24aa4f0fba
DPDK malloc library allows broken programs to work because the semantics of zmalloc and malloc are the same. This patch enables a more secure model which will catch (and crash) programs that reuse memory already freed if RTE_MALLOC_DEBUG is enabled. Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Acked-by: Andrew Rybchenko <arybchenko@solarflare.com> Reviewed-by: Anatoly Burakov <anatoly.burakov@intel.com>
628 lines
15 KiB
C
628 lines
15 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2010-2019 Intel Corporation
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
#include <stddef.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <sys/queue.h>
|
|
|
|
#include <rte_errno.h>
|
|
#include <rte_memcpy.h>
|
|
#include <rte_memory.h>
|
|
#include <rte_eal.h>
|
|
#include <rte_eal_memconfig.h>
|
|
#include <rte_branch_prediction.h>
|
|
#include <rte_debug.h>
|
|
#include <rte_launch.h>
|
|
#include <rte_per_lcore.h>
|
|
#include <rte_lcore.h>
|
|
#include <rte_common.h>
|
|
#include <rte_spinlock.h>
|
|
|
|
#include <rte_malloc.h>
|
|
#include "malloc_elem.h"
|
|
#include "malloc_heap.h"
|
|
#include "eal_memalloc.h"
|
|
|
|
|
|
/* Free the memory space back to heap */
|
|
void rte_free(void *addr)
|
|
{
|
|
if (addr == NULL) return;
|
|
if (malloc_heap_free(malloc_elem_from_data(addr)) < 0)
|
|
RTE_LOG(ERR, EAL, "Error: Invalid memory\n");
|
|
}
|
|
|
|
/*
|
|
* Allocate memory on specified heap.
|
|
*/
|
|
void *
|
|
rte_malloc_socket(const char *type, size_t size, unsigned int align,
|
|
int socket_arg)
|
|
{
|
|
/* return NULL if size is 0 or alignment is not power-of-2 */
|
|
if (size == 0 || (align && !rte_is_power_of_2(align)))
|
|
return NULL;
|
|
|
|
/* if there are no hugepages and if we are not allocating from an
|
|
* external heap, use memory from any socket available. checking for
|
|
* socket being external may return -1 in case of invalid socket, but
|
|
* that's OK - if there are no hugepages, it doesn't matter.
|
|
*/
|
|
if (rte_malloc_heap_socket_is_external(socket_arg) != 1 &&
|
|
!rte_eal_has_hugepages())
|
|
socket_arg = SOCKET_ID_ANY;
|
|
|
|
return malloc_heap_alloc(type, size, socket_arg, 0,
|
|
align == 0 ? 1 : align, 0, false);
|
|
}
|
|
|
|
/*
|
|
* Allocate memory on default heap.
|
|
*/
|
|
void *
|
|
rte_malloc(const char *type, size_t size, unsigned align)
|
|
{
|
|
return rte_malloc_socket(type, size, align, SOCKET_ID_ANY);
|
|
}
|
|
|
|
/*
|
|
* Allocate zero'd memory on specified heap.
|
|
*/
|
|
void *
|
|
rte_zmalloc_socket(const char *type, size_t size, unsigned align, int socket)
|
|
{
|
|
void *ptr = rte_malloc_socket(type, size, align, socket);
|
|
|
|
#ifdef RTE_MALLOC_DEBUG
|
|
/*
|
|
* If DEBUG is enabled, then freed memory is marked with poison
|
|
* value and set to zero on allocation.
|
|
* If DEBUG is not enabled then memory is already zeroed.
|
|
*/
|
|
if (ptr != NULL)
|
|
memset(ptr, 0, size);
|
|
#endif
|
|
return ptr;
|
|
}
|
|
|
|
/*
|
|
* Allocate zero'd memory on default heap.
|
|
*/
|
|
void *
|
|
rte_zmalloc(const char *type, size_t size, unsigned align)
|
|
{
|
|
return rte_zmalloc_socket(type, size, align, SOCKET_ID_ANY);
|
|
}
|
|
|
|
/*
|
|
* Allocate zero'd memory on specified heap.
