numam-dpdk/drivers/net/virtio/virtio_pci.c
Bruce Richardson 742bde12f3 build/linux: rename macro from LINUXAPP to LINUX
Rename the macro to make things shorter and more comprehensible. For
both meson and make builds, keep the old macro around for backward
compatibility.

Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2019-03-12 17:31:22 +01:00

745 lines
18 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <stdint.h>
#ifdef RTE_EXEC_ENV_LINUX
#include <dirent.h>
#include <fcntl.h>
#endif
#include <rte_io.h>
#include <rte_bus.h>
#include "virtio_pci.h"
#include "virtio_logs.h"
#include "virtqueue.h"
/*
* Following macros are derived from linux/pci_regs.h, however,
* we can't simply include that header here, as there is no such
* file for non-Linux platform.
*/
#define PCI_CAPABILITY_LIST 0x34
#define PCI_CAP_ID_VNDR 0x09
#define PCI_CAP_ID_MSIX 0x11
/*
* The remaining space is defined by each driver as the per-driver
* configuration space.
*/
#define VIRTIO_PCI_CONFIG(hw) \
(((hw)->use_msix == VIRTIO_MSIX_ENABLED) ? 24 : 20)
static inline int
check_vq_phys_addr_ok(struct virtqueue *vq)
{
/* Virtio PCI device VIRTIO_PCI_QUEUE_PF register is 32bit,
* and only accepts 32 bit page frame number.
* Check if the allocated physical memory exceeds 16TB.
*/
if ((vq->vq_ring_mem + vq->vq_ring_size - 1) >>
(VIRTIO_PCI_QUEUE_ADDR_SHIFT + 32)) {
PMD_INIT_LOG(ERR, "vring address shouldn't be above 16TB!");
return 0;
}
return 1;
}
/*
* Since we are in legacy mode:
* http://ozlabs.org/~rusty/virtio-spec/virtio-0.9.5.pdf
*
* "Note that this is possible because while the virtio header is PCI (i.e.
* little) endian, the device-specific region is encoded in the native endian of
* the guest (where such distinction is applicable)."
*
* For powerpc which supports both, qemu supposes that cpu is big endian and
* enforces this for the virtio-net stuff.
*/
static void
legacy_read_dev_config(struct virtio_hw *hw, size_t offset,
void *dst, int length)
{
#ifdef RTE_ARCH_PPC_64
int size;
while (length > 0) {
if (length >= 4) {
size = 4;
rte_pci_ioport_read(VTPCI_IO(hw), dst, size,
VIRTIO_PCI_CONFIG(hw) + offset);
*(uint32_t *)dst = rte_be_to_cpu_32(*(uint32_t *)dst);
} else if (length >= 2) {
size = 2;
rte_pci_ioport_read(VTPCI_IO(hw), dst, size,
VIRTIO_PCI_CONFIG(hw) + offset);
*(uint16_t *)dst = rte_be_to_cpu_16(*(uint16_t *)dst);
} else {
size = 1;
rte_pci_ioport_read(VTPCI_IO(hw), dst, size,
VIRTIO_PCI_CONFIG(hw) + offset);
}
dst = (char *)dst + size;
offset += size;
length -= size;
}
#else
rte_pci_ioport_read(VTPCI_IO(hw), dst, length,
VIRTIO_PCI_CONFIG(hw) + offset);
#endif
}
static void
legacy_write_dev_config(struct virtio_hw *hw, size_t offset,
const void *src, int length)
{
#ifdef RTE_ARCH_PPC_64
union {
uint32_t u32;
uint16_t u16;
} tmp;
int size;
while (length > 0) {
if (length >= 4) {
size = 4;
tmp.u32 = rte_cpu_to_be_32(*(const uint32_t *)src);
rte_pci_ioport_write(VTPCI_IO(hw), &tmp.u32, size,
