numam-dpdk/drivers/net/hns3/hns3_ethdev.c
Huisong Li fafa81dece net/hns3: support multiple TC MAC pause
MAC PAUSE can take effect on a single TC or multiple TCs, depending on the
hardware. For example, the Kunpeng 920 supports MAC pause in a single TC,
and the Kunpeng 930 supports MAC pause in multiple TCs. This patch
supports MAC PAUSE in multiple TC for some hardware.

Signed-off-by: Huisong Li <lihuisong@huawei.com>
Signed-off-by: Min Hu (Connor) <humin29@huawei.com>
2021-07-13 11:41:32 +02:00

7584 lines
199 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018-2021 HiSilicon Limited.
*/
#include <rte_alarm.h>
#include <rte_bus_pci.h>
#include <ethdev_pci.h>
#include <rte_pci.h>
#include <rte_kvargs.h>
#include "hns3_ethdev.h"
#include "hns3_logs.h"
#include "hns3_rxtx.h"
#include "hns3_intr.h"
#include "hns3_regs.h"
#include "hns3_dcb.h"
#include "hns3_mp.h"
#define HNS3_SERVICE_INTERVAL 1000000 /* us */
#define HNS3_SERVICE_QUICK_INTERVAL 10
#define HNS3_INVALID_PVID 0xFFFF
#define HNS3_FILTER_TYPE_VF 0
#define HNS3_FILTER_TYPE_PORT 1
#define HNS3_FILTER_FE_EGRESS_V1_B BIT(0)
#define HNS3_FILTER_FE_NIC_INGRESS_B BIT(0)
#define HNS3_FILTER_FE_NIC_EGRESS_B BIT(1)
#define HNS3_FILTER_FE_ROCE_INGRESS_B BIT(2)
#define HNS3_FILTER_FE_ROCE_EGRESS_B BIT(3)
#define HNS3_FILTER_FE_EGRESS (HNS3_FILTER_FE_NIC_EGRESS_B \
| HNS3_FILTER_FE_ROCE_EGRESS_B)
#define HNS3_FILTER_FE_INGRESS (HNS3_FILTER_FE_NIC_INGRESS_B \
| HNS3_FILTER_FE_ROCE_INGRESS_B)
/* Reset related Registers */
#define HNS3_GLOBAL_RESET_BIT 0
#define HNS3_CORE_RESET_BIT 1
#define HNS3_IMP_RESET_BIT 2
#define HNS3_FUN_RST_ING_B 0
#define HNS3_VECTOR0_IMP_RESET_INT_B 1
#define HNS3_VECTOR0_IMP_CMDQ_ERR_B 4U
#define HNS3_VECTOR0_IMP_RD_POISON_B 5U
#define HNS3_VECTOR0_ALL_MSIX_ERR_B 6U
#define HNS3_RESET_WAIT_MS 100
#define HNS3_RESET_WAIT_CNT 200
/* FEC mode order defined in HNS3 hardware */
#define HNS3_HW_FEC_MODE_NOFEC 0
#define HNS3_HW_FEC_MODE_BASER 1
#define HNS3_HW_FEC_MODE_RS 2
enum hns3_evt_cause {
HNS3_VECTOR0_EVENT_RST,
HNS3_VECTOR0_EVENT_MBX,
HNS3_VECTOR0_EVENT_ERR,
HNS3_VECTOR0_EVENT_PTP,
HNS3_VECTOR0_EVENT_OTHER,
};
static const struct rte_eth_fec_capa speed_fec_capa_tbl[] = {
{ ETH_SPEED_NUM_10G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
{ ETH_SPEED_NUM_25G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
{ ETH_SPEED_NUM_40G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
{ ETH_SPEED_NUM_50G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
{ ETH_SPEED_NUM_100G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
{ ETH_SPEED_NUM_200G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
RTE_ETH_FEC_MODE_CAPA_MASK(RS) }
};
static enum hns3_reset_level hns3_get_reset_level(struct hns3_adapter *hns,
uint64_t *levels);
static int hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
static int hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid,
int on);
static int hns3_update_link_info(struct rte_eth_dev *eth_dev);
static bool hns3_update_link_status(struct hns3_hw *hw);
static int hns3_add_mc_addr(struct hns3_hw *hw,
struct rte_ether_addr *mac_addr);
static int hns3_remove_mc_addr(struct hns3_hw *hw,
struct rte_ether_addr *mac_addr);
static int hns3_restore_fec(struct hns3_hw *hw);
static int hns3_query_dev_fec_info(struct hns3_hw *hw);
static int hns3_do_stop(struct hns3_adapter *hns);
static int hns3_check_port_speed(struct hns3_hw *hw, uint32_t link_speeds);
void hns3_ether_format_addr(char *buf, uint16_t size,
const struct rte_ether_addr *ether_addr)
{
snprintf(buf, size, "%02X:**:**:**:%02X:%02X",
ether_addr->addr_bytes[0],
ether_addr->addr_bytes[4],
ether_addr->addr_bytes[5]);
}
static void
hns3_pf_disable_irq0(struct hns3_hw *hw)
{
hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
}
static void
hns3_pf_enable_irq0(struct hns3_hw *hw)
{
hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
}
static enum hns3_evt_cause
hns3_proc_imp_reset_event(struct hns3_adapter *hns, bool is_delay,
uint32_t *vec_val)
{
struct hns3_hw *hw = &hns->hw;
__atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
*vec_val = BIT(HNS3_VECTOR0_IMPRESET_INT_B);
if (!is_delay) {
hw->reset.stats.imp_cnt++;
hns3_warn(hw, "IMP reset detected, clear reset status");
} else {
hns3_schedule_delayed_reset(hns);
hns3_warn(hw, "IMP reset detected, don't clear reset status");
}
return HNS3_VECTOR0_EVENT_RST;
}
static enum hns3_evt_cause
hns3_proc_global_reset_event(struct hns3_adapter *hns, bool is_delay,
uint32_t *vec_val)
{
struct hns3_hw *hw = &hns->hw;
__atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
hns3_atomic_set_bit(HNS3_GLOBAL_RESET, &hw->reset.pending);
*vec_val = BIT(HNS3_VECTOR0_GLOBALRESET_INT_B);
if (!is_delay) {
hw->reset.stats.global_cnt++;
hns3_warn(hw, "Global reset detected, clear reset status");
} else {
hns3_schedule_delayed_reset(hns);
hns3_warn(hw,
"Global reset detected, don't clear reset status");
}
return HNS3_VECTOR0_EVENT_RST;
}
static enum hns3_evt_cause
hns3_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
{
struct hns3_hw *hw = &hns->hw;
uint32_t vector0_int_stats;
uint32_t cmdq_src_val;
uint32_t hw_err_src_reg;
uint32_t val;
enum hns3_evt_cause ret;
bool is_delay;
/* fetch the events from their corresponding regs */
vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
cmdq_src_val = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
hw_err_src_reg = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
is_delay = clearval == NULL ? true : false;
/*
* Assumption: If by any chance reset and mailbox events are reported
* together then we will only process reset event and defer the
* processing of the mailbox events. Since, we would have not cleared
* RX CMDQ event this time we would receive again another interrupt
* from H/W just for the mailbox.
