Thomas Monjalon 50705e8e3c eal: add assert macro for debug
The macro RTE_VERIFY always checks a condition.
It is optimized with "unlikely" hint.
While this macro is well suited for test applications, it is preferred
in libraries and examples to enable such check in debug mode.
That's why the macro RTE_ASSERT is introduced to call RTE_VERIFY only
if built with debug logs enabled.

A lot of assert macros were duplicated and enabled with a specific flag.
Removing these #ifdef allows to test these code branches more easily
and avoid dead code pitfalls.

The ENA_ASSERT is kept (in debug mode only) because it has more
parameters to log.

Signed-off-by: Thomas Monjalon <thomas.monjalon@6wind.com>
2016-05-02 15:31:17 +02:00

333 lines
8.9 KiB
C

/*
*-
* BSD LICENSE
*
* Copyright(c) 2015 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Some portions of this software is derived from the producer
* consumer queues described by Dmitry Vyukov and published here
* http://www.1024cores.net
*
* Copyright (c) 2010-2011 Dmitry Vyukov. All rights reserved.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY DMITRY VYUKOV "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DMITRY VYUKOV OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* The views and conclusions contained in the software and documentation are
* those of the authors and should not be interpreted as representing official
* policies, either expressed or implied, of Dmitry Vyukov.
*/
#ifndef LTHREAD_POOL_H_
#define LTHREAD_POOL_H_
#include <rte_malloc.h>
#include <rte_per_lcore.h>
#include <rte_log.h>
#include "lthread_int.h"
#include "lthread_diag.h"
/*
* This file implements pool of queue nodes used by the queue implemented
* in lthread_queue.h.
*
* The pool is an intrusive lock free MPSC queue.
*
* The pool is created empty and populated lazily, i.e. on first attempt to
* allocate a the pool.
*
* Whenever the pool is empty more nodes are added to the pool
* The number of nodes preallocated in this way is a parameter of
* _qnode_pool_create. Freeing an object returns it to the pool.
*
* Each lthread scheduler maintains its own pool of nodes. L-threads must always
* allocate from this local pool ( because it is a single consumer queue ).
* L-threads can free nodes to any pool (because it is a multi producer queue)
* This enables threads that have affined to a different scheduler to free
* nodes safely.
*/
struct qnode;
struct qnode_cache;
/*
* define intermediate node
*/
struct qnode {
struct qnode *next;
void *data;
struct qnode_pool *pool;
} __rte_cache_aligned;
/*
* a pool structure
*/
struct qnode_pool {
struct qnode *head;
struct qnode *stub;
struct qnode *fast_alloc;
struct qnode *tail __rte_cache_aligned;
int pre_alloc;
char name[LT_MAX_NAME_SIZE];
DIAG_COUNT_DEFINE(rd);
DIAG_COUNT_DEFINE(wr);
DIAG_COUNT_DEFINE(available);
DIAG_COUNT_DEFINE(prealloc);
DIAG_COUNT_DEFINE(capacity);
} __rte_cache_aligned;
/*
* Create a pool of qnodes
*/
static inline struct qnode_pool *
_qnode_pool_create(const char *name, int prealloc_size) {
struct qnode_pool *p = rte_malloc_socket(NULL,
sizeof(struct qnode_pool),
RTE_CACHE_LINE_SIZE,
rte_socket_id());
RTE_ASSERT(p);
p->stub = rte_malloc_socket(NULL,
sizeof(struct qnode),
RTE_CACHE_LINE_SIZE,
rte_socket_id());
RTE_ASSERT(p->stub);
if (name != NULL)
strncpy(p->name, name, LT_MAX_NAME_SIZE);
p->name[sizeof(p->name)-1] = 0;
p->stub->pool = p;
p->stub->next = NULL;
