Andrew Rybchenko 676d11ffb2 net/sfc: remove Tx DMA descriptor boundary crossing limit
EF10 supported by the PMD has no limitations on address boundary
crossing by Tx DMA descriptors.

Fixes: 428c7ddd2f16 ("net/sfc: send bursts of packets")
Fixes: fec33d5bb3eb ("net/sfc: support firmware-assisted TSO")

Signed-off-by: Andrew Rybchenko <arybchenko@solarflare.com>
2017-04-04 15:52:52 +02:00

785 lines
19 KiB
C

/*-
* Copyright (c) 2016 Solarflare Communications Inc.
* All rights reserved.
*
* This software was jointly developed between OKTET Labs (under contract
* for Solarflare) and Solarflare Communications, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "sfc.h"
#include "sfc_debug.h"
#include "sfc_log.h"
#include "sfc_ev.h"
#include "sfc_tx.h"
#include "sfc_tweak.h"
/*
* Maximum number of TX queue flush attempts in case of
* failure or flush timeout
*/
#define SFC_TX_QFLUSH_ATTEMPTS (3)
/*
* Time to wait between event queue polling attempts when waiting for TX
* queue flush done or flush failed events
*/
#define SFC_TX_QFLUSH_POLL_WAIT_MS (1)
/*
* Maximum number of event queue polling attempts when waiting for TX queue
* flush done or flush failed events; it defines TX queue flush attempt timeout
* together with SFC_TX_QFLUSH_POLL_WAIT_MS
*/
#define SFC_TX_QFLUSH_POLL_ATTEMPTS (2000)
static int
sfc_tx_qcheck_conf(struct sfc_adapter *sa, uint16_t nb_tx_desc,
const struct rte_eth_txconf *tx_conf)
{
unsigned int flags = tx_conf->txq_flags;
const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
int rc = 0;
if (tx_conf->tx_rs_thresh != 0) {
sfc_err(sa, "RS bit in transmit descriptor is not supported");
rc = EINVAL;
}
if (tx_conf->tx_free_thresh > EFX_TXQ_LIMIT(nb_tx_desc)) {
sfc_err(sa,
"TxQ free threshold too large: %u vs maximum %u",
tx_conf->tx_free_thresh, EFX_TXQ_LIMIT(nb_tx_desc));
rc = EINVAL;
}
if (tx_conf->tx_thresh.pthresh != 0 ||
tx_conf->tx_thresh.hthresh != 0 ||
tx_conf->tx_thresh.wthresh != 0) {
sfc_err(sa,
"prefetch/host/writeback thresholds are not supported");
rc = EINVAL;
}
if (!encp->enc_hw_tx_insert_vlan_enabled &&
(flags & ETH_TXQ_FLAGS_NOVLANOFFL) == 0) {
sfc_err(sa, "VLAN offload is not supported");
rc = EINVAL;
}
if ((flags & ETH_TXQ_FLAGS_NOXSUMSCTP) == 0) {
sfc_err(sa, "SCTP offload is not supported");
rc = EINVAL;
}
/* We either perform both TCP and UDP offload, or no offload at all */
if (((flags & ETH_TXQ_FLAGS_NOXSUMTCP) == 0) !=
((flags & ETH_TXQ_FLAGS_NOXSUMUDP) == 0)) {
sfc_err(sa, "TCP and UDP offloads can't be set independently");
rc = EINVAL;
}
return rc;
}
void
sfc_tx_qflush_done(struct sfc_txq *txq)
{
txq->state |= SFC_TXQ_FLUSHED;
txq->state &= ~SFC_TXQ_FLUSHING;
}
static void
sfc_tx_reap(struct sfc_txq *txq)
{
unsigned int completed;
sfc_ev_qpoll(txq->evq);
for (completed = txq->completed;
completed != txq->pending; completed++) {
struct sfc_tx_sw_desc *txd;
