numam-dpdk/drivers/net/failsafe/failsafe_ops.c
Ophir Munk e28d4ee4f0 net/failsafe: fix VLAN stripping configuration
failsafe device has vlan stripping configured at startup however once
a sub device is found as non-capable of vlan-stripping failsafe
updates it configuration and removes vlan stripping from it.
This update occurs only once at startup. Following a later plugin
attempt and in case of vlan stripping mismatch between failsafe
configuration and device capability - failsafe cannot recover and the
device remains constantly in plug out state.

The sequence of events leading to this situation is described as
follows:
1. Start testpmd with failsafe where mlx4 is a sub device (not capable
of vlan stripping). Expected printout:
PMD: net_failsafe: Disabling VLAN stripping offload
2. Execute:
testpmd> port stop all
testpmd> port config all max-pkt-len 2048
testpmd> port start all
3. Do a plug out (e.g. disable sriov)
4. Do a plug in (e.g. enable sriov)
5. Expected result: failsafe successfully configures and starts its sub
devices
Actual result: failsafe is continuously failing with these messages:
PMD: net_failsafe: VLAN stripping offload requested but not supported by
sub_device 0
PMD: net_failsafe: device already configured, cannot fix live
configuration
PMD: net_failsafe: Unable to synchronize sub device state

Root cause analysis: at startup failsafe removes vlan stripping from its
configuration. After executing "port config all max-pkt-len 2048"
testpmd marks failsafe in need for configuration update.
After executing "port start all" testpmd overrides failsafe
configuration with its own configuration which includes vlan stripping

During the plugin attempt failsafe refuses to update its configuration
by removing vlan stripping since it has already updated its
configuration at startup.

The fix is for failsafe to stop validation and disabling non-supported
offloads in its sub-devices.

Fixes: bbc6a53dda ("net/failsafe: support Rx offload capabilities")
Cc: stable@dpdk.org

Signed-off-by: Ophir Munk <ophirmu@mellanox.com>
Acked-by: Thomas Monjalon <thomas@monjalon.net>
2017-11-04 00:22:51 +01:00

771 lines
20 KiB
C

/*-
* BSD LICENSE
*
* Copyright 2017 6WIND S.A.
* Copyright 2017 Mellanox.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of 6WIND S.A. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdint.h>
#include <rte_debug.h>
#include <rte_atomic.h>
#include <rte_ethdev.h>
#include <rte_malloc.h>
#include <rte_flow.h>
#include <rte_cycles.h>
#include "failsafe_private.h"
static struct rte_eth_dev_info default_infos = {
/* Max possible number of elements */
.max_rx_pktlen = UINT32_MAX,
.max_rx_queues = RTE_MAX_QUEUES_PER_PORT,
.max_tx_queues = RTE_MAX_QUEUES_PER_PORT,
.max_mac_addrs = FAILSAFE_MAX_ETHADDR,
.max_hash_mac_addrs = UINT32_MAX,
.max_vfs = UINT16_MAX,
.max_vmdq_pools = UINT16_MAX,
.rx_desc_lim = {
.nb_max = UINT16_MAX,
.nb_min = 0,
.nb_align = 1,
.nb_seg_max = UINT16_MAX,
.nb_mtu_seg_max = UINT16_MAX,
},
.tx_desc_lim = {
.nb_max = UINT16_MAX,
.nb_min = 0,
.nb_align = 1,
.nb_seg_max = UINT16_MAX,
.nb_mtu_seg_max = UINT16_MAX,
},
/*
* Set of capabilities that can be verified upon
* configuring a sub-device.
