *td;
|
|
int i;
|
|
|
|
memset(td_array, 0, nb_td * sizeof(*td));
|
|
|
|
for (i = 0; i < nb_td; i++) {
|
|
td = &td_array[i];
|
|
|
|
/* Prepare fields based on param */
|
|
|
|
if (param1->type == RTE_CRYPTO_SYM_XFORM_AEAD) {
|
|
/* Copy template for packet & key fields */
|
|
if (flags->ipv6)
|
|
memcpy(td, &pkt_aes_256_gcm_v6, sizeof(*td));
|
|
else
|
|
memcpy(td, &pkt_aes_256_gcm, sizeof(*td));
|
|
|
|
td->aead = true;
|
|
td->xform.aead.aead.algo = param1->alg.aead;
|
|
td->xform.aead.aead.key.length = param1->key_length;
|
|
} else {
|
|
/* Copy template for packet & key fields */
|
|
if (flags->ipv6)
|
|
memcpy(td, &pkt_aes_128_cbc_hmac_sha256_v6,
|
|
sizeof(*td));
|
|
else
|
|
memcpy(td, &pkt_aes_128_cbc_hmac_sha256,
|
|
sizeof(*td));
|
|
|
|
td->aead = false;
|
|
td->xform.chain.cipher.cipher.algo = param1->alg.cipher;
|
|
td->xform.chain.cipher.cipher.key.length =
|
|
param1->key_length;
|
|
td->xform.chain.cipher.cipher.iv.length =
|
|
param1->iv_length;
|
|
td->xform.chain.auth.auth.algo = param2->alg.auth;
|
|
td->xform.chain.auth.auth.key.length =
|
|
param2->key_length;
|
|
td->xform.chain.auth.auth.digest_length =
|
|
param2->digest_length;
|
|
|
|
}
|
|
|
|
if (flags->iv_gen)
|
|
td->ipsec_xform.options.iv_gen_disable = 0;
|
|
|
|
if (flags->sa_expiry_pkts_soft)
|
|
td->ipsec_xform.life.packets_soft_limit =
|
|
IPSEC_TEST_PACKETS_MAX - 1;
|
|
|
|
if (flags->ip_csum) {
|
|
td->ipsec_xform.options.ip_csum_enable = 1;
|
|
test_ipsec_csum_init(&td->input_text.data, true, false);
|
|
}
|
|
|
|
if (flags->l4_csum) {
|
|
td->ipsec_xform.options.l4_csum_enable = 1;
|
|
test_ipsec_csum_init(&td->input_text.data, false, true);
|
|
}
|
|
|
|
if (flags->transport) {
|
|
td->ipsec_xform.mode =
|
|
RTE_SECURITY_IPSEC_SA_MODE_TRANSPORT;
|
|
} else {
|
|
td->ipsec_xform.mode =
|
|
RTE_SECURITY_IPSEC_SA_MODE_TUNNEL;
|
|
|
|
if (flags->tunnel_ipv6)
|
|
td->ipsec_xform.tunnel.type =
|
|
RTE_SECURITY_IPSEC_TUNNEL_IPV6;
|
|
else
|
|
td->ipsec_xform.tunnel.type =
|
|
RTE_SECURITY_IPSEC_TUNNEL_IPV4;
|
|
}
|
|
|
|
if (flags->stats_success)
|
|
td->ipsec_xform.options.stats = 1;
|
|
|
|
if (flags->fragment) {
|
|
struct rte_ipv4_hdr *ip;
|
|
ip = (struct rte_ipv4_hdr *)&td->input_text.data;
|
|
ip->fragment_offset = 4;
|
|
ip->hdr_checksum = rte_ipv4_cksum(ip);
|
|
}
|
|
|
|
if (flags->df == TEST_IPSEC_COPY_DF_INNER_0 ||
|
|
flags->df == TEST_IPSEC_COPY_DF_INNER_1)
|
|
td->ipsec_xform.options.copy_df = 1;
|
|
}
|
|
}
|
|
|
|
void
|
|