VIRTIO_PCI_CONFIG(hw) + offset);
} else if (length >= 2) {
size = 2;
tmp.u16 = rte_cpu_to_be_16(*(const uint16_t *)src);
rte_pci_ioport_write(VTPCI_IO(hw), &tmp.u16, size,
VIRTIO_PCI_CONFIG(hw) + offset);
} else {
size = 1;
rte_pci_ioport_write(VTPCI_IO(hw), src, size,
VIRTIO_PCI_CONFIG(hw) + offset);
}
src = (const char *)src + size;
offset += size;
length -= size;
}
#else
rte_pci_ioport_write(VTPCI_IO(hw), src, length,
VIRTIO_PCI_CONFIG(hw) + offset);
#endif
}
static uint64_t
legacy_get_features(struct virtio_hw *hw)
{
uint32_t dst;
rte_pci_ioport_read(VTPCI_IO(hw), &dst, 4, VIRTIO_PCI_HOST_FEATURES);
return dst;
}
static void
legacy_set_features(struct virtio_hw *hw, uint64_t features)
{
if ((features >> 32) != 0) {
PMD_DRV_LOG(ERR,
"only 32 bit features are allowed for legacy virtio!");
return;
}
rte_pci_ioport_write(VTPCI_IO(hw), &features, 4,
VIRTIO_PCI_GUEST_FEATURES);
}
static uint8_t
legacy_get_status(struct virtio_hw *hw)
{
uint8_t dst;
rte_pci_ioport_read(VTPCI_IO(hw), &dst, 1, VIRTIO_PCI_STATUS);
return dst;
}
static void
legacy_set_status(struct virtio_hw *hw, uint8_t status)
{
rte_pci_ioport_write(VTPCI_IO(hw), &status, 1, VIRTIO_PCI_STATUS);
}
static uint8_t
legacy_get_isr(struct virtio_hw *hw)
{
uint8_t dst;
rte_pci_ioport_read(VTPCI_IO(hw), &dst, 1, VIRTIO_PCI_ISR);
return dst;
}
/* Enable one vector (0) for Link State Intrerrupt */
static uint16_t
legacy_set_config_irq(struct virtio_hw *hw, uint16_t vec)
{
uint16_t dst;
rte_pci_ioport_write(VTPCI_IO(hw), &vec, 2, VIRTIO_MSI_CONFIG_VECTOR);
rte_pci_ioport_read(VTPCI_IO(hw), &dst, 2, VIRTIO_MSI_CONFIG_VECTOR);
return dst;
}
static uint16_t
legacy_set_queue_irq(struct virtio_hw *hw, struct virtqueue *vq, uint16_t vec)
{
uint16_t dst;
rte_pci_ioport_write(VTPCI_IO(hw), &vq->vq_queue_index, 2,
VIRTIO_PCI_QUEUE_SEL);
rte_pci_ioport_write(VTPCI_IO(hw), &vec, 2, VIRTIO_MSI_QUEUE_VECTOR);
rte_pci_ioport_read(VTPCI_IO(hw), &dst, 2, VIRTIO_MSI_QUEUE_VECTOR);
return dst;
}
static uint16_t
legacy_get_queue_num(struct virtio_hw *hw, uint16_t queue_id)
{
uint16_t dst;
rte_pci_ioport_write(VTPCI_IO(hw), &queue_id, 2, VIRTIO_PCI_QUEUE_SEL);
rte_pci_ioport_read(VTPCI_IO(hw), &dst, 2, VIRTIO_PCI_QUEUE_NUM);
return dst;
}
static int
legacy_setup_queue(struct virtio_hw *hw, struct virtqueue *vq)
{
uint32_t src;
if (!check_vq_phys_addr_ok(vq))
return -1;
rte_pci_ioport_write(VTPCI_IO(hw), &vq->vq_queue_index, 2,
VIRTIO_PCI_QUEUE_SEL);
src = vq->vq_ring_mem >> VIRTIO_PCI_QUEUE_ADDR_SHIFT;
rte_pci_ioport_write(VTPCI_IO(hw), &src, 4, VIRTIO_PCI_QUEUE_PFN);
return 0;
}
static void
legacy_del_queue(struct virtio_hw *hw, struct virtqueue *vq)
{
uint32_t src = 0;
rte_pci_ioport_write(VTPCI_IO(hw), &vq->vq_queue_index, 2,
VIRTIO_PCI_QUEUE_SEL);
rte_pci_ioport_write(VTPCI_IO(hw), &src, 4, VIRTIO_PCI_QUEUE_PFN);
}
static void
legacy_notify_queue(struct virtio_hw *hw, struct virtqueue *vq)
{
rte_pci_ioport_write(VTPCI_IO(hw), &vq->vq_queue_index, 2,