*/
if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats) { /* IMP */
ret = hns3_proc_imp_reset_event(hns, is_delay, &val);
goto out;
}
/* Global reset */
if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats) {
ret = hns3_proc_global_reset_event(hns, is_delay, &val);
goto out;
}
/* Check for vector0 1588 event source */
if (BIT(HNS3_VECTOR0_1588_INT_B) & vector0_int_stats) {
val = BIT(HNS3_VECTOR0_1588_INT_B);
ret = HNS3_VECTOR0_EVENT_PTP;
goto out;
}
/* check for vector0 msix event source */
if (vector0_int_stats & HNS3_VECTOR0_REG_MSIX_MASK ||
hw_err_src_reg & HNS3_RAS_REG_NFE_MASK) {
val = vector0_int_stats | hw_err_src_reg;
ret = HNS3_VECTOR0_EVENT_ERR;
goto out;
}
/* check for vector0 mailbox(=CMDQ RX) event source */
if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_val) {
cmdq_src_val &= ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
val = cmdq_src_val;
ret = HNS3_VECTOR0_EVENT_MBX;
goto out;
}
val = vector0_int_stats;
ret = HNS3_VECTOR0_EVENT_OTHER;
out:
if (clearval)
*clearval = val;
return ret;
}
static bool
hns3_is_1588_event_type(uint32_t event_type)
{
return (event_type == HNS3_VECTOR0_EVENT_PTP);
}
static void
hns3_clear_event_cause(struct hns3_hw *hw, uint32_t event_type, uint32_t regclr)
{
if (event_type == HNS3_VECTOR0_EVENT_RST ||
hns3_is_1588_event_type(event_type))
hns3_write_dev(hw, HNS3_MISC_RESET_STS_REG, regclr);
else if (event_type == HNS3_VECTOR0_EVENT_MBX)
hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
}
static void
hns3_clear_all_event_cause(struct hns3_hw *hw)
{
uint32_t vector0_int_stats;
vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats)
hns3_warn(hw, "Probe during IMP reset interrupt");
if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats)
hns3_warn(hw, "Probe during Global reset interrupt");
hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_RST,
BIT(HNS3_VECTOR0_IMPRESET_INT_B) |
BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) |
BIT(HNS3_VECTOR0_CORERESET_INT_B));
hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_MBX, 0);
hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_PTP,
BIT(HNS3_VECTOR0_1588_INT_B));
}
static void
hns3_handle_mac_tnl(struct hns3_hw *hw)
{
struct hns3_cmd_desc desc;
uint32_t status;
int ret;
/* query and clear mac tnl interrupt */
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_MAC_TNL_INT, true);
ret = hns3_cmd_send(hw, &desc, 1);
if (ret) {
hns3_err(hw, "failed to query mac tnl int, ret = %d.", ret);
return;
}
status = rte_le_to_cpu_32(desc.data[0]);
if (status) {
hns3_warn(hw, "mac tnl int occurs, status = 0x%x.", status);
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_MAC_TNL_INT,
false);
desc.data[0] = rte_cpu_to_le_32(HNS3_MAC_TNL_INT_CLR);
ret = hns3_cmd_send(hw, &desc, 1);
if (ret)
hns3_err(hw, "failed to clear mac tnl int, ret = %d.",
ret);
}
}
static void
hns3_interrupt_handler(void *param)
{
struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
enum hns3_evt_cause event_cause;
uint32_t clearval = 0;
uint32_t vector0_int;
uint32_t ras_int;
uint32_t cmdq_int;
/* Disable interrupt */
hns3_pf_disable_irq0(hw);
event_cause = hns3_check_event_cause(hns, &clearval);
vector0_int = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
ras_int = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
cmdq_int = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
/* vector 0 interrupt is shared with reset and mailbox source events. */
if (event_cause == HNS3_VECTOR0_EVENT_ERR) {
hns3_warn(hw, "received interrupt: vector0_int_stat:0x%x "
"ras_int_stat:0x%x cmdq_int_stat:0x%x",
vector0_int, ras_int, cmdq_int);
hns3_handle_mac_tnl(hw);
hns3_handle_error(hns);
} else if (event_cause == HNS3_VECTOR0_EVENT_RST) {
hns3_warn(hw, "received reset interrupt");
hns3_schedule_reset(hns);
} else if (event_cause == HNS3_VECTOR0_EVENT_MBX) {
hns3_dev_handle_mbx_msg(hw);
} else {
hns3_warn(hw, "received unknown event: vector0_int_stat:0x%x "
"ras_int_stat:0x%x cmdq_int_stat:0x%x",
vector0_int, ras_int, cmdq_int);
}
hns3_clear_event_cause(hw, event_cause, clearval);
/* Enable interrupt if it is not cause by reset */
hns3_pf_enable_irq0(hw);
}
static int
hns3_set_port_vlan_filter(struct hns3_adapter *hns, uint16_t vlan_id, int on)
{
#define HNS3_VLAN_ID_OFFSET_STEP 160
#define HNS3_VLAN_BYTE_SIZE 8
struct hns3_vlan_filter_pf_cfg_cmd *req;
struct hns3_hw *hw = &hns->hw;
uint8_t vlan_offset_byte_val;
struct hns3_cmd_desc desc;
uint8_t vlan_offset_byte;
uint8_t vlan_offset_base;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_PF_CFG, false);
vlan_offset_base = vlan_id / HNS3_VLAN_ID_OFFSET_STEP;
vlan_offset_byte = (vlan_id % HNS3_VLAN_ID_OFFSET_STEP) /
HNS3_VLAN_BYTE_SIZE;
vlan_offset_byte_val = 1 << (vlan_id % HNS3_VLAN_BYTE_SIZE);
req = (struct hns3_vlan_filter_pf_cfg_cmd *)desc.data;
req->vlan_offset = vlan_offset_base;
req->vlan_cfg = on ? 0 : 1;
req->vlan_offset_bitmap[vlan_offset_byte] = vlan_offset_byte_val;
ret = hns3_cmd_send(hw, &desc, 1);
if (ret)
hns3_err(hw, "set port vlan id failed, vlan_id =%u, ret =%d",
vlan_id, ret);
return ret;
}
static void
hns3_rm_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id)
{
struct hns3_user_vlan_table *vlan_entry;
struct hns3_pf *pf = &hns->pf;
LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
if (vlan_entry->vlan_id == vlan_id) {
if (vlan_entry->hd_tbl_status)
hns3_set_port_vlan_filter(hns, vlan_id, 0);
LIST_REMOVE(vlan_entry, next);
rte_free(vlan_entry);
break;
}
}
}
static void
hns3_add_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id,
bool writen_to_tbl)
{
struct hns3_user_vlan_table *vlan_entry;
struct hns3_hw *hw = &hns->hw;
struct hns3_pf *pf = &hns->pf;
LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
if (vlan_entry->vlan_id == vlan_id)
return;
}
vlan_entry = rte_zmalloc("hns3_vlan_tbl", sizeof(*vlan_entry), 0);
if (vlan_entry == NULL) {
hns3_err(hw, "Failed to malloc hns3 vlan table");
return;
}
vlan_entry->hd_tbl_status = writen_to_tbl;
vlan_entry->vlan_id = vlan_id;
LIST_INSERT_HEAD(&pf->vlan_list, vlan_entry, next);
}
static int
hns3_restore_vlan_table(struct hns3_adapter *hns)
{
struct hns3_user_vlan_table *vlan_entry;
struct hns3_hw *hw = &hns->hw;
struct hns3_pf *pf = &hns->pf;
uint16_t vlan_id;
int ret = 0;
if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_ENABLE)
return hns3_vlan_pvid_configure(hns,
hw->port_base_vlan_cfg.pvid, 1);
LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
if (vlan_entry->hd_tbl_status) {
vlan_id = vlan_entry->vlan_id;
ret = hns3_set_port_vlan_filter(hns, vlan_id, 1);
if (ret)
break;
}
}
return ret;
}
static int
hns3_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
{
struct hns3_hw *hw = &hns->hw;
bool writen_to_tbl = false;
int ret = 0;
/*
* When vlan filter is enabled, hardware regards packets without vlan
* as packets with vlan 0. So, to receive packets without vlan, vlan id
* 0 is not allowed to be removed by rte_eth_dev_vlan_filter.
