35b2d13fd6
Add 'RTE_' prefix to defines: - rename ETHER_ADDR_LEN as RTE_ETHER_ADDR_LEN. - rename ETHER_TYPE_LEN as RTE_ETHER_TYPE_LEN. - rename ETHER_CRC_LEN as RTE_ETHER_CRC_LEN. - rename ETHER_HDR_LEN as RTE_ETHER_HDR_LEN. - rename ETHER_MIN_LEN as RTE_ETHER_MIN_LEN. - rename ETHER_MAX_LEN as RTE_ETHER_MAX_LEN. - rename ETHER_MTU as RTE_ETHER_MTU. - rename ETHER_MAX_VLAN_FRAME_LEN as RTE_ETHER_MAX_VLAN_FRAME_LEN. - rename ETHER_MAX_VLAN_ID as RTE_ETHER_MAX_VLAN_ID. - rename ETHER_MAX_JUMBO_FRAME_LEN as RTE_ETHER_MAX_JUMBO_FRAME_LEN. - rename ETHER_MIN_MTU as RTE_ETHER_MIN_MTU. - rename ETHER_LOCAL_ADMIN_ADDR as RTE_ETHER_LOCAL_ADMIN_ADDR. - rename ETHER_GROUP_ADDR as RTE_ETHER_GROUP_ADDR. - rename ETHER_TYPE_IPv4 as RTE_ETHER_TYPE_IPv4. - rename ETHER_TYPE_IPv6 as RTE_ETHER_TYPE_IPv6. - rename ETHER_TYPE_ARP as RTE_ETHER_TYPE_ARP. - rename ETHER_TYPE_VLAN as RTE_ETHER_TYPE_VLAN. - rename ETHER_TYPE_RARP as RTE_ETHER_TYPE_RARP. - rename ETHER_TYPE_QINQ as RTE_ETHER_TYPE_QINQ. - rename ETHER_TYPE_ETAG as RTE_ETHER_TYPE_ETAG. - rename ETHER_TYPE_1588 as RTE_ETHER_TYPE_1588. - rename ETHER_TYPE_SLOW as RTE_ETHER_TYPE_SLOW. - rename ETHER_TYPE_TEB as RTE_ETHER_TYPE_TEB. - rename ETHER_TYPE_LLDP as RTE_ETHER_TYPE_LLDP. - rename ETHER_TYPE_MPLS as RTE_ETHER_TYPE_MPLS. - rename ETHER_TYPE_MPLSM as RTE_ETHER_TYPE_MPLSM. - rename ETHER_VXLAN_HLEN as RTE_ETHER_VXLAN_HLEN. - rename ETHER_ADDR_FMT_SIZE as RTE_ETHER_ADDR_FMT_SIZE. - rename VXLAN_GPE_TYPE_IPV4 as RTE_VXLAN_GPE_TYPE_IPV4. - rename VXLAN_GPE_TYPE_IPV6 as RTE_VXLAN_GPE_TYPE_IPV6. - rename VXLAN_GPE_TYPE_ETH as RTE_VXLAN_GPE_TYPE_ETH. - rename VXLAN_GPE_TYPE_NSH as RTE_VXLAN_GPE_TYPE_NSH. - rename VXLAN_GPE_TYPE_MPLS as RTE_VXLAN_GPE_TYPE_MPLS. - rename VXLAN_GPE_TYPE_GBP as RTE_VXLAN_GPE_TYPE_GBP. - rename VXLAN_GPE_TYPE_VBNG as RTE_VXLAN_GPE_TYPE_VBNG. - rename ETHER_VXLAN_GPE_HLEN as RTE_ETHER_VXLAN_GPE_HLEN. Do not update the command line library to avoid adding a dependency to librte_net. Signed-off-by: Olivier Matz <olivier.matz@6wind.com> Reviewed-by: Stephen Hemminger <stephen@networkplumber.org> Reviewed-by: Maxime Coquelin <maxime.coquelin@redhat.com> Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>
2459 lines
67 KiB
C
2459 lines
67 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright 2015 6WIND S.A.
|
|
* Copyright 2015 Mellanox Technologies, Ltd
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
|
|
/* Verbs header. */
|
|
/* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
|
|
#ifdef PEDANTIC
|
|
#pragma GCC diagnostic ignored "-Wpedantic"
|
|
#endif
|
|
#include <infiniband/verbs.h>
|
|
#include <infiniband/mlx5dv.h>
|
|
#ifdef PEDANTIC
|
|
#pragma GCC diagnostic error "-Wpedantic"
|
|
#endif
|
|
|
|
#include <rte_mbuf.h>
|
|
#include <rte_mempool.h>
|
|
#include <rte_prefetch.h>
|
|
#include <rte_common.h>
|
|
#include <rte_branch_prediction.h>
|
|
#include <rte_ether.h>
|
|
|
|
#include "mlx5.h"
|
|
#include "mlx5_utils.h"
|
|
#include "mlx5_rxtx.h"
|
|
#include "mlx5_autoconf.h"
|
|
#include "mlx5_defs.h"
|
|
#include "mlx5_prm.h"
|
|
|
|
static __rte_always_inline uint32_t
|
|
rxq_cq_to_pkt_type(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe);
|
|
|
|
static __rte_always_inline int
|
|
mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
|
|
uint16_t cqe_cnt, volatile struct mlx5_mini_cqe8 **mcqe);
|
|
|
|
static __rte_always_inline uint32_t
|
|
rxq_cq_to_ol_flags(volatile struct mlx5_cqe *cqe);
|
|
|
|
static __rte_always_inline void
|
|
rxq_cq_to_mbuf(struct mlx5_rxq_data *rxq, struct rte_mbuf *pkt,
|
|
volatile struct mlx5_cqe *cqe, uint32_t rss_hash_res);
|
|
|
|
static __rte_always_inline void
|
|
mprq_buf_replace(struct mlx5_rxq_data *rxq, uint16_t rq_idx);
|
|
|
|
uint32_t mlx5_ptype_table[] __rte_cache_aligned = {
|
|
[0xff] = RTE_PTYPE_ALL_MASK, /* Last entry for errored packet. */
|
|
};
|
|
|
|
uint8_t mlx5_cksum_table[1 << 10] __rte_cache_aligned;
|
|
uint8_t mlx5_swp_types_table[1 << 10] __rte_cache_aligned;
|
|
|
|
/**
|
|
* Build a table to translate Rx completion flags to packet type.
|
|
*
|
|
* @note: fix mlx5_dev_supported_ptypes_get() if any change here.
|
|
*/
|
|
void
|
|
mlx5_set_ptype_table(void)
|
|
{
|
|
unsigned int i;
|
|
uint32_t (*p)[RTE_DIM(mlx5_ptype_table)] = &mlx5_ptype_table;
|
|
|
|
/* Last entry must not be overwritten, reserved for errored packet. */
|
|
for (i = 0; i < RTE_DIM(mlx5_ptype_table) - 1; ++i)
|
|
(*p)[i] = RTE_PTYPE_UNKNOWN;
|
|
/*
|
|
* The index to the array should have:
|
|
* bit[1:0] = l3_hdr_type
|
|
* bit[4:2] = l4_hdr_type
|
|
* bit[5] = ip_frag
|
|
* bit[6] = tunneled
|
|
* bit[7] = outer_l3_type
|
|
*/
|
|
/* L2 */
|
|
(*p)[0x00] = RTE_PTYPE_L2_ETHER;
|
|
/* L3 */
|
|
(*p)[0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_NONFRAG;
|
|
(*p)[0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_NONFRAG;
|
|
/* Fragmented */
|
|
(*p)[0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_FRAG;
|
|
(*p)[0x22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_FRAG;
|
|
/* TCP */
|
|
(*p)[0x05] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_TCP;
|
|
(*p)[0x06] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_TCP;
|
|
(*p)[0x0d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_TCP;
|
|
(*p)[0x0e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_TCP;
|
|
(*p)[0x11] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_TCP;
|
|
(*p)[0x12] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_TCP;
|
|
/* UDP */
|
|
(*p)[0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP;
|
|
(*p)[0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP;
|
|
/* Repeat with outer_l3_type being set. Just in case. */
|
|
(*p)[0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_NONFRAG;
|
|
(*p)[0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_NONFRAG;
|
|
(*p)[0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_FRAG;
|
|
(*p)[0xa2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_FRAG;
|
|
(*p)[0x85] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_TCP;
|
|
(*p)[0x86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_TCP;
|
|
(*p)[0x8d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_TCP;
|
|
(*p)[0x8e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_TCP;
|
|
(*p)[0x91] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_TCP;
|
|
(*p)[0x92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_TCP;
|
|
(*p)[0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP;
|
|
(*p)[0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP;
|
|
/* Tunneled - L3 */
|
|
(*p)[0x40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
|
|
(*p)[0x41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG;
|
|
(*p)[0x42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG;
|
|
(*p)[0xc0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
|
|
(*p)[0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG;
|
|
(*p)[0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG;
|
|
/* Tunneled - Fragmented */
|
|
(*p)[0x61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG;
|
|
(*p)[0x62] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG;
|
|
(*p)[0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG;
|
|
(*p)[0xe2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG;
|
|
/* Tunneled - TCP */
|
|
(*p)[0x45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP;
|
|
(*p)[0x46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP;
|
|
(*p)[0x4d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP;
|
|
(*p)[0x4e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP;
|
|
(*p)[0x51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP;
|
|
(*p)[0x52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP;
|
|
(*p)[0xc5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP;
|
|
(*p)[0xc6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP;
|
|
(*p)[0xcd] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP;
|
|
(*p)[0xce] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP;
|
|
(*p)[0xd1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP;
|
|
(*p)[0xd2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP;
|
|
/* Tunneled - UDP */
|
|
(*p)[0x49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP;
|
|
(*p)[0x4a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP;
|
|
(*p)[0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP;
|
|
(*p)[0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP;
|
|
}
|
|
|
|
/**
|
|
* Build a table to translate packet to checksum type of Verbs.
|
|
*/
|
|
void
|
|
mlx5_set_cksum_table(void)
|
|
{
|
|
unsigned int i;
|
|
uint8_t v;
|
|
|
|
/*
|
|
* The index should have:
|
|
* bit[0] = PKT_TX_TCP_SEG
|
|
* bit[2:3] = PKT_TX_UDP_CKSUM, PKT_TX_TCP_CKSUM
|
|
* bit[4] = PKT_TX_IP_CKSUM
|
|
* bit[8] = PKT_TX_OUTER_IP_CKSUM
|
|
* bit[9] = tunnel
|
|
*/
|
|
for (i = 0; i < RTE_DIM(mlx5_cksum_table); ++i) {
|
|
v = 0;
|
|
if (i & (1 << 9)) {
|
|
/* Tunneled packet. */
|
|
if (i & (1 << 8)) /* Outer IP. */
|
|
v |= MLX5_ETH_WQE_L3_CSUM;
|
|
if (i & (1 << 4)) /* Inner IP. */
|
|
v |= MLX5_ETH_WQE_L3_INNER_CSUM;
|
|
if (i & (3 << 2 | 1 << 0)) /* L4 or TSO. */
|
|
v |= MLX5_ETH_WQE_L4_INNER_CSUM;
|
|
} else {
|
|
/* No tunnel. */
|
|
if (i & (1 << 4)) /* IP. */
|
|
v |= MLX5_ETH_WQE_L3_CSUM;
|
|
if (i & (3 << 2 | 1 << 0)) /* L4 or TSO. */
|
|
v |= MLX5_ETH_WQE_L4_CSUM;
|
|
}
|
|
mlx5_cksum_table[i] = v;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Build a table to translate packet type of mbuf to SWP type of Verbs.
|
|
*/
|
|
void
|
|
mlx5_set_swp_types_table(void)
|
|
{
|
|
unsigned int i;
|
|
uint8_t v;
|
|
|
|
/*
|
|
* The index should have:
|
|
* bit[0:1] = PKT_TX_L4_MASK
|
|
* bit[4] = PKT_TX_IPV6
|
|
* bit[8] = PKT_TX_OUTER_IPV6
|
|
* bit[9] = PKT_TX_OUTER_UDP
|
|
*/
|
|
for (i = 0; i < RTE_DIM(mlx5_swp_types_table); ++i) {
|
|
v = 0;
|
|
if (i & (1 << 8))
|
|
v |= MLX5_ETH_WQE_L3_OUTER_IPV6;
|
|
if (i & (1 << 9))
|
|
v |= MLX5_ETH_WQE_L4_OUTER_UDP;
|
|
if (i & (1 << 4))
|
|
v |= MLX5_ETH_WQE_L3_INNER_IPV6;
|
|
if ((i & 3) == (PKT_TX_UDP_CKSUM >> 52))
|
|
v |= MLX5_ETH_WQE_L4_INNER_UDP;
|
|
mlx5_swp_types_table[i] = v;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Return the size of tailroom of WQ.
|
|
*
|
|
* @param txq
|
|
* Pointer to TX queue structure.
|
|
* @param addr
|
|
* Pointer to tail of WQ.
|
|
*
|
|
* @return
|
|
* Size of tailroom.