test_ipsec_td_update(struct ipsec_test_data td_inb[],
|
|
const struct ipsec_test_data td_outb[],
|
|
int nb_td,
|
|
const struct ipsec_test_flags *flags)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < nb_td; i++) {
|
|
memcpy(td_inb[i].output_text.data, td_outb[i].input_text.data,
|
|
td_outb[i].input_text.len);
|
|
td_inb[i].output_text.len = td_outb->input_text.len;
|
|
|
|
if (flags->icv_corrupt) {
|
|
int icv_pos = td_inb[i].input_text.len - 4;
|
|
td_inb[i].input_text.data[icv_pos] += 1;
|
|
}
|
|
|
|
if (flags->sa_expiry_pkts_hard)
|
|
td_inb[i].ipsec_xform.life.packets_hard_limit =
|
|
IPSEC_TEST_PACKETS_MAX - 1;
|
|
|
|
if (flags->udp_encap)
|
|
td_inb[i].ipsec_xform.options.udp_encap = 1;
|
|
|
|
if (flags->udp_ports_verify)
|
|
td_inb[i].ipsec_xform.options.udp_ports_verify = 1;
|
|
|
|
td_inb[i].ipsec_xform.options.tunnel_hdr_verify =
|
|
flags->tunnel_hdr_verify;
|
|
|
|
if (flags->ip_csum)
|
|
td_inb[i].ipsec_xform.options.ip_csum_enable = 1;
|
|
|
|
if (flags->l4_csum)
|
|
td_inb[i].ipsec_xform.options.l4_csum_enable = 1;
|
|
|
|
/* Clear outbound specific flags */
|
|
td_inb[i].ipsec_xform.options.iv_gen_disable = 0;
|
|
}
|
|
}
|
|
|
|
void
|
|
test_ipsec_display_alg(const struct crypto_param *param1,
|
|
const struct crypto_param *param2)
|
|
{
|
|
if (param1->type == RTE_CRYPTO_SYM_XFORM_AEAD) {
|
|
printf("\t%s [%d]",
|
|
rte_crypto_aead_algorithm_strings[param1->alg.aead],
|
|
param1->key_length * 8);
|
|
} else {
|
|
printf("\t%s",
|
|
rte_crypto_cipher_algorithm_strings[param1->alg.cipher]);
|
|
if (param1->alg.cipher != RTE_CRYPTO_CIPHER_NULL)
|
|
printf(" [%d]", param1->key_length * 8);
|
|
printf(" %s",
|
|
rte_crypto_auth_algorithm_strings[param2->alg.auth]);
|
|
if (param2->alg.auth != RTE_CRYPTO_AUTH_NULL)
|
|
printf(" [%dB ICV]", param2->digest_length);
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
static int
|
|
test_ipsec_tunnel_hdr_len_get(const struct ipsec_test_data *td)
|
|
{
|
|
int len = 0;
|
|
|
|
if (td->ipsec_xform.direction == RTE_SECURITY_IPSEC_SA_DIR_EGRESS) {
|
|
if (td->ipsec_xform.mode == RTE_SECURITY_IPSEC_SA_MODE_TUNNEL) {
|
|
if (td->ipsec_xform.tunnel.type ==
|
|
RTE_SECURITY_IPSEC_TUNNEL_IPV4)
|
|
len += sizeof(struct rte_ipv4_hdr);
|
|
else
|
|
len += sizeof(struct rte_ipv6_hdr);
|
|
}
|
|
}
|
|
|
|
return len;
|
|
}
|
|
|
|
static int
|
|
test_ipsec_iv_verify_push(struct rte_mbuf *m, const struct ipsec_test_data *td)
|
|
{
|
|
static uint8_t iv_queue[IV_LEN_MAX * IPSEC_TEST_PACKETS_MAX];