VIRTIO_PCI_QUEUE_NOTIFY);
}
const struct virtio_pci_ops legacy_ops = {
.read_dev_cfg = legacy_read_dev_config,
.write_dev_cfg = legacy_write_dev_config,
.get_status = legacy_get_status,
.set_status = legacy_set_status,
.get_features = legacy_get_features,
.set_features = legacy_set_features,
.get_isr = legacy_get_isr,
.set_config_irq = legacy_set_config_irq,
.set_queue_irq = legacy_set_queue_irq,
.get_queue_num = legacy_get_queue_num,
.setup_queue = legacy_setup_queue,
.del_queue = legacy_del_queue,
.notify_queue = legacy_notify_queue,
};
static inline void
io_write64_twopart(uint64_t val, uint32_t *lo, uint32_t *hi)
{
rte_write32(val & ((1ULL << 32) - 1), lo);
rte_write32(val >> 32, hi);
}
static void
modern_read_dev_config(struct virtio_hw *hw, size_t offset,
void *dst, int length)
{
int i;
uint8_t *p;
uint8_t old_gen, new_gen;
do {
old_gen = rte_read8(&hw->common_cfg->config_generation);
p = dst;
for (i = 0; i < length; i++)
*p++ = rte_read8((uint8_t *)hw->dev_cfg + offset + i);
new_gen = rte_read8(&hw->common_cfg->config_generation);
} while (old_gen != new_gen);
}
static void
modern_write_dev_config(struct virtio_hw *hw, size_t offset,
const void *src, int length)
{
int i;
const uint8_t *p = src;
for (i = 0; i < length; i++)
rte_write8((*p++), (((uint8_t *)hw->dev_cfg) + offset + i));
}
static uint64_t
modern_get_features(struct virtio_hw *hw)
{
uint32_t features_lo, features_hi;
rte_write32(0, &hw->common_cfg->device_feature_select);
features_lo = rte_read32(&hw->common_cfg->device_feature);
rte_write32(1, &hw->common_cfg->device_feature_select);
features_hi = rte_read32(&hw->common_cfg->device_feature);
return ((uint64_t)features_hi << 32) | features_lo;
}
static void
modern_set_features(struct virtio_hw *hw, uint64_t features)
{
rte_write32(0, &hw->common_cfg->guest_feature_select);
rte_write32(features & ((1ULL << 32) - 1),
&hw->common_cfg->guest_feature);
rte_write32(1, &hw->common_cfg->guest_feature_select);
rte_write32(features >> 32,
&hw->common_cfg->guest_feature);
}
static uint8_t
modern_get_status(struct virtio_hw *hw)
{
return rte_read8(&hw->common_cfg->device_status);
}
static void
modern_set_status(struct virtio_hw *hw, uint8_t status)
{
rte_write8(status, &hw->common_cfg->device_status);
}
static uint8_t
modern_get_isr(struct virtio_hw *hw)
{
return rte_read8(hw->isr);
}
static uint16_t
modern_set_config_irq(struct virtio_hw *hw, uint16_t vec)
{
rte_write16(vec, &hw->common_cfg->msix_config);
return rte_read16(&hw->common_cfg->msix_config);
}
static uint16_t
modern_set_queue_irq(struct virtio_hw *hw, struct virtqueue *vq, uint16_t vec)
{
rte_write16(vq->vq_queue_index, &hw->common_cfg->queue_select);
rte_write16(vec, &hw->common_cfg->queue_msix_vector);
return rte_read16(&hw->common_cfg->queue_msix_vector);
}
static uint16_t
modern_get_queue_num(struct virtio_hw *hw, uint16_t queue_id)
{
rte_write16(queue_id, &hw->common_cfg->queue_select);
