numam-dpdk/lib/librte_pmd_pcap/rte_eth_pcap.c
Saori Usami e35d434667 pcap: set port id in received mbuf
The port parameter in mbuf should be set with an input port id
because DPDK apps may use it to know where each packet came from.

Signed-off-by: Saori Usami <susami@igel.co.jp>
Acked-by: Thomas Monjalon <thomas.monjalon@6wind.com>
2014-09-29 16:34:50 +02:00

784 lines
20 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* Copyright(c) 2014 6WIND S.A.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <time.h>
#include <rte_mbuf.h>
#include <rte_ethdev.h>
#include <rte_malloc.h>
#include <rte_memcpy.h>
#include <rte_string_fns.h>
#include <rte_cycles.h>
#include <rte_kvargs.h>
#include <rte_dev.h>
#include <net/if.h>
#include <pcap.h>
#define RTE_ETH_PCAP_SNAPSHOT_LEN 65535
#define RTE_ETH_PCAP_SNAPLEN 4096
#define RTE_ETH_PCAP_PROMISC 1
#define RTE_ETH_PCAP_TIMEOUT -1
#define ETH_PCAP_RX_PCAP_ARG "rx_pcap"
#define ETH_PCAP_TX_PCAP_ARG "tx_pcap"
#define ETH_PCAP_RX_IFACE_ARG "rx_iface"
#define ETH_PCAP_TX_IFACE_ARG "tx_iface"
#define ETH_PCAP_IFACE_ARG "iface"
static char errbuf[PCAP_ERRBUF_SIZE];
static struct timeval start_time;
static uint64_t start_cycles;
static uint64_t hz;
struct pcap_rx_queue {
pcap_t *pcap;
uint8_t in_port;
struct rte_mempool *mb_pool;
volatile unsigned long rx_pkts;
volatile unsigned long err_pkts;
};
struct pcap_tx_queue {
pcap_dumper_t *dumper;
pcap_t *pcap;
volatile unsigned long tx_pkts;
volatile unsigned long err_pkts;
};
struct rx_pcaps {
unsigned num_of_rx;
pcap_t *pcaps[RTE_PMD_RING_MAX_RX_RINGS];
};
struct tx_pcaps {
unsigned num_of_tx;
pcap_dumper_t *dumpers[RTE_PMD_RING_MAX_TX_RINGS];
pcap_t *pcaps[RTE_PMD_RING_MAX_RX_RINGS];
};
struct pmd_internals {
unsigned nb_rx_queues;
unsigned nb_tx_queues;
int if_index;
struct pcap_rx_queue rx_queue[RTE_PMD_RING_MAX_RX_RINGS];
struct pcap_tx_queue tx_queue[RTE_PMD_RING_MAX_TX_RINGS];
};
const char *valid_arguments[] = {
ETH_PCAP_RX_PCAP_ARG,
ETH_PCAP_TX_PCAP_ARG,
ETH_PCAP_RX_IFACE_ARG,
ETH_PCAP_TX_IFACE_ARG,
ETH_PCAP_IFACE_ARG,
NULL
};
static struct ether_addr eth_addr = { .addr_bytes = { 0, 0, 0, 0x1, 0x2, 0x3 } };
static const char *drivername = "Pcap PMD";
static struct rte_eth_link pmd_link = {
.link_speed = 10000,
.link_duplex = ETH_LINK_FULL_DUPLEX,
.link_status = 0
};
static uint16_t
eth_pcap_rx(void *queue,
struct rte_mbuf **bufs,
uint16_t nb_pkts)
{
unsigned i;
struct pcap_pkthdr header;
const u_char *packet;
struct rte_mbuf *mbuf;
struct pcap_rx_queue *pcap_q = queue;
struct rte_pktmbuf_pool_private *mbp_priv;
uint16_t num_rx = 0;
uint16_t buf_size;
if (unlikely(pcap_q->pcap == NULL || nb_pkts == 0))
return 0;
/* Reads the given number of packets from the pcap file one by one
* and copies the packet data into a newly allocated mbuf to return.