|
|
*/
|
|
static inline size_t
|
|
tx_mlx5_wq_tailroom(struct mlx5_txq_data *txq, void *addr)
|
|
{
|
|
size_t tailroom;
|
|
tailroom = (uintptr_t)(txq->wqes) +
|
|
(1 << txq->wqe_n) * MLX5_WQE_SIZE -
|
|
(uintptr_t)addr;
|
|
return tailroom;
|
|
}
|
|
|
|
/**
|
|
* Copy data to tailroom of circular queue.
|
|
*
|
|
* @param dst
|
|
* Pointer to destination.
|
|
* @param src
|
|
* Pointer to source.
|
|
* @param n
|
|
* Number of bytes to copy.
|
|
* @param base
|
|
* Pointer to head of queue.
|
|
* @param tailroom
|
|
* Size of tailroom from dst.
|
|
*
|
|
* @return
|
|
* Pointer after copied data.
|
|
*/
|
|
static inline void *
|
|
mlx5_copy_to_wq(void *dst, const void *src, size_t n,
|
|
void *base, size_t tailroom)
|
|
{
|
|
void *ret;
|
|
|
|
if (n > tailroom) {
|
|
rte_memcpy(dst, src, tailroom);
|
|
rte_memcpy(base, (void *)((uintptr_t)src + tailroom),
|
|
n - tailroom);
|
|
ret = (uint8_t *)base + n - tailroom;
|
|
} else {
|
|
rte_memcpy(dst, src, n);
|
|
ret = (n == tailroom) ? base : (uint8_t *)dst + n;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Inline TSO headers into WQE.
|
|
*
|
|
* @return
|
|
* 0 on success, negative errno value on failure.
|
|
*/
|
|
static int
|
|
inline_tso(struct mlx5_txq_data *txq, struct rte_mbuf *buf,
|
|
uint32_t *length,
|
|
uintptr_t *addr,
|
|
uint16_t *pkt_inline_sz,
|
|
uint8_t **raw,
|
|
uint16_t *max_wqe,
|
|
uint16_t *tso_segsz,
|
|
uint16_t *tso_header_sz)
|
|
{
|
|
uintptr_t end = (uintptr_t)(((uintptr_t)txq->wqes) +
|
|
(1 << txq->wqe_n) * MLX5_WQE_SIZE);
|
|
unsigned int copy_b;
|
|
uint8_t vlan_sz = (buf->ol_flags & PKT_TX_VLAN_PKT) ? 4 : 0;
|
|
const uint8_t tunneled = txq->tunnel_en && (buf->ol_flags &
|
|
PKT_TX_TUNNEL_MASK);
|
|
uint16_t n_wqe;
|
|
|
|
*tso_segsz = buf->tso_segsz;
|
|
*tso_header_sz = buf->l2_len + vlan_sz + buf->l3_len + buf->l4_len;
|
|
if (unlikely(*tso_segsz == 0 || *tso_header_sz == 0)) {
|
|
txq->stats.oerrors++;
|
|
return -EINVAL;
|
|
}
|
|
if (tunneled)
|
|
*tso_header_sz += buf->outer_l2_len + buf->outer_l3_len;
|
|
/* First seg must contain all TSO headers. */
|
|
if (unlikely(*tso_header_sz > MLX5_MAX_TSO_HEADER) ||
|
|
*tso_header_sz > DATA_LEN(buf)) {
|
|
txq->stats.oerrors++;
|
|
return -EINVAL;
|
|
}
|
|
copy_b = *tso_header_sz - *pkt_inline_sz;
|
|
if (!copy_b || ((end - (uintptr_t)*raw) < copy_b))
|
|
return -EAGAIN;
|
|
n_wqe = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
|
|
if (unlikely(*max_wqe < n_wqe))
|
|
return -EINVAL;
|
|
*max_wqe -= n_wqe;
|
|
rte_memcpy((void *)*raw, (void *)*addr, copy_b);
|
|
*length -= copy_b;
|
|
*addr += copy_b;
|
|
copy_b = MLX5_WQE_DS(copy_b) * MLX5_WQE_DWORD_SIZE;
|
|
*pkt_inline_sz += copy_b;
|
|
*raw += copy_b;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* DPDK callback to check the status of a tx descriptor.
|
|
*
|
|
* @param tx_queue
|
|
* The tx queue.
|
|
* @param[in] offset
|
|
* The index of the descriptor in the ring.
|
|
*
|
|
* @return
|
|
* The status of the tx descriptor.
|
|
*/
|
|
int
|
|
mlx5_tx_descriptor_status(void *tx_queue, uint16_t offset)
|
|
{
|
|
struct mlx5_txq_data *txq = tx_queue;
|
|
uint16_t used;
|
|
|
|
mlx5_tx_complete(txq);
|
|
used = txq->elts_head - txq->elts_tail;
|
|
if (offset < used)
|
|
return RTE_ETH_TX_DESC_FULL;
|
|
return RTE_ETH_TX_DESC_DONE;
|
|
}
|
|
|
|
/**
|
|
* Internal function to compute the number of used descriptors in an RX queue
|
|
*
|
|
* @param rxq
|
|
* The Rx queue.
|
|
*
|
|
* @return
|
|
* The number of used rx descriptor.
|
|
*/
|
|
static uint32_t
|
|
rx_queue_count(struct mlx5_rxq_data *rxq)
|
|
{
|
|
struct rxq_zip *zip = &rxq->zip;
|
|
volatile struct mlx5_cqe *cqe;
|
|
const unsigned int cqe_n = (1 << rxq->cqe_n);
|
|
const unsigned int cqe_cnt = cqe_n - 1;
|
|
unsigned int cq_ci;
|
|
unsigned int used;
|
|
|
|
/* if we are processing a compressed cqe */
|
|
if (zip->ai) {
|
|
used = zip->cqe_cnt - zip->ca;
|
|
cq_ci = zip->cq_ci;
|
|
} else {
|
|
used = 0;
|
|
cq_ci = rxq->cq_ci;
|
|
}
|
|
cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
|
|
while (check_cqe(cqe, cqe_n, cq_ci) == 0) {
|
|
int8_t op_own;
|
|
unsigned int n;
|
|
|
|
op_own = cqe->op_own;
|
|
if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED)
|
|
n = rte_be_to_cpu_32(cqe->byte_cnt);
|
|
else
|
|
n = 1;
|
|
cq_ci += n;
|
|
used += n;
|
|
cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
|
|
}
|
|
used = RTE_MIN(used, (1U << rxq->elts_n) - 1);
|
|
return used;
|
|
}
|
|
|
|
/**
|
|
* DPDK callback to check the status of a rx descriptor.
|
|
*
|
|
* @param rx_queue
|
|
* The Rx queue.
|
|
* @param[in] offset
|
|
* The index of the descriptor in the ring.
|
|
*
|
|
* @return
|
|
* The status of the tx descriptor.
|
|
*/
|
|
int
|
|
mlx5_rx_descriptor_status(void *rx_queue, uint16_t offset)
|
|
{
|
|
struct mlx5_rxq_data *rxq = rx_queue;
|
|
struct mlx5_rxq_ctrl *rxq_ctrl =
|
|
container_of(rxq, struct mlx5_rxq_ctrl, rxq);
|
|
struct rte_eth_dev *dev = ETH_DEV(rxq_ctrl->priv);
|
|
|
|
if (dev->rx_pkt_burst != mlx5_rx_burst) {
|
|
rte_errno = ENOTSUP;
|
|
return -rte_errno;
|
|
}
|
|
if (offset >= (1 << rxq->elts_n)) {
|
|
rte_errno = EINVAL;
|
|
return -rte_errno;
|
|
}
|
|
if (offset < rx_queue_count(rxq))
|
|
return RTE_ETH_RX_DESC_DONE;
|
|
return RTE_ETH_RX_DESC_AVAIL;
|
|
}
|
|
|
|
/**
|
|
* DPDK callback to get the number of used descriptors in a RX queue
|
|
*
|
|
* @param dev
|
|
* Pointer to the device structure.
|
|
*
|
|
* @param rx_queue_id
|
|
* The Rx queue.
|
|
*
|
|
* @return
|
|
* The number of used rx descriptor.
|
|
* -EINVAL if the queue is invalid
|
|
*/
|
|
uint32_t
|
|
mlx5_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
|
|
{
|
|
struct mlx5_priv *priv = dev->data->dev_private;
|
|
struct mlx5_rxq_data *rxq;
|
|
|
|
if (dev->rx_pkt_burst != mlx5_rx_burst) {
|
|
rte_errno = ENOTSUP;
|
|
return -rte_errno;
|
|
}
|
|
rxq = (*priv->rxqs)[rx_queue_id];
|
|
if (!rxq) {
|
|
rte_errno = EINVAL;
|
|
return -rte_errno;
|
|
}
|
|
return rx_queue_count(rxq);
|
|
}
|
|
|
|
/**
|
|
* DPDK callback for TX.
|
|
*
|
|
* @param dpdk_txq
|
|
* Generic pointer to TX queue structure.
|
|
* @param[in] pkts
|
|
* Packets to transmit.
|
|
* @param pkts_n
|
|
* Number of packets in array.
|
|
*
|
|
* @return
|
|
* Number of packets successfully transmitted (<= pkts_n).
|
|
*/
|
|
uint16_t
|
|
mlx5_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
|
|
{
|
|
struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
|
|
uint16_t elts_head = txq->elts_head;
|
|
const uint16_t elts_n = 1 << txq->elts_n;
|
|
const uint16_t elts_m = elts_n - 1;
|
|
unsigned int i = 0;
|
|
unsigned int j = 0;
|
|
unsigned int k = 0;
|
|
uint16_t max_elts;
|
|
uint16_t max_wqe;
|
|
unsigned int comp;
|
|
volatile struct mlx5_wqe_ctrl *last_wqe = NULL;
|
|
unsigned int segs_n = 0;
|
|
const unsigned int max_inline = txq->max_inline;
|
|
uint64_t addr_64;
|
|
|
|
if (unlikely(!pkts_n))
|
|
return 0;
|
|
/* Prefetch first packet cacheline. */
|
|
rte_prefetch0(*pkts);
|
|
/* Start processing. */
|
|
mlx5_tx_complete(txq);
|
|
max_elts = (elts_n - (elts_head - txq->elts_tail));
|
|
max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
|
|
if (unlikely(!max_wqe))
|
|
return 0;
|
|
do {
|
|
struct rte_mbuf *buf = *pkts; /* First_seg. */
|
|
uint8_t *raw;
|
|
volatile struct mlx5_wqe_v *wqe = NULL;
|
|
volatile rte_v128u32_t *dseg = NULL;
|
|
uint32_t length;
|
|
unsigned int ds = 0;
|
|
unsigned int sg = 0; /* counter of additional segs attached. */
|
|
uintptr_t addr;
|
|
uint16_t pkt_inline_sz = MLX5_WQE_DWORD_SIZE + 2;
|
|
uint16_t tso_header_sz = 0;
|
|
uint16_t ehdr;
|
|
uint8_t cs_flags;
|
|
uint8_t tso = txq->tso_en && (buf->ol_flags & PKT_TX_TCP_SEG);
|
|
uint32_t swp_offsets = 0;
|
|
uint8_t swp_types = 0;
|
|
rte_be32_t metadata;
|
|
uint16_t tso_segsz = 0;
|
|
#ifdef MLX5_PMD_SOFT_COUNTERS
|
|
uint32_t total_length = 0;
|
|
#endif
|
|
int ret;
|
|
|
|
segs_n = buf->nb_segs;
|
|
/*
|
|
* Make sure there is enough room to store this packet and
|
|
* that one ring entry remains unused.