|
|
*/
|
|
void *
|
|
rte_calloc_socket(const char *type, size_t num, size_t size, unsigned align, int socket)
|
|
{
|
|
return rte_zmalloc_socket(type, num * size, align, socket);
|
|
}
|
|
|
|
/*
|
|
* Allocate zero'd memory on default heap.
|
|
*/
|
|
void *
|
|
rte_calloc(const char *type, size_t num, size_t size, unsigned align)
|
|
{
|
|
return rte_zmalloc(type, num * size, align);
|
|
}
|
|
|
|
/*
|
|
* Resize allocated memory on specified heap.
|
|
*/
|
|
void *
|
|
rte_realloc_socket(void *ptr, size_t size, unsigned int align, int socket)
|
|
{
|
|
if (ptr == NULL)
|
|
return rte_malloc_socket(NULL, size, align, socket);
|
|
|
|
struct malloc_elem *elem = malloc_elem_from_data(ptr);
|
|
if (elem == NULL) {
|
|
RTE_LOG(ERR, EAL, "Error: memory corruption detected\n");
|
|
return NULL;
|
|
}
|
|
|
|
size = RTE_CACHE_LINE_ROUNDUP(size), align = RTE_CACHE_LINE_ROUNDUP(align);
|
|
|
|
/* check requested socket id and alignment matches first, and if ok,
|
|
* see if we can resize block
|
|
*/
|
|
if ((socket == SOCKET_ID_ANY ||
|
|
(unsigned int)socket == elem->heap->socket_id) &&
|
|
RTE_PTR_ALIGN(ptr, align) == ptr &&
|
|
malloc_heap_resize(elem, size) == 0)
|
|
return ptr;
|
|
|
|
/* either requested socket id doesn't match, alignment is off
|
|
* or we have no room to expand,
|
|
* so move the data.
|
|
*/
|
|
void *new_ptr = rte_malloc_socket(NULL, size, align, socket);
|
|
if (new_ptr == NULL)
|
|
return NULL;
|
|
const unsigned old_size = elem->size - MALLOC_ELEM_OVERHEAD;
|
|
rte_memcpy(new_ptr, ptr, old_size < size ? old_size : size);
|
|
rte_free(ptr);
|
|
|
|
return new_ptr;
|
|
}
|
|
|
|
/*
|
|
* Resize allocated memory.
|
|
*/
|
|
void *
|
|
rte_realloc(void *ptr, size_t size, unsigned int align)
|
|
{
|
|
return rte_realloc_socket(ptr, size, align, SOCKET_ID_ANY);
|
|
}
|
|
|
|
int
|
|
rte_malloc_validate(const void *ptr, size_t *size)
|
|
{
|
|
const struct malloc_elem *elem = malloc_elem_from_data(ptr);
|
|
if (!malloc_elem_cookies_ok(elem))
|
|
return -1;
|
|
if (size != NULL)
|
|
*size = elem->size - elem->pad - MALLOC_ELEM_OVERHEAD;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Function to retrieve data for heap on given socket
|
|
*/
|
|
int
|
|
rte_malloc_get_socket_stats(int socket,
|
|
struct rte_malloc_socket_stats *socket_stats)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
int heap_idx;
|
|
|
|
heap_idx = malloc_socket_to_heap_id(socket);
|
|
if (heap_idx < 0)
|
|
return -1;
|
|
|
|
return malloc_heap_get_stats(&mcfg->malloc_heaps[heap_idx],
|
|
socket_stats);
|
|
}
|
|
|
|
/*
|
|
* Function to dump contents of all heaps
|
|
*/
|
|
void __rte_experimental
|
|