|
|
uint8_t *iv_tmp, *output_text = rte_pktmbuf_mtod(m, uint8_t *);
|
|
int i, iv_pos, iv_len;
|
|
static int index;
|
|
|
|
if (td->aead)
|
|
iv_len = td->xform.aead.aead.iv.length - td->salt.len;
|
|
else
|
|
iv_len = td->xform.chain.cipher.cipher.iv.length;
|
|
|
|
iv_pos = test_ipsec_tunnel_hdr_len_get(td) + sizeof(struct rte_esp_hdr);
|
|
output_text += iv_pos;
|
|
|
|
TEST_ASSERT(iv_len <= IV_LEN_MAX, "IV length greater than supported");
|
|
|
|
/* Compare against previous values */
|
|
for (i = 0; i < index; i++) {
|
|
iv_tmp = &iv_queue[i * IV_LEN_MAX];
|
|
|
|
if (memcmp(output_text, iv_tmp, iv_len) == 0) {
|
|
printf("IV repeated");
|
|
return TEST_FAILED;
|
|
}
|
|
}
|
|
|
|
/* Save IV for future comparisons */
|
|
|
|
iv_tmp = &iv_queue[index * IV_LEN_MAX];
|
|
memcpy(iv_tmp, output_text, iv_len);
|
|
index++;
|
|
|
|
if (index == IPSEC_TEST_PACKETS_MAX)
|
|
index = 0;
|
|
|
|
return TEST_SUCCESS;
|
|
}
|
|
|
|
static int
|
|
test_ipsec_l3_csum_verify(struct rte_mbuf *m)
|
|
{
|
|
uint16_t actual_cksum, expected_cksum;
|
|
struct rte_ipv4_hdr *ip;
|
|
|
|
ip = rte_pktmbuf_mtod(m, struct rte_ipv4_hdr *);
|
|
|
|
if (!is_ipv4((void *)ip))
|
|
return TEST_SKIPPED;
|
|
|
|
actual_cksum = ip->hdr_checksum;
|
|
|
|
ip->hdr_checksum = 0;
|
|
|
|
expected_cksum = rte_ipv4_cksum(ip);
|
|
|
|
if (actual_cksum != expected_cksum)
|
|
return TEST_FAILED;
|
|
|
|
return TEST_SUCCESS;
|
|
}
|
|
|
|
static int
|
|
test_ipsec_l4_csum_verify(struct rte_mbuf *m)
|
|
{
|
|
uint16_t actual_cksum = 0, expected_cksum = 0;
|
|
struct rte_ipv4_hdr *ipv4;
|
|
struct rte_ipv6_hdr *ipv6;
|
|
struct rte_tcp_hdr *tcp;
|
|
struct rte_udp_hdr *udp;
|
|
void *ip, *l4;
|
|
|
|
ip = rte_pktmbuf_mtod(m, void *);
|
|
|
|
if (is_ipv4(ip)) {
|
|
ipv4 = ip;
|
|
l4 = RTE_PTR_ADD(ipv4, sizeof(struct rte_ipv4_hdr));
|
|
|
|
switch (ipv4->next_proto_id) {
|
|
case IPPROTO_TCP:
|
|
tcp = (struct rte_tcp_hdr *)l4;
|
|
actual_cksum = tcp->cksum;
|
|
tcp->cksum = 0;
|
|
expected_cksum = rte_ipv4_udptcp_cksum(ipv4, l4);
|
|
break;
|
|
case IPPROTO_UDP:
|
|
udp = (struct rte_udp_hdr *)l4;
|
|
actual_cksum = udp->dgram_cksum;
|
|
udp->dgram_cksum = 0;
|
|
expected_cksum = rte_ipv4_udptcp_cksum(ipv4, l4);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
} else {
|
|
ipv6 = ip;
|
|
l4 = RTE_PTR_ADD(ipv6, sizeof(struct rte_ipv6_hdr));
|
|
|
|
switch (ipv6->proto) {
|
|
case IPPROTO_TCP:
|
|
tcp = (struct rte_tcp_hdr *)l4;
|
|
actual_cksum = tcp->cksum;
|
|