txd = &txq->sw_ring[completed & txq->ptr_mask];
if (txd->mbuf != NULL) {
rte_pktmbuf_free(txd->mbuf);
txd->mbuf = NULL;
}
}
txq->completed = completed;
}
int
sfc_tx_qinit(struct sfc_adapter *sa, unsigned int sw_index,
uint16_t nb_tx_desc, unsigned int socket_id,
const struct rte_eth_txconf *tx_conf)
{
const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
struct sfc_txq_info *txq_info;
struct sfc_evq *evq;
struct sfc_txq *txq;
unsigned int evq_index = sfc_evq_index_by_txq_sw_index(sa, sw_index);
int rc = 0;
sfc_log_init(sa, "TxQ = %u", sw_index);
rc = sfc_tx_qcheck_conf(sa, nb_tx_desc, tx_conf);
if (rc != 0)
goto fail_bad_conf;
SFC_ASSERT(sw_index < sa->txq_count);
txq_info = &sa->txq_info[sw_index];
SFC_ASSERT(nb_tx_desc <= sa->txq_max_entries);
txq_info->entries = nb_tx_desc;
rc = sfc_ev_qinit(sa, evq_index, txq_info->entries, socket_id);
if (rc != 0)
goto fail_ev_qinit;
evq = sa->evq_info[evq_index].evq;
rc = ENOMEM;
txq = rte_zmalloc_socket("sfc-txq", sizeof(*txq), 0, socket_id);
if (txq == NULL)
goto fail_txq_alloc;
rc = sfc_dma_alloc(sa, "txq", sw_index, EFX_TXQ_SIZE(txq_info->entries),
socket_id, &txq->mem);
if (rc != 0)
goto fail_dma_alloc;
rc = ENOMEM;
txq->pend_desc = rte_calloc_socket("sfc-txq-pend-desc",
EFX_TXQ_LIMIT(txq_info->entries),
sizeof(efx_desc_t), 0, socket_id);
if (txq->pend_desc == NULL)
goto fail_pend_desc_alloc;
rc = ENOMEM;
txq->sw_ring = rte_calloc_socket("sfc-txq-desc", txq_info->entries,
sizeof(*txq->sw_ring), 0, socket_id);
if (txq->sw_ring == NULL)
goto fail_desc_alloc;
if (sa->tso) {
rc = sfc_tso_alloc_tsoh_objs(txq->sw_ring, txq_info->entries,
socket_id);
if (rc != 0)
goto fail_alloc_tsoh_objs;
}
txq->state = SFC_TXQ_INITIALIZED;
txq->ptr_mask = txq_info->entries - 1;
txq->free_thresh = (tx_conf->tx_free_thresh) ? tx_conf->tx_free_thresh :
SFC_TX_DEFAULT_FREE_THRESH;
txq->dma_desc_size_max = encp->enc_tx_dma_desc_size_max;
txq->hw_index = sw_index;
txq->flags = tx_conf->txq_flags;
txq->evq = evq;
evq->txq = txq;
txq_info->txq = txq;
txq_info->deferred_start = (tx_conf->tx_deferred_start != 0);
return 0;
fail_alloc_tsoh_objs:
rte_free(txq->sw_ring);
fail_desc_alloc:
rte_free(txq->pend_desc);
fail_pend_desc_alloc:
sfc_dma_free(sa, &txq->mem);
fail_dma_alloc:
rte_free(txq);
fail_txq_alloc:
sfc_ev_qfini(sa, evq_index);
fail_ev_qinit:
txq_info->entries = 0;
fail_bad_conf:
sfc_log_init(sa, "failed (TxQ = %u, rc = %d)", sw_index, rc);
return rc;
}
void
sfc_tx_qfini(struct sfc_adapter *sa, unsigned int sw_index)
{
struct sfc_txq_info *txq_info;
struct sfc_txq *txq;
sfc_log_init(sa, "TxQ = %u", sw_index);
SFC_ASSERT(sw_index < sa->txq_count);
txq_info = &sa->txq_info[sw_index];
txq = txq_info->txq;
SFC_ASSERT(txq != NULL);
SFC_ASSERT(txq->state == SFC_TXQ_INITIALIZED);
sfc_tso_free_tsoh_objs(txq->sw_ring, txq_info->entries);
txq_info->txq = NULL;
txq_info->entries = 0;
rte_free(txq->sw_ring);