*/
if (on == 0 && vlan_id == 0)
return 0;
/*
* When port base vlan enabled, we use port base vlan as the vlan
* filter condition. In this case, we don't update vlan filter table
* when user add new vlan or remove exist vlan, just update the
* vlan list. The vlan id in vlan list will be written in vlan filter
* table until port base vlan disabled
*/
if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
ret = hns3_set_port_vlan_filter(hns, vlan_id, on);
writen_to_tbl = true;
}
if (ret == 0) {
if (on)
hns3_add_dev_vlan_table(hns, vlan_id, writen_to_tbl);
else
hns3_rm_dev_vlan_table(hns, vlan_id);
}
return ret;
}
static int
hns3_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
int ret;
rte_spinlock_lock(&hw->lock);
ret = hns3_vlan_filter_configure(hns, vlan_id, on);
rte_spinlock_unlock(&hw->lock);
return ret;
}
static int
hns3_vlan_tpid_configure(struct hns3_adapter *hns, enum rte_vlan_type vlan_type,
uint16_t tpid)
{
struct hns3_rx_vlan_type_cfg_cmd *rx_req;
struct hns3_tx_vlan_type_cfg_cmd *tx_req;
struct hns3_hw *hw = &hns->hw;
struct hns3_cmd_desc desc;
int ret;
if ((vlan_type != ETH_VLAN_TYPE_INNER &&
vlan_type != ETH_VLAN_TYPE_OUTER)) {
hns3_err(hw, "Unsupported vlan type, vlan_type =%d", vlan_type);
return -EINVAL;
}
if (tpid != RTE_ETHER_TYPE_VLAN) {
hns3_err(hw, "Unsupported vlan tpid, vlan_type =%d", vlan_type);
return -EINVAL;
}
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_TYPE_ID, false);
rx_req = (struct hns3_rx_vlan_type_cfg_cmd *)desc.data;
if (vlan_type == ETH_VLAN_TYPE_OUTER) {
rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
} else if (vlan_type == ETH_VLAN_TYPE_INNER) {
rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
rx_req->in_fst_vlan_type = rte_cpu_to_le_16(tpid);
rx_req->in_sec_vlan_type = rte_cpu_to_le_16(tpid);
}
ret = hns3_cmd_send(hw, &desc, 1);
if (ret) {
hns3_err(hw, "Send rxvlan protocol type command fail, ret =%d",
ret);
return ret;
}
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_INSERT, false);
tx_req = (struct hns3_tx_vlan_type_cfg_cmd *)desc.data;
tx_req->ot_vlan_type = rte_cpu_to_le_16(tpid);
tx_req->in_vlan_type = rte_cpu_to_le_16(tpid);
ret = hns3_cmd_send(hw, &desc, 1);
if (ret)
hns3_err(hw, "Send txvlan protocol type command fail, ret =%d",
ret);
return ret;
}
static int
hns3_vlan_tpid_set(struct rte_eth_dev *dev, enum rte_vlan_type vlan_type,
uint16_t tpid)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
int ret;
rte_spinlock_lock(&hw->lock);
ret = hns3_vlan_tpid_configure(hns, vlan_type, tpid);
rte_spinlock_unlock(&hw->lock);
return ret;
}
static int
hns3_set_vlan_rx_offload_cfg(struct hns3_adapter *hns,
struct hns3_rx_vtag_cfg *vcfg)
{
struct hns3_vport_vtag_rx_cfg_cmd *req;
struct hns3_hw *hw = &hns->hw;
struct hns3_cmd_desc desc;
uint16_t vport_id;
uint8_t bitmap;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_RX_CFG, false);
req = (struct hns3_vport_vtag_rx_cfg_cmd *)desc.data;
hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG1_EN_B,
vcfg->strip_tag1_en ? 1 : 0);
hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG2_EN_B,
vcfg->strip_tag2_en ? 1 : 0);
hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG1_EN_B,
vcfg->vlan1_vlan_prionly ? 1 : 0);
hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG2_EN_B,
vcfg->vlan2_vlan_prionly ? 1 : 0);
/* firmwall will ignore this configuration for PCI_REVISION_ID_HIP08 */
hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG1_EN_B,
vcfg->strip_tag1_discard_en ? 1 : 0);
hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG2_EN_B,
vcfg->strip_tag2_discard_en ? 1 : 0);
/*
* In current version VF is not supported when PF is driven by DPDK
* driver, just need to configure parameters for PF vport.
*/
vport_id = HNS3_PF_FUNC_ID;
req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
req->vf_bitmap[req->vf_offset] = bitmap;
ret = hns3_cmd_send(hw, &desc, 1);
if (ret)
hns3_err(hw, "Send port rxvlan cfg command fail, ret =%d", ret);
return ret;
}
static void
hns3_update_rx_offload_cfg(struct hns3_adapter *hns,
struct hns3_rx_vtag_cfg *vcfg)
{
struct hns3_pf *pf = &hns->pf;
memcpy(&pf->vtag_config.rx_vcfg, vcfg, sizeof(pf->vtag_config.rx_vcfg));
}
static void
hns3_update_tx_offload_cfg(struct hns3_adapter *hns,
struct hns3_tx_vtag_cfg *vcfg)
{
struct hns3_pf *pf = &hns->pf;
memcpy(&pf->vtag_config.tx_vcfg, vcfg, sizeof(pf->vtag_config.tx_vcfg));
}
static int
hns3_en_hw_strip_rxvtag(struct hns3_adapter *hns, bool enable)
{
struct hns3_rx_vtag_cfg rxvlan_cfg;
struct hns3_hw *hw = &hns->hw;
int ret;
if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
rxvlan_cfg.strip_tag1_en = false;
rxvlan_cfg.strip_tag2_en = enable;
rxvlan_cfg.strip_tag2_discard_en = false;
} else {
rxvlan_cfg.strip_tag1_en = enable;
rxvlan_cfg.strip_tag2_en = true;
rxvlan_cfg.strip_tag2_discard_en = true;
}
rxvlan_cfg.strip_tag1_discard_en = false;
rxvlan_cfg.vlan1_vlan_prionly = false;
rxvlan_cfg.vlan2_vlan_prionly = false;
rxvlan_cfg.rx_vlan_offload_en = enable;
ret = hns3_set_vlan_rx_offload_cfg(hns, &rxvlan_cfg);
if (ret) {
hns3_err(hw, "%s strip rx vtag failed, ret = %d.",
enable ? "enable" : "disable", ret);
return ret;
}
hns3_update_rx_offload_cfg(hns, &rxvlan_cfg);
return ret;
}
static int
hns3_set_vlan_filter_ctrl(struct hns3_hw *hw, uint8_t vlan_type,
uint8_t fe_type, bool filter_en, uint8_t vf_id)
{
struct hns3_vlan_filter_ctrl_cmd *req;
struct hns3_cmd_desc desc;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_CTRL, false);
req = (struct hns3_vlan_filter_ctrl_cmd *)desc.data;
req->vlan_type = vlan_type;
req->vlan_fe = filter_en ? fe_type : 0;
req->vf_id = vf_id;
ret = hns3_cmd_send(hw, &desc, 1);
if (ret)
hns3_err(hw, "set vlan filter fail, ret =%d", ret);
return ret;
}
static int
hns3_vlan_filter_init(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
int ret;
ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_VF,
HNS3_FILTER_FE_EGRESS, false,
HNS3_PF_FUNC_ID);
if (ret) {
hns3_err(hw, "failed to init vf vlan filter, ret = %d", ret);
return ret;
}
ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
HNS3_FILTER_FE_INGRESS, false,
HNS3_PF_FUNC_ID);
if (ret)
hns3_err(hw, "failed to init port vlan filter, ret = %d", ret);
return ret;
}
static int
hns3_enable_vlan_filter(struct hns3_adapter *hns, bool enable)
{
struct hns3_hw *hw = &hns->hw;
int ret;
ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
HNS3_FILTER_FE_INGRESS, enable,
HNS3_PF_FUNC_ID);
if (ret)
hns3_err(hw, "failed to %s port vlan filter, ret = %d",
enable ? "enable" : "disable", ret);
return ret;
}
static int
hns3_vlan_offload_set(struct rte_eth_dev *dev, int mask)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
struct rte_eth_rxmode *rxmode;
unsigned int tmp_mask;
bool enable;
int ret = 0;
rte_spinlock_lock(&hw->lock);
rxmode = &dev->data->dev_conf.rxmode;
tmp_mask = (unsigned int)mask;
if (tmp_mask & ETH_VLAN_FILTER_MASK) {
/* ignore vlan filter configuration during promiscuous mode */
if (!dev->data->promiscuous) {
/* Enable or disable VLAN filter */
enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER ?