tcp->cksum = 0;
|
|
expected_cksum = rte_ipv6_udptcp_cksum(ipv6, l4);
|
|
break;
|
|
case IPPROTO_UDP:
|
|
udp = (struct rte_udp_hdr *)l4;
|
|
actual_cksum = udp->dgram_cksum;
|
|
udp->dgram_cksum = 0;
|
|
expected_cksum = rte_ipv6_udptcp_cksum(ipv6, l4);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (actual_cksum != expected_cksum)
|
|
return TEST_FAILED;
|
|
|
|
return TEST_SUCCESS;
|
|
}
|
|
|
|
static int
|
|
test_ipsec_td_verify(struct rte_mbuf *m, const struct ipsec_test_data *td,
|
|
bool silent, const struct ipsec_test_flags *flags)
|
|
{
|
|
uint8_t *output_text = rte_pktmbuf_mtod(m, uint8_t *);
|
|
uint32_t skip, len = rte_pktmbuf_pkt_len(m);
|
|
uint8_t td_output_text[4096];
|
|
int ret;
|
|
|
|
/* For tests with status as error for test success, skip verification */
|
|
if (td->ipsec_xform.direction == RTE_SECURITY_IPSEC_SA_DIR_INGRESS &&
|
|
(flags->icv_corrupt ||
|
|
flags->sa_expiry_pkts_hard ||
|
|
flags->tunnel_hdr_verify))
|
|
return TEST_SUCCESS;
|
|
|
|
if (td->ipsec_xform.direction == RTE_SECURITY_IPSEC_SA_DIR_EGRESS &&
|
|
flags->udp_encap) {
|
|
const struct rte_ipv4_hdr *iph4;
|
|
const struct rte_ipv6_hdr *iph6;
|
|
|
|
if (td->ipsec_xform.tunnel.type ==
|
|
RTE_SECURITY_IPSEC_TUNNEL_IPV4) {
|
|
iph4 = (const struct rte_ipv4_hdr *)output_text;
|
|
if (iph4->next_proto_id != IPPROTO_UDP) {
|
|
printf("UDP header is not found\n");
|
|
return TEST_FAILED;
|
|
}
|
|
} else {
|
|
iph6 = (const struct rte_ipv6_hdr *)output_text;
|
|
if (iph6->proto != IPPROTO_UDP) {
|
|
printf("UDP header is not found\n");
|
|
return TEST_FAILED;
|
|
}
|
|
}
|
|
|
|
len -= sizeof(struct rte_udp_hdr);
|
|
output_text += sizeof(struct rte_udp_hdr);
|
|
}
|
|
|
|
if (len != td->output_text.len) {
|
|
printf("Output length (%d) not matching with expected (%d)\n",
|
|
len, td->output_text.len);
|
|
return TEST_FAILED;
|
|
}
|
|
|
|
if ((td->ipsec_xform.direction == RTE_SECURITY_IPSEC_SA_DIR_EGRESS) &&
|
|
flags->fragment) {
|
|
const struct rte_ipv4_hdr *iph4;
|
|
iph4 = (const struct rte_ipv4_hdr *)output_text;
|
|
if (iph4->fragment_offset) {
|
|
printf("Output packet is fragmented");
|
|
return TEST_FAILED;
|
|
}
|
|
}
|
|
|
|
skip = test_ipsec_tunnel_hdr_len_get(td);
|
|
|
|
len -= skip;
|
|
output_text += skip;
|
|
|
|
if ((td->ipsec_xform.direction == RTE_SECURITY_IPSEC_SA_DIR_INGRESS) &&
|
|
flags->ip_csum) {
|
|
if (m->ol_flags & RTE_MBUF_F_RX_IP_CKSUM_GOOD)
|
|
ret = test_ipsec_l3_csum_verify(m);
|
|
else
|
|
ret = TEST_FAILED;
|
|