*/
.rx_offload_capa =
DEV_RX_OFFLOAD_VLAN_STRIP |
DEV_RX_OFFLOAD_QINQ_STRIP |
DEV_RX_OFFLOAD_IPV4_CKSUM |
DEV_RX_OFFLOAD_UDP_CKSUM |
DEV_RX_OFFLOAD_TCP_CKSUM |
DEV_RX_OFFLOAD_TCP_LRO,
.tx_offload_capa = 0x0,
.flow_type_rss_offloads = 0x0,
};
static int
fs_dev_configure(struct rte_eth_dev *dev)
{
struct sub_device *sdev;
uint8_t i;
int ret;
FOREACH_SUBDEV(sdev, i, dev) {
int rmv_interrupt = 0;
int lsc_interrupt = 0;
int lsc_enabled;
if (sdev->state != DEV_PROBED)
continue;
rmv_interrupt = ETH(sdev)->data->dev_flags &
RTE_ETH_DEV_INTR_RMV;
if (rmv_interrupt) {
DEBUG("Enabling RMV interrupts for sub_device %d", i);
dev->data->dev_conf.intr_conf.rmv = 1;
} else {
DEBUG("sub_device %d does not support RMV event", i);
}
lsc_enabled = dev->data->dev_conf.intr_conf.lsc;
lsc_interrupt = lsc_enabled &&
(ETH(sdev)->data->dev_flags &
RTE_ETH_DEV_INTR_LSC);
if (lsc_interrupt) {
DEBUG("Enabling LSC interrupts for sub_device %d", i);
dev->data->dev_conf.intr_conf.lsc = 1;
} else if (lsc_enabled && !lsc_interrupt) {
DEBUG("Disabling LSC interrupts for sub_device %d", i);
dev->data->dev_conf.intr_conf.lsc = 0;
}
DEBUG("Configuring sub-device %d", i);
sdev->remove = 0;
ret = rte_eth_dev_configure(PORT_ID(sdev),
dev->data->nb_rx_queues,
dev->data->nb_tx_queues,
&dev->data->dev_conf);
if (ret) {
ERROR("Could not configure sub_device %d", i);
return ret;
}
if (rmv_interrupt) {
ret = rte_eth_dev_callback_register(PORT_ID(sdev),
RTE_ETH_EVENT_INTR_RMV,
failsafe_eth_rmv_event_callback,
sdev);
if (ret)
WARN("Failed to register RMV callback for sub_device %d",
SUB_ID(sdev));
}
dev->data->dev_conf.intr_conf.rmv = 0;
if (lsc_interrupt) {
ret = rte_eth_dev_callback_register(PORT_ID(sdev),
RTE_ETH_EVENT_INTR_LSC,
failsafe_eth_lsc_event_callback,
dev);
if (ret)
WARN("Failed to register LSC callback for sub_device %d",
SUB_ID(sdev));
}
dev->data->dev_conf.intr_conf.lsc = lsc_enabled;
sdev->state = DEV_ACTIVE;
}
if (PRIV(dev)->state < DEV_ACTIVE)
PRIV(dev)->state = DEV_ACTIVE;
return 0;
}
static int
fs_dev_start(struct rte_eth_dev *dev)
{
struct sub_device *sdev;
uint8_t i;
int ret;
FOREACH_SUBDEV(sdev, i, dev) {
if (sdev->state != DEV_ACTIVE)
continue;
DEBUG("Starting sub_device %d", i);
ret = rte_eth_dev_start(PORT_ID(sdev));
if (ret)
return ret;
sdev->state = DEV_STARTED;
}
if (PRIV(dev)->state < DEV_STARTED)
PRIV(dev)->state = DEV_STARTED;
fs_switch_dev(dev, NULL);
return 0;
}
static void
fs_dev_stop(struct rte_eth_dev *dev)
{
struct sub_device *sdev;
uint8_t i;
PRIV(dev)->state = DEV_STARTED - 1;
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_STARTED) {
rte_eth_dev_stop(PORT_ID(sdev));
sdev->state = DEV_STARTED - 1;
}
}
static int
fs_dev_set_link_up(struct rte_eth_dev *dev)
{
struct sub_device *sdev;
uint8_t i;
int ret;
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
DEBUG("Calling rte_eth_dev_set_link_up on sub_device %d", i);
ret = rte_eth_dev_set_link_up(PORT_ID(sdev));
if (ret) {
ERROR("Operation rte_eth_dev_set_link_up failed for sub_device %d"
" with error %d", i, ret);
return ret;
}
}
return 0;
}
static int
fs_dev_set_link_down(struct rte_eth_dev *dev)
{
struct sub_device *sdev;
uint8_t i;
int ret;
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