true : false;
ret = hns3_enable_vlan_filter(hns, enable);
if (ret) {
rte_spinlock_unlock(&hw->lock);
hns3_err(hw, "failed to %s rx filter, ret = %d",
enable ? "enable" : "disable", ret);
return ret;
}
}
}
if (tmp_mask & ETH_VLAN_STRIP_MASK) {
/* Enable or disable VLAN stripping */
enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP ?
true : false;
ret = hns3_en_hw_strip_rxvtag(hns, enable);
if (ret) {
rte_spinlock_unlock(&hw->lock);
hns3_err(hw, "failed to %s rx strip, ret = %d",
enable ? "enable" : "disable", ret);
return ret;
}
}
rte_spinlock_unlock(&hw->lock);
return ret;
}
static int
hns3_set_vlan_tx_offload_cfg(struct hns3_adapter *hns,
struct hns3_tx_vtag_cfg *vcfg)
{
struct hns3_vport_vtag_tx_cfg_cmd *req;
struct hns3_cmd_desc desc;
struct hns3_hw *hw = &hns->hw;
uint16_t vport_id;
uint8_t bitmap;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_TX_CFG, false);
req = (struct hns3_vport_vtag_tx_cfg_cmd *)desc.data;
req->def_vlan_tag1 = vcfg->default_tag1;
req->def_vlan_tag2 = vcfg->default_tag2;
hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG1_B,
vcfg->accept_tag1 ? 1 : 0);
hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG1_B,
vcfg->accept_untag1 ? 1 : 0);
hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG2_B,
vcfg->accept_tag2 ? 1 : 0);
hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG2_B,
vcfg->accept_untag2 ? 1 : 0);
hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG1_EN_B,
vcfg->insert_tag1_en ? 1 : 0);
hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG2_EN_B,
vcfg->insert_tag2_en ? 1 : 0);
hns3_set_bit(req->vport_vlan_cfg, HNS3_CFG_NIC_ROCE_SEL_B, 0);
/* firmwall will ignore this configuration for PCI_REVISION_ID_HIP08 */
hns3_set_bit(req->vport_vlan_cfg, HNS3_TAG_SHIFT_MODE_EN_B,
vcfg->tag_shift_mode_en ? 1 : 0);
/*
* In current version VF is not supported when PF is driven by DPDK
* driver, just need to configure parameters for PF vport.
*/
vport_id = HNS3_PF_FUNC_ID;
req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
req->vf_bitmap[req->vf_offset] = bitmap;
ret = hns3_cmd_send(hw, &desc, 1);
if (ret)
hns3_err(hw, "Send port txvlan cfg command fail, ret =%d", ret);
return ret;
}
static int
hns3_vlan_txvlan_cfg(struct hns3_adapter *hns, uint16_t port_base_vlan_state,
uint16_t pvid)
{
struct hns3_hw *hw = &hns->hw;
struct hns3_tx_vtag_cfg txvlan_cfg;
int ret;
if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_DISABLE) {
txvlan_cfg.accept_tag1 = true;
txvlan_cfg.insert_tag1_en = false;
txvlan_cfg.default_tag1 = 0;
} else {
txvlan_cfg.accept_tag1 =
hw->vlan_mode == HNS3_HW_SHIFT_AND_DISCARD_MODE;
txvlan_cfg.insert_tag1_en = true;
txvlan_cfg.default_tag1 = pvid;
}
txvlan_cfg.accept_untag1 = true;
txvlan_cfg.accept_tag2 = true;
txvlan_cfg.accept_untag2 = true;
txvlan_cfg.insert_tag2_en = false;
txvlan_cfg.default_tag2 = 0;
txvlan_cfg.tag_shift_mode_en = true;
ret = hns3_set_vlan_tx_offload_cfg(hns, &txvlan_cfg);
if (ret) {
hns3_err(hw, "pf vlan set pvid failed, pvid =%u ,ret =%d", pvid,
ret);
return ret;
}
hns3_update_tx_offload_cfg(hns, &txvlan_cfg);
return ret;
}
static void
hns3_rm_all_vlan_table(struct hns3_adapter *hns, bool is_del_list)
{
struct hns3_user_vlan_table *vlan_entry;
struct hns3_pf *pf = &hns->pf;
LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
if (vlan_entry->hd_tbl_status) {
hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 0);
vlan_entry->hd_tbl_status = false;
}
}
if (is_del_list) {
vlan_entry = LIST_FIRST(&pf->vlan_list);
while (vlan_entry) {
LIST_REMOVE(vlan_entry, next);
rte_free(vlan_entry);
vlan_entry = LIST_FIRST(&pf->vlan_list);
}
}
}
static void
hns3_add_all_vlan_table(struct hns3_adapter *hns)
{
struct hns3_user_vlan_table *vlan_entry;
struct hns3_pf *pf = &hns->pf;
LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
if (!vlan_entry->hd_tbl_status) {
hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 1);
vlan_entry->hd_tbl_status = true;
}
}
}
static void
hns3_remove_all_vlan_table(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
int ret;
hns3_rm_all_vlan_table(hns, true);
if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID) {
ret = hns3_set_port_vlan_filter(hns,
hw->port_base_vlan_cfg.pvid, 0);
if (ret) {
hns3_err(hw, "Failed to remove all vlan table, ret =%d",
ret);
return;
}
}
}
static int
hns3_update_vlan_filter_entries(struct hns3_adapter *hns,
uint16_t port_base_vlan_state, uint16_t new_pvid)
{
struct hns3_hw *hw = &hns->hw;
uint16_t old_pvid;
int ret;
if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_ENABLE) {
old_pvid = hw->port_base_vlan_cfg.pvid;
if (old_pvid != HNS3_INVALID_PVID) {
ret = hns3_set_port_vlan_filter(hns, old_pvid, 0);
if (ret) {
hns3_err(hw, "failed to remove old pvid %u, "
"ret = %d", old_pvid, ret);
return ret;
}
}
hns3_rm_all_vlan_table(hns, false);
ret = hns3_set_port_vlan_filter(hns, new_pvid, 1);
if (ret) {
hns3_err(hw, "failed to add new pvid %u, ret = %d",
new_pvid, ret);
return ret;
}
} else {
ret = hns3_set_port_vlan_filter(hns, new_pvid, 0);
if (ret) {
hns3_err(hw, "failed to remove pvid %u, ret = %d",
new_pvid, ret);
return ret;
}
hns3_add_all_vlan_table(hns);
}
return 0;
}
static int
hns3_en_pvid_strip(struct hns3_adapter *hns, int on)
{
struct hns3_rx_vtag_cfg *old_cfg = &hns->pf.vtag_config.rx_vcfg;
struct hns3_rx_vtag_cfg rx_vlan_cfg;
bool rx_strip_en;
int ret;
rx_strip_en = old_cfg->rx_vlan_offload_en;
if (on) {
rx_vlan_cfg.strip_tag1_en = rx_strip_en;
rx_vlan_cfg.strip_tag2_en = true;
rx_vlan_cfg.strip_tag2_discard_en = true;
} else {
rx_vlan_cfg.strip_tag1_en = false;
rx_vlan_cfg.strip_tag2_en = rx_strip_en;
rx_vlan_cfg.strip_tag2_discard_en = false;
}
rx_vlan_cfg.strip_tag1_discard_en = false;
rx_vlan_cfg.vlan1_vlan_prionly = false;
rx_vlan_cfg.vlan2_vlan_prionly = false;
rx_vlan_cfg.rx_vlan_offload_en = old_cfg->rx_vlan_offload_en;
ret = hns3_set_vlan_rx_offload_cfg(hns, &rx_vlan_cfg);
if (ret)
return ret;
hns3_update_rx_offload_cfg(hns, &rx_vlan_cfg);
return ret;
}
static int
hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid, int on)
{
struct hns3_hw *hw = &hns->hw;