rte_free(txq->pend_desc);
sfc_dma_free(sa, &txq->mem);
rte_free(txq);
}
static int
sfc_tx_qinit_info(struct sfc_adapter *sa, unsigned int sw_index)
{
sfc_log_init(sa, "TxQ = %u", sw_index);
return 0;
}
static int
sfc_tx_check_mode(struct sfc_adapter *sa, const struct rte_eth_txmode *txmode)
{
int rc = 0;
switch (txmode->mq_mode) {
case ETH_MQ_TX_NONE:
break;
default:
sfc_err(sa, "Tx multi-queue mode %u not supported",
txmode->mq_mode);
rc = EINVAL;
}
/*
* These features are claimed to be i40e-specific,
* but it does make sense to double-check their absence
*/
if (txmode->hw_vlan_reject_tagged) {
sfc_err(sa, "Rejecting tagged packets not supported");
rc = EINVAL;
}
if (txmode->hw_vlan_reject_untagged) {
sfc_err(sa, "Rejecting untagged packets not supported");
rc = EINVAL;
}
if (txmode->hw_vlan_insert_pvid) {
sfc_err(sa, "Port-based VLAN insertion not supported");
rc = EINVAL;
}
return rc;
}
int
sfc_tx_init(struct sfc_adapter *sa)
{
const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
const struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
unsigned int sw_index;
int rc = 0;
/*
* The datapath implementation assumes absence of boundary
* limits on Tx DMA descriptors. Addition of these checks on
* datapath would simply make the datapath slower.
*/
if (encp->enc_tx_dma_desc_boundary != 0) {
rc = ENOTSUP;
goto fail_tx_dma_desc_boundary;
}
rc = sfc_tx_check_mode(sa, &dev_conf->txmode);
if (rc != 0)
goto fail_check_mode;
sa->txq_count = sa->eth_dev->data->nb_tx_queues;
sa->txq_info = rte_calloc_socket("sfc-txqs", sa->txq_count,
sizeof(sa->txq_info[0]), 0,
sa->socket_id);
if (sa->txq_info == NULL)
goto fail_txqs_alloc;
for (sw_index = 0; sw_index < sa->txq_count; ++sw_index) {
rc = sfc_tx_qinit_info(sa, sw_index);
if (rc != 0)
goto fail_tx_qinit_info;
}
return 0;
fail_tx_qinit_info:
rte_free(sa->txq_info);
sa->txq_info = NULL;
fail_txqs_alloc:
sa->txq_count = 0;
fail_check_mode:
fail_tx_dma_desc_boundary:
sfc_log_init(sa, "failed (rc = %d)", rc);
return rc;
}
void
sfc_tx_fini(struct sfc_adapter *sa)
{
int sw_index;
sw_index = sa->txq_count;
while (--sw_index >= 0) {
if (sa->txq_info[sw_index].txq != NULL)
sfc_tx_qfini(sa, sw_index);
}
rte_free(sa->txq_info);
sa->txq_info = NULL;
sa->txq_count = 0;
}
int
sfc_tx_qstart(struct sfc_adapter *sa, unsigned int sw_index)
{
struct rte_eth_dev_data *dev_data;
struct sfc_txq_info *txq_info;
struct sfc_txq *txq;
struct sfc_evq *evq;
uint16_t flags;
unsigned int desc_index;
int rc = 0;
sfc_log_init(sa, "TxQ = %u", sw_index);
SFC_ASSERT(sw_index < sa->txq_count);
txq_info = &sa->txq_info[sw_index];
txq = txq_info->txq;
SFC_ASSERT(txq->state == SFC_TXQ_INITIALIZED);
evq = txq->evq;
rc = sfc_ev_qstart(sa, evq->evq_index);
if (rc != 0)
goto fail_ev_qstart;
/*
* It seems that DPDK has no controls regarding IPv4 offloads,
* hence, we always enable it here
*/