DEBUG("Calling rte_eth_dev_set_link_down on sub_device %d", i);
ret = rte_eth_dev_set_link_down(PORT_ID(sdev));
if (ret) {
ERROR("Operation rte_eth_dev_set_link_down failed for sub_device %d"
" with error %d", i, ret);
return ret;
}
}
return 0;
}
static void fs_dev_free_queues(struct rte_eth_dev *dev);
static void
fs_dev_close(struct rte_eth_dev *dev)
{
struct sub_device *sdev;
uint8_t i;
failsafe_hotplug_alarm_cancel(dev);
if (PRIV(dev)->state == DEV_STARTED)
dev->dev_ops->dev_stop(dev);
PRIV(dev)->state = DEV_ACTIVE - 1;
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
DEBUG("Closing sub_device %d", i);
rte_eth_dev_close(PORT_ID(sdev));
sdev->state = DEV_ACTIVE - 1;
}
fs_dev_free_queues(dev);
}
static void
fs_rx_queue_release(void *queue)
{
struct rte_eth_dev *dev;
struct sub_device *sdev;
uint8_t i;
struct rxq *rxq;
if (queue == NULL)
return;
rxq = queue;
dev = rxq->priv->dev;
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE)
SUBOPS(sdev, rx_queue_release)
(ETH(sdev)->data->rx_queues[rxq->qid]);
dev->data->rx_queues[rxq->qid] = NULL;
rte_free(rxq);
}
static int
fs_rx_queue_setup(struct rte_eth_dev *dev,
uint16_t rx_queue_id,
uint16_t nb_rx_desc,
unsigned int socket_id,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mb_pool)
{
struct sub_device *sdev;
struct rxq *rxq;
uint8_t i;
int ret;
rxq = dev->data->rx_queues[rx_queue_id];
if (rxq != NULL) {
fs_rx_queue_release(rxq);
dev->data->rx_queues[rx_queue_id] = NULL;
}
rxq = rte_zmalloc(NULL,
sizeof(*rxq) +
sizeof(rte_atomic64_t) * PRIV(dev)->subs_tail,
RTE_CACHE_LINE_SIZE);
if (rxq == NULL)
return -ENOMEM;
FOREACH_SUBDEV(sdev, i, dev)
rte_atomic64_init(&rxq->refcnt[i]);
rxq->qid = rx_queue_id;
rxq->socket_id = socket_id;
rxq->info.mp = mb_pool;
rxq->info.conf = *rx_conf;
rxq->info.nb_desc = nb_rx_desc;
rxq->priv = PRIV(dev);
dev->data->rx_queues[rx_queue_id] = rxq;
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
ret = rte_eth_rx_queue_setup(PORT_ID(sdev),
rx_queue_id,
nb_rx_desc, socket_id,
rx_conf, mb_pool);
if (ret) {
ERROR("RX queue setup failed for sub_device %d", i);
goto free_rxq;
}
}
return 0;
free_rxq:
fs_rx_queue_release(rxq);
return ret;
}
static void
fs_tx_queue_release(void *queue)
{
struct rte_eth_dev *dev;
struct sub_device *sdev;
uint8_t i;
struct txq *txq;
if (queue == NULL)
return;
txq = queue;
dev = txq->priv->dev;
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE)
SUBOPS(sdev, tx_queue_release)
(ETH(sdev)->data->tx_queues[txq->qid]);
dev->data->tx_queues[txq->qid] = NULL;
rte_free(txq);
}
static int
fs_tx_queue_setup(struct rte_eth_dev *dev,
uint16_t tx_queue_id,
uint16_t nb_tx_desc,
unsigned int socket_id,
const struct rte_eth_txconf *tx_conf)
{
struct sub_device *sdev;
struct txq *txq;
uint8_t i;
int ret;
txq = dev->data->tx_queues[tx_queue_id];
if (txq != NULL) {
fs_tx_queue_release(txq);
dev->data->tx_queues[tx_queue_id] = NULL;
}
txq = rte_zmalloc("ethdev TX queue",
sizeof(*txq) +
sizeof(rte_atomic64_t) * PRIV(dev)->subs_tail,
RTE_CACHE_LINE_SIZE);
if (txq == NULL)
return -ENOMEM;
FOREACH_SUBDEV(sdev, i, dev)
rte_atomic64_init(&txq->refcnt[i]);
txq->qid = tx_queue_id;
txq->socket_id = socket_id;
txq->info.conf = *tx_conf;
txq->info.nb_desc = nb_tx_desc;
txq->priv = PRIV(dev);