*/
for (i = 0; i < nb_pkts; i++) {
/* Get the next PCAP packet */
packet = pcap_next(pcap_q->pcap, &header);
if (unlikely(packet == NULL))
break;
else
mbuf = rte_pktmbuf_alloc(pcap_q->mb_pool);
if (unlikely(mbuf == NULL))
break;
/* Now get the space available for data in the mbuf */
mbp_priv = rte_mempool_get_priv(pcap_q->mb_pool);
buf_size = (uint16_t) (mbp_priv->mbuf_data_room_size -
RTE_PKTMBUF_HEADROOM);
if (header.len <= buf_size) {
/* pcap packet will fit in the mbuf, go ahead and copy */
rte_memcpy(rte_pktmbuf_mtod(mbuf, void *), packet,
header.len);
mbuf->data_len = (uint16_t)header.len;
mbuf->pkt_len = mbuf->data_len;
mbuf->port = pcap_q->in_port;
bufs[num_rx] = mbuf;
num_rx++;
} else {
/* pcap packet will not fit in the mbuf, so drop packet */
RTE_LOG(ERR, PMD,
"PCAP packet %d bytes will not fit in mbuf (%d bytes)\n",
header.len, buf_size);
rte_pktmbuf_free(mbuf);
}
}
pcap_q->rx_pkts += num_rx;
return num_rx;
}
static inline void
calculate_timestamp(struct timeval *ts) {
uint64_t cycles;
struct timeval cur_time;
cycles = rte_get_timer_cycles() - start_cycles;
cur_time.tv_sec = cycles / hz;
cur_time.tv_usec = (cycles % hz) * 10e6 / hz;
timeradd(&start_time, &cur_time, ts);
}
/*
* Callback to handle writing packets to a pcap file.
*/
static uint16_t
eth_pcap_tx_dumper(void *queue,
struct rte_mbuf **bufs,
uint16_t nb_pkts)
{
unsigned i;
struct rte_mbuf *mbuf;
struct pcap_tx_queue *dumper_q = queue;
uint16_t num_tx = 0;
struct pcap_pkthdr header;
if (dumper_q->dumper == NULL || nb_pkts == 0)
return 0;
/* writes the nb_pkts packets to the previously opened pcap file dumper */
for (i = 0; i < nb_pkts; i++) {
mbuf = bufs[i];
calculate_timestamp(&header.ts);
header.len = mbuf->data_len;
header.caplen = header.len;
pcap_dump((u_char *)dumper_q->dumper, &header,
rte_pktmbuf_mtod(mbuf, void*));
rte_pktmbuf_free(mbuf);
num_tx++;
}
/*
* Since there's no place to hook a callback when the forwarding
* process stops and to make sure the pcap file is actually written,
* we flush the pcap dumper within each burst.
*/
pcap_dump_flush(dumper_q->dumper);
dumper_q->tx_pkts += num_tx;
dumper_q->err_pkts += nb_pkts - num_tx;
return num_tx;
}
/*
* Callback to handle sending packets through a real NIC.
*/
static uint16_t
eth_pcap_tx(void *queue,
struct rte_mbuf **bufs,
uint16_t nb_pkts)
{
unsigned i;
int ret;
struct rte_mbuf *mbuf;
struct pcap_tx_queue *tx_queue = queue;
uint16_t num_tx = 0;
if (unlikely(nb_pkts == 0 || tx_queue->pcap == NULL))
return 0;
for (i = 0; i < nb_pkts; i++) {
mbuf = bufs[i];
ret = pcap_sendpacket(tx_queue->pcap,
rte_pktmbuf_mtod(mbuf, u_char *),
mbuf->data_len);
if (unlikely(ret != 0))
break;
num_tx++;
rte_pktmbuf_free(mbuf);
}
tx_queue->tx_pkts += num_tx;
tx_queue->err_pkts += nb_pkts - num_tx;
return num_tx;
}
static int
eth_dev_start(struct rte_eth_dev *dev)
{
dev->data->dev_link.link_status = 1;
return 0;
}
/*
* This function gets called when the current port gets stopped.
* Is the only place for us to close all the tx streams dumpers.
* If not called the dumpers will be flushed within each tx burst.