if ((txq->flags & ETH_TXQ_FLAGS_NOXSUMTCP) ||
(txq->flags & ETH_TXQ_FLAGS_NOXSUMUDP)) {
flags = EFX_TXQ_CKSUM_IPV4;
} else {
flags = EFX_TXQ_CKSUM_IPV4 | EFX_TXQ_CKSUM_TCPUDP;
if (sa->tso)
flags |= EFX_TXQ_FATSOV2;
}
rc = efx_tx_qcreate(sa->nic, sw_index, 0, &txq->mem,
txq_info->entries, 0 /* not used on EF10 */,
flags, evq->common,
&txq->common, &desc_index);
if (rc != 0) {
if (sa->tso && (rc == ENOSPC))
sfc_err(sa, "ran out of TSO contexts");
goto fail_tx_qcreate;
}
txq->added = txq->pending = txq->completed = desc_index;
txq->hw_vlan_tci = 0;
efx_tx_qenable(txq->common);
txq->state |= (SFC_TXQ_STARTED | SFC_TXQ_RUNNING);
/*
* It seems to be used by DPDK for debug purposes only ('rte_ether')
*/
dev_data = sa->eth_dev->data;
dev_data->tx_queue_state[sw_index] = RTE_ETH_QUEUE_STATE_STARTED;
return 0;
fail_tx_qcreate:
sfc_ev_qstop(sa, evq->evq_index);
fail_ev_qstart:
return rc;
}
void
sfc_tx_qstop(struct sfc_adapter *sa, unsigned int sw_index)
{
struct rte_eth_dev_data *dev_data;
struct sfc_txq_info *txq_info;
struct sfc_txq *txq;
unsigned int retry_count;
unsigned int wait_count;
unsigned int txds;
sfc_log_init(sa, "TxQ = %u", sw_index);
SFC_ASSERT(sw_index < sa->txq_count);
txq_info = &sa->txq_info[sw_index];
txq = txq_info->txq;
if (txq->state == SFC_TXQ_INITIALIZED)
return;
SFC_ASSERT(txq->state & SFC_TXQ_STARTED);
txq->state &= ~SFC_TXQ_RUNNING;
/*
* Retry TX queue flushing in case of flush failed or
* timeout; in the worst case it can delay for 6 seconds
*/
for (retry_count = 0;
((txq->state & SFC_TXQ_FLUSHED) == 0) &&
(retry_count < SFC_TX_QFLUSH_ATTEMPTS);
++retry_count) {
if (efx_tx_qflush(txq->common) != 0) {
txq->state |= SFC_TXQ_FLUSHING;
break;
}
/*
* Wait for TX queue flush done or flush failed event at least
* SFC_TX_QFLUSH_POLL_WAIT_MS milliseconds and not more
* than 2 seconds (SFC_TX_QFLUSH_POLL_WAIT_MS multiplied
* by SFC_TX_QFLUSH_POLL_ATTEMPTS)
*/
wait_count = 0;
do {
rte_delay_ms(SFC_TX_QFLUSH_POLL_WAIT_MS);
sfc_ev_qpoll(txq->evq);
} while ((txq->state & SFC_TXQ_FLUSHING) &&
wait_count++ < SFC_TX_QFLUSH_POLL_ATTEMPTS);
if (txq->state & SFC_TXQ_FLUSHING)
sfc_err(sa, "TxQ %u flush timed out", sw_index);
if (txq->state & SFC_TXQ_FLUSHED)
sfc_info(sa, "TxQ %u flushed", sw_index);
}
sfc_tx_reap(txq);
for (txds = 0; txds < txq_info->entries; txds++) {
if (txq->sw_ring[txds].mbuf != NULL) {
rte_pktmbuf_free(txq->sw_ring[txds].mbuf);
txq->sw_ring[txds].mbuf = NULL;
}
}
txq->state = SFC_TXQ_INITIALIZED;
efx_tx_qdestroy(txq->common);
sfc_ev_qstop(sa, txq->evq->evq_index);
/*
* It seems to be used by DPDK for debug purposes only ('rte_ether')
*/
dev_data = sa->eth_dev->data;
dev_data->tx_queue_state[sw_index] = RTE_ETH_QUEUE_STATE_STOPPED;
}
int
sfc_tx_start(struct sfc_adapter *sa)
{
unsigned int sw_index;
int rc = 0;
sfc_log_init(sa, "txq_count = %u", sa->txq_count);
if (sa->tso) {
if (!efx_nic_cfg_get(sa->nic)->enc_fw_assisted_tso_v2_enabled) {