|
|
if (ret == TEST_FAILED)
|
|
printf("Inner IP checksum test failed\n");
|
|
|
|
return ret;
|
|
}
|
|
|
|
if ((td->ipsec_xform.direction == RTE_SECURITY_IPSEC_SA_DIR_INGRESS) &&
|
|
flags->l4_csum) {
|
|
if (m->ol_flags & RTE_MBUF_F_RX_L4_CKSUM_GOOD)
|
|
ret = test_ipsec_l4_csum_verify(m);
|
|
else
|
|
ret = TEST_FAILED;
|
|
|
|
if (ret == TEST_FAILED)
|
|
printf("Inner L4 checksum test failed\n");
|
|
|
|
return ret;
|
|
}
|
|
|
|
memcpy(td_output_text, td->output_text.data + skip, len);
|
|
|
|
if (test_ipsec_pkt_update(td_output_text, flags)) {
|
|
printf("Could not update expected vector");
|
|
return TEST_FAILED;
|
|
}
|
|
|
|
if (memcmp(output_text, td_output_text, len)) {
|
|
if (silent)
|
|
return TEST_FAILED;
|
|
|
|
printf("TestCase %s line %d: %s\n", __func__, __LINE__,
|
|
"output text not as expected\n");
|
|
|
|
rte_hexdump(stdout, "expected", td_output_text, len);
|
|
rte_hexdump(stdout, "actual", output_text, len);
|
|
return TEST_FAILED;
|
|
}
|
|
|
|
return TEST_SUCCESS;
|
|
}
|
|
|
|
static int
|
|
test_ipsec_res_d_prepare(struct rte_mbuf *m, const struct ipsec_test_data *td,
|
|
struct ipsec_test_data *res_d)
|
|
{
|
|
uint8_t *output_text = rte_pktmbuf_mtod(m, uint8_t *);
|
|
uint32_t len = rte_pktmbuf_pkt_len(m);
|
|
|
|
memcpy(res_d, td, sizeof(*res_d));
|
|
memcpy(res_d->input_text.data, output_text, len);
|
|
res_d->input_text.len = len;
|
|
|
|
res_d->ipsec_xform.direction = RTE_SECURITY_IPSEC_SA_DIR_INGRESS;
|
|
if (res_d->aead) {
|
|
res_d->xform.aead.aead.op = RTE_CRYPTO_AEAD_OP_DECRYPT;
|
|
} else {
|
|
res_d->xform.chain.cipher.cipher.op =
|
|
RTE_CRYPTO_CIPHER_OP_DECRYPT;
|
|
res_d->xform.chain.auth.auth.op = RTE_CRYPTO_AUTH_OP_VERIFY;
|
|
}
|
|
|
|
return TEST_SUCCESS;
|
|
}
|
|
|
|
int
|
|
test_ipsec_post_process(struct rte_mbuf *m, const struct ipsec_test_data *td,
|
|
struct ipsec_test_data *res_d, bool silent,
|
|
const struct ipsec_test_flags *flags)
|
|
{
|
|
uint8_t *output_text = rte_pktmbuf_mtod(m, uint8_t *);
|
|
int ret;
|
|
|
|
if (td->ipsec_xform.direction == RTE_SECURITY_IPSEC_SA_DIR_EGRESS) {
|
|
const struct rte_ipv4_hdr *iph4;
|
|
const struct rte_ipv6_hdr *iph6;
|
|
|
|
if (flags->iv_gen) {
|
|
ret = test_ipsec_iv_verify_push(m, td);
|
|
if (ret != TEST_SUCCESS)
|
|
return ret;
|
|
}
|
|
|
|
iph4 = (const struct rte_ipv4_hdr *)output_text;
|
|
|
|
if (td->ipsec_xform.mode ==
|
|
RTE_SECURITY_IPSEC_SA_MODE_TRANSPORT) {
|
|
if (flags->ipv6) {
|
|
iph6 = (const struct rte_ipv6_hdr *)output_text;