*/
static void
eth_dev_stop(struct rte_eth_dev *dev)
{
unsigned i;
pcap_dumper_t *dumper;
pcap_t *pcap;
struct pmd_internals *internals = dev->data->dev_private;
for (i = 0; i < internals->nb_tx_queues; i++) {
dumper = internals->tx_queue[i].dumper;
if(dumper != NULL)
pcap_dump_close(dumper);
pcap = internals->tx_queue[i].pcap;
if(pcap != NULL)
pcap_close(pcap);
}
dev->data->dev_link.link_status = 0;
}
static int
eth_dev_configure(struct rte_eth_dev *dev __rte_unused)
{
return 0;
}
static void
eth_dev_info(struct rte_eth_dev *dev,
struct rte_eth_dev_info *dev_info)
{
struct pmd_internals *internals = dev->data->dev_private;
dev_info->driver_name = drivername;
dev_info->if_index = internals->if_index;
dev_info->max_mac_addrs = 1;
dev_info->max_rx_pktlen = (uint32_t) -1;
dev_info->max_rx_queues = (uint16_t)internals->nb_rx_queues;
dev_info->max_tx_queues = (uint16_t)internals->nb_tx_queues;
dev_info->min_rx_bufsize = 0;
dev_info->pci_dev = NULL;
}
static void
eth_stats_get(struct rte_eth_dev *dev,
struct rte_eth_stats *igb_stats)
{
unsigned i;
unsigned long rx_total = 0, tx_total = 0, tx_err_total = 0;
const struct pmd_internals *internal = dev->data->dev_private;
memset(igb_stats, 0, sizeof(*igb_stats));
for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS && i < internal->nb_rx_queues;
i++) {
igb_stats->q_ipackets[i] = internal->rx_queue[i].rx_pkts;
rx_total += igb_stats->q_ipackets[i];
}
for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS && i < internal->nb_tx_queues;
i++) {
igb_stats->q_opackets[i] = internal->tx_queue[i].tx_pkts;
igb_stats->q_errors[i] = internal->tx_queue[i].err_pkts;
tx_total += igb_stats->q_opackets[i];
tx_err_total += igb_stats->q_errors[i];
}
igb_stats->ipackets = rx_total;
igb_stats->opackets = tx_total;
igb_stats->oerrors = tx_err_total;
}
static void
eth_stats_reset(struct rte_eth_dev *dev)
{
unsigned i;
struct pmd_internals *internal = dev->data->dev_private;
for (i = 0; i < internal->nb_rx_queues; i++)
internal->rx_queue[i].rx_pkts = 0;
for (i = 0; i < internal->nb_tx_queues; i++) {
internal->tx_queue[i].tx_pkts = 0;
internal->tx_queue[i].err_pkts = 0;
}
}
static void
eth_dev_close(struct rte_eth_dev *dev __rte_unused)
{
}
static void
eth_queue_release(void *q __rte_unused)
{
}
static int
eth_link_update(struct rte_eth_dev *dev __rte_unused,
int wait_to_complete __rte_unused)
{
return 0;
}
static int
eth_rx_queue_setup(struct rte_eth_dev *dev,
uint16_t rx_queue_id,
uint16_t nb_rx_desc __rte_unused,
unsigned int socket_id __rte_unused,
const struct rte_eth_rxconf *rx_conf __rte_unused,
struct rte_mempool *mb_pool)
{
struct pmd_internals *internals = dev->data->dev_private;
struct pcap_rx_queue *pcap_q = &internals->rx_queue[rx_queue_id];
pcap_q->mb_pool = mb_pool;
dev->data->rx_queues[rx_queue_id] = pcap_q;
pcap_q->in_port = dev->data->port_id;
return 0;
}
static int
eth_tx_queue_setup(struct rte_eth_dev *dev,
uint16_t tx_queue_id,
uint16_t nb_tx_desc __rte_unused,
unsigned int socket_id __rte_unused,
const struct rte_eth_txconf *tx_conf __rte_unused)
{
struct pmd_internals *internals = dev->data->dev_private;
dev->data->tx_queues[tx_queue_id] = &internals->tx_queue[tx_queue_id];
return 0;
}
static struct eth_dev_ops ops = {
.dev_start = eth_dev_start,
.dev_stop = eth_dev_stop,
.dev_close = eth_dev_close,
.dev_configure = eth_dev_configure,
.dev_infos_get = eth_dev_info,
.rx_queue_setup = eth_rx_queue_setup,
.tx_queue_setup = eth_tx_queue_setup,
.rx_queue_release = eth_queue_release,
.tx_queue_release = eth_queue_release,
.link_update = eth_link_update,
.stats_get = eth_stats_get,
.stats_reset = eth_stats_reset,
};
/*
* Function handler that opens the pcap file for reading a stores a
* reference of it for use it later on.