|
|
*/
|
|
assert(segs_n);
|
|
if (max_elts < segs_n)
|
|
break;
|
|
max_elts -= segs_n;
|
|
sg = --segs_n;
|
|
if (unlikely(--max_wqe == 0))
|
|
break;
|
|
wqe = (volatile struct mlx5_wqe_v *)
|
|
tx_mlx5_wqe(txq, txq->wqe_ci);
|
|
rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
|
|
if (pkts_n - i > 1)
|
|
rte_prefetch0(*(pkts + 1));
|
|
addr = rte_pktmbuf_mtod(buf, uintptr_t);
|
|
length = DATA_LEN(buf);
|
|
ehdr = (((uint8_t *)addr)[1] << 8) |
|
|
((uint8_t *)addr)[0];
|
|
#ifdef MLX5_PMD_SOFT_COUNTERS
|
|
total_length = length;
|
|
#endif
|
|
if (length < (MLX5_WQE_DWORD_SIZE + 2)) {
|
|
txq->stats.oerrors++;
|
|
break;
|
|
}
|
|
/* Update element. */
|
|
(*txq->elts)[elts_head & elts_m] = buf;
|
|
/* Prefetch next buffer data. */
|
|
if (pkts_n - i > 1)
|
|
rte_prefetch0(
|
|
rte_pktmbuf_mtod(*(pkts + 1), volatile void *));
|
|
cs_flags = txq_ol_cksum_to_cs(buf);
|
|
txq_mbuf_to_swp(txq, buf, (uint8_t *)&swp_offsets, &swp_types);
|
|
raw = ((uint8_t *)(uintptr_t)wqe) + 2 * MLX5_WQE_DWORD_SIZE;
|
|
/* Copy metadata from mbuf if valid */
|
|
metadata = buf->ol_flags & PKT_TX_METADATA ? buf->tx_metadata :
|
|
0;
|
|
/* Replace the Ethernet type by the VLAN if necessary. */
|
|
if (buf->ol_flags & PKT_TX_VLAN_PKT) {
|
|
uint32_t vlan = rte_cpu_to_be_32(0x81000000 |
|
|
buf->vlan_tci);
|
|
unsigned int len = 2 * RTE_ETHER_ADDR_LEN - 2;
|
|
|
|
addr += 2;
|
|
length -= 2;
|
|
/* Copy Destination and source mac address. */
|
|
memcpy((uint8_t *)raw, ((uint8_t *)addr), len);
|
|
/* Copy VLAN. */
|
|
memcpy((uint8_t *)raw + len, &vlan, sizeof(vlan));
|
|
/* Copy missing two bytes to end the DSeg. */
|
|
memcpy((uint8_t *)raw + len + sizeof(vlan),
|
|
((uint8_t *)addr) + len, 2);
|
|
addr += len + 2;
|
|
length -= (len + 2);
|
|
} else {
|
|
memcpy((uint8_t *)raw, ((uint8_t *)addr) + 2,
|
|
MLX5_WQE_DWORD_SIZE);
|
|
length -= pkt_inline_sz;
|
|
addr += pkt_inline_sz;
|
|
}
|
|
raw += MLX5_WQE_DWORD_SIZE;
|
|
if (tso) {
|
|
ret = inline_tso(txq, buf, &length,
|
|
&addr, &pkt_inline_sz,
|
|
&raw, &max_wqe,
|
|
&tso_segsz, &tso_header_sz);
|
|
if (ret == -EINVAL) {
|
|
break;
|
|
} else if (ret == -EAGAIN) {
|
|
/* NOP WQE. */
|
|
wqe->ctrl = (rte_v128u32_t){
|
|
rte_cpu_to_be_32(txq->wqe_ci << 8),
|
|
rte_cpu_to_be_32(txq->qp_num_8s | 1),
|
|
0,
|
|
0,
|
|
};
|
|
ds = 1;
|
|
#ifdef MLX5_PMD_SOFT_COUNTERS
|
|
total_length = 0;
|
|
#endif
|
|
k++;
|
|
goto next_wqe;
|
|
}
|
|
}
|
|
/* Inline if enough room. */
|
|
if (max_inline || tso) {
|
|
uint32_t inl = 0;
|
|
uintptr_t end = (uintptr_t)
|
|
(((uintptr_t)txq->wqes) +
|
|
(1 << txq->wqe_n) * MLX5_WQE_SIZE);
|
|
unsigned int inline_room = max_inline *
|
|
RTE_CACHE_LINE_SIZE -
|
|
(pkt_inline_sz - 2) -
|
|
!!tso * sizeof(inl);
|
|
uintptr_t addr_end;
|
|
unsigned int copy_b;
|
|
|
|
pkt_inline:
|
|
addr_end = RTE_ALIGN_FLOOR(addr + inline_room,
|
|
RTE_CACHE_LINE_SIZE);
|
|
copy_b = (addr_end > addr) ?
|
|
RTE_MIN((addr_end - addr), length) : 0;
|
|
if (copy_b && ((end - (uintptr_t)raw) >
|
|
(copy_b + sizeof(inl)))) {
|
|
/*
|
|
* One Dseg remains in the current WQE. To
|
|
* keep the computation positive, it is
|
|
* removed after the bytes to Dseg conversion.
|
|
*/
|
|
uint16_t n = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
|
|
|
|
if (unlikely(max_wqe < n))
|
|
break;
|
|
max_wqe -= n;
|
|
if (tso) {
|
|
assert(inl == 0);
|
|
inl = rte_cpu_to_be_32(copy_b |
|
|
MLX5_INLINE_SEG);
|
|
rte_memcpy((void *)raw,
|
|
(void *)&inl, sizeof(inl));
|
|
raw += sizeof(inl);
|
|
pkt_inline_sz += sizeof(inl);
|
|
}
|
|
rte_memcpy((void *)raw, (void *)addr, copy_b);
|
|
addr += copy_b;
|
|
length -= copy_b;
|
|
pkt_inline_sz += copy_b;
|
|
}
|
|
/*
|
|
* 2 DWORDs consumed by the WQE header + ETH segment +
|
|
* the size of the inline part of the packet.
|
|
*/
|
|
ds = 2 + MLX5_WQE_DS(pkt_inline_sz - 2);
|
|
if (length > 0) {
|
|
if (ds % (MLX5_WQE_SIZE /
|
|
MLX5_WQE_DWORD_SIZE) == 0) {
|
|
if (unlikely(--max_wqe == 0))
|
|
break;
|
|
dseg = (volatile rte_v128u32_t *)
|
|
tx_mlx5_wqe(txq, txq->wqe_ci +
|
|
ds / 4);
|
|
} else {
|
|
dseg = (volatile rte_v128u32_t *)
|
|
((uintptr_t)wqe +
|
|
(ds * MLX5_WQE_DWORD_SIZE));
|
|
}
|
|
goto use_dseg;
|
|
} else if (!segs_n) {
|
|
goto next_pkt;
|
|
} else {
|
|
/*
|
|
* Further inline the next segment only for
|
|
* non-TSO packets.
|
|
*/
|
|
if (!tso) {
|
|
raw += copy_b;
|
|
inline_room -= copy_b;
|
|
} else {
|
|
inline_room = 0;
|
|
}
|
|
/* Move to the next segment. */
|
|
--segs_n;
|
|
buf = buf->next;
|
|
assert(buf);
|
|
addr = rte_pktmbuf_mtod(buf, uintptr_t);
|
|
length = DATA_LEN(buf);
|
|
#ifdef MLX5_PMD_SOFT_COUNTERS
|
|
total_length += length;
|
|
#endif
|
|
(*txq->elts)[++elts_head & elts_m] = buf;
|
|
goto pkt_inline;
|
|
}
|
|
} else {
|
|
/*
|
|
* No inline has been done in the packet, only the
|
|
* Ethernet Header as been stored.
|
|
*/
|
|
dseg = (volatile rte_v128u32_t *)
|
|
((uintptr_t)wqe + (3 * MLX5_WQE_DWORD_SIZE));
|
|
ds = 3;
|
|
use_dseg:
|
|
/* Add the remaining packet as a simple ds. */
|
|
addr_64 = rte_cpu_to_be_64(addr);
|
|
*dseg = (rte_v128u32_t){
|
|
rte_cpu_to_be_32(length),
|
|
mlx5_tx_mb2mr(txq, buf),
|
|
addr_64,
|
|
addr_64 >> 32,
|
|
};
|
|
++ds;
|
|
if (!segs_n)
|
|
goto next_pkt;
|
|
}
|
|
next_seg:
|
|
assert(buf);
|
|
assert(ds);
|
|
assert(wqe);
|
|
/*
|
|
* Spill on next WQE when the current one does not have
|
|
* enough room left. Size of WQE must a be a multiple
|
|
* of data segment size.
|
|
*/
|
|
assert(!(MLX5_WQE_SIZE % MLX5_WQE_DWORD_SIZE));
|
|
if (!(ds % (MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE))) {
|
|
if (unlikely(--max_wqe == 0))
|
|
break;
|
|
dseg = (volatile rte_v128u32_t *)
|
|
tx_mlx5_wqe(txq, txq->wqe_ci + ds / 4);
|
|
rte_prefetch0(tx_mlx5_wqe(txq,
|
|
txq->wqe_ci + ds / 4 + 1));
|
|
} else {
|
|
++dseg;
|
|
}
|
|
++ds;
|
|
buf = buf->next;
|
|
assert(buf);
|
|
length = DATA_LEN(buf);
|
|
#ifdef MLX5_PMD_SOFT_COUNTERS
|
|
total_length += length;
|
|
#endif
|
|
/* Store segment information. */
|
|
addr_64 = rte_cpu_to_be_64(rte_pktmbuf_mtod(buf, uintptr_t));
|
|
*dseg = (rte_v128u32_t){
|
|
rte_cpu_to_be_32(length),
|
|
mlx5_tx_mb2mr(txq, buf),
|
|
addr_64,
|
|
addr_64 >> 32,
|
|
};
|
|
(*txq->elts)[++elts_head & elts_m] = buf;
|
|
if (--segs_n)
|
|
goto next_seg;
|
|
next_pkt:
|
|
if (ds > MLX5_DSEG_MAX) {
|
|
txq->stats.oerrors++;
|
|
break;
|
|
}
|
|
++elts_head;
|
|
++pkts;
|
|
++i;
|
|
j += sg;
|
|
/* Initialize known and common part of the WQE structure. */
|
|
if (tso) {
|
|
wqe->ctrl = (rte_v128u32_t){
|
|
rte_cpu_to_be_32((txq->wqe_ci << 8) |
|
|
MLX5_OPCODE_TSO),
|
|
rte_cpu_to_be_32(txq->qp_num_8s | ds),
|
|
0,
|
|
0,
|
|
};
|
|
wqe->eseg = (rte_v128u32_t){
|
|
swp_offsets,
|
|
cs_flags | (swp_types << 8) |
|
|
(rte_cpu_to_be_16(tso_segsz) << 16),
|
|
metadata,
|
|
(ehdr << 16) | rte_cpu_to_be_16(tso_header_sz),
|
|
};
|
|
} else {
|
|
wqe->ctrl = (rte_v128u32_t){
|
|
rte_cpu_to_be_32((txq->wqe_ci << 8) |
|
|
MLX5_OPCODE_SEND),
|
|
rte_cpu_to_be_32(txq->qp_num_8s | ds),
|
|
0,
|
|
0,
|
|
};
|
|
wqe->eseg = (rte_v128u32_t){
|
|
swp_offsets,
|
|
cs_flags | (swp_types << 8),
|
|
metadata,
|
|
(ehdr << 16) | rte_cpu_to_be_16(pkt_inline_sz),
|
|
};
|
|
}
|
|
next_wqe:
|
|
txq->wqe_ci += (ds + 3) / 4;
|
|
/* Save the last successful WQE for completion request */
|
|
last_wqe = (volatile struct mlx5_wqe_ctrl *)wqe;
|
|
#ifdef MLX5_PMD_SOFT_COUNTERS
|
|
/* Increment sent bytes counter. */
|
|
txq->stats.obytes += total_length;
|
|
#endif
|
|
} while (i < pkts_n);
|
|
/* Take a shortcut if nothing must be sent. */
|
|
if (unlikely((i + k) == 0))
|
|
return 0;
|
|
txq->elts_head += (i + j);
|
|
/* Check whether completion threshold has been reached. */
|
|
comp = txq->elts_comp + i + j + k;
|
|
if (comp >= MLX5_TX_COMP_THRESH) {
|
|
/* A CQE slot must always be available. */
|
|
assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
|
|
/* Request completion on last WQE. */
|
|
last_wqe->ctrl2 = rte_cpu_to_be_32(8);
|
|
/* Save elts_head in unused "immediate" field of WQE. */
|
|
last_wqe->ctrl3 = txq->elts_head;
|
|
txq->elts_comp = 0;
|
|
} else {
|
|
txq->elts_comp = comp;
|
|
}
|
|
#ifdef MLX5_PMD_SOFT_COUNTERS
|
|
/* Increment sent packets counter. */
|
|
txq->stats.opackets += i;
|
|
#endif
|
|
/* Ring QP doorbell. */
|
|
mlx5_tx_dbrec(txq, (volatile struct mlx5_wqe *)last_wqe);
|
|
return i;
|
|
}
|
|
|
|
/**
|
|
* Open a MPW session.
|
|
*
|
|
* @param txq
|
|
* Pointer to TX queue structure.
|
|
* @param mpw
|
|
* Pointer to MPW session structure.
|
|
* @param length
|
|
* Packet length.
|
|
*/
|
|
static inline void
|
|
mlx5_mpw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, uint32_t length)
|
|
{
|
|
uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
|
|
volatile struct mlx5_wqe_data_seg (*dseg)[MLX5_MPW_DSEG_MAX] =
|
|
(volatile struct mlx5_wqe_data_seg (*)[])
|
|
tx_mlx5_wqe(txq, idx + 1);
|
|
|
|
mpw->state = MLX5_MPW_STATE_OPENED;
|
|
mpw->pkts_n = 0;
|
|
mpw->len = length;
|
|
mpw->total_len = 0;
|
|
mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
|
|
mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
|
|
mpw->wqe->eseg.inline_hdr_sz = 0;
|
|
mpw->wqe->eseg.rsvd0 = 0;
|
|
mpw->wqe->eseg.rsvd1 = 0;
|
|
mpw->wqe->eseg.flow_table_metadata = 0;
|
|
mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
|
|
(txq->wqe_ci << 8) |
|
|
MLX5_OPCODE_TSO);
|
|
mpw->wqe->ctrl[2] = 0;
|
|
mpw->wqe->ctrl[3] = 0;
|
|
mpw->data.dseg[0] = (volatile struct mlx5_wqe_data_seg *)
|
|
(((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
|
|
mpw->data.dseg[1] = (volatile struct mlx5_wqe_data_seg *)
|
|
(((uintptr_t)mpw->wqe) + (3 * MLX5_WQE_DWORD_SIZE));
|
|
mpw->data.dseg[2] = &(*dseg)[0];
|
|
mpw->data.dseg[3] = &(*dseg)[1];
|
|
mpw->data.dseg[4] = &(*dseg)[2];
|
|
}
|
|
|
|
/**
|
|
* Close a MPW session.