|
|
if (is_valid_ipv6_pkt(iph6) == false) {
|
|
printf("Transport packet is not IPv6\n");
|
|
return TEST_FAILED;
|
|
}
|
|
} else {
|
|
if (is_valid_ipv4_pkt(iph4) == false) {
|
|
printf("Transport packet is not IPv4\n");
|
|
return TEST_FAILED;
|
|
}
|
|
}
|
|
} else {
|
|
if (td->ipsec_xform.tunnel.type ==
|
|
RTE_SECURITY_IPSEC_TUNNEL_IPV4) {
|
|
uint16_t f_off;
|
|
|
|
if (is_valid_ipv4_pkt(iph4) == false) {
|
|
printf("Tunnel outer header is not IPv4\n");
|
|
return TEST_FAILED;
|
|
}
|
|
|
|
f_off = rte_be_to_cpu_16(iph4->fragment_offset);
|
|
|
|
if (flags->df == TEST_IPSEC_COPY_DF_INNER_1 ||
|
|
flags->df == TEST_IPSEC_SET_DF_1_INNER_0) {
|
|
if (!(f_off & RTE_IPV4_HDR_DF_FLAG)) {
|
|
printf("DF bit is not set\n");
|
|
return TEST_FAILED;
|
|
}
|
|
} else {
|
|
if ((f_off & RTE_IPV4_HDR_DF_FLAG)) {
|
|
printf("DF bit is set\n");
|
|
return TEST_FAILED;
|
|
}
|
|
}
|
|
} else {
|
|
iph6 = (const struct rte_ipv6_hdr *)output_text;
|
|
if (is_valid_ipv6_pkt(iph6) == false) {
|
|
printf("Tunnel outer header is not IPv6\n");
|
|
return TEST_FAILED;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* In case of known vector tests & all inbound tests, res_d provided
|
|
* would be NULL and output data need to be validated against expected.
|
|
* For inbound, output_text would be plain packet and for outbound
|
|
* output_text would IPsec packet. Validate by comparing against
|
|
* known vectors.
|
|
*
|
|
* In case of combined mode tests, the output_text from outbound
|
|
* operation (ie, IPsec packet) would need to be inbound processed to
|
|
* obtain the plain text. Copy output_text to result data, 'res_d', so
|
|
* that inbound processing can be done.
|
|
*/
|
|
|
|
if (res_d == NULL)
|
|
return test_ipsec_td_verify(m, td, silent, flags);
|
|
else
|
|
return test_ipsec_res_d_prepare(m, td, res_d);
|
|
}
|
|
|
|
int
|
|
test_ipsec_status_check(struct rte_crypto_op *op,
|
|
const struct ipsec_test_flags *flags,
|
|
enum rte_security_ipsec_sa_direction dir,
|
|
int pkt_num)
|
|
{
|
|
int ret = TEST_SUCCESS;
|
|
|
|
if (dir == RTE_SECURITY_IPSEC_SA_DIR_INGRESS &&
|
|
flags->sa_expiry_pkts_hard &&
|
|
pkt_num == IPSEC_TEST_PACKETS_MAX) {
|
|
if (op->status != RTE_CRYPTO_OP_STATUS_ERROR) {
|
|
printf("SA hard expiry (pkts) test failed\n");
|
|
return TEST_FAILED;
|
|
} else {
|
|
return TEST_SUCCESS;
|
|
}
|
|
}
|
|
|
|
if ((dir == RTE_SECURITY_IPSEC_SA_DIR_INGRESS) &&
|
|
flags->tunnel_hdr_verify) {
|
|