rte_malloc_dump_heaps(FILE *f)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
unsigned int idx;
|
|
|
|
for (idx = 0; idx < RTE_MAX_HEAPS; idx++) {
|
|
fprintf(f, "Heap id: %u\n", idx);
|
|
malloc_heap_dump(&mcfg->malloc_heaps[idx], f);
|
|
}
|
|
}
|
|
|
|
int
|
|
rte_malloc_heap_get_socket(const char *name)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
struct malloc_heap *heap = NULL;
|
|
unsigned int idx;
|
|
int ret;
|
|
|
|
if (name == NULL ||
|
|
strnlen(name, RTE_HEAP_NAME_MAX_LEN) == 0 ||
|
|
strnlen(name, RTE_HEAP_NAME_MAX_LEN) ==
|
|
RTE_HEAP_NAME_MAX_LEN) {
|
|
rte_errno = EINVAL;
|
|
return -1;
|
|
}
|
|
rte_rwlock_read_lock(&mcfg->memory_hotplug_lock);
|
|
for (idx = 0; idx < RTE_MAX_HEAPS; idx++) {
|
|
struct malloc_heap *tmp = &mcfg->malloc_heaps[idx];
|
|
|
|
if (!strncmp(name, tmp->name, RTE_HEAP_NAME_MAX_LEN)) {
|
|
heap = tmp;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (heap != NULL) {
|
|
ret = heap->socket_id;
|
|
} else {
|
|
rte_errno = ENOENT;
|
|
ret = -1;
|
|
}
|
|
rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
rte_malloc_heap_socket_is_external(int socket_id)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
unsigned int idx;
|
|
int ret = -1;
|
|
|
|
if (socket_id == SOCKET_ID_ANY)
|
|
return 0;
|
|
|
|
rte_rwlock_read_lock(&mcfg->memory_hotplug_lock);
|
|
for (idx = 0; idx < RTE_MAX_HEAPS; idx++) {
|
|
struct malloc_heap *tmp = &mcfg->malloc_heaps[idx];
|
|
|
|
if ((int)tmp->socket_id == socket_id) {
|
|
/* external memory always has large socket ID's */
|
|
ret = tmp->socket_id >= RTE_MAX_NUMA_NODES;
|
|
break;
|
|
}
|
|
}
|
|
rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Print stats on memory type. If type is NULL, info on all types is printed
|
|
*/
|
|
void
|
|
rte_malloc_dump_stats(FILE *f, __rte_unused const char *type)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
unsigned int heap_id;
|
|
struct rte_malloc_socket_stats sock_stats;
|
|
|
|
/* Iterate through all initialised heaps */
|
|
for (heap_id = 0; heap_id < RTE_MAX_HEAPS; heap_id++) {
|
|
struct malloc_heap *heap = &mcfg->malloc_heaps[heap_id];
|
|
|
|
malloc_heap_get_stats(heap, &sock_stats);
|
|
|
|
fprintf(f, "Heap id:%u\n", heap_id);
|
|
fprintf(f, "\tHeap name:%s\n", heap->name);
|
|
fprintf(f, "\tHeap_size:%zu,\n", sock_stats.heap_totalsz_bytes);
|
|
fprintf(f, "\tFree_size:%zu,\n", sock_stats.heap_freesz_bytes);
|
|
fprintf(f, "\tAlloc_size:%zu,\n", sock_stats.heap_allocsz_bytes);
|
|
fprintf(f, "\tGreatest_free_size:%zu,\n",
|
|
sock_stats.greatest_free_size);
|
|
fprintf(f, "\tAlloc_count:%u,\n",sock_stats.alloc_count);
|
|
fprintf(f, "\tFree_count:%u,\n", sock_stats.free_count);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* TODO: Set limit to memory that can be allocated to memory type