return rte_read16(&hw->common_cfg->queue_size);
}
static int
modern_setup_queue(struct virtio_hw *hw, struct virtqueue *vq)
{
uint64_t desc_addr, avail_addr, used_addr;
uint16_t notify_off;
if (!check_vq_phys_addr_ok(vq))
return -1;
desc_addr = vq->vq_ring_mem;
avail_addr = desc_addr + vq->vq_nentries * sizeof(struct vring_desc);
used_addr = RTE_ALIGN_CEIL(avail_addr + offsetof(struct vring_avail,
ring[vq->vq_nentries]),
VIRTIO_PCI_VRING_ALIGN);
rte_write16(vq->vq_queue_index, &hw->common_cfg->queue_select);
io_write64_twopart(desc_addr, &hw->common_cfg->queue_desc_lo,
&hw->common_cfg->queue_desc_hi);
io_write64_twopart(avail_addr, &hw->common_cfg->queue_avail_lo,
&hw->common_cfg->queue_avail_hi);
io_write64_twopart(used_addr, &hw->common_cfg->queue_used_lo,
&hw->common_cfg->queue_used_hi);
notify_off = rte_read16(&hw->common_cfg->queue_notify_off);
vq->notify_addr = (void *)((uint8_t *)hw->notify_base +
notify_off * hw->notify_off_multiplier);
rte_write16(1, &hw->common_cfg->queue_enable);
PMD_INIT_LOG(DEBUG, "queue %u addresses:", vq->vq_queue_index);
PMD_INIT_LOG(DEBUG, "\t desc_addr: %" PRIx64, desc_addr);
PMD_INIT_LOG(DEBUG, "\t aval_addr: %" PRIx64, avail_addr);
PMD_INIT_LOG(DEBUG, "\t used_addr: %" PRIx64, used_addr);
PMD_INIT_LOG(DEBUG, "\t notify addr: %p (notify offset: %u)",
vq->notify_addr, notify_off);
return 0;
}
static void
modern_del_queue(struct virtio_hw *hw, struct virtqueue *vq)
{
rte_write16(vq->vq_queue_index, &hw->common_cfg->queue_select);
io_write64_twopart(0, &hw->common_cfg->queue_desc_lo,
&hw->common_cfg->queue_desc_hi);
io_write64_twopart(0, &hw->common_cfg->queue_avail_lo,
&hw->common_cfg->queue_avail_hi);
io_write64_twopart(0, &hw->common_cfg->queue_used_lo,
&hw->common_cfg->queue_used_hi);
rte_write16(0, &hw->common_cfg->queue_enable);
}
static void
modern_notify_queue(struct virtio_hw *hw __rte_unused, struct virtqueue *vq)
{
rte_write16(vq->vq_queue_index, vq->notify_addr);
}
const struct virtio_pci_ops modern_ops = {
.read_dev_cfg = modern_read_dev_config,
.write_dev_cfg = modern_write_dev_config,
.get_status = modern_get_status,
.set_status = modern_set_status,
.get_features = modern_get_features,
.set_features = modern_set_features,
.get_isr = modern_get_isr,
.set_config_irq = modern_set_config_irq,
.set_queue_irq = modern_set_queue_irq,
.get_queue_num = modern_get_queue_num,
.setup_queue = modern_setup_queue,
.del_queue = modern_del_queue,
.notify_queue = modern_notify_queue,
};
void
vtpci_read_dev_config(struct virtio_hw *hw, size_t offset,
void *dst, int length)
{
VTPCI_OPS(hw)->read_dev_cfg(hw, offset, dst, length);
}
void
vtpci_write_dev_config(struct virtio_hw *hw, size_t offset,
const void *src, int length)
{
VTPCI_OPS(hw)->write_dev_cfg(hw, offset, src, length);
}
uint64_t
vtpci_negotiate_features(struct virtio_hw *hw, uint64_t host_features)
{
uint64_t features;
/*
* Limit negotiated features to what the driver, virtqueue, and
* host all support.