dev->data->tx_queues[tx_queue_id] = txq;
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
ret = rte_eth_tx_queue_setup(PORT_ID(sdev),
tx_queue_id,
nb_tx_desc, socket_id,
tx_conf);
if (ret) {
ERROR("TX queue setup failed for sub_device %d", i);
goto free_txq;
}
}
return 0;
free_txq:
fs_tx_queue_release(txq);
return ret;
}
static void
fs_dev_free_queues(struct rte_eth_dev *dev)
{
uint16_t i;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
fs_rx_queue_release(dev->data->rx_queues[i]);
dev->data->rx_queues[i] = NULL;
}
dev->data->nb_rx_queues = 0;
for (i = 0; i < dev->data->nb_tx_queues; i++) {
fs_tx_queue_release(dev->data->tx_queues[i]);
dev->data->tx_queues[i] = NULL;
}
dev->data->nb_tx_queues = 0;
}
static void
fs_promiscuous_enable(struct rte_eth_dev *dev)
{
struct sub_device *sdev;
uint8_t i;
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE)
rte_eth_promiscuous_enable(PORT_ID(sdev));
}
static void
fs_promiscuous_disable(struct rte_eth_dev *dev)
{
struct sub_device *sdev;
uint8_t i;
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE)
rte_eth_promiscuous_disable(PORT_ID(sdev));
}
static void
fs_allmulticast_enable(struct rte_eth_dev *dev)
{
struct sub_device *sdev;
uint8_t i;
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE)
rte_eth_allmulticast_enable(PORT_ID(sdev));
}
static void
fs_allmulticast_disable(struct rte_eth_dev *dev)
{
struct sub_device *sdev;
uint8_t i;
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE)
rte_eth_allmulticast_disable(PORT_ID(sdev));
}
static int
fs_link_update(struct rte_eth_dev *dev,
int wait_to_complete)
{
struct sub_device *sdev;
uint8_t i;
int ret;
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
DEBUG("Calling link_update on sub_device %d", i);
ret = (SUBOPS(sdev, link_update))(ETH(sdev), wait_to_complete);
if (ret && ret != -1) {
ERROR("Link update failed for sub_device %d with error %d",
i, ret);
return ret;
}
}
if (TX_SUBDEV(dev)) {
struct rte_eth_link *l1;
struct rte_eth_link *l2;
l1 = &dev->data->dev_link;
l2 = &ETH(TX_SUBDEV(dev))->data->dev_link;
if (memcmp(l1, l2, sizeof(*l1))) {
*l1 = *l2;
return 0;
}
}
return -1;
}
static int
fs_stats_get(struct rte_eth_dev *dev,
struct rte_eth_stats *stats)
{
struct sub_device *sdev;
uint8_t i;
int ret;
rte_memcpy(stats, &PRIV(dev)->stats_accumulator, sizeof(*stats));
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
struct rte_eth_stats *snapshot = &sdev->stats_snapshot.stats;
uint64_t *timestamp = &sdev->stats_snapshot.timestamp;
ret = rte_eth_stats_get(PORT_ID(sdev), snapshot);
if (ret) {
ERROR("Operation rte_eth_stats_get failed for sub_device %d with error %d",
i, ret);
*timestamp = 0;
return ret;
}
*timestamp = rte_rdtsc();
failsafe_stats_increment(stats, snapshot);
}
return 0;
}
static void
fs_stats_reset(struct rte_eth_dev *dev)
{
struct sub_device *sdev;
uint8_t i;
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
rte_eth_stats_reset(PORT_ID(sdev));
memset(&sdev->stats_snapshot, 0, sizeof(struct rte_eth_stats));
}
memset(&PRIV(dev)->stats_accumulator, 0, sizeof(struct rte_eth_stats));
}
/**
* Fail-safe dev_infos_get rules:
*
* No sub_device:
* Numerables:
* Use the maximum possible values for any field, so as not
* to impede any further configuration effort.