|
|
*
|
|
* @param txq
|
|
* Pointer to TX queue structure.
|
|
* @param mpw
|
|
* Pointer to MPW session structure.
|
|
*/
|
|
static inline void
|
|
mlx5_mpw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
|
|
{
|
|
unsigned int num = mpw->pkts_n;
|
|
|
|
/*
|
|
* Store size in multiple of 16 bytes. Control and Ethernet segments
|
|
* count as 2.
|
|
*/
|
|
mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s | (2 + num));
|
|
mpw->state = MLX5_MPW_STATE_CLOSED;
|
|
if (num < 3)
|
|
++txq->wqe_ci;
|
|
else
|
|
txq->wqe_ci += 2;
|
|
rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
|
|
rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
|
|
}
|
|
|
|
/**
|
|
* DPDK callback for TX with MPW support.
|
|
*
|
|
* @param dpdk_txq
|
|
* Generic pointer to TX queue structure.
|
|
* @param[in] pkts
|
|
* Packets to transmit.
|
|
* @param pkts_n
|
|
* Number of packets in array.
|
|
*
|
|
* @return
|
|
* Number of packets successfully transmitted (<= pkts_n).
|
|
*/
|
|
uint16_t
|
|
mlx5_tx_burst_mpw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
|
|
{
|
|
struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
|
|
uint16_t elts_head = txq->elts_head;
|
|
const uint16_t elts_n = 1 << txq->elts_n;
|
|
const uint16_t elts_m = elts_n - 1;
|
|
unsigned int i = 0;
|
|
unsigned int j = 0;
|
|
uint16_t max_elts;
|
|
uint16_t max_wqe;
|
|
unsigned int comp;
|
|
struct mlx5_mpw mpw = {
|
|
.state = MLX5_MPW_STATE_CLOSED,
|
|
};
|
|
|
|
if (unlikely(!pkts_n))
|
|
return 0;
|
|
/* Prefetch first packet cacheline. */
|
|
rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
|
|
rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
|
|
/* Start processing. */
|
|
mlx5_tx_complete(txq);
|
|
max_elts = (elts_n - (elts_head - txq->elts_tail));
|
|
max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
|
|
if (unlikely(!max_wqe))
|
|
return 0;
|
|
do {
|
|
struct rte_mbuf *buf = *(pkts++);
|
|
uint32_t length;
|
|
unsigned int segs_n = buf->nb_segs;
|
|
uint32_t cs_flags;
|
|
rte_be32_t metadata;
|
|
|
|
/*
|
|
* Make sure there is enough room to store this packet and
|
|
* that one ring entry remains unused.
|
|
*/
|
|
assert(segs_n);
|
|
if (max_elts < segs_n)
|
|
break;
|
|
/* Do not bother with large packets MPW cannot handle. */
|
|
if (segs_n > MLX5_MPW_DSEG_MAX) {
|
|
txq->stats.oerrors++;
|
|
break;
|
|
}
|
|
max_elts -= segs_n;
|
|
--pkts_n;
|
|
cs_flags = txq_ol_cksum_to_cs(buf);
|
|
/* Copy metadata from mbuf if valid */
|
|
metadata = buf->ol_flags & PKT_TX_METADATA ? buf->tx_metadata :
|
|
0;
|
|
/* Retrieve packet information. */
|
|
length = PKT_LEN(buf);
|
|
assert(length);
|
|
/* Start new session if packet differs. */
|
|
if ((mpw.state == MLX5_MPW_STATE_OPENED) &&
|
|
((mpw.len != length) ||
|
|
(segs_n != 1) ||
|
|
(mpw.wqe->eseg.flow_table_metadata != metadata) ||
|
|
(mpw.wqe->eseg.cs_flags != cs_flags)))
|
|
mlx5_mpw_close(txq, &mpw);
|
|
if (mpw.state == MLX5_MPW_STATE_CLOSED) {
|
|
/*
|
|
* Multi-Packet WQE consumes at most two WQE.
|
|
* mlx5_mpw_new() expects to be able to use such
|
|
* resources.
|
|
*/
|
|
if (unlikely(max_wqe < 2))
|
|
break;
|
|
max_wqe -= 2;
|
|
mlx5_mpw_new(txq, &mpw, length);
|
|
mpw.wqe->eseg.cs_flags = cs_flags;
|
|
mpw.wqe->eseg.flow_table_metadata = metadata;
|
|
}
|
|
/* Multi-segment packets must be alone in their MPW. */
|
|
assert((segs_n == 1) || (mpw.pkts_n == 0));
|
|
#if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
|
|
length = 0;
|
|
#endif
|
|
do {
|
|
volatile struct mlx5_wqe_data_seg *dseg;
|
|
uintptr_t addr;
|
|
|
|
assert(buf);
|
|
(*txq->elts)[elts_head++ & elts_m] = buf;
|
|
dseg = mpw.data.dseg[mpw.pkts_n];
|
|
addr = rte_pktmbuf_mtod(buf, uintptr_t);
|
|
*dseg = (struct mlx5_wqe_data_seg){
|
|
.byte_count = rte_cpu_to_be_32(DATA_LEN(buf)),
|
|
.lkey = mlx5_tx_mb2mr(txq, buf),
|
|
.addr = rte_cpu_to_be_64(addr),
|
|
};
|
|
#if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
|
|
length += DATA_LEN(buf);
|
|
#endif
|
|
buf = buf->next;
|
|
++mpw.pkts_n;
|
|
++j;
|
|
} while (--segs_n);
|
|
assert(length == mpw.len);
|
|
if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
|
|
mlx5_mpw_close(txq, &mpw);
|
|
#ifdef MLX5_PMD_SOFT_COUNTERS
|
|
/* Increment sent bytes counter. */
|
|
txq->stats.obytes += length;
|
|
#endif
|
|
++i;
|
|
} while (pkts_n);
|
|
/* Take a shortcut if nothing must be sent. */
|
|
if (unlikely(i == 0))
|
|
return 0;
|
|
/* Check whether completion threshold has been reached. */
|
|
/* "j" includes both packets and segments. */
|
|
comp = txq->elts_comp + j;
|
|
if (comp >= MLX5_TX_COMP_THRESH) {
|
|
volatile struct mlx5_wqe *wqe = mpw.wqe;
|
|
|
|
/* A CQE slot must always be available. */
|
|
assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
|
|
/* Request completion on last WQE. */
|
|
wqe->ctrl[2] = rte_cpu_to_be_32(8);
|
|
/* Save elts_head in unused "immediate" field of WQE. */
|
|
wqe->ctrl[3] = elts_head;
|
|
txq->elts_comp = 0;
|
|
} else {
|
|
txq->elts_comp = comp;
|
|
}
|
|
#ifdef MLX5_PMD_SOFT_COUNTERS
|
|
/* Increment sent packets counter. */
|
|
txq->stats.opackets += i;
|
|
#endif
|
|
/* Ring QP doorbell. */
|
|
if (mpw.state == MLX5_MPW_STATE_OPENED)
|
|
mlx5_mpw_close(txq, &mpw);
|
|
mlx5_tx_dbrec(txq, mpw.wqe);
|
|
txq->elts_head = elts_head;
|
|
return i;
|
|
}
|
|
|
|
/**
|
|
* Open a MPW inline session.
|
|
*
|
|
* @param txq
|
|
* Pointer to TX queue structure.
|
|
* @param mpw
|
|
* Pointer to MPW session structure.
|
|
* @param length
|
|
* Packet length.
|
|
*/
|
|
static inline void
|
|
mlx5_mpw_inline_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw,
|
|
uint32_t length)
|
|
{
|
|
uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
|
|
struct mlx5_wqe_inl_small *inl;
|
|
|
|
mpw->state = MLX5_MPW_INL_STATE_OPENED;
|
|
mpw->pkts_n = 0;
|
|
mpw->len = length;
|
|
mpw->total_len = 0;
|
|
mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
|
|
mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
|
|
(txq->wqe_ci << 8) |
|
|
MLX5_OPCODE_TSO);
|
|
mpw->wqe->ctrl[2] = 0;
|
|
mpw->wqe->ctrl[3] = 0;
|
|
mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
|
|
mpw->wqe->eseg.inline_hdr_sz = 0;
|
|
mpw->wqe->eseg.cs_flags = 0;
|
|
mpw->wqe->eseg.rsvd0 = 0;
|
|
mpw->wqe->eseg.rsvd1 = 0;
|
|
mpw->wqe->eseg.flow_table_metadata = 0;
|
|
inl = (struct mlx5_wqe_inl_small *)
|
|
(((uintptr_t)mpw->wqe) + 2 * MLX5_WQE_DWORD_SIZE);
|
|
mpw->data.raw = (uint8_t *)&inl->raw;
|
|
}
|
|
|
|
/**
|
|
* Close a MPW inline session.
|
|
*
|
|
* @param txq
|
|
* Pointer to TX queue structure.
|
|
* @param mpw
|
|
* Pointer to MPW session structure.
|
|
*/
|
|
static inline void
|
|
mlx5_mpw_inline_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
|
|
{
|
|
unsigned int size;
|
|
struct mlx5_wqe_inl_small *inl = (struct mlx5_wqe_inl_small *)
|
|
(((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
|
|
|
|
size = MLX5_WQE_SIZE - MLX5_MWQE64_INL_DATA + mpw->total_len;
|
|
/*
|
|
* Store size in multiple of 16 bytes. Control and Ethernet segments
|
|
* count as 2.
|
|
*/
|
|
mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
|
|
MLX5_WQE_DS(size));
|
|
mpw->state = MLX5_MPW_STATE_CLOSED;
|
|
inl->byte_cnt = rte_cpu_to_be_32(mpw->total_len | MLX5_INLINE_SEG);
|
|
txq->wqe_ci += (size + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
|
|
}
|
|
|
|
/**
|
|
* DPDK callback for TX with MPW inline support.
|
|
*
|
|
* @param dpdk_txq
|
|
* Generic pointer to TX queue structure.
|
|
* @param[in] pkts
|
|
* Packets to transmit.
|
|
* @param pkts_n
|
|
* Number of packets in array.
|
|
*
|
|
* @return
|
|
* Number of packets successfully transmitted (<= pkts_n).
|
|
*/
|
|
uint16_t
|
|
mlx5_tx_burst_mpw_inline(void *dpdk_txq, struct rte_mbuf **pkts,
|
|
uint16_t pkts_n)
|
|
{
|
|
struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
|
|
uint16_t elts_head = txq->elts_head;
|
|
const uint16_t elts_n = 1 << txq->elts_n;
|
|
const uint16_t elts_m = elts_n - 1;
|
|
unsigned int i = 0;
|
|
unsigned int j = 0;
|
|
uint16_t max_elts;
|
|
uint16_t max_wqe;
|
|
unsigned int comp;
|
|
unsigned int inline_room = txq->max_inline * RTE_CACHE_LINE_SIZE;
|
|
struct mlx5_mpw mpw = {
|
|
.state = MLX5_MPW_STATE_CLOSED,
|
|
};
|
|
/*
|
|
* Compute the maximum number of WQE which can be consumed by inline
|
|
* code.
|
|
* - 2 DSEG for:
|
|
* - 1 control segment,
|
|
* - 1 Ethernet segment,
|
|
* - N Dseg from the inline request.
|
|
*/
|
|
const unsigned int wqe_inl_n =
|
|
((2 * MLX5_WQE_DWORD_SIZE +
|
|
txq->max_inline * RTE_CACHE_LINE_SIZE) +
|
|
RTE_CACHE_LINE_SIZE - 1) / RTE_CACHE_LINE_SIZE;
|
|
|
|
if (unlikely(!pkts_n))
|
|
return 0;
|
|
/* Prefetch first packet cacheline. */
|
|
rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
|
|
rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
|
|
/* Start processing. */
|
|
mlx5_tx_complete(txq);
|
|
max_elts = (elts_n - (elts_head - txq->elts_tail));
|
|
do {
|
|
struct rte_mbuf *buf = *(pkts++);
|
|
uintptr_t addr;
|
|
uint32_t length;
|
|
unsigned int segs_n = buf->nb_segs;
|
|
uint8_t cs_flags;
|
|
rte_be32_t metadata;
|
|
|
|
/*
|
|
* Make sure there is enough room to store this packet and
|
|
* that one ring entry remains unused.