*/
features = host_features & hw->guest_features;
VTPCI_OPS(hw)->set_features(hw, features);
return features;
}
void
vtpci_reset(struct virtio_hw *hw)
{
VTPCI_OPS(hw)->set_status(hw, VIRTIO_CONFIG_STATUS_RESET);
/* flush status write */
VTPCI_OPS(hw)->get_status(hw);
}
void
vtpci_reinit_complete(struct virtio_hw *hw)
{
vtpci_set_status(hw, VIRTIO_CONFIG_STATUS_DRIVER_OK);
}
void
vtpci_set_status(struct virtio_hw *hw, uint8_t status)
{
if (status != VIRTIO_CONFIG_STATUS_RESET)
status |= VTPCI_OPS(hw)->get_status(hw);
VTPCI_OPS(hw)->set_status(hw, status);
}
uint8_t
vtpci_get_status(struct virtio_hw *hw)
{
return VTPCI_OPS(hw)->get_status(hw);
}
uint8_t
vtpci_isr(struct virtio_hw *hw)
{
return VTPCI_OPS(hw)->get_isr(hw);
}
static void *
get_cfg_addr(struct rte_pci_device *dev, struct virtio_pci_cap *cap)
{
uint8_t bar = cap->bar;
uint32_t length = cap->length;
uint32_t offset = cap->offset;
uint8_t *base;
if (bar >= PCI_MAX_RESOURCE) {
PMD_INIT_LOG(ERR, "invalid bar: %u", bar);
return NULL;
}
if (offset + length < offset) {
PMD_INIT_LOG(ERR, "offset(%u) + length(%u) overflows",
offset, length);
return NULL;
}
if (offset + length > dev->mem_resource[bar].len) {
PMD_INIT_LOG(ERR,
"invalid cap: overflows bar space: %u > %" PRIu64,
offset + length, dev->mem_resource[bar].len);
return NULL;
}
base = dev->mem_resource[bar].addr;
if (base == NULL) {
PMD_INIT_LOG(ERR, "bar %u base addr is NULL", bar);
return NULL;
}
return base + offset;
}
#define PCI_MSIX_ENABLE 0x8000
static int
virtio_read_caps(struct rte_pci_device *dev, struct virtio_hw *hw)
{
uint8_t pos;
struct virtio_pci_cap cap;
int ret;
if (rte_pci_map_device(dev)) {
PMD_INIT_LOG(DEBUG, "failed to map pci device!");
return -1;
}
ret = rte_pci_read_config(dev, &pos, 1, PCI_CAPABILITY_LIST);
if (ret != 1) {
PMD_INIT_LOG(DEBUG,
"failed to read pci capability list, ret %d", ret);
return -1;
}
while (pos) {
ret = rte_pci_read_config(dev, &cap, 2, pos);
if (ret != 2) {
PMD_INIT_LOG(DEBUG,
"failed to read pci cap at pos: %x ret %d",
pos, ret);
break;
}
if (cap.cap_vndr == PCI_CAP_ID_MSIX) {
/* Transitional devices would also have this capability,
* that's why we also check if msix is enabled.
* 1st byte is cap ID; 2nd byte is the position of next
* cap; next two bytes are the flags.
*/
uint16_t flags;
ret = rte_pci_read_config(dev, &flags, sizeof(flags),
pos + 2);
if (ret != sizeof(flags)) {
PMD_INIT_LOG(DEBUG,
"failed to read pci cap at pos:"
" %x ret %d", pos + 2, ret);
break;
}
if (flags & PCI_MSIX_ENABLE)
hw->use_msix = VIRTIO_MSIX_ENABLED;
else
hw->use_msix = VIRTIO_MSIX_DISABLED;
}
if (cap.cap_vndr != PCI_CAP_ID_VNDR) {
PMD_INIT_LOG(DEBUG,
"[%2x] skipping non VNDR cap id: %02x",
pos, cap.cap_vndr);
goto next;
}
ret = rte_pci_read_config(dev, &cap, sizeof(cap), pos);
if (ret != sizeof(cap)) {
PMD_INIT_LOG(DEBUG,
"failed to read pci cap at pos: %x ret %d",
pos, ret);
break;
}
PMD_INIT_LOG(DEBUG,
"[%2x] cfg type: %u, bar: %u, offset: %04x, len: %u",