uint16_t port_base_vlan_state;
int ret, err;
if (on == 0 && pvid != hw->port_base_vlan_cfg.pvid) {
if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID)
hns3_warn(hw, "Invalid operation! As current pvid set "
"is %u, disable pvid %u is invalid",
hw->port_base_vlan_cfg.pvid, pvid);
return 0;
}
port_base_vlan_state = on ? HNS3_PORT_BASE_VLAN_ENABLE :
HNS3_PORT_BASE_VLAN_DISABLE;
ret = hns3_vlan_txvlan_cfg(hns, port_base_vlan_state, pvid);
if (ret) {
hns3_err(hw, "failed to config tx vlan for pvid, ret = %d",
ret);
return ret;
}
ret = hns3_en_pvid_strip(hns, on);
if (ret) {
hns3_err(hw, "failed to config rx vlan strip for pvid, "
"ret = %d", ret);
goto pvid_vlan_strip_fail;
}
if (pvid == HNS3_INVALID_PVID)
goto out;
ret = hns3_update_vlan_filter_entries(hns, port_base_vlan_state, pvid);
if (ret) {
hns3_err(hw, "failed to update vlan filter entries, ret = %d",
ret);
goto vlan_filter_set_fail;
}
out:
hw->port_base_vlan_cfg.state = port_base_vlan_state;
hw->port_base_vlan_cfg.pvid = on ? pvid : HNS3_INVALID_PVID;
return ret;
vlan_filter_set_fail:
err = hns3_en_pvid_strip(hns, hw->port_base_vlan_cfg.state ==
HNS3_PORT_BASE_VLAN_ENABLE);
if (err)
hns3_err(hw, "fail to rollback pvid strip, ret = %d", err);
pvid_vlan_strip_fail:
err = hns3_vlan_txvlan_cfg(hns, hw->port_base_vlan_cfg.state,
hw->port_base_vlan_cfg.pvid);
if (err)
hns3_err(hw, "fail to rollback txvlan status, ret = %d", err);
return ret;
}
static int
hns3_vlan_pvid_set(struct rte_eth_dev *dev, uint16_t pvid, int on)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
bool pvid_en_state_change;
uint16_t pvid_state;
int ret;
if (pvid > RTE_ETHER_MAX_VLAN_ID) {
hns3_err(hw, "Invalid vlan_id = %u > %d", pvid,
RTE_ETHER_MAX_VLAN_ID);
return -EINVAL;
}
/*
* If PVID configuration state change, should refresh the PVID
* configuration state in struct hns3_tx_queue/hns3_rx_queue.
*/
pvid_state = hw->port_base_vlan_cfg.state;
if ((on && pvid_state == HNS3_PORT_BASE_VLAN_ENABLE) ||
(!on && pvid_state == HNS3_PORT_BASE_VLAN_DISABLE))
pvid_en_state_change = false;
else
pvid_en_state_change = true;
rte_spinlock_lock(&hw->lock);
ret = hns3_vlan_pvid_configure(hns, pvid, on);
rte_spinlock_unlock(&hw->lock);
if (ret)
return ret;
/*
* Only in HNS3_SW_SHIFT_AND_MODE the PVID related operation in Tx/Rx
* need be processed by PMD driver.
*/
if (pvid_en_state_change &&
hw->vlan_mode == HNS3_SW_SHIFT_AND_DISCARD_MODE)
hns3_update_all_queues_pvid_proc_en(hw);
return 0;
}
static int
hns3_default_vlan_config(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
int ret;
/*
* When vlan filter is enabled, hardware regards packets without vlan
* as packets with vlan 0. Therefore, if vlan 0 is not in the vlan
* table, packets without vlan won't be received. So, add vlan 0 as
* the default vlan.
*/
ret = hns3_vlan_filter_configure(hns, 0, 1);
if (ret)
hns3_err(hw, "default vlan 0 config failed, ret =%d", ret);
return ret;
}
static int
hns3_init_vlan_config(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
int ret;
/*
* This function can be called in the initialization and reset process,
* when in reset process, it means that hardware had been reseted
* successfully and we need to restore the hardware configuration to
* ensure that the hardware configuration remains unchanged before and
* after reset.
*/
if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
hw->port_base_vlan_cfg.state = HNS3_PORT_BASE_VLAN_DISABLE;
hw->port_base_vlan_cfg.pvid = HNS3_INVALID_PVID;
}
ret = hns3_vlan_filter_init(hns);
if (ret) {
hns3_err(hw, "vlan init fail in pf, ret =%d", ret);
return ret;
}
ret = hns3_vlan_tpid_configure(hns, ETH_VLAN_TYPE_INNER,
RTE_ETHER_TYPE_VLAN);
if (ret) {
hns3_err(hw, "tpid set fail in pf, ret =%d", ret);
return ret;
}
/*
* When in the reinit dev stage of the reset process, the following
* vlan-related configurations may differ from those at initialization,
* we will restore configurations to hardware in hns3_restore_vlan_table
* and hns3_restore_vlan_conf later.
*/
if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
ret = hns3_vlan_pvid_configure(hns, HNS3_INVALID_PVID, 0);
if (ret) {
hns3_err(hw, "pvid set fail in pf, ret =%d", ret);
return ret;
}
ret = hns3_en_hw_strip_rxvtag(hns, false);
if (ret) {
hns3_err(hw, "rx strip configure fail in pf, ret =%d",
ret);
return ret;
}
}
return hns3_default_vlan_config(hns);
}
static int
hns3_restore_vlan_conf(struct hns3_adapter *hns)
{
struct hns3_pf *pf = &hns->pf;
struct hns3_hw *hw = &hns->hw;
uint64_t offloads;
bool enable;
int ret;
if (!hw->data->promiscuous) {
/* restore vlan filter states */
offloads = hw->data->dev_conf.rxmode.offloads;
enable = offloads & DEV_RX_OFFLOAD_VLAN_FILTER ? true : false;
ret = hns3_enable_vlan_filter(hns, enable);
if (ret) {
hns3_err(hw, "failed to restore vlan rx filter conf, "
"ret = %d", ret);
return ret;
}
}
ret = hns3_set_vlan_rx_offload_cfg(hns, &pf->vtag_config.rx_vcfg);
if (ret) {
hns3_err(hw, "failed to restore vlan rx conf, ret = %d", ret);
return ret;
}
ret = hns3_set_vlan_tx_offload_cfg(hns, &pf->vtag_config.tx_vcfg);
if (ret)
hns3_err(hw, "failed to restore vlan tx conf, ret = %d", ret);
return ret;
}
static int
hns3_dev_configure_vlan(struct rte_eth_dev *dev)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct rte_eth_dev_data *data = dev->data;
struct rte_eth_txmode *txmode;
struct hns3_hw *hw = &hns->hw;
int mask;
int ret;
txmode = &data->dev_conf.txmode;
if (txmode->hw_vlan_reject_tagged || txmode->hw_vlan_reject_untagged)
hns3_warn(hw,
"hw_vlan_reject_tagged or hw_vlan_reject_untagged "
"configuration is not supported! Ignore these two "
"parameters: hw_vlan_reject_tagged(%u), "
"hw_vlan_reject_untagged(%u)",
txmode->hw_vlan_reject_tagged,
txmode->hw_vlan_reject_untagged);
/* Apply vlan offload setting */
mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK;
ret = hns3_vlan_offload_set(dev, mask);
if (ret) {
hns3_err(hw, "dev config rx vlan offload failed, ret = %d",
ret);
return ret;
}
/*
* If pvid config is not set in rte_eth_conf, driver needn't to set
* VLAN pvid related configuration to hardware.