sfc_warn(sa, "TSO support was unable to be restored");
sa->tso = B_FALSE;
}
}
rc = efx_tx_init(sa->nic);
if (rc != 0)
goto fail_efx_tx_init;
for (sw_index = 0; sw_index < sa->txq_count; ++sw_index) {
if (!(sa->txq_info[sw_index].deferred_start) ||
sa->txq_info[sw_index].deferred_started) {
rc = sfc_tx_qstart(sa, sw_index);
if (rc != 0)
goto fail_tx_qstart;
}
}
return 0;
fail_tx_qstart:
while (sw_index-- > 0)
sfc_tx_qstop(sa, sw_index);
efx_tx_fini(sa->nic);
fail_efx_tx_init:
sfc_log_init(sa, "failed (rc = %d)", rc);
return rc;
}
void
sfc_tx_stop(struct sfc_adapter *sa)
{
unsigned int sw_index;
sfc_log_init(sa, "txq_count = %u", sa->txq_count);
sw_index = sa->txq_count;
while (sw_index-- > 0) {
if (sa->txq_info[sw_index].txq != NULL)
sfc_tx_qstop(sa, sw_index);
}
efx_tx_fini(sa->nic);
}
/*
* The function is used to insert or update VLAN tag;
* the firmware has state of the firmware tag to insert per TxQ
* (controlled by option descriptors), hence, if the tag of the
* packet to be sent is different from one remembered by the firmware,
* the function will update it
*/
static unsigned int
sfc_tx_maybe_insert_tag(struct sfc_txq *txq, struct rte_mbuf *m,
efx_desc_t **pend)
{
uint16_t this_tag = ((m->ol_flags & PKT_TX_VLAN_PKT) ?
m->vlan_tci : 0);
if (this_tag == txq->hw_vlan_tci)
return 0;
/*
* The expression inside SFC_ASSERT() is not desired to be checked in
* a non-debug build because it might be too expensive on the data path
*/
SFC_ASSERT(efx_nic_cfg_get(txq->evq->sa->nic)->enc_hw_tx_insert_vlan_enabled);
efx_tx_qdesc_vlantci_create(txq->common, rte_cpu_to_be_16(this_tag),
*pend);
(*pend)++;
txq->hw_vlan_tci = this_tag;
return 1;
}
uint16_t
sfc_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
struct sfc_txq *txq = (struct sfc_txq *)tx_queue;
unsigned int added = txq->added;
unsigned int pushed = added;
unsigned int pkts_sent = 0;
efx_desc_t *pend = &txq->pend_desc[0];
const unsigned int hard_max_fill = EFX_TXQ_LIMIT(txq->ptr_mask + 1);
const unsigned int soft_max_fill = hard_max_fill - txq->free_thresh;
unsigned int fill_level = added - txq->completed;
boolean_t reap_done;
int rc __rte_unused;
struct rte_mbuf **pktp;
if (unlikely((txq->state & SFC_TXQ_RUNNING) == 0))
goto done;
/*
* If insufficient space for a single packet is present,
* we should reap; otherwise, we shouldn't do that all the time
* to avoid latency increase
*/
reap_done = (fill_level > soft_max_fill);
if (reap_done) {
sfc_tx_reap(txq);
/*
* Recalculate fill level since 'txq->completed'
* might have changed on reap
*/
fill_level = added - txq->completed;
}
for (pkts_sent = 0, pktp = &tx_pkts[0];
(pkts_sent < nb_pkts) && (fill_level <= soft_max_fill);
pkts_sent++, pktp++) {
struct rte_mbuf *m_seg = *pktp;
size_t pkt_len = m_seg->pkt_len;
unsigned int pkt_descs = 0;
size_t in_off = 0;
/*
* Here VLAN TCI is expected to be zero in case if no