|
|
*/
|
|
assert(segs_n);
|
|
if (max_elts < segs_n)
|
|
break;
|
|
/* Do not bother with large packets MPW cannot handle. */
|
|
if (segs_n > MLX5_MPW_DSEG_MAX) {
|
|
txq->stats.oerrors++;
|
|
break;
|
|
}
|
|
max_elts -= segs_n;
|
|
--pkts_n;
|
|
/*
|
|
* Compute max_wqe in case less WQE were consumed in previous
|
|
* iteration.
|
|
*/
|
|
max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
|
|
cs_flags = txq_ol_cksum_to_cs(buf);
|
|
/* Copy metadata from mbuf if valid */
|
|
metadata = buf->ol_flags & PKT_TX_METADATA ? buf->tx_metadata :
|
|
0;
|
|
/* Retrieve packet information. */
|
|
length = PKT_LEN(buf);
|
|
/* Start new session if packet differs. */
|
|
if (mpw.state == MLX5_MPW_STATE_OPENED) {
|
|
if ((mpw.len != length) ||
|
|
(segs_n != 1) ||
|
|
(mpw.wqe->eseg.flow_table_metadata != metadata) ||
|
|
(mpw.wqe->eseg.cs_flags != cs_flags))
|
|
mlx5_mpw_close(txq, &mpw);
|
|
} else if (mpw.state == MLX5_MPW_INL_STATE_OPENED) {
|
|
if ((mpw.len != length) ||
|
|
(segs_n != 1) ||
|
|
(length > inline_room) ||
|
|
(mpw.wqe->eseg.flow_table_metadata != metadata) ||
|
|
(mpw.wqe->eseg.cs_flags != cs_flags)) {
|
|
mlx5_mpw_inline_close(txq, &mpw);
|
|
inline_room =
|
|
txq->max_inline * RTE_CACHE_LINE_SIZE;
|
|
}
|
|
}
|
|
if (mpw.state == MLX5_MPW_STATE_CLOSED) {
|
|
if ((segs_n != 1) ||
|
|
(length > inline_room)) {
|
|
/*
|
|
* Multi-Packet WQE consumes at most two WQE.
|
|
* mlx5_mpw_new() expects to be able to use
|
|
* such resources.
|
|
*/
|
|
if (unlikely(max_wqe < 2))
|
|
break;
|
|
max_wqe -= 2;
|
|
mlx5_mpw_new(txq, &mpw, length);
|
|
mpw.wqe->eseg.cs_flags = cs_flags;
|
|
mpw.wqe->eseg.flow_table_metadata = metadata;
|
|
} else {
|
|
if (unlikely(max_wqe < wqe_inl_n))
|
|
break;
|
|
max_wqe -= wqe_inl_n;
|
|
mlx5_mpw_inline_new(txq, &mpw, length);
|
|
mpw.wqe->eseg.cs_flags = cs_flags;
|
|
mpw.wqe->eseg.flow_table_metadata = metadata;
|
|
}
|
|
}
|
|
/* Multi-segment packets must be alone in their MPW. */
|
|
assert((segs_n == 1) || (mpw.pkts_n == 0));
|
|
if (mpw.state == MLX5_MPW_STATE_OPENED) {
|
|
assert(inline_room ==
|
|
txq->max_inline * RTE_CACHE_LINE_SIZE);
|
|
#if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
|
|
length = 0;
|
|
#endif
|
|
do {
|
|
volatile struct mlx5_wqe_data_seg *dseg;
|
|
|
|
assert(buf);
|
|
(*txq->elts)[elts_head++ & elts_m] = buf;
|
|
dseg = mpw.data.dseg[mpw.pkts_n];
|
|
addr = rte_pktmbuf_mtod(buf, uintptr_t);
|
|
*dseg = (struct mlx5_wqe_data_seg){
|
|
.byte_count =
|
|
rte_cpu_to_be_32(DATA_LEN(buf)),
|
|
.lkey = mlx5_tx_mb2mr(txq, buf),
|
|
.addr = rte_cpu_to_be_64(addr),
|
|
};
|
|
#if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
|
|
length += DATA_LEN(buf);
|
|
#endif
|
|
buf = buf->next;
|
|
++mpw.pkts_n;
|
|
++j;
|
|
} while (--segs_n);
|
|
assert(length == mpw.len);
|
|
if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
|
|
mlx5_mpw_close(txq, &mpw);
|
|
} else {
|
|
unsigned int max;
|
|
|
|
assert(mpw.state == MLX5_MPW_INL_STATE_OPENED);
|
|
assert(length <= inline_room);
|
|
assert(length == DATA_LEN(buf));
|
|
addr = rte_pktmbuf_mtod(buf, uintptr_t);
|
|
(*txq->elts)[elts_head++ & elts_m] = buf;
|
|
/* Maximum number of bytes before wrapping. */
|
|
max = ((((uintptr_t)(txq->wqes)) +
|
|
(1 << txq->wqe_n) *
|
|
MLX5_WQE_SIZE) -
|
|
(uintptr_t)mpw.data.raw);
|
|
if (length > max) {
|
|
rte_memcpy((void *)(uintptr_t)mpw.data.raw,
|
|
(void *)addr,
|
|
max);
|
|
mpw.data.raw = (volatile void *)txq->wqes;
|
|
rte_memcpy((void *)(uintptr_t)mpw.data.raw,
|
|
(void *)(addr + max),
|
|
length - max);
|
|
mpw.data.raw += length - max;
|
|
} else {
|
|
rte_memcpy((void *)(uintptr_t)mpw.data.raw,
|
|
(void *)addr,
|
|
length);
|
|
|
|
if (length == max)
|
|
mpw.data.raw =
|
|
(volatile void *)txq->wqes;
|
|
else
|
|
mpw.data.raw += length;
|
|
}
|
|
++mpw.pkts_n;
|
|
mpw.total_len += length;
|
|
++j;
|
|
if (mpw.pkts_n == MLX5_MPW_DSEG_MAX) {
|
|
mlx5_mpw_inline_close(txq, &mpw);
|
|
inline_room =
|
|
txq->max_inline * RTE_CACHE_LINE_SIZE;
|
|
} else {
|
|
inline_room -= length;
|
|
}
|
|
}
|
|
#ifdef MLX5_PMD_SOFT_COUNTERS
|
|
/* Increment sent bytes counter. */
|
|
txq->stats.obytes += length;
|
|
#endif
|
|
++i;
|
|
} while (pkts_n);
|
|
/* Take a shortcut if nothing must be sent. */
|
|
if (unlikely(i == 0))
|
|
return 0;
|
|
/* Check whether completion threshold has been reached. */
|
|
/* "j" includes both packets and segments. */
|
|
comp = txq->elts_comp + j;
|
|
if (comp >= MLX5_TX_COMP_THRESH) {
|
|
volatile struct mlx5_wqe *wqe = mpw.wqe;
|
|
|
|
/* A CQE slot must always be available. */
|
|
assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
|
|
/* Request completion on last WQE. */
|
|
wqe->ctrl[2] = rte_cpu_to_be_32(8);
|
|
/* Save elts_head in unused "immediate" field of WQE. */
|
|
wqe->ctrl[3] = elts_head;
|
|
txq->elts_comp = 0;
|
|
} else {
|
|
txq->elts_comp = comp;
|
|
}
|
|
#ifdef MLX5_PMD_SOFT_COUNTERS
|
|
/* Increment sent packets counter. */
|
|
txq->stats.opackets += i;
|
|
#endif
|
|
/* Ring QP doorbell. */
|
|
if (mpw.state == MLX5_MPW_INL_STATE_OPENED)
|
|
mlx5_mpw_inline_close(txq, &mpw);
|
|
else if (mpw.state == MLX5_MPW_STATE_OPENED)
|
|
mlx5_mpw_close(txq, &mpw);
|
|
mlx5_tx_dbrec(txq, mpw.wqe);
|
|
txq->elts_head = elts_head;
|
|
return i;
|
|
}
|
|
|
|
/**
|
|
* Open an Enhanced MPW session.
|
|
*
|
|
* @param txq
|
|
* Pointer to TX queue structure.
|
|
* @param mpw
|
|
* Pointer to MPW session structure.
|
|
* @param length
|
|
* Packet length.
|
|
*/
|
|
static inline void
|
|
mlx5_empw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, int padding)
|
|
{
|
|
uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
|
|
|
|
mpw->state = MLX5_MPW_ENHANCED_STATE_OPENED;
|
|
mpw->pkts_n = 0;
|
|
mpw->total_len = sizeof(struct mlx5_wqe);
|
|
mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
|
|
mpw->wqe->ctrl[0] =
|
|
rte_cpu_to_be_32((MLX5_OPC_MOD_ENHANCED_MPSW << 24) |
|
|
(txq->wqe_ci << 8) |
|
|
MLX5_OPCODE_ENHANCED_MPSW);
|
|
mpw->wqe->ctrl[2] = 0;
|
|
mpw->wqe->ctrl[3] = 0;
|
|
memset((void *)(uintptr_t)&mpw->wqe->eseg, 0, MLX5_WQE_DWORD_SIZE);
|
|
if (unlikely(padding)) {
|
|
uintptr_t addr = (uintptr_t)(mpw->wqe + 1);
|
|
|
|
/* Pad the first 2 DWORDs with zero-length inline header. */
|
|
*(volatile uint32_t *)addr = rte_cpu_to_be_32(MLX5_INLINE_SEG);
|
|
*(volatile uint32_t *)(addr + MLX5_WQE_DWORD_SIZE) =
|
|
rte_cpu_to_be_32(MLX5_INLINE_SEG);
|
|
mpw->total_len += 2 * MLX5_WQE_DWORD_SIZE;
|
|
/* Start from the next WQEBB. */
|
|
mpw->data.raw = (volatile void *)(tx_mlx5_wqe(txq, idx + 1));
|
|
} else {
|
|
mpw->data.raw = (volatile void *)(mpw->wqe + 1);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Close an Enhanced MPW session.
|
|
*
|
|
* @param txq
|
|
* Pointer to TX queue structure.
|
|
* @param mpw
|
|
* Pointer to MPW session structure.
|
|
*
|
|
* @return
|
|
* Number of consumed WQEs.
|
|
*/
|
|
static inline uint16_t
|
|
mlx5_empw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
|
|
{
|
|
uint16_t ret;
|
|
|
|
/* Store size in multiple of 16 bytes. Control and Ethernet segments
|
|
* count as 2.
|
|
*/
|
|
mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
|
|
MLX5_WQE_DS(mpw->total_len));
|
|
mpw->state = MLX5_MPW_STATE_CLOSED;
|
|
ret = (mpw->total_len + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
|
|
txq->wqe_ci += ret;
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* TX with Enhanced MPW support.
|
|
*
|
|
* @param txq
|
|
* Pointer to TX queue structure.
|
|
* @param[in] pkts
|
|
* Packets to transmit.
|
|
* @param pkts_n
|
|
* Number of packets in array.
|
|
*
|
|
* @return
|
|
* Number of packets successfully transmitted (<= pkts_n).
|
|
*/
|
|
static inline uint16_t
|
|
txq_burst_empw(struct mlx5_txq_data *txq, struct rte_mbuf **pkts,
|
|
uint16_t pkts_n)
|
|
{
|
|
uint16_t elts_head = txq->elts_head;
|
|
const uint16_t elts_n = 1 << txq->elts_n;
|
|
const uint16_t elts_m = elts_n - 1;
|
|
unsigned int i = 0;
|
|
unsigned int j = 0;
|
|
uint16_t max_elts;
|
|
uint16_t max_wqe;
|
|
unsigned int max_inline = txq->max_inline * RTE_CACHE_LINE_SIZE;
|
|
unsigned int mpw_room = 0;
|
|
unsigned int inl_pad = 0;
|
|
uint32_t inl_hdr;
|
|
uint64_t addr_64;
|
|
struct mlx5_mpw mpw = {
|
|
.state = MLX5_MPW_STATE_CLOSED,
|
|
};
|
|
|
|
if (unlikely(!pkts_n))
|
|
return 0;
|
|
/* Start processing. */
|
|
mlx5_tx_complete(txq);
|
|
max_elts = (elts_n - (elts_head - txq->elts_tail));
|
|
max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
|
|
if (unlikely(!max_wqe))
|
|
return 0;
|
|
do {
|
|
struct rte_mbuf *buf = *(pkts++);
|
|
uintptr_t addr;
|
|
unsigned int do_inline = 0; /* Whether inline is possible. */
|
|
uint32_t length;
|
|
uint8_t cs_flags;
|
|
rte_be32_t metadata;
|
|
|
|
/* Multi-segmented packet is handled in slow-path outside. */
|
|
assert(NB_SEGS(buf) == 1);
|
|
/* Make sure there is enough room to store this packet. */
|
|
if (max_elts - j == 0)
|
|
break;
|
|
cs_flags = txq_ol_cksum_to_cs(buf);
|
|
/* Copy metadata from mbuf if valid */
|
|
metadata = buf->ol_flags & PKT_TX_METADATA ? buf->tx_metadata :
|
|
0;
|
|
/* Retrieve packet information. */
|
|
length = PKT_LEN(buf);
|
|
/* Start new session if:
|
|
* - multi-segment packet
|
|
* - no space left even for a dseg
|
|
* - next packet can be inlined with a new WQE
|
|
* - cs_flag differs
|
|
*/
|
|
if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED) {
|
|
if ((inl_pad + sizeof(struct mlx5_wqe_data_seg) >
|
|
mpw_room) ||
|
|
(length <= txq->inline_max_packet_sz &&
|
|
inl_pad + sizeof(inl_hdr) + length >
|
|
mpw_room) ||
|
|
(mpw.wqe->eseg.flow_table_metadata != metadata) ||
|
|
(mpw.wqe->eseg.cs_flags != cs_flags))
|
|
max_wqe -= mlx5_empw_close(txq, &mpw);
|
|
}
|
|
if (unlikely(mpw.state == MLX5_MPW_STATE_CLOSED)) {
|
|
/* In Enhanced MPW, inline as much as the budget is
|
|
* allowed. The remaining space is to be filled with
|
|
* dsegs. If the title WQEBB isn't padded, it will have
|
|
* 2 dsegs there.