pos, cap.cfg_type, cap.bar, cap.offset, cap.length);
switch (cap.cfg_type) {
case VIRTIO_PCI_CAP_COMMON_CFG:
hw->common_cfg = get_cfg_addr(dev, &cap);
break;
case VIRTIO_PCI_CAP_NOTIFY_CFG:
ret = rte_pci_read_config(dev,
&hw->notify_off_multiplier,
4, pos + sizeof(cap));
if (ret != 4)
PMD_INIT_LOG(DEBUG,
"failed to read notify_off_multiplier, ret %d",
ret);
else
hw->notify_base = get_cfg_addr(dev, &cap);
break;
case VIRTIO_PCI_CAP_DEVICE_CFG:
hw->dev_cfg = get_cfg_addr(dev, &cap);
break;
case VIRTIO_PCI_CAP_ISR_CFG:
hw->isr = get_cfg_addr(dev, &cap);
break;
}
next:
pos = cap.cap_next;
}
if (hw->common_cfg == NULL || hw->notify_base == NULL ||
hw->dev_cfg == NULL || hw->isr == NULL) {
PMD_INIT_LOG(INFO, "no modern virtio pci device found.");
return -1;
}
PMD_INIT_LOG(INFO, "found modern virtio pci device.");
PMD_INIT_LOG(DEBUG, "common cfg mapped at: %p", hw->common_cfg);
PMD_INIT_LOG(DEBUG, "device cfg mapped at: %p", hw->dev_cfg);
PMD_INIT_LOG(DEBUG, "isr cfg mapped at: %p", hw->isr);
PMD_INIT_LOG(DEBUG, "notify base: %p, notify off multiplier: %u",
hw->notify_base, hw->notify_off_multiplier);
return 0;
}
/*
* Return -1:
* if there is error mapping with VFIO/UIO.
* if port map error when driver type is KDRV_NONE.
* if whitelisted but driver type is KDRV_UNKNOWN.
* Return 1 if kernel driver is managing the device.
* Return 0 on success.
*/
int
vtpci_init(struct rte_pci_device *dev, struct virtio_hw *hw)
{
/*
* Try if we can succeed reading virtio pci caps, which exists
* only on modern pci device. If failed, we fallback to legacy
* virtio handling.
*/
if (virtio_read_caps(dev, hw) == 0) {
PMD_INIT_LOG(INFO, "modern virtio pci detected.");
virtio_hw_internal[hw->port_id].vtpci_ops = &modern_ops;
hw->modern = 1;
return 0;
}
PMD_INIT_LOG(INFO, "trying with legacy virtio pci.");
if (rte_pci_ioport_map(dev, 0, VTPCI_IO(hw)) < 0) {
if (dev->kdrv == RTE_KDRV_UNKNOWN &&
(!dev->device.devargs ||
dev->device.devargs->bus !=
rte_bus_find_by_name("pci"))) {
PMD_INIT_LOG(INFO,
"skip kernel managed virtio device.");
return 1;
}
return -1;
}
virtio_hw_internal[hw->port_id].vtpci_ops = &legacy_ops;
hw->modern = 0;
return 0;
}
enum virtio_msix_status
vtpci_msix_detect(struct rte_pci_device *dev)
{
uint8_t pos;
int ret;
ret = rte_pci_read_config(dev, &pos, 1, PCI_CAPABILITY_LIST);
if (ret != 1) {
PMD_INIT_LOG(DEBUG,
"failed to read pci capability list, ret %d", ret);
return VIRTIO_MSIX_NONE;
}
while (pos) {
uint8_t cap[2];
ret = rte_pci_read_config(dev, cap, sizeof(cap), pos);
if (ret != sizeof(cap)) {
PMD_INIT_LOG(DEBUG,
"failed to read pci cap at pos: %x ret %d",
pos, ret);
break;
}
if (cap[0] == PCI_CAP_ID_MSIX) {
uint16_t flags;
ret = rte_pci_read_config(dev, &flags, sizeof(flags),
pos + sizeof(cap));
if (ret != sizeof(flags)) {
PMD_INIT_LOG(DEBUG,
"failed to read pci cap at pos:"
" %x ret %d", pos + 2, ret);
break;
}
if (flags & PCI_MSIX_ENABLE)
return VIRTIO_MSIX_ENABLED;
else
return VIRTIO_MSIX_DISABLED;
}
pos = cap[1];
}
return VIRTIO_MSIX_NONE;
}