*/
static int
open_rx_pcap(const char *key __rte_unused, const char *value, void *extra_args)
{
unsigned i;
const char *pcap_filename = value;
struct rx_pcaps *pcaps = extra_args;
pcap_t *rx_pcap;
for (i = 0; i < pcaps->num_of_rx; i++) {
if ((rx_pcap = pcap_open_offline(pcap_filename, errbuf)) == NULL) {
RTE_LOG(ERR, PMD, "Couldn't open %s: %s\n", pcap_filename, errbuf);
return -1;
}
pcaps->pcaps[i] = rx_pcap;
}
return 0;
}
/*
* Opens a pcap file for writing and stores a reference to it
* for use it later on.
*/
static int
open_tx_pcap(const char *key __rte_unused, const char *value, void *extra_args)
{
unsigned i;
const char *pcap_filename = value;
struct tx_pcaps *dumpers = extra_args;
pcap_t *tx_pcap;
pcap_dumper_t *dumper;
for (i = 0; i < dumpers->num_of_tx; i++) {
/*
* We need to create a dummy empty pcap_t to use it
* with pcap_dump_open(). We create big enough an Ethernet
* pcap holder.
*/
if ((tx_pcap = pcap_open_dead(DLT_EN10MB, RTE_ETH_PCAP_SNAPSHOT_LEN))
== NULL) {
RTE_LOG(ERR, PMD, "Couldn't create dead pcap\n");
return -1;
}
/* The dumper is created using the previous pcap_t reference */
if ((dumper = pcap_dump_open(tx_pcap, pcap_filename)) == NULL) {
RTE_LOG(ERR, PMD, "Couldn't open %s for writing.\n", pcap_filename);
return -1;
}
dumpers->dumpers[i] = dumper;
}
return 0;
}
/*
* pcap_open_live wrapper function
*/
static inline int
open_iface_live(const char *iface, pcap_t **pcap) {
*pcap = pcap_open_live(iface, RTE_ETH_PCAP_SNAPLEN,
RTE_ETH_PCAP_PROMISC, RTE_ETH_PCAP_TIMEOUT, errbuf);
if (*pcap == NULL) {
RTE_LOG(ERR, PMD, "Couldn't open %s: %s\n", iface, errbuf);
return -1;
}
return 0;
}
/*
* Opens an interface for reading and writing
*/
static inline int
open_rx_tx_iface(const char *key __rte_unused, const char *value, void *extra_args)
{
const char *iface = value;
pcap_t **pcap = extra_args;
if(open_iface_live(iface, pcap) < 0)
return -1;
return 0;
}
/*
* Opens a NIC for reading packets from it
*/
static inline int
open_rx_iface(const char *key __rte_unused, const char *value, void *extra_args)
{
unsigned i;
const char *iface = value;
struct rx_pcaps *pcaps = extra_args;
pcap_t *pcap = NULL;
for (i = 0; i < pcaps->num_of_rx; i++) {
if(open_iface_live(iface, &pcap) < 0)
return -1;
pcaps->pcaps[i] = pcap;
}
return 0;
}
/*
* Opens a NIC for writing packets to it
*/
static inline int
open_tx_iface(const char *key __rte_unused, const char *value, void *extra_args)
{
unsigned i;
const char *iface = value;
struct tx_pcaps *pcaps = extra_args;
pcap_t *pcap;
for (i = 0; i < pcaps->num_of_tx; i++) {
if(open_iface_live(iface, &pcap) < 0)
return -1;
pcaps->pcaps[i] = pcap;
}
return 0;
}
static int
rte_pmd_init_internals(const char *name, const unsigned nb_rx_queues,
const unsigned nb_tx_queues,
const unsigned numa_node,
struct pmd_internals **internals,