|
|
*/
|
|
mpw_room = RTE_MIN(MLX5_WQE_SIZE_MAX,
|
|
(max_inline ? max_inline :
|
|
pkts_n * MLX5_WQE_DWORD_SIZE) +
|
|
MLX5_WQE_SIZE);
|
|
if (unlikely(max_wqe * MLX5_WQE_SIZE < mpw_room))
|
|
break;
|
|
/* Don't pad the title WQEBB to not waste WQ. */
|
|
mlx5_empw_new(txq, &mpw, 0);
|
|
mpw_room -= mpw.total_len;
|
|
inl_pad = 0;
|
|
do_inline = length <= txq->inline_max_packet_sz &&
|
|
sizeof(inl_hdr) + length <= mpw_room &&
|
|
!txq->mpw_hdr_dseg;
|
|
mpw.wqe->eseg.cs_flags = cs_flags;
|
|
mpw.wqe->eseg.flow_table_metadata = metadata;
|
|
} else {
|
|
/* Evaluate whether the next packet can be inlined.
|
|
* Inlininig is possible when:
|
|
* - length is less than configured value
|
|
* - length fits for remaining space
|
|
* - not required to fill the title WQEBB with dsegs
|
|
*/
|
|
do_inline =
|
|
length <= txq->inline_max_packet_sz &&
|
|
inl_pad + sizeof(inl_hdr) + length <=
|
|
mpw_room &&
|
|
(!txq->mpw_hdr_dseg ||
|
|
mpw.total_len >= MLX5_WQE_SIZE);
|
|
}
|
|
if (max_inline && do_inline) {
|
|
/* Inline packet into WQE. */
|
|
unsigned int max;
|
|
|
|
assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
|
|
assert(length == DATA_LEN(buf));
|
|
inl_hdr = rte_cpu_to_be_32(length | MLX5_INLINE_SEG);
|
|
addr = rte_pktmbuf_mtod(buf, uintptr_t);
|
|
mpw.data.raw = (volatile void *)
|
|
((uintptr_t)mpw.data.raw + inl_pad);
|
|
max = tx_mlx5_wq_tailroom(txq,
|
|
(void *)(uintptr_t)mpw.data.raw);
|
|
/* Copy inline header. */
|
|
mpw.data.raw = (volatile void *)
|
|
mlx5_copy_to_wq(
|
|
(void *)(uintptr_t)mpw.data.raw,
|
|
&inl_hdr,
|
|
sizeof(inl_hdr),
|
|
(void *)(uintptr_t)txq->wqes,
|
|
max);
|
|
max = tx_mlx5_wq_tailroom(txq,
|
|
(void *)(uintptr_t)mpw.data.raw);
|
|
/* Copy packet data. */
|
|
mpw.data.raw = (volatile void *)
|
|
mlx5_copy_to_wq(
|
|
(void *)(uintptr_t)mpw.data.raw,
|
|
(void *)addr,
|
|
length,
|
|
(void *)(uintptr_t)txq->wqes,
|
|
max);
|
|
++mpw.pkts_n;
|
|
mpw.total_len += (inl_pad + sizeof(inl_hdr) + length);
|
|
/* No need to get completion as the entire packet is
|
|
* copied to WQ. Free the buf right away.
|
|
*/
|
|
rte_pktmbuf_free_seg(buf);
|
|
mpw_room -= (inl_pad + sizeof(inl_hdr) + length);
|
|
/* Add pad in the next packet if any. */
|
|
inl_pad = (((uintptr_t)mpw.data.raw +
|
|
(MLX5_WQE_DWORD_SIZE - 1)) &
|
|
~(MLX5_WQE_DWORD_SIZE - 1)) -
|
|
(uintptr_t)mpw.data.raw;
|
|
} else {
|
|
/* No inline. Load a dseg of packet pointer. */
|
|
volatile rte_v128u32_t *dseg;
|
|
|
|
assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
|
|
assert((inl_pad + sizeof(*dseg)) <= mpw_room);
|
|
assert(length == DATA_LEN(buf));
|
|
if (!tx_mlx5_wq_tailroom(txq,
|
|
(void *)((uintptr_t)mpw.data.raw
|
|
+ inl_pad)))
|
|
dseg = (volatile void *)txq->wqes;
|
|
else
|
|
dseg = (volatile void *)
|
|
((uintptr_t)mpw.data.raw +
|
|
inl_pad);
|
|
(*txq->elts)[elts_head++ & elts_m] = buf;
|
|
addr_64 = rte_cpu_to_be_64(rte_pktmbuf_mtod(buf,
|
|
uintptr_t));
|
|
*dseg = (rte_v128u32_t) {
|
|
rte_cpu_to_be_32(length),
|
|
mlx5_tx_mb2mr(txq, buf),
|
|
addr_64,
|
|
addr_64 >> 32,
|
|
};
|
|
mpw.data.raw = (volatile void *)(dseg + 1);
|
|
mpw.total_len += (inl_pad + sizeof(*dseg));
|
|
++j;
|
|
++mpw.pkts_n;
|
|
mpw_room -= (inl_pad + sizeof(*dseg));
|
|
inl_pad = 0;
|
|
}
|
|
#ifdef MLX5_PMD_SOFT_COUNTERS
|
|
/* Increment sent bytes counter. */
|
|
txq->stats.obytes += length;
|
|
#endif
|
|
++i;
|
|
} while (i < pkts_n);
|
|
/* Take a shortcut if nothing must be sent. */
|
|
if (unlikely(i == 0))
|
|
return 0;
|
|
/* Check whether completion threshold has been reached. */
|
|
if (txq->elts_comp + j >= MLX5_TX_COMP_THRESH ||
|
|
(uint16_t)(txq->wqe_ci - txq->mpw_comp) >=
|
|
(1 << txq->wqe_n) / MLX5_TX_COMP_THRESH_INLINE_DIV) {
|
|
volatile struct mlx5_wqe *wqe = mpw.wqe;
|
|
|
|
/* A CQE slot must always be available. */
|
|
assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
|
|
/* Request completion on last WQE. */
|
|
wqe->ctrl[2] = rte_cpu_to_be_32(8);
|
|
/* Save elts_head in unused "immediate" field of WQE. */
|
|
wqe->ctrl[3] = elts_head;
|
|
txq->elts_comp = 0;
|
|
txq->mpw_comp = txq->wqe_ci;
|
|
} else {
|
|
txq->elts_comp += j;
|
|
}
|
|
#ifdef MLX5_PMD_SOFT_COUNTERS
|
|
/* Increment sent packets counter. */
|
|
txq->stats.opackets += i;
|
|
#endif
|
|
if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED)
|
|
mlx5_empw_close(txq, &mpw);
|
|
/* Ring QP doorbell. */
|
|
mlx5_tx_dbrec(txq, mpw.wqe);
|
|
txq->elts_head = elts_head;
|
|
return i;
|
|
}
|
|
|
|
/**
|
|
* DPDK callback for TX with Enhanced MPW support.
|
|
*
|
|
* @param dpdk_txq
|
|
* Generic pointer to TX queue structure.
|
|
* @param[in] pkts
|
|
* Packets to transmit.
|
|
* @param pkts_n
|
|
* Number of packets in array.
|
|
*
|
|
* @return
|
|
* Number of packets successfully transmitted (<= pkts_n).
|
|
*/
|
|
uint16_t
|
|
mlx5_tx_burst_empw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
|
|
{
|
|
struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
|
|
uint16_t nb_tx = 0;
|
|
|
|
while (pkts_n > nb_tx) {
|
|
uint16_t n;
|
|
uint16_t ret;
|
|
|
|
n = txq_count_contig_multi_seg(&pkts[nb_tx], pkts_n - nb_tx);
|
|
if (n) {
|
|
ret = mlx5_tx_burst(dpdk_txq, &pkts[nb_tx], n);
|
|
if (!ret)
|
|
break;
|
|
nb_tx += ret;
|
|
}
|
|
n = txq_count_contig_single_seg(&pkts[nb_tx], pkts_n - nb_tx);
|
|
if (n) {
|
|
ret = txq_burst_empw(txq, &pkts[nb_tx], n);
|
|
if (!ret)
|
|
break;
|
|
nb_tx += ret;
|
|
}
|
|
}
|
|
return nb_tx;
|
|
}
|
|
|
|
/**
|
|
* Translate RX completion flags to packet type.
|
|
*
|
|
* @param[in] rxq
|
|
* Pointer to RX queue structure.
|
|
* @param[in] cqe
|
|
* Pointer to CQE.
|
|
*
|
|
* @note: fix mlx5_dev_supported_ptypes_get() if any change here.
|
|
*
|
|
* @return
|
|
* Packet type for struct rte_mbuf.
|
|
*/
|
|
static inline uint32_t
|
|
rxq_cq_to_pkt_type(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe)
|
|
{
|
|
uint8_t idx;
|
|
uint8_t pinfo = cqe->pkt_info;
|
|
uint16_t ptype = cqe->hdr_type_etc;
|
|
|
|
/*
|
|
* The index to the array should have:
|
|
* bit[1:0] = l3_hdr_type
|
|
* bit[4:2] = l4_hdr_type
|
|
* bit[5] = ip_frag
|
|
* bit[6] = tunneled
|
|
* bit[7] = outer_l3_type
|
|
*/
|
|
idx = ((pinfo & 0x3) << 6) | ((ptype & 0xfc00) >> 10);
|
|
return mlx5_ptype_table[idx] | rxq->tunnel * !!(idx & (1 << 6));
|
|
}
|
|
|
|
/**
|
|
* Get size of the next packet for a given CQE. For compressed CQEs, the
|
|
* consumer index is updated only once all packets of the current one have
|
|
* been processed.
|
|
*
|
|
* @param rxq
|
|
* Pointer to RX queue.
|
|
* @param cqe
|
|
* CQE to process.
|
|
* @param[out] mcqe
|
|
* Store pointer to mini-CQE if compressed. Otherwise, the pointer is not
|
|
* written.
|
|
*
|
|
* @return
|
|
* Packet size in bytes (0 if there is none), -1 in case of completion
|
|
* with error.
|
|
*/
|
|
static inline int
|
|
mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
|
|
uint16_t cqe_cnt, volatile struct mlx5_mini_cqe8 **mcqe)
|
|
{
|
|
struct rxq_zip *zip = &rxq->zip;
|
|
uint16_t cqe_n = cqe_cnt + 1;
|
|
int len = 0;
|
|
uint16_t idx, end;
|
|
|
|
/* Process compressed data in the CQE and mini arrays. */
|
|
if (zip->ai) {
|
|
volatile struct mlx5_mini_cqe8 (*mc)[8] =
|
|
(volatile struct mlx5_mini_cqe8 (*)[8])
|
|
(uintptr_t)(&(*rxq->cqes)[zip->ca & cqe_cnt].pkt_info);
|
|
|
|
len = rte_be_to_cpu_32((*mc)[zip->ai & 7].byte_cnt);
|
|
*mcqe = &(*mc)[zip->ai & 7];
|
|
if ((++zip->ai & 7) == 0) {
|
|
/* Invalidate consumed CQEs */
|
|
idx = zip->ca;
|
|
end = zip->na;
|
|
while (idx != end) {
|
|
(*rxq->cqes)[idx & cqe_cnt].op_own =
|
|
MLX5_CQE_INVALIDATE;
|
|
++idx;
|
|
}
|
|
/*
|
|
* Increment consumer index to skip the number of
|
|
* CQEs consumed. Hardware leaves holes in the CQ
|
|
* ring for software use.