p->tail = p->stub;
p->head = p->stub;
p->pre_alloc = prealloc_size;
DIAG_COUNT_INIT(p, rd);
DIAG_COUNT_INIT(p, wr);
DIAG_COUNT_INIT(p, available);
DIAG_COUNT_INIT(p, prealloc);
DIAG_COUNT_INIT(p, capacity);
return p;
}
/*
* Insert a node into the pool
*/
static inline void __attribute__ ((always_inline))
_qnode_pool_insert(struct qnode_pool *p, struct qnode *n)
{
n->next = NULL;
struct qnode *prev = n;
/* We insert at the head */
prev = (struct qnode *) __sync_lock_test_and_set((uint64_t *)&p->head,
(uint64_t) prev);
/* there is a window of inconsistency until prev next is set */
/* which is why remove must retry */
prev->next = (n);
}
/*
* Remove a node from the pool
*
* There is a race with _qnode_pool_insert() whereby the queue could appear
* empty during a concurrent insert, this is handled by retrying
*
* The queue uses a stub node, which must be swung as the queue becomes
* empty, this requires an insert of the stub, which means that removing the
* last item from the queue incurs the penalty of an atomic exchange. Since the
* pool is maintained with a bulk pre-allocation the cost of this is amortised.
*/
static inline struct qnode *__attribute__ ((always_inline))
_pool_remove(struct qnode_pool *p)
{
struct qnode *head;
struct qnode *tail = p->tail;
struct qnode *next = tail->next;
/* we remove from the tail */
if (tail == p->stub) {
if (next == NULL)
return NULL;
/* advance the tail */
p->tail = next;
tail = next;
next = next->next;
}
if (likely(next != NULL)) {
p->tail = next;
return tail;
}
head = p->head;
if (tail == head)
return NULL;
/* swing stub node */
_qnode_pool_insert(p, p->stub);
next = tail->next;
if (next) {
p->tail = next;
return tail;
}
return NULL;
}
/*
* This adds a retry to the _pool_remove function
* defined above
*/
static inline struct qnode *__attribute__ ((always_inline))
_qnode_pool_remove(struct qnode_pool *p)
{
struct qnode *n;
do {
n = _pool_remove(p);
if (likely(n != NULL))
return n;
rte_compiler_barrier();
} while ((p->head != p->tail) &&
(p->tail != p->stub));
return NULL;
}
/*
* Allocate a node from the pool
* If the pool is empty add mode nodes
*/
static inline struct qnode *__attribute__ ((always_inline))
_qnode_alloc(void)
{
struct qnode_pool *p = (THIS_SCHED)->qnode_pool;
int prealloc_size = p->pre_alloc;
struct qnode *n;
int i;
if (likely(p->fast_alloc != NULL)) {
n = p->fast_alloc;
p->fast_alloc = NULL;
return n;
}
n = _qnode_pool_remove(p);
if (unlikely(n == NULL)) {
DIAG_COUNT_INC(p, prealloc);
for (i = 0; i < prealloc_size; i++) {
n = rte_malloc_socket(NULL,
sizeof(struct qnode),
RTE_CACHE_LINE_SIZE,
rte_socket_id());
if (n == NULL)
return NULL;
DIAG_COUNT_INC(p, available);
DIAG_COUNT_INC(p, capacity);
n->pool = p;
_qnode_pool_insert(p, n);
}
n = _qnode_pool_remove(p);
}
n->pool = p;
DIAG_COUNT_INC(p, rd);
DIAG_COUNT_DEC(p, available);
return n;
}
/*
* free a queue node to the per scheduler pool from which it came
*/
static inline void __attribute__ ((always_inline))
_qnode_free(struct qnode *n)
{
struct qnode_pool *p = n->pool;
if (unlikely(p->fast_alloc != NULL) ||
unlikely(n->pool != (THIS_SCHED)->qnode_pool)) {
DIAG_COUNT_INC(p, wr);
DIAG_COUNT_INC(p, available);
_qnode_pool_insert(p, n);
return;
}
p->fast_alloc = n;
}
/*
* Destroy an qnode pool
* queue must be empty when this is called
*/
static inline int
_qnode_pool_destroy(struct qnode_pool *p)
{
rte_free(p->stub);
rte_free(p);
return 0;
}
#endif /* LTHREAD_POOL_H_ */