if (op->status != RTE_CRYPTO_OP_STATUS_ERROR) {
|
|
printf("Tunnel header verify test case failed\n");
|
|
return TEST_FAILED;
|
|
} else {
|
|
return TEST_SUCCESS;
|
|
}
|
|
}
|
|
|
|
if (dir == RTE_SECURITY_IPSEC_SA_DIR_INGRESS && flags->icv_corrupt) {
|
|
if (op->status != RTE_CRYPTO_OP_STATUS_ERROR) {
|
|
printf("ICV corruption test case failed\n");
|
|
ret = TEST_FAILED;
|
|
}
|
|
} else {
|
|
if (op->status != RTE_CRYPTO_OP_STATUS_SUCCESS) {
|
|
printf("Security op processing failed [pkt_num: %d]\n",
|
|
pkt_num);
|
|
ret = TEST_FAILED;
|
|
}
|
|
}
|
|
|
|
if (flags->sa_expiry_pkts_soft && pkt_num == IPSEC_TEST_PACKETS_MAX) {
|
|
if (!(op->aux_flags &
|
|
RTE_CRYPTO_OP_AUX_FLAGS_IPSEC_SOFT_EXPIRY)) {
|
|
printf("SA soft expiry (pkts) test failed\n");
|
|
ret = TEST_FAILED;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
test_ipsec_stats_verify(struct rte_security_ctx *ctx,
|
|
struct rte_security_session *sess,
|
|
const struct ipsec_test_flags *flags,
|
|
enum rte_security_ipsec_sa_direction dir)
|
|
{
|
|
struct rte_security_stats stats = {0};
|
|
int ret = TEST_SUCCESS;
|
|
|
|
if (flags->stats_success) {
|
|
if (rte_security_session_stats_get(ctx, sess, &stats) < 0)
|
|
return TEST_FAILED;
|
|
|
|
if (dir == RTE_SECURITY_IPSEC_SA_DIR_EGRESS) {
|
|
if (stats.ipsec.opackets != 1 ||
|
|
stats.ipsec.oerrors != 0)
|
|
ret = TEST_FAILED;
|
|
} else {
|
|
if (stats.ipsec.ipackets != 1 ||
|
|
stats.ipsec.ierrors != 0)
|
|
ret = TEST_FAILED;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
test_ipsec_pkt_update(uint8_t *pkt, const struct ipsec_test_flags *flags)
|
|
{
|
|
struct rte_ipv4_hdr *iph4;
|
|
bool cksum_dirty = false;
|
|
uint16_t frag_off;
|
|
|
|
iph4 = (struct rte_ipv4_hdr *)pkt;
|
|
|
|
if (flags->df == TEST_IPSEC_COPY_DF_INNER_1 ||
|
|
flags->df == TEST_IPSEC_SET_DF_0_INNER_1 ||
|
|
flags->df == TEST_IPSEC_COPY_DF_INNER_0 ||
|
|
flags->df == TEST_IPSEC_SET_DF_1_INNER_0) {
|
|
|
|
if (!is_ipv4(iph4)) {
|
|
printf("Invalid packet type");
|
|
return -1;
|
|
}
|
|
|
|
frag_off = rte_be_to_cpu_16(iph4->fragment_offset);
|
|
|
|
if (flags->df == TEST_IPSEC_COPY_DF_INNER_1 ||
|
|
flags->df == TEST_IPSEC_SET_DF_0_INNER_1)
|
|
frag_off |= RTE_IPV4_HDR_DF_FLAG;
|
|
else
|
|
frag_off &= ~RTE_IPV4_HDR_DF_FLAG;
|
|
|
|
iph4->fragment_offset = rte_cpu_to_be_16(frag_off);
|
|
cksum_dirty = true;
|
|
}
|
|
|
|
if (cksum_dirty && is_ipv4(iph4)) {
|
|
iph4->hdr_checksum = 0;
|
|
iph4->hdr_checksum = rte_ipv4_cksum(iph4);
|
|
}
|
|
|
|
return 0;
|
|
}
|