|
|
*/
|
|
zip->ca = zip->na;
|
|
zip->na += 8;
|
|
}
|
|
if (unlikely(rxq->zip.ai == rxq->zip.cqe_cnt)) {
|
|
/* Invalidate the rest */
|
|
idx = zip->ca;
|
|
end = zip->cq_ci;
|
|
|
|
while (idx != end) {
|
|
(*rxq->cqes)[idx & cqe_cnt].op_own =
|
|
MLX5_CQE_INVALIDATE;
|
|
++idx;
|
|
}
|
|
rxq->cq_ci = zip->cq_ci;
|
|
zip->ai = 0;
|
|
}
|
|
/* No compressed data, get next CQE and verify if it is compressed. */
|
|
} else {
|
|
int ret;
|
|
int8_t op_own;
|
|
|
|
ret = check_cqe(cqe, cqe_n, rxq->cq_ci);
|
|
if (unlikely(ret == 1))
|
|
return 0;
|
|
++rxq->cq_ci;
|
|
op_own = cqe->op_own;
|
|
rte_cio_rmb();
|
|
if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED) {
|
|
volatile struct mlx5_mini_cqe8 (*mc)[8] =
|
|
(volatile struct mlx5_mini_cqe8 (*)[8])
|
|
(uintptr_t)(&(*rxq->cqes)[rxq->cq_ci &
|
|
cqe_cnt].pkt_info);
|
|
|
|
/* Fix endianness. */
|
|
zip->cqe_cnt = rte_be_to_cpu_32(cqe->byte_cnt);
|
|
/*
|
|
* Current mini array position is the one returned by
|
|
* check_cqe64().
|
|
*
|
|
* If completion comprises several mini arrays, as a
|
|
* special case the second one is located 7 CQEs after
|
|
* the initial CQE instead of 8 for subsequent ones.
|
|
*/
|
|
zip->ca = rxq->cq_ci;
|
|
zip->na = zip->ca + 7;
|
|
/* Compute the next non compressed CQE. */
|
|
--rxq->cq_ci;
|
|
zip->cq_ci = rxq->cq_ci + zip->cqe_cnt;
|
|
/* Get packet size to return. */
|
|
len = rte_be_to_cpu_32((*mc)[0].byte_cnt);
|
|
*mcqe = &(*mc)[0];
|
|
zip->ai = 1;
|
|
/* Prefetch all the entries to be invalidated */
|
|
idx = zip->ca;
|
|
end = zip->cq_ci;
|
|
while (idx != end) {
|
|
rte_prefetch0(&(*rxq->cqes)[(idx) & cqe_cnt]);
|
|
++idx;
|
|
}
|
|
} else {
|
|
len = rte_be_to_cpu_32(cqe->byte_cnt);
|
|
}
|
|
/* Error while receiving packet. */
|
|
if (unlikely(MLX5_CQE_OPCODE(op_own) == MLX5_CQE_RESP_ERR))
|
|
return -1;
|
|
}
|
|
return len;
|
|
}
|
|
|
|
/**
|
|
* Translate RX completion flags to offload flags.
|
|
*
|
|
* @param[in] cqe
|
|
* Pointer to CQE.
|
|
*
|
|
* @return
|
|
* Offload flags (ol_flags) for struct rte_mbuf.
|
|
*/
|
|
static inline uint32_t
|
|
rxq_cq_to_ol_flags(volatile struct mlx5_cqe *cqe)
|
|
{
|
|
uint32_t ol_flags = 0;
|
|
uint16_t flags = rte_be_to_cpu_16(cqe->hdr_type_etc);
|
|
|
|
ol_flags =
|
|
TRANSPOSE(flags,
|
|
MLX5_CQE_RX_L3_HDR_VALID,
|
|
PKT_RX_IP_CKSUM_GOOD) |
|
|
TRANSPOSE(flags,
|
|
MLX5_CQE_RX_L4_HDR_VALID,
|
|
PKT_RX_L4_CKSUM_GOOD);
|
|
return ol_flags;
|
|
}
|
|
|
|
/**
|
|
* Fill in mbuf fields from RX completion flags.
|
|
* Note that pkt->ol_flags should be initialized outside of this function.
|
|
*
|
|
* @param rxq
|
|
* Pointer to RX queue.
|
|
* @param pkt
|
|
* mbuf to fill.
|
|
* @param cqe
|
|
* CQE to process.
|
|
* @param rss_hash_res
|
|
* Packet RSS Hash result.
|
|
*/
|
|
static inline void
|
|
rxq_cq_to_mbuf(struct mlx5_rxq_data *rxq, struct rte_mbuf *pkt,
|
|
volatile struct mlx5_cqe *cqe, uint32_t rss_hash_res)
|
|
{
|
|
/* Update packet information. */
|
|
pkt->packet_type = rxq_cq_to_pkt_type(rxq, cqe);
|
|
if (rss_hash_res && rxq->rss_hash) {
|
|
pkt->hash.rss = rss_hash_res;
|
|
pkt->ol_flags |= PKT_RX_RSS_HASH;
|
|
}
|
|
if (rxq->mark && MLX5_FLOW_MARK_IS_VALID(cqe->sop_drop_qpn)) {
|
|
pkt->ol_flags |= PKT_RX_FDIR;
|
|
if (cqe->sop_drop_qpn !=
|
|
rte_cpu_to_be_32(MLX5_FLOW_MARK_DEFAULT)) {
|
|
uint32_t mark = cqe->sop_drop_qpn;
|
|
|
|
pkt->ol_flags |= PKT_RX_FDIR_ID;
|
|
pkt->hash.fdir.hi = mlx5_flow_mark_get(mark);
|
|
}
|
|
}
|
|
if (rxq->csum)
|
|
pkt->ol_flags |= rxq_cq_to_ol_flags(cqe);
|
|
if (rxq->vlan_strip &&
|
|
(cqe->hdr_type_etc & rte_cpu_to_be_16(MLX5_CQE_VLAN_STRIPPED))) {
|
|
pkt->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
|
|
pkt->vlan_tci = rte_be_to_cpu_16(cqe->vlan_info);
|
|
}
|
|
if (rxq->hw_timestamp) {
|
|
pkt->timestamp = rte_be_to_cpu_64(cqe->timestamp);
|
|
pkt->ol_flags |= PKT_RX_TIMESTAMP;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* DPDK callback for RX.
|
|
*
|
|
* @param dpdk_rxq
|
|
* Generic pointer to RX queue structure.
|
|
* @param[out] pkts
|
|
* Array to store received packets.
|
|
* @param pkts_n
|
|
* Maximum number of packets in array.
|
|
*
|
|
* @return
|
|
* Number of packets successfully received (<= pkts_n).
|
|
*/
|
|
uint16_t
|
|
mlx5_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
|
|
{
|
|
struct mlx5_rxq_data *rxq = dpdk_rxq;
|
|
const unsigned int wqe_cnt = (1 << rxq->elts_n) - 1;
|
|
const unsigned int cqe_cnt = (1 << rxq->cqe_n) - 1;
|
|
const unsigned int sges_n = rxq->sges_n;
|
|
struct rte_mbuf *pkt = NULL;
|
|
struct rte_mbuf *seg = NULL;
|
|
volatile struct mlx5_cqe *cqe =
|
|
&(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
|
|
unsigned int i = 0;
|
|
unsigned int rq_ci = rxq->rq_ci << sges_n;
|
|
int len = 0; /* keep its value across iterations. */
|
|
|
|
while (pkts_n) {
|
|
unsigned int idx = rq_ci & wqe_cnt;
|
|
volatile struct mlx5_wqe_data_seg *wqe =
|
|
&((volatile struct mlx5_wqe_data_seg *)rxq->wqes)[idx];
|
|
struct rte_mbuf *rep = (*rxq->elts)[idx];
|
|
volatile struct mlx5_mini_cqe8 *mcqe = NULL;
|
|
uint32_t rss_hash_res;
|
|
|
|
if (pkt)
|
|
NEXT(seg) = rep;
|
|
seg = rep;
|
|
rte_prefetch0(seg);
|
|
rte_prefetch0(cqe);
|
|
rte_prefetch0(wqe);
|
|
rep = rte_mbuf_raw_alloc(rxq->mp);
|
|
if (unlikely(rep == NULL)) {
|
|
++rxq->stats.rx_nombuf;
|
|
if (!pkt) {
|
|
/*
|
|
* no buffers before we even started,
|
|
* bail out silently.
|
|
*/
|
|
break;
|
|
}
|
|
while (pkt != seg) {
|
|
assert(pkt != (*rxq->elts)[idx]);
|
|
rep = NEXT(pkt);
|
|
NEXT(pkt) = NULL;
|
|
NB_SEGS(pkt) = 1;
|
|
rte_mbuf_raw_free(pkt);
|
|
pkt = rep;
|
|
}
|
|
break;
|
|
}
|
|
if (!pkt) {
|
|
cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
|
|
len = mlx5_rx_poll_len(rxq, cqe, cqe_cnt, &mcqe);
|
|
if (!len) {
|
|
rte_mbuf_raw_free(rep);
|
|
break;
|
|
}
|
|
if (unlikely(len == -1)) {
|
|
/* RX error, packet is likely too large. */
|
|
rte_mbuf_raw_free(rep);
|
|
++rxq->stats.idropped;
|
|
goto skip;
|
|
}
|
|
pkt = seg;
|
|
assert(len >= (rxq->crc_present << 2));
|
|
pkt->ol_flags = 0;
|
|
/* If compressed, take hash result from mini-CQE. */
|
|
rss_hash_res = rte_be_to_cpu_32(mcqe == NULL ?
|
|
cqe->rx_hash_res :
|
|
mcqe->rx_hash_result);
|
|
rxq_cq_to_mbuf(rxq, pkt, cqe, rss_hash_res);
|
|
if (rxq->crc_present)
|
|
len -= RTE_ETHER_CRC_LEN;
|
|
PKT_LEN(pkt) = len;
|
|
}
|
|
DATA_LEN(rep) = DATA_LEN(seg);
|
|
PKT_LEN(rep) = PKT_LEN(seg);
|
|
SET_DATA_OFF(rep, DATA_OFF(seg));
|
|
PORT(rep) = PORT(seg);
|
|
(*rxq->elts)[idx] = rep;
|
|
/*
|
|
* Fill NIC descriptor with the new buffer. The lkey and size
|
|
* of the buffers are already known, only the buffer address
|
|
* changes.
|
|
*/
|
|
wqe->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
|
|
/* If there's only one MR, no need to replace LKey in WQE. */
|
|
if (unlikely(mlx5_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1))
|
|
wqe->lkey = mlx5_rx_mb2mr(rxq, rep);
|
|
if (len > DATA_LEN(seg)) {
|
|
len -= DATA_LEN(seg);
|
|
++NB_SEGS(pkt);
|
|
++rq_ci;
|
|
continue;
|
|
}
|
|
DATA_LEN(seg) = len;
|
|
#ifdef MLX5_PMD_SOFT_COUNTERS
|
|
/* Increment bytes counter. */
|
|
rxq->stats.ibytes += PKT_LEN(pkt);
|
|
#endif
|
|
/* Return packet. */
|
|
*(pkts++) = pkt;
|
|
pkt = NULL;
|
|
--pkts_n;
|
|
++i;
|
|
skip:
|
|
/* Align consumer index to the next stride. */
|
|
rq_ci >>= sges_n;
|
|
++rq_ci;
|
|
rq_ci <<= sges_n;
|
|
}
|
|
if (unlikely((i == 0) && ((rq_ci >> sges_n) == rxq->rq_ci)))
|
|
return 0;
|
|
/* Update the consumer index. */
|
|
rxq->rq_ci = rq_ci >> sges_n;
|
|
rte_cio_wmb();
|
|
*rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
|
|
rte_cio_wmb();
|
|
*rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
|
|
#ifdef MLX5_PMD_SOFT_COUNTERS
|
|
/* Increment packets counter. */
|
|
rxq->stats.ipackets += i;
|
|
#endif
|
|
return i;
|
|
}
|
|
|
|
void
|
|
mlx5_mprq_buf_free_cb(void *addr __rte_unused, void *opaque)
|
|
{
|
|
struct mlx5_mprq_buf *buf = opaque;
|
|
|
|
if (rte_atomic16_read(&buf->refcnt) == 1) {
|
|
rte_mempool_put(buf->mp, buf);
|
|
} else if (rte_atomic16_add_return(&buf->refcnt, -1) == 0) {
|
|
rte_atomic16_set(&buf->refcnt, 1);
|
|
rte_mempool_put(buf->mp, buf);
|
|
}
|
|
}
|
|
|
|
void
|
|
mlx5_mprq_buf_free(struct mlx5_mprq_buf *buf)
|
|
{
|
|
mlx5_mprq_buf_free_cb(NULL, buf);
|
|
}
|
|
|
|
static inline void
|
|
mprq_buf_replace(struct mlx5_rxq_data *rxq, uint16_t rq_idx)
|
|
{
|
|
struct mlx5_mprq_buf *rep = rxq->mprq_repl;
|
|
volatile struct mlx5_wqe_data_seg *wqe =
|
|
&((volatile struct mlx5_wqe_mprq *)rxq->wqes)[rq_idx].dseg;
|
|
void *addr;
|
|
|
|
assert(rep != NULL);
|
|
/* Replace MPRQ buf. */
|
|
(*rxq->mprq_bufs)[rq_idx] = rep;
|
|
/* Replace WQE. */
|
|
addr = mlx5_mprq_buf_addr(rep);
|
|
wqe->addr = rte_cpu_to_be_64((uintptr_t)addr);
|
|
/* If there's only one MR, no need to replace LKey in WQE. */
|
|
if (unlikely(mlx5_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1))
|
|
wqe->lkey = mlx5_rx_addr2mr(rxq, (uintptr_t)addr);
|
|
/* Stash a mbuf for next replacement. */
|
|
if (likely(!rte_mempool_get(rxq->mprq_mp, (void **)&rep)))
|
|
rxq->mprq_repl = rep;
|
|
else
|
|
rxq->mprq_repl = NULL;
|
|
}
|
|
|
|
/**
|
|
* DPDK callback for RX with Multi-Packet RQ support.