*/
if (txmode->pvid == 0 && txmode->hw_vlan_insert_pvid == 0)
return 0;
/* Apply pvid setting */
ret = hns3_vlan_pvid_set(dev, txmode->pvid,
txmode->hw_vlan_insert_pvid);
if (ret)
hns3_err(hw, "dev config vlan pvid(%u) failed, ret = %d",
txmode->pvid, ret);
return ret;
}
static int
hns3_config_tso(struct hns3_hw *hw, unsigned int tso_mss_min,
unsigned int tso_mss_max)
{
struct hns3_cfg_tso_status_cmd *req;
struct hns3_cmd_desc desc;
uint16_t tso_mss;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TSO_GENERIC_CONFIG, false);
req = (struct hns3_cfg_tso_status_cmd *)desc.data;
tso_mss = 0;
hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
tso_mss_min);
req->tso_mss_min = rte_cpu_to_le_16(tso_mss);
tso_mss = 0;
hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
tso_mss_max);
req->tso_mss_max = rte_cpu_to_le_16(tso_mss);
return hns3_cmd_send(hw, &desc, 1);
}
static int
hns3_set_umv_space(struct hns3_hw *hw, uint16_t space_size,
uint16_t *allocated_size, bool is_alloc)
{
struct hns3_umv_spc_alc_cmd *req;
struct hns3_cmd_desc desc;
int ret;
req = (struct hns3_umv_spc_alc_cmd *)desc.data;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ALLOCATE, false);
hns3_set_bit(req->allocate, HNS3_UMV_SPC_ALC_B, is_alloc ? 0 : 1);
req->space_size = rte_cpu_to_le_32(space_size);
ret = hns3_cmd_send(hw, &desc, 1);
if (ret) {
PMD_INIT_LOG(ERR, "%s umv space failed for cmd_send, ret =%d",
is_alloc ? "allocate" : "free", ret);
return ret;
}
if (is_alloc && allocated_size)
*allocated_size = rte_le_to_cpu_32(desc.data[1]);
return 0;
}
static int
hns3_init_umv_space(struct hns3_hw *hw)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
uint16_t allocated_size = 0;
int ret;
ret = hns3_set_umv_space(hw, pf->wanted_umv_size, &allocated_size,
true);
if (ret)
return ret;
if (allocated_size < pf->wanted_umv_size)
PMD_INIT_LOG(WARNING, "Alloc umv space failed, want %u, get %u",
pf->wanted_umv_size, allocated_size);
pf->max_umv_size = (!!allocated_size) ? allocated_size :
pf->wanted_umv_size;
pf->used_umv_size = 0;
return 0;
}
static int
hns3_uninit_umv_space(struct hns3_hw *hw)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
int ret;
if (pf->max_umv_size == 0)
return 0;
ret = hns3_set_umv_space(hw, pf->max_umv_size, NULL, false);
if (ret)
return ret;
pf->max_umv_size = 0;
return 0;
}
static bool
hns3_is_umv_space_full(struct hns3_hw *hw)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
bool is_full;
is_full = (pf->used_umv_size >= pf->max_umv_size);
return is_full;
}
static void
hns3_update_umv_space(struct hns3_hw *hw, bool is_free)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
if (is_free) {
if (pf->used_umv_size > 0)
pf->used_umv_size--;
} else
pf->used_umv_size++;
}
static void
hns3_prepare_mac_addr(struct hns3_mac_vlan_tbl_entry_cmd *new_req,
const uint8_t *addr, bool is_mc)
{
const unsigned char *mac_addr = addr;
uint32_t high_val = ((uint32_t)mac_addr[3] << 24) |
((uint32_t)mac_addr[2] << 16) |
((uint32_t)mac_addr[1] << 8) |
(uint32_t)mac_addr[0];
uint32_t low_val = ((uint32_t)mac_addr[5] << 8) | (uint32_t)mac_addr[4];
hns3_set_bit(new_req->flags, HNS3_MAC_VLAN_BIT0_EN_B, 1);
if (is_mc) {
hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT1_EN_B, 1);
hns3_set_bit(new_req->mc_mac_en, HNS3_MAC_VLAN_BIT0_EN_B, 1);
}
new_req->mac_addr_hi32 = rte_cpu_to_le_32(high_val);
new_req->mac_addr_lo16 = rte_cpu_to_le_16(low_val & 0xffff);
}
static int
hns3_get_mac_vlan_cmd_status(struct hns3_hw *hw, uint16_t cmdq_resp,
uint8_t resp_code,
enum hns3_mac_vlan_tbl_opcode op)
{
if (cmdq_resp) {
hns3_err(hw, "cmdq execute failed for get_mac_vlan_cmd_status,status=%u",
cmdq_resp);
return -EIO;
}
if (op == HNS3_MAC_VLAN_ADD) {
if (resp_code == 0 || resp_code == 1) {
return 0;
} else if (resp_code == HNS3_ADD_UC_OVERFLOW) {
hns3_err(hw, "add mac addr failed for uc_overflow");
return -ENOSPC;
} else if (resp_code == HNS3_ADD_MC_OVERFLOW) {
hns3_err(hw, "add mac addr failed for mc_overflow");
return -ENOSPC;
}
hns3_err(hw, "add mac addr failed for undefined, code=%u",
resp_code);
return -EIO;
} else if (op == HNS3_MAC_VLAN_REMOVE) {
if (resp_code == 0) {
return 0;
} else if (resp_code == 1) {
hns3_dbg(hw, "remove mac addr failed for miss");
return -ENOENT;
}
hns3_err(hw, "remove mac addr failed for undefined, code=%u",
resp_code);
return -EIO;
} else if (op == HNS3_MAC_VLAN_LKUP) {
if (resp_code == 0) {
return 0;
} else if (resp_code == 1) {
hns3_dbg(hw, "lookup mac addr failed for miss");
return -ENOENT;
}
hns3_err(hw, "lookup mac addr failed for undefined, code=%u",
resp_code);
return -EIO;
}
hns3_err(hw, "unknown opcode for get_mac_vlan_cmd_status, opcode=%u",
op);
return -EINVAL;
}
static int
hns3_lookup_mac_vlan_tbl(struct hns3_hw *hw,
struct hns3_mac_vlan_tbl_entry_cmd *req,
struct hns3_cmd_desc *desc, bool is_mc)
{
uint8_t resp_code;
uint16_t retval;
int ret;
hns3_cmd_setup_basic_desc(&desc[0], HNS3_OPC_MAC_VLAN_ADD, true);
if (is_mc) {
desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
memcpy(desc[0].data, req,
sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
hns3_cmd_setup_basic_desc(&desc[1], HNS3_OPC_MAC_VLAN_ADD,
true);
desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
hns3_cmd_setup_basic_desc(&desc[2], HNS3_OPC_MAC_VLAN_ADD,
true);
ret = hns3_cmd_send(hw, desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
} else {
memcpy(desc[0].data, req,
sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
ret = hns3_cmd_send(hw, desc, 1);
}
if (ret) {
hns3_err(hw, "lookup mac addr failed for cmd_send, ret =%d.",
ret);
return ret;
}
resp_code = (rte_le_to_cpu_32(desc[0].data[0]) >> 8) & 0xff;
retval = rte_le_to_cpu_16(desc[0].retval);
return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
HNS3_MAC_VLAN_LKUP);
}
static int
hns3_add_mac_vlan_tbl(struct hns3_hw *hw,
struct hns3_mac_vlan_tbl_entry_cmd *req,
struct hns3_cmd_desc *mc_desc)
{
uint8_t resp_code;
uint16_t retval;
int cfg_status;
int ret;
if (mc_desc == NULL) {
struct hns3_cmd_desc desc;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ADD, false);
memcpy(desc.data, req,
sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
ret = hns3_cmd_send(hw, &desc, 1);
resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
retval = rte_le_to_cpu_16(desc.retval);
cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
HNS3_MAC_VLAN_ADD);
} else {
hns3_cmd_reuse_desc(&mc_desc[0], false);
mc_desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
hns3_cmd_reuse_desc(&mc_desc[1], false);
mc_desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
hns3_cmd_reuse_desc(&mc_desc[2], false);
mc_desc[2].flag &= rte_cpu_to_le_16(~HNS3_CMD_FLAG_NEXT);
memcpy(mc_desc[0].data, req,
sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
mc_desc[0].retval = 0;
ret = hns3_cmd_send(hw, mc_desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
resp_code = (rte_le_to_cpu_32(mc_desc[0].data[0]) >> 8) & 0xff;
retval = rte_le_to_cpu_16(mc_desc[0].retval);
cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
HNS3_MAC_VLAN_ADD);
}
if (ret) {
hns3_err(hw, "add mac addr failed for cmd_send, ret =%d", ret);
return ret;
}
return cfg_status;
}
static int
hns3_remove_mac_vlan_tbl(struct hns3_hw *hw,
struct hns3_mac_vlan_tbl_entry_cmd *req)
{
struct hns3_cmd_desc desc;
uint8_t resp_code;
uint16_t retval;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_REMOVE, false);
memcpy(desc.data, req, sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
ret = hns3_cmd_send(hw, &desc, 1);
if (ret) {
hns3_err(hw, "del mac addr failed for cmd_send, ret =%d", ret);
return ret;
}
resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
retval = rte_le_to_cpu_16(desc.retval);
return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
HNS3_MAC_VLAN_REMOVE);
}
static int
hns3_add_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_mac_vlan_tbl_entry_cmd req;
struct hns3_pf *pf = &hns->pf;
struct hns3_cmd_desc desc[3];
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
uint16_t egress_port = 0;
uint8_t vf_id;
int ret;
/* check if mac addr is valid */
if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
mac_addr);
hns3_err(hw, "Add unicast mac addr err! addr(%s) invalid",
mac_str);
return -EINVAL;
}
memset(&req, 0, sizeof(req));
/*
* In current version VF is not supported when PF is driven by DPDK
* driver, just need to configure parameters for PF vport.
*/
vf_id = HNS3_PF_FUNC_ID;
hns3_set_field(egress_port, HNS3_MAC_EPORT_VFID_M,
HNS3_MAC_EPORT_VFID_S, vf_id);
req.egress_port = rte_cpu_to_le_16(egress_port);
hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
/*
* Lookup the mac address in the mac_vlan table, and add
* it if the entry is inexistent. Repeated unicast entry
* is not allowed in the mac vlan table.
*/
ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, false);
if (ret == -ENOENT) {
if (!hns3_is_umv_space_full(hw)) {
ret = hns3_add_mac_vlan_tbl(hw, &req, NULL);
if (!ret)
hns3_update_umv_space(hw, false);
return ret;
}
hns3_err(hw, "UC MAC table full(%u)", pf->used_umv_size);
return -ENOSPC;
}
hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, mac_addr);
/* check if we just hit the duplicate */
if (ret == 0) {
hns3_dbg(hw, "mac addr(%s) has been in the MAC table", mac_str);
return 0;
}
hns3_err(hw, "PF failed to add unicast entry(%s) in the MAC table",
mac_str);
return ret;
}
static int
hns3_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
{
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
struct rte_ether_addr *addr;
int ret;
int i;
for (i = 0; i < hw->mc_addrs_num; i++) {
addr = &hw->mc_addrs[i];
/* Check if there are duplicate addresses */
if (rte_is_same_ether_addr(addr, mac_addr)) {
hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
addr);
hns3_err(hw, "failed to add mc mac addr, same addrs"
"(%s) is added by the set_mc_mac_addr_list "
"API", mac_str);
return -EINVAL;
}
}
ret = hns3_add_mc_addr(hw, mac_addr);
if (ret) {
hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
mac_addr);
hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
mac_str, ret);
}
return ret;
}
static int
hns3_remove_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
{
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
int ret;
ret = hns3_remove_mc_addr(hw, mac_addr);
if (ret) {
hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
mac_addr);
hns3_err(hw, "failed to remove mc mac addr(%s), ret = %d",
mac_str, ret);
}
return ret;
}
static int
hns3_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
uint32_t idx, __rte_unused uint32_t pool)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
int ret;
rte_spinlock_lock(&hw->lock);
/*
* In hns3 network engine adding UC and MC mac address with different
* commands with firmware. We need to determine whether the input
* address is a UC or a MC address to call different commands.
* By the way, it is recommended calling the API function named
* rte_eth_dev_set_mc_addr_list to set the MC mac address, because
* using the rte_eth_dev_mac_addr_add API function to set MC mac address
* may affect the specifications of UC mac addresses.
*/
if (rte_is_multicast_ether_addr(mac_addr))
ret = hns3_add_mc_addr_common(hw, mac_addr);
else
ret = hns3_add_uc_addr_common(hw, mac_addr);
if (ret) {
rte_spinlock_unlock(&hw->lock);
hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
mac_addr);
hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
ret);
return ret;
}
if (idx == 0)
hw->mac.default_addr_setted = true;
rte_spinlock_unlock(&hw->lock);
return ret;
}
static int
hns3_remove_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
{
struct hns3_mac_vlan_tbl_entry_cmd req;
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
int ret;
/* check if mac addr is valid */
if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
mac_addr);
hns3_err(hw, "remove unicast mac addr err! addr(%s) invalid",
mac_str);
return -EINVAL;
}
memset(&req, 0, sizeof(req));
hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
ret = hns3_remove_mac_vlan_tbl(hw, &req);
if (ret == -ENOENT) /* mac addr isn't existent in the mac vlan table. */
return 0;
else if (ret == 0)
hns3_update_umv_space(hw, true);
return ret;
}
static void
hns3_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/* index will be checked by upper level rte interface */
struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
int ret;
rte_spinlock_lock(&hw->lock);
if (rte_is_multicast_ether_addr(mac_addr))
ret = hns3_remove_mc_addr_common(hw, mac_addr);
else
ret = hns3_remove_uc_addr_common(hw, mac_addr);
rte_spinlock_unlock(&hw->lock);
if (ret) {
hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
mac_addr);
hns3_err(hw, "failed to remove mac addr(%s), ret = %d", mac_str,
ret);
}
}
static int
hns3_set_default_mac_addr(struct rte_eth_dev *dev,
struct rte_ether_addr *mac_addr)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_ether_addr *oaddr;
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
bool default_addr_setted;
bool rm_succes = false;
int ret, ret_val;
/*
* It has been guaranteed that input parameter named mac_addr is valid
* address in the rte layer of DPDK framework.
*/
oaddr = (struct rte_ether_addr *)hw->mac.mac_addr;
default_addr_setted = hw->mac.default_addr_setted;
if (default_addr_setted && !!rte_is_same_ether_addr(mac_addr, oaddr))
return 0;
rte_spinlock_lock(&hw->lock);
if (default_addr_setted) {
ret = hns3_remove_uc_addr_common(hw, oaddr);
if (ret) {
hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
oaddr);
hns3_warn(hw, "Remove old uc mac address(%s) fail: %d",
mac_str, ret);
rm_succes = false;
} else
rm_succes = true;
}
ret = hns3_add_uc_addr_common(hw, mac_addr);
if (ret) {
hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
mac_addr);
hns3_err(hw, "Failed to set mac addr(%s): %d", mac_str, ret);
goto err_add_uc_addr;
}
ret = hns3_pause_addr_cfg(hw, mac_addr->addr_bytes);
if (ret) {
hns3_err(hw, "Failed to configure mac pause address: %d", ret);
goto err_pause_addr_cfg;
}
rte_ether_addr_copy(mac_addr,
(struct rte_ether_addr *)hw->mac.mac_addr);
hw->mac.default_addr_setted = true;
rte_spinlock_unlock(&hw->lock);
return 0;
err_pause_addr_cfg:
ret_val = hns3_remove_uc_addr_common(hw, mac_addr);
if (ret_val) {
hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
mac_addr);
hns3_warn(hw,
"Failed to roll back to del setted mac addr(%s): %d",
mac_str, ret_val);
}
err_add_uc_addr:
if (rm_succes) {
ret_val = hns3_add_uc_addr_common(hw, oaddr);
if (ret_val) {
hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
oaddr);
hns3_warn(hw,
"Failed to restore old uc mac addr(%s): %d",
mac_str, ret_val);
hw->mac.default_addr_setted = false;
}
}
rte_spinlock_unlock(&hw->lock);
return ret;
}
static int
hns3_configure_all_mac_addr(struct hns3_adapter *hns, bool del)
{
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
struct hns3_hw *hw = &hns->hw;
struct rte_ether_addr *addr;
int err = 0;
int ret;
int i;
for (i = 0; i < HNS3_UC_MACADDR_NUM; i++) {
addr = &hw->data->mac_addrs[i];
if (rte_is_zero_ether_addr(addr))
continue;
if (rte_is_multicast_ether_addr(addr))
ret = del ? hns3_remove_mc_addr(hw, addr) :
hns3_add_mc_addr(hw, addr);
else
ret = del ? hns3_remove_uc_addr_common(hw, addr) :
hns3_add_uc_addr_common(hw, addr);
if (ret) {
err = ret;
hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
addr);
hns3_err(hw, "failed to %s mac addr(%s) index:%d "
"ret = %d.", del ? "remove" : "restore",
mac_str, i, ret);
}
}
return err;
}
static void
hns3_update_desc_vfid(struct hns3_cmd_desc *desc, uint8_t vfid, bool clr)
{
#define HNS3_VF_NUM_IN_FIRST_DESC 192
uint8_t word_num;
uint8_t bit_num;
if (vfid < HNS3_VF_NUM_IN_FIRST_DESC) {
word_num = vfid / 32;
bit_num = vfid % 32;
if (clr)
desc[1].data[word_num] &=
rte_cpu_to_le_32(~(1UL << bit_num));
else
desc[1].data[word_num] |=
rte_cpu_to_le_32(1UL << bit_num);
} else {
word_num = (vfid - HNS3_VF_NUM_IN_FIRST_DESC) / 32;
bit_num = vfid % 32;
if (clr)
desc[2].data[word_num] &=
rte_cpu_to_le_32(~(1UL << bit_num));
else
desc[2].data[word_num] |=
rte_cpu_to_le_32(1UL << bit_num);
}
}
static int
hns3_add_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
{
struct hns3_mac_vlan_tbl_entry_cmd req;
struct hns3_cmd_desc desc[3];
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
uint8_t vf_id;
int ret;
/* Check if mac addr is valid */
if (!rte_is_multicast_ether_addr(mac_addr)) {
hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
mac_addr);
hns3_err(hw, "failed to add mc mac addr, addr(%s) invalid",
mac_str);
return -EINVAL;
}
memset(&req, 0, sizeof(req));
hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
if (ret) {
/* This mac addr do not exist, add new entry for it */
memset(desc[0].data, 0, sizeof(desc[0].data));
memset(desc[1].data, 0, sizeof(desc[0].data));
memset(desc[2].data, 0, sizeof(desc[0].data));
}
/*
* In current version VF is not supported when PF is driven by DPDK
* driver, just need to configure parameters for PF vport.
*/
vf_id = HNS3_PF_FUNC_ID;
hns3_update_desc_vfid(desc, vf_id, false);
ret = hns3_add_mac_vlan_tbl(hw, &req, desc);
if (ret) {
if (ret == -ENOSPC)
hns3_err(hw, "mc mac vlan table is full");
hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
mac_addr);
hns3_err(hw, "failed to add mc mac addr(%s): %d", mac_str, ret);
}
return ret;
}
static int
hns3_remove_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
{
struct hns3_mac_vlan_tbl_entry_cmd req;
struct hns3_cmd_desc desc[3];
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
uint8_t vf_id;
int ret;
/* Check if mac addr is valid */
if (!rte_is_multicast_ether_addr(mac_addr)) {
hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
mac_addr);
hns3_err(hw, "Failed to rm mc mac addr, addr(%s) invalid",
mac_str);
return -EINVAL;
}
memset(&req, 0, sizeof(req));
hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
if (ret == 0) {
/*
* This mac addr exist, remove this handle's VFID for it.
* In current version VF is not supported when PF is driven by
* DPDK driver, just need to configure parameters for PF vport.
*/
vf_id = HNS3_PF_FUNC_ID;
hns3_update_desc_vfid(desc, vf_id, true);
/* All the vfid is zero, so need to delete this entry */
ret = hns3_remove_mac_vlan_tbl(hw, &req);
} else if (ret == -ENOENT) {
/* This mac addr doesn't exist. */
return 0;
}
if (ret) {
hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
mac_addr);
hns3_err(hw, "Failed to rm mc mac addr(%s): %d", mac_str, ret);
}
return ret;
}
static int
hns3_set_mc_addr_chk_param(struct hns3_hw *hw,
struct rte_ether_addr *mc_addr_set,
uint32_t nb_mc_addr)
{
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
struct rte_ether_addr *addr;
uint32_t i;
uint32_t j;
if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%u) "
"invalid. valid range: 0~%d",
nb_mc_addr, HNS3_MC_MACADDR_NUM);
return -EINVAL;
}
/* Check if input mac addresses are valid */
for (i = 0; i < nb_mc_addr; i++) {
addr = &mc_addr_set[i];
if (!rte_is_multicast_ether_addr(addr)) {
hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
addr);
hns3_err(hw,
"failed to set mc mac addr, addr(%s) invalid.",
mac_str);
return -EINVAL;
}
/* Check if there are duplicate addresses */
for (j = i + 1; j < nb_mc_addr; j++) {
if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
hns3_ether_format_addr(mac_str,
RTE_ETHER_ADDR_FMT_SIZE,
addr);
hns3_err(hw, "failed to set mc mac addr, "
"addrs invalid. two same addrs(%s).",
mac_str);
return -EINVAL;
}
}
/*
* Check if there are duplicate addresses between mac_addrs
* and mc_addr_set
*/
for (j = 0; j < HNS3_UC_MACADDR_NUM; j++) {
if (rte_is_same_ether_addr(addr,
&hw->data->mac_addrs[j])) {
hns3_ether_format_addr(mac_str,
RTE_ETHER_ADDR_FMT_SIZE,
addr);
hns3_err(hw, "failed to set mc mac addr, "
"addrs invalid. addrs(%s) has already "
"configured in mac_addr add API",
mac_str);
return -EINVAL;
}
}
}
return 0;
}
static void
hns3_set_mc_addr_calc_addr(struct hns3_hw *hw,
struct rte_ether_addr *mc_addr_set,
int mc_addr_num,
struct rte_ether_addr *reserved_addr_list,
int *reserved_addr_num,
struct rte_ether_addr *add_addr_list,
int *add_addr_num,
struct rte_ether_addr *rm_addr_list,
int *rm_addr_num)
{
struct rte_ether_addr *addr;
int current_addr_num;
int reserved_num = 0;
int add_num = 0;
int rm_num = 0;
int num;
int i;
int j;
bool same_addr;
/* Calculate the mc mac address list that should be removed */
current_addr_num = hw->mc_addrs_num;
for (i = 0; i < current_addr_num; i++) {
addr = &hw->mc_addrs[i];
same_addr = false;
for (j = 0; j < mc_addr_num; j++) {
if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
same_addr = true;
break;
}
}
if (!same_addr) {
rte_ether_addr_copy(addr, &rm_addr_list[rm_num]);
rm_num++;
} else {
rte_ether_addr_copy(addr,
&reserved_addr_list[reserved_num]);
reserved_num++;
}
}
/* Calculate the mc mac address list that should be added */
for (i = 0; i < mc_addr_num; i++) {
addr = &mc_addr_set[i];
same_addr = false;
for (j = 0; j < current_addr_num; j++) {
if (rte_is_same_ether_addr(addr, &hw->mc_addrs[j])) {
same_addr = true;
break;
}
}
if (!same_addr) {
rte_ether_