struct rte_eth_dev **eth_dev,
struct rte_kvargs *kvlist)
{
struct rte_eth_dev_data *data = NULL;
struct rte_pci_device *pci_dev = NULL;
unsigned k_idx;
struct rte_kvargs_pair *pair = NULL;
for (k_idx = 0; k_idx < kvlist->count; k_idx++) {
pair = &kvlist->pairs[k_idx];
if (strstr(pair->key, ETH_PCAP_IFACE_ARG) != NULL)
break;
}
RTE_LOG(INFO, PMD,
"Creating pcap-backed ethdev on numa socket %u\n", numa_node);
/* now do all data allocation - for eth_dev structure, dummy pci driver
* and internal (private) data
*/
data = rte_zmalloc_socket(name, sizeof(*data), 0, numa_node);
if (data == NULL)
goto error;
pci_dev = rte_zmalloc_socket(name, sizeof(*pci_dev), 0, numa_node);
if (pci_dev == NULL)
goto error;
*internals = rte_zmalloc_socket(name, sizeof(**internals), 0, numa_node);
if (*internals == NULL)
goto error;
/* reserve an ethdev entry */
*eth_dev = rte_eth_dev_allocate(name);
if (*eth_dev == NULL)
goto error;
/* now put it all together
* - store queue data in internals,
* - store numa_node info in pci_driver
* - point eth_dev_data to internals and pci_driver
* - and point eth_dev structure to new eth_dev_data structure
*/
/* NOTE: we'll replace the data element, of originally allocated eth_dev
* so the rings are local per-process */
(*internals)->nb_rx_queues = nb_rx_queues;
(*internals)->nb_tx_queues = nb_tx_queues;
if (pair == NULL)
(*internals)->if_index = 0;
else
(*internals)->if_index = if_nametoindex(pair->value);
pci_dev->numa_node = numa_node;
data->dev_private = *internals;
data->port_id = (*eth_dev)->data->port_id;
data->nb_rx_queues = (uint16_t)nb_rx_queues;
data->nb_tx_queues = (uint16_t)nb_tx_queues;
data->dev_link = pmd_link;
data->mac_addrs = &eth_addr;
(*eth_dev)->data = data;
(*eth_dev)->dev_ops = &ops;
(*eth_dev)->pci_dev = pci_dev;
return 0;
error: if (data)
rte_free(data);
if (pci_dev)
rte_free(pci_dev);
if (*internals)
rte_free(*internals);
return -1;
}
static int
rte_eth_from_pcaps_n_dumpers(const char *name, pcap_t * const rx_queues[],
const unsigned nb_rx_queues,
pcap_dumper_t * const tx_queues[],
const unsigned nb_tx_queues,
const unsigned numa_node,
struct rte_kvargs *kvlist)
{
struct pmd_internals *internals = NULL;
struct rte_eth_dev *eth_dev = NULL;
unsigned i;
/* do some parameter checking */
if (rx_queues == NULL && nb_rx_queues > 0)
return -1;
if (tx_queues == NULL && nb_tx_queues > 0)
return -1;
if (rte_pmd_init_internals(name, nb_rx_queues, nb_tx_queues, numa_node,
&internals, &eth_dev, kvlist) < 0)
return -1;
for (i = 0; i < nb_rx_queues; i++) {
internals->rx_queue->pcap = rx_queues[i];
}
for (i = 0; i < nb_tx_queues; i++) {
internals->tx_queue->dumper = tx_queues[i];
}
eth_dev->rx_pkt_burst = eth_pcap_rx;
eth_dev->tx_pkt_burst = eth_pcap_tx_dumper;
return 0;
}
static int
rte_eth_from_pcaps(const char *name, pcap_t * const rx_queues[],