* Capabilities:
* Limits capabilities to those that are understood by the
* fail-safe PMD. This understanding stems from the fail-safe
* being capable of verifying that the related capability is
* expressed within the device configuration (struct rte_eth_conf).
*
* At least one probed sub_device:
* Numerables:
* Uses values from the active probed sub_device
* The rationale here is that if any sub_device is less capable
* (for example concerning the number of queues) than the active
* sub_device, then its subsequent configuration will fail.
* It is impossible to foresee this failure when the failing sub_device
* is supposed to be plugged-in later on, so the configuration process
* is the single point of failure and error reporting.
* Capabilities:
* Uses a logical AND of RX capabilities among
* all sub_devices and the default capabilities.
* Uses a logical AND of TX capabilities among
* the active probed sub_device and the default capabilities.
*
*/
static void
fs_dev_infos_get(struct rte_eth_dev *dev,
struct rte_eth_dev_info *infos)
{
struct sub_device *sdev;
uint8_t i;
sdev = TX_SUBDEV(dev);
if (sdev == NULL) {
DEBUG("No probed device, using default infos");
rte_memcpy(&PRIV(dev)->infos, &default_infos,
sizeof(default_infos));
} else {
uint32_t rx_offload_capa;
rx_offload_capa = default_infos.rx_offload_capa;
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_PROBED) {
rte_eth_dev_info_get(PORT_ID(sdev),
&PRIV(dev)->infos);
rx_offload_capa &= PRIV(dev)->infos.rx_offload_capa;
}
sdev = TX_SUBDEV(dev);
rte_eth_dev_info_get(PORT_ID(sdev), &PRIV(dev)->infos);
PRIV(dev)->infos.rx_offload_capa = rx_offload_capa;
PRIV(dev)->infos.tx_offload_capa &=
default_infos.tx_offload_capa;
PRIV(dev)->infos.flow_type_rss_offloads &=
default_infos.flow_type_rss_offloads;
}
rte_memcpy(infos, &PRIV(dev)->infos, sizeof(*infos));
}
static const uint32_t *
fs_dev_supported_ptypes_get(struct rte_eth_dev *dev)
{
struct sub_device *sdev;
struct rte_eth_dev *edev;
sdev = TX_SUBDEV(dev);
if (sdev == NULL)
return NULL;
edev = ETH(sdev);
/* ENOTSUP: counts as no supported ptypes */
if (SUBOPS(sdev, dev_supported_ptypes_get) == NULL)
return NULL;
/*
* The API does not permit to do a clean AND of all ptypes,
* It is also incomplete by design and we do not really care
* to have a best possible value in this context.
* We just return the ptypes of the device of highest
* priority, usually the PREFERRED device.
*/
return SUBOPS(sdev, dev_supported_ptypes_get)(edev);
}
static int
fs_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
{
struct sub_device *sdev;
uint8_t i;
int ret;
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
DEBUG("Calling rte_eth_dev_set_mtu on sub_device %d", i);
ret = rte_eth_dev_set_mtu(PORT_ID(sdev), mtu);
if (ret) {
ERROR("Operation rte_eth_dev_set_mtu failed for sub_device %d with error %d",
i, ret);
return ret;
}
}
return 0;
}
static int
fs_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
{
struct sub_device *sdev;
uint8_t i;
int ret;
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
DEBUG("Calling rte_eth_dev_vlan_filter on sub_device %d", i);
ret = rte_eth_dev_vlan_filter(PORT_ID(sdev), vlan_id, on);
if (ret) {
ERROR("Operation rte_eth_dev_vlan_filter failed for sub_device %d"
" with error %d", i, ret);
return ret;
}
}
return 0;
}
static int
fs_flow_ctrl_get(struct rte_eth_dev *dev,
struct rte_eth_fc_conf *fc_conf)
{
struct sub_device *sdev;
sdev = TX_SUBDEV(dev);
if (sdev == NULL)
return 0;
if (SUBOPS(sdev, flow_ctrl_get) == NULL)
return -ENOTSUP;
return SUBOPS(sdev, flow_ctrl_get)(ETH(sdev), fc_conf);
}
static int
fs_flow_ctrl_set(struct rte_eth_dev *dev,
struct rte_eth_fc_conf *fc_conf)
{
struct sub_device *sdev;
uint8_t i;
int ret;
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
DEBUG("Calling rte_eth_dev_flow_ctrl_set on sub_device %d", i);
ret = rte_eth_dev_flow_ctrl_set(PORT_ID(sdev), fc_conf);
if (ret) {
ERROR("Operation rte_eth_dev_flow_ctrl_set failed for sub_device %d"
" with error %d", i, ret);
return ret;
}
}
return 0;
}
static void
fs_mac_addr_remove(struct rte_eth_dev *dev, uint32_t index)
{
struct sub_device *sdev;
uint8_t i;
/* No check: already done within the rte_eth_dev_mac_addr_remove
* call for the fail-safe device.