|
|
*/
|
|
int
|
|
rte_malloc_set_limit(__rte_unused const char *type,
|
|
__rte_unused size_t max)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Return the IO address of a virtual address obtained through rte_malloc
|
|
*/
|
|
rte_iova_t
|
|
rte_malloc_virt2iova(const void *addr)
|
|
{
|
|
const struct rte_memseg *ms;
|
|
struct malloc_elem *elem = malloc_elem_from_data(addr);
|
|
|
|
if (elem == NULL)
|
|
return RTE_BAD_IOVA;
|
|
|
|
if (!elem->msl->external && rte_eal_iova_mode() == RTE_IOVA_VA)
|
|
return (uintptr_t) addr;
|
|
|
|
ms = rte_mem_virt2memseg(addr, elem->msl);
|
|
if (ms == NULL)
|
|
return RTE_BAD_IOVA;
|
|
|
|
if (ms->iova == RTE_BAD_IOVA)
|
|
return RTE_BAD_IOVA;
|
|
|
|
return ms->iova + RTE_PTR_DIFF(addr, ms->addr);
|
|
}
|
|
|
|
static struct malloc_heap *
|
|
find_named_heap(const char *name)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < RTE_MAX_HEAPS; i++) {
|
|
struct malloc_heap *heap = &mcfg->malloc_heaps[i];
|
|
|
|
if (!strncmp(name, heap->name, RTE_HEAP_NAME_MAX_LEN))
|
|
return heap;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
int
|
|
rte_malloc_heap_memory_add(const char *heap_name, void *va_addr, size_t len,
|
|
rte_iova_t iova_addrs[], unsigned int n_pages, size_t page_sz)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
struct malloc_heap *heap = NULL;
|
|
struct rte_memseg_list *msl;
|
|
unsigned int n;
|
|
int ret;
|
|
|
|
if (heap_name == NULL || va_addr == NULL ||
|
|
page_sz == 0 || !rte_is_power_of_2(page_sz) ||
|
|
RTE_ALIGN(len, page_sz) != len ||
|
|
!rte_is_aligned(va_addr, page_sz) ||
|
|
((len / page_sz) != n_pages && iova_addrs != NULL) ||
|
|
strnlen(heap_name, RTE_HEAP_NAME_MAX_LEN) == 0 ||
|
|
strnlen(heap_name, RTE_HEAP_NAME_MAX_LEN) ==
|
|
RTE_HEAP_NAME_MAX_LEN) {
|
|
rte_errno = EINVAL;
|
|
return -1;
|
|
}
|
|
rte_rwlock_write_lock(&mcfg->memory_hotplug_lock);
|
|
|
|
/* find our heap */
|
|
heap = find_named_heap(heap_name);
|
|
if (heap == NULL) {
|
|
rte_errno = ENOENT;
|
|
ret = -1;
|
|
goto unlock;
|
|
}
|
|
if (heap->socket_id < RTE_MAX_NUMA_NODES) {
|
|
/* cannot add memory to internal heaps */
|
|
rte_errno = EPERM;
|
|
ret = -1;
|
|
goto unlock;
|
|
}
|
|
n = len / page_sz;
|
|
|
|
msl = malloc_heap_create_external_seg(va_addr, iova_addrs, n, page_sz,
|
|
heap_name, heap->socket_id);
|
|
if (msl == NULL) {
|
|
ret = -1;
|
|
goto unlock;
|
|
}
|
|
|
|
rte_spinlock_lock(&heap->lock);
|
|
ret = malloc_heap_add_external_memory(heap, msl);
|
|
rte_spinlock_unlock(&heap->lock);
|
|
|
|
unlock:
|
|
rte_rwlock_write_unlock(&mcfg->memory_hotplug_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