const unsigned nb_rx_queues,
pcap_t * const tx_queues[],
const unsigned nb_tx_queues,
const unsigned numa_node,
struct rte_kvargs *kvlist)
{
struct pmd_internals *internals = NULL;
struct rte_eth_dev *eth_dev = NULL;
unsigned i;
/* do some parameter checking */
if (rx_queues == NULL && nb_rx_queues > 0)
return -1;
if (tx_queues == NULL && nb_tx_queues > 0)
return -1;
if (rte_pmd_init_internals(name, nb_rx_queues, nb_tx_queues, numa_node,
&internals, &eth_dev, kvlist) < 0)
return -1;
for (i = 0; i < nb_rx_queues; i++) {
internals->rx_queue->pcap = rx_queues[i];
}
for (i = 0; i < nb_tx_queues; i++) {
internals->tx_queue->pcap = tx_queues[i];
}
eth_dev->rx_pkt_burst = eth_pcap_rx;
eth_dev->tx_pkt_burst = eth_pcap_tx;
return 0;
}
static int
rte_pmd_pcap_devinit(const char *name, const char *params)
{
unsigned numa_node, using_dumpers = 0;
int ret;
struct rte_kvargs *kvlist;
struct rx_pcaps pcaps;
struct tx_pcaps dumpers;
RTE_LOG(INFO, PMD, "Initializing pmd_pcap for %s\n", name);
numa_node = rte_socket_id();
gettimeofday(&start_time, NULL);
start_cycles = rte_get_timer_cycles();
hz = rte_get_timer_hz();
kvlist = rte_kvargs_parse(params, valid_arguments);
if (kvlist == NULL)
return -1;
/*
* If iface argument is passed we open the NICs and use them for
* reading / writing
*/
if (rte_kvargs_count(kvlist, ETH_PCAP_IFACE_ARG) == 1) {
ret = rte_kvargs_process(kvlist, ETH_PCAP_IFACE_ARG,
&open_rx_tx_iface, &pcaps.pcaps[0]);
if (ret < 0)
return -1;
return rte_eth_from_pcaps(name, pcaps.pcaps, 1, pcaps.pcaps, 1,
numa_node, kvlist);
}
/*
* We check whether we want to open a RX stream from a real NIC or a
* pcap file
*/
if ((pcaps.num_of_rx = rte_kvargs_count(kvlist, ETH_PCAP_RX_PCAP_ARG))) {
ret = rte_kvargs_process(kvlist, ETH_PCAP_RX_PCAP_ARG,
&open_rx_pcap, &pcaps);
} else {
pcaps.num_of_rx = rte_kvargs_count(kvlist,
ETH_PCAP_RX_IFACE_ARG);
ret = rte_kvargs_process(kvlist, ETH_PCAP_RX_IFACE_ARG,
&open_rx_iface, &pcaps);
}
if (ret < 0)
return -1;
/*
* We check whether we want to open a TX stream to a real NIC or a
* pcap file
*/
if ((dumpers.num_of_tx = rte_kvargs_count(kvlist,
ETH_PCAP_TX_PCAP_ARG))) {
ret = rte_kvargs_process(kvlist, ETH_PCAP_TX_PCAP_ARG,
&open_tx_pcap, &dumpers);
using_dumpers = 1;
} else {
dumpers.num_of_tx = rte_kvargs_count(kvlist,
ETH_PCAP_TX_IFACE_ARG);
ret = rte_kvargs_process(kvlist, ETH_PCAP_TX_IFACE_ARG,
&open_tx_iface, &dumpers);
}
if (ret < 0)
return -1;
if (using_dumpers)
return rte_eth_from_pcaps_n_dumpers(name, pcaps.pcaps, pcaps.num_of_rx,
dumpers.dumpers, dumpers.num_of_tx, numa_node, kvlist);
return rte_eth_from_pcaps(name, pcaps.pcaps, pcaps.num_of_rx, dumpers.pcaps,
dumpers.num_of_tx, numa_node, kvlist);
}
static struct rte_driver pmd_pcap_drv = {
.name = "eth_pcap",
.type = PMD_VDEV,
.init = rte_pmd_pcap_devinit,
};
PMD_REGISTER_DRIVER(pmd_pcap_drv);