* DEV_TX_VLAN_OFFLOAD capability is advertised;
* if the calling app ignores the absence of
* DEV_TX_VLAN_OFFLOAD and pushes VLAN TCI, then
* TX_ERROR will occur
*/
pkt_descs += sfc_tx_maybe_insert_tag(txq, m_seg, &pend);
if (m_seg->ol_flags & PKT_TX_TCP_SEG) {
/*
* We expect correct 'pkt->l[2, 3, 4]_len' values
* to be set correctly by the caller
*/
if (sfc_tso_do(txq, added, &m_seg, &in_off, &pend,
&pkt_descs, &pkt_len) != 0) {
/* We may have reached this place for
* one of the following reasons:
*
* 1) Packet header length is greater
* than SFC_TSOH_STD_LEN
* 2) TCP header starts at more then
* 208 bytes into the frame
*
* We will deceive RTE saying that we have sent
* the packet, but we will actually drop it.
* Hence, we should revert 'pend' to the
* previous state (in case we have added
* VLAN descriptor) and start processing
* another one packet. But the original
* mbuf shouldn't be orphaned
*/
pend -= pkt_descs;
rte_pktmbuf_free(*pktp);
continue;
}
/*
* We've only added 2 FATSOv2 option descriptors
* and 1 descriptor for the linearized packet header.
* The outstanding work will be done in the same manner
* as for the usual non-TSO path
*/
}
for (; m_seg != NULL; m_seg = m_seg->next) {
efsys_dma_addr_t next_frag;
size_t seg_len;
seg_len = m_seg->data_len;
next_frag = rte_mbuf_data_dma_addr(m_seg);
/*
* If we've started TSO transaction few steps earlier,
* we'll skip packet header using an offset in the
* current segment (which has been set to the
* first one containing payload)
*/
seg_len -= in_off;
next_frag += in_off;
in_off = 0;
do {
efsys_dma_addr_t frag_addr = next_frag;
size_t frag_len;
/*
* It is assumed here that there is no
* limitation on address boundary
* crossing by DMA descriptor.
*/
frag_len = MIN(seg_len, txq->dma_desc_size_max);
next_frag += frag_len;
seg_len -= frag_len;
pkt_len -= frag_len;
efx_tx_qdesc_dma_create(txq->common,
frag_addr, frag_len,
(pkt_len == 0),
pend++);
pkt_descs++;
} while (seg_len != 0);
}
added += pkt_descs;
fill_level += pkt_descs;
if (unlikely(fill_level > hard_max_fill)) {
/*
* Our estimation for maximum number of descriptors
* required to send a packet seems to be wrong.
* Try to reap (if we haven't yet).
*/
if (!reap_done) {
sfc_tx_reap(txq);
reap_done = B_TRUE;
fill_level = added - txq->completed;
if (fill_level > hard_max_fill) {
pend -= pkt_descs;
break;
}
} else {
pend -= pkt_descs;
break;
}
}
/* Assign mbuf to the last used desc */
txq->sw_ring[(added - 1) & txq->ptr_mask].mbuf = *pktp;
}
if (likely(pkts_sent > 0)) {
rc = efx_tx_qdesc_post(txq->common, txq->pend_desc,
pend - &txq->pend_desc[0],
txq->completed, &txq->added);
SFC_ASSERT(rc == 0);
if (likely(pushed != txq->added))
efx_tx_qpush(txq->common, txq->added, pushed);
}
#if SFC_TX_XMIT_PKTS_REAP_AT_LEAST_ONCE
if (!reap_done)
sfc_tx_reap(txq);
#endif
done:
return pkts_sent;
}