rte_malloc_heap_memory_remove(const char *heap_name, void *va_addr, size_t len)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
struct malloc_heap *heap = NULL;
|
|
struct rte_memseg_list *msl;
|
|
int ret;
|
|
|
|
if (heap_name == NULL || va_addr == NULL || len == 0 ||
|
|
strnlen(heap_name, RTE_HEAP_NAME_MAX_LEN) == 0 ||
|
|
strnlen(heap_name, RTE_HEAP_NAME_MAX_LEN) ==
|
|
RTE_HEAP_NAME_MAX_LEN) {
|
|
rte_errno = EINVAL;
|
|
return -1;
|
|
}
|
|
rte_rwlock_write_lock(&mcfg->memory_hotplug_lock);
|
|
/* find our heap */
|
|
heap = find_named_heap(heap_name);
|
|
if (heap == NULL) {
|
|
rte_errno = ENOENT;
|
|
ret = -1;
|
|
goto unlock;
|
|
}
|
|
if (heap->socket_id < RTE_MAX_NUMA_NODES) {
|
|
/* cannot remove memory from internal heaps */
|
|
rte_errno = EPERM;
|
|
ret = -1;
|
|
goto unlock;
|
|
}
|
|
|
|
msl = malloc_heap_find_external_seg(va_addr, len);
|
|
if (msl == NULL) {
|
|
ret = -1;
|
|
goto unlock;
|
|
}
|
|
|
|
rte_spinlock_lock(&heap->lock);
|
|
ret = malloc_heap_remove_external_memory(heap, va_addr, len);
|
|
rte_spinlock_unlock(&heap->lock);
|
|
if (ret != 0)
|
|
goto unlock;
|
|
|
|
ret = malloc_heap_destroy_external_seg(msl);
|
|
|
|
unlock:
|
|
rte_rwlock_write_unlock(&mcfg->memory_hotplug_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
sync_memory(const char *heap_name, void *va_addr, size_t len, bool attach)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
struct malloc_heap *heap = NULL;
|
|
struct rte_memseg_list *msl;
|
|
int ret;
|
|
|
|
if (heap_name == NULL || va_addr == NULL || len == 0 ||
|
|
strnlen(heap_name, RTE_HEAP_NAME_MAX_LEN) == 0 ||
|
|
strnlen(heap_name, RTE_HEAP_NAME_MAX_LEN) ==
|
|
RTE_HEAP_NAME_MAX_LEN) {
|
|
rte_errno = EINVAL;
|
|
return -1;
|
|
}
|
|
rte_rwlock_read_lock(&mcfg->memory_hotplug_lock);
|
|
|
|
/* find our heap */
|
|
heap = find_named_heap(heap_name);
|
|
if (heap == NULL) {
|
|
rte_errno = ENOENT;
|
|
ret = -1;
|
|
goto unlock;
|
|
}
|
|
/* we shouldn't be able to sync to internal heaps */
|
|
if (heap->socket_id < RTE_MAX_NUMA_NODES) {
|
|
rte_errno = EPERM;
|
|
ret = -1;
|
|
goto unlock;
|
|
}
|
|
|
|
/* find corresponding memseg list to sync to */
|
|
msl = malloc_heap_find_external_seg(va_addr, len);
|
|
if (msl == NULL) {
|
|
ret = -1;
|
|
goto unlock;
|
|
}
|
|
|
|
if (attach) {
|
|
ret = rte_fbarray_attach(&msl->memseg_arr);
|
|
if (ret == 0) {
|
|
/* notify all subscribers that a new memory area was
|
|
* added.
|
|
*/
|
|
eal_memalloc_mem_event_notify(RTE_MEM_EVENT_ALLOC,
|
|
va_addr, len);
|
|
} else {
|
|
ret = -1;
|
|
goto unlock;
|
|
}
|
|
} else {
|
|
/* notify all subscribers that a memory area is about to
|
|
* be removed.