|
|
*
|
|
* @param dpdk_rxq
|
|
* Generic pointer to RX queue structure.
|
|
* @param[out] pkts
|
|
* Array to store received packets.
|
|
* @param pkts_n
|
|
* Maximum number of packets in array.
|
|
*
|
|
* @return
|
|
* Number of packets successfully received (<= pkts_n).
|
|
*/
|
|
uint16_t
|
|
mlx5_rx_burst_mprq(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
|
|
{
|
|
struct mlx5_rxq_data *rxq = dpdk_rxq;
|
|
const unsigned int strd_n = 1 << rxq->strd_num_n;
|
|
const unsigned int strd_sz = 1 << rxq->strd_sz_n;
|
|
const unsigned int strd_shift =
|
|
MLX5_MPRQ_STRIDE_SHIFT_BYTE * rxq->strd_shift_en;
|
|
const unsigned int cq_mask = (1 << rxq->cqe_n) - 1;
|
|
const unsigned int wq_mask = (1 << rxq->elts_n) - 1;
|
|
volatile struct mlx5_cqe *cqe = &(*rxq->cqes)[rxq->cq_ci & cq_mask];
|
|
unsigned int i = 0;
|
|
uint32_t rq_ci = rxq->rq_ci;
|
|
uint16_t consumed_strd = rxq->consumed_strd;
|
|
struct mlx5_mprq_buf *buf = (*rxq->mprq_bufs)[rq_ci & wq_mask];
|
|
|
|
while (i < pkts_n) {
|
|
struct rte_mbuf *pkt;
|
|
void *addr;
|
|
int ret;
|
|
unsigned int len;
|
|
uint16_t strd_cnt;
|
|
uint16_t strd_idx;
|
|
uint32_t offset;
|
|
uint32_t byte_cnt;
|
|
volatile struct mlx5_mini_cqe8 *mcqe = NULL;
|
|
uint32_t rss_hash_res = 0;
|
|
|
|
if (consumed_strd == strd_n) {
|
|
/* Replace WQE only if the buffer is still in use. */
|
|
if (rte_atomic16_read(&buf->refcnt) > 1) {
|
|
mprq_buf_replace(rxq, rq_ci & wq_mask);
|
|
/* Release the old buffer. */
|
|
mlx5_mprq_buf_free(buf);
|
|
} else if (unlikely(rxq->mprq_repl == NULL)) {
|
|
struct mlx5_mprq_buf *rep;
|
|
|
|
/*
|
|
* Currently, the MPRQ mempool is out of buffer
|
|
* and doing memcpy regardless of the size of Rx
|
|
* packet. Retry allocation to get back to
|
|
* normal.
|
|
*/
|
|
if (!rte_mempool_get(rxq->mprq_mp,
|
|
(void **)&rep))
|
|
rxq->mprq_repl = rep;
|
|
}
|
|
/* Advance to the next WQE. */
|
|
consumed_strd = 0;
|
|
++rq_ci;
|
|
buf = (*rxq->mprq_bufs)[rq_ci & wq_mask];
|
|
}
|
|
cqe = &(*rxq->cqes)[rxq->cq_ci & cq_mask];
|
|
ret = mlx5_rx_poll_len(rxq, cqe, cq_mask, &mcqe);
|
|
if (!ret)
|
|
break;
|
|
if (unlikely(ret == -1)) {
|
|
/* RX error, packet is likely too large. */
|
|
++rxq->stats.idropped;
|
|
continue;
|
|
}
|
|
byte_cnt = ret;
|
|
strd_cnt = (byte_cnt & MLX5_MPRQ_STRIDE_NUM_MASK) >>
|
|
MLX5_MPRQ_STRIDE_NUM_SHIFT;
|
|
assert(strd_cnt);
|
|
consumed_strd += strd_cnt;
|
|
if (byte_cnt & MLX5_MPRQ_FILLER_MASK)
|
|
continue;
|
|
if (mcqe == NULL) {
|
|
rss_hash_res = rte_be_to_cpu_32(cqe->rx_hash_res);
|
|
strd_idx = rte_be_to_cpu_16(cqe->wqe_counter);
|
|
} else {
|
|
/* mini-CQE for MPRQ doesn't have hash result. */
|
|
strd_idx = rte_be_to_cpu_16(mcqe->stride_idx);
|
|
}
|
|
assert(strd_idx < strd_n);
|
|
assert(!((rte_be_to_cpu_16(cqe->wqe_id) ^ rq_ci) & wq_mask));
|
|
/*
|
|
* Currently configured to receive a packet per a stride. But if
|
|
* MTU is adjusted through kernel interface, device could
|
|
* consume multiple strides without raising an error. In this
|
|
* case, the packet should be dropped because it is bigger than
|
|
* the max_rx_pkt_len.
|
|
*/
|
|
if (unlikely(strd_cnt > 1)) {
|
|
++rxq->stats.idropped;
|
|
continue;
|
|
}
|
|
pkt = rte_pktmbuf_alloc(rxq->mp);
|
|
if (unlikely(pkt == NULL)) {
|
|
++rxq->stats.rx_nombuf;
|
|
break;
|
|
}
|
|
len = (byte_cnt & MLX5_MPRQ_LEN_MASK) >> MLX5_MPRQ_LEN_SHIFT;
|
|
assert((int)len >= (rxq->crc_present << 2));
|
|
if (rxq->crc_present)
|
|
len -= RTE_ETHER_CRC_LEN;
|
|
offset = strd_idx * strd_sz + strd_shift;
|
|
addr = RTE_PTR_ADD(mlx5_mprq_buf_addr(buf), offset);
|
|
/* Initialize the offload flag. */
|
|
pkt->ol_flags = 0;
|
|
/*
|
|
* Memcpy packets to the target mbuf if:
|
|
* - The size of packet is smaller than mprq_max_memcpy_len.
|
|
* - Out of buffer in the Mempool for Multi-Packet RQ.
|
|
*/
|
|
if (len <= rxq->mprq_max_memcpy_len || rxq->mprq_repl == NULL) {
|
|
/*
|
|
* When memcpy'ing packet due to out-of-buffer, the
|
|
* packet must be smaller than the target mbuf.
|
|
*/
|
|
if (unlikely(rte_pktmbuf_tailroom(pkt) < len)) {
|
|
rte_pktmbuf_free_seg(pkt);
|
|
++rxq->stats.idropped;
|
|
continue;
|
|
}
|
|
rte_memcpy(rte_pktmbuf_mtod(pkt, void *), addr, len);
|
|
} else {
|
|
rte_iova_t buf_iova;
|
|
struct rte_mbuf_ext_shared_info *shinfo;
|
|
uint16_t buf_len = strd_cnt * strd_sz;
|
|
|
|
/* Increment the refcnt of the whole chunk. */
|
|
rte_atomic16_add_return(&buf->refcnt, 1);
|
|
assert((uint16_t)rte_atomic16_read(&buf->refcnt) <=
|
|
strd_n + 1);
|
|
addr = RTE_PTR_SUB(addr, RTE_PKTMBUF_HEADROOM);
|
|
/*
|
|
* MLX5 device doesn't use iova but it is necessary in a
|
|
* case where the Rx packet is transmitted via a
|
|
* different PMD.
|
|
*/
|
|
buf_iova = rte_mempool_virt2iova(buf) +
|
|
RTE_PTR_DIFF(addr, buf);
|
|
shinfo = rte_pktmbuf_ext_shinfo_init_helper(addr,
|
|
&buf_len, mlx5_mprq_buf_free_cb, buf);
|
|
/*
|
|
* EXT_ATTACHED_MBUF will be set to pkt->ol_flags when
|
|
* attaching the stride to mbuf and more offload flags
|
|
* will be added below by calling rxq_cq_to_mbuf().
|
|
* Other fields will be overwritten.
|
|
*/
|
|
rte_pktmbuf_attach_extbuf(pkt, addr, buf_iova, buf_len,
|
|
shinfo);
|
|
rte_pktmbuf_reset_headroom(pkt);
|
|
assert(pkt->ol_flags == EXT_ATTACHED_MBUF);
|
|
/*
|
|
* Prevent potential overflow due to MTU change through
|
|
* kernel interface.
|
|
*/
|
|
if (unlikely(rte_pktmbuf_tailroom(pkt) < len)) {
|
|
rte_pktmbuf_free_seg(pkt);
|
|
++rxq->stats.idropped;
|
|
continue;
|
|
}
|
|
}
|
|
rxq_cq_to_mbuf(rxq, pkt, cqe, rss_hash_res);
|
|
PKT_LEN(pkt) = len;
|
|
DATA_LEN(pkt) = len;
|
|
PORT(pkt) = rxq->port_id;
|
|
#ifdef MLX5_PMD_SOFT_COUNTERS
|
|
/* Increment bytes counter. */
|
|
rxq->stats.ibytes += PKT_LEN(pkt);
|
|
#endif
|
|
/* Return packet. */
|
|
*(pkts++) = pkt;
|
|
++i;
|
|
}
|
|
/* Update the consumer indexes. */
|
|
rxq->consumed_strd = consumed_strd;
|
|
rte_cio_wmb();
|
|
*rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
|
|
if (rq_ci != rxq->rq_ci) {
|
|
rxq->rq_ci = rq_ci;
|
|
rte_cio_wmb();
|
|
*rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
|
|
}
|
|
#ifdef MLX5_PMD_SOFT_COUNTERS
|
|
/* Increment packets counter. */
|
|
rxq->stats.ipackets += i;
|
|
#endif
|
|
return i;
|
|
}
|
|
|
|
/**
|
|
* Dummy DPDK callback for TX.
|
|
*
|
|
* This function is used to temporarily replace the real callback during
|
|
* unsafe control operations on the queue, or in case of error.
|
|
*
|
|
* @param dpdk_txq
|
|
* Generic pointer to TX queue structure.
|
|
* @param[in] pkts
|
|
* Packets to transmit.
|
|
* @param pkts_n
|
|
* Number of packets in array.
|
|
*
|
|
* @return
|
|
* Number of packets successfully transmitted (<= pkts_n).
|
|
*/
|
|
uint16_t
|
|
removed_tx_burst(void *dpdk_txq __rte_unused,
|
|
struct rte_mbuf **pkts __rte_unused,
|
|
uint16_t pkts_n __rte_unused)
|
|
{
|
|
rte_mb();
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Dummy DPDK callback for RX.
|
|
*
|
|
* This function is used to temporarily replace the real callback during
|
|
* unsafe control operations on the queue, or in case of error.
|
|
*
|
|
* @param dpdk_rxq
|
|
* Generic pointer to RX queue structure.
|
|
* @param[out] pkts
|
|
* Array to store received packets.
|
|
* @param pkts_n
|
|
* Maximum number of packets in array.
|
|
*
|
|
* @return
|
|
* Number of packets successfully received (<= pkts_n).
|
|
*/
|
|
uint16_t
|
|
removed_rx_burst(void *dpdk_txq __rte_unused,
|
|
struct rte_mbuf **pkts __rte_unused,
|
|
uint16_t pkts_n __rte_unused)
|
|
{
|
|
rte_mb();
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Vectorized Rx/Tx routines are not compiled in when required vector
|
|
* instructions are not supported on a target architecture. The following null
|
|
* stubs are needed for linkage when those are not included outside of this file
|
|
* (e.g. mlx5_rxtx_vec_sse.c for x86).
|
|
*/
|
|
|
|
__rte_weak uint16_t
|
|
mlx5_tx_burst_raw_vec(void *dpdk_txq __rte_unused,
|
|
struct rte_mbuf **pkts __rte_unused,
|
|
uint16_t pkts_n __rte_unused)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
__rte_weak uint16_t
|
|
mlx5_tx_burst_vec(void *dpdk_txq __rte_unused,
|
|
struct rte_mbuf **pkts __rte_unused,
|
|
uint16_t pkts_n __rte_unused)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
__rte_weak uint16_t
|
|
mlx5_rx_burst_vec(void *dpdk_txq __rte_unused,
|
|
struct rte_mbuf **pkts __rte_unused,
|
|
uint16_t pkts_n __rte_unused)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
__rte_weak int
|
|
mlx5_check_raw_vec_tx_support(struct rte_eth_dev *dev __rte_unused)
|
|
{
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
__rte_weak int
|
|
mlx5_check_vec_tx_support(struct rte_eth_dev *dev __rte_unused)
|
|
{
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
__rte_weak int
|
|
mlx5_rxq_check_vec_support(struct mlx5_rxq_data *rxq __rte_unused)
|
|
{
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
__rte_weak int
|
|
mlx5_check_vec_rx_support(struct rte_eth_dev *dev __rte_unused)
|
|
{
|
|
return -ENOTSUP;
|
|
}
|