*/
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE)
rte_eth_dev_mac_addr_remove(PORT_ID(sdev),
&dev->data->mac_addrs[index]);
PRIV(dev)->mac_addr_pool[index] = 0;
}
static int
fs_mac_addr_add(struct rte_eth_dev *dev,
struct ether_addr *mac_addr,
uint32_t index,
uint32_t vmdq)
{
struct sub_device *sdev;
int ret;
uint8_t i;
RTE_ASSERT(index < FAILSAFE_MAX_ETHADDR);
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
ret = rte_eth_dev_mac_addr_add(PORT_ID(sdev), mac_addr, vmdq);
if (ret) {
ERROR("Operation rte_eth_dev_mac_addr_add failed for sub_device %"
PRIu8 " with error %d", i, ret);
return ret;
}
}
if (index >= PRIV(dev)->nb_mac_addr) {
DEBUG("Growing mac_addrs array");
PRIV(dev)->nb_mac_addr = index;
}
PRIV(dev)->mac_addr_pool[index] = vmdq;
return 0;
}
static void
fs_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr)
{
struct sub_device *sdev;
uint8_t i;
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE)
rte_eth_dev_default_mac_addr_set(PORT_ID(sdev), mac_addr);
}
static int
fs_filter_ctrl(struct rte_eth_dev *dev,
enum rte_filter_type type,
enum rte_filter_op op,
void *arg)
{
struct sub_device *sdev;
uint8_t i;
int ret;
if (type == RTE_ETH_FILTER_GENERIC &&
op == RTE_ETH_FILTER_GET) {
*(const void **)arg = &fs_flow_ops;
return 0;
}
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
DEBUG("Calling rte_eth_dev_filter_ctrl on sub_device %d", i);
ret = rte_eth_dev_filter_ctrl(PORT_ID(sdev), type, op, arg);
if (ret) {
ERROR("Operation rte_eth_dev_filter_ctrl failed for sub_device %d"
" with error %d", i, ret);
return ret;
}
}
return 0;
}
const struct eth_dev_ops failsafe_ops = {
.dev_configure = fs_dev_configure,
.dev_start = fs_dev_start,
.dev_stop = fs_dev_stop,
.dev_set_link_down = fs_dev_set_link_down,
.dev_set_link_up = fs_dev_set_link_up,
.dev_close = fs_dev_close,
.promiscuous_enable = fs_promiscuous_enable,
.promiscuous_disable = fs_promiscuous_disable,
.allmulticast_enable = fs_allmulticast_enable,
.allmulticast_disable = fs_allmulticast_disable,
.link_update = fs_link_update,
.stats_get = fs_stats_get,
.stats_reset = fs_stats_reset,
.dev_infos_get = fs_dev_infos_get,
.dev_supported_ptypes_get = fs_dev_supported_ptypes_get,
.mtu_set = fs_mtu_set,
.vlan_filter_set = fs_vlan_filter_set,
.rx_queue_setup = fs_rx_queue_setup,
.tx_queue_setup = fs_tx_queue_setup,
.rx_queue_release = fs_rx_queue_release,
.tx_queue_release = fs_tx_queue_release,
.flow_ctrl_get = fs_flow_ctrl_get,
.flow_ctrl_set = fs_flow_ctrl_set,
.mac_addr_remove = fs_mac_addr_remove,
.mac_addr_add = fs_mac_addr_add,
.mac_addr_set = fs_mac_addr_set,
.filter_ctrl = fs_filter_ctrl,
};