|
|
*/
|
|
eal_memalloc_mem_event_notify(RTE_MEM_EVENT_FREE,
|
|
msl->base_va, msl->len);
|
|
ret = rte_fbarray_detach(&msl->memseg_arr);
|
|
if (ret < 0) {
|
|
ret = -1;
|
|
goto unlock;
|
|
}
|
|
}
|
|
unlock:
|
|
rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
rte_malloc_heap_memory_attach(const char *heap_name, void *va_addr, size_t len)
|
|
{
|
|
return sync_memory(heap_name, va_addr, len, true);
|
|
}
|
|
|
|
int
|
|
rte_malloc_heap_memory_detach(const char *heap_name, void *va_addr, size_t len)
|
|
{
|
|
return sync_memory(heap_name, va_addr, len, false);
|
|
}
|
|
|
|
int
|
|
rte_malloc_heap_create(const char *heap_name)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
struct malloc_heap *heap = NULL;
|
|
int i, ret;
|
|
|
|
if (heap_name == NULL ||
|
|
strnlen(heap_name, RTE_HEAP_NAME_MAX_LEN) == 0 ||
|
|
strnlen(heap_name, RTE_HEAP_NAME_MAX_LEN) ==
|
|
RTE_HEAP_NAME_MAX_LEN) {
|
|
rte_errno = EINVAL;
|
|
return -1;
|
|
}
|
|
/* check if there is space in the heap list, or if heap with this name
|
|
* already exists.
|
|
*/
|
|
rte_rwlock_write_lock(&mcfg->memory_hotplug_lock);
|
|
|
|
for (i = 0; i < RTE_MAX_HEAPS; i++) {
|
|
struct malloc_heap *tmp = &mcfg->malloc_heaps[i];
|
|
/* existing heap */
|
|
if (strncmp(heap_name, tmp->name,
|
|
RTE_HEAP_NAME_MAX_LEN) == 0) {
|
|
RTE_LOG(ERR, EAL, "Heap %s already exists\n",
|
|
heap_name);
|
|
rte_errno = EEXIST;
|
|
ret = -1;
|
|
goto unlock;
|
|
}
|
|
/* empty heap */
|
|
if (strnlen(tmp->name, RTE_HEAP_NAME_MAX_LEN) == 0) {
|
|
heap = tmp;
|
|
break;
|
|
}
|
|
}
|
|
if (heap == NULL) {
|
|
RTE_LOG(ERR, EAL, "Cannot create new heap: no space\n");
|
|
rte_errno = ENOSPC;
|
|
ret = -1;
|
|
goto unlock;
|
|
}
|
|
|
|
/* we're sure that we can create a new heap, so do it */
|
|
ret = malloc_heap_create(heap, heap_name);
|
|
unlock:
|
|
rte_rwlock_write_unlock(&mcfg->memory_hotplug_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
rte_malloc_heap_destroy(const char *heap_name)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
struct malloc_heap *heap = NULL;
|
|
int ret;
|
|
|
|
if (heap_name == NULL ||
|
|
strnlen(heap_name, RTE_HEAP_NAME_MAX_LEN) == 0 ||
|
|
strnlen(heap_name, RTE_HEAP_NAME_MAX_LEN) ==
|
|
RTE_HEAP_NAME_MAX_LEN) {
|
|
rte_errno = EINVAL;
|
|
return -1;
|
|
}
|
|
rte_rwlock_write_lock(&mcfg->memory_hotplug_lock);
|
|
|
|
/* start from non-socket heaps */
|
|
heap = find_named_heap(heap_name);
|
|
if (heap == NULL) {
|
|
RTE_LOG(ERR, EAL, "Heap %s not found\n", heap_name);
|
|
rte_errno = ENOENT;
|
|
ret = -1;
|
|
goto unlock;
|
|
}
|
|
/* we shouldn't be able to destroy internal heaps */
|
|
if (heap->socket_id < RTE_MAX_NUMA_NODES) {
|
|
rte_errno = EPERM;
|
|
ret = -1;
|
|
goto unlock;
|
|
}
|
|
/* sanity checks done, now we can destroy the heap */
|
|
rte_spinlock_lock(&heap->lock);
|
|
ret = malloc_heap_destroy(heap);
|
|
|
|
/* if we failed, lock is still active */
|
|
if (ret < 0)
|
|
rte_spinlock_unlock(&heap->lock);
|
|
unlock:
|
|
rte_rwlock_write_unlock(&mcfg->memory_hotplug_lock);
|
|
|
|
return ret;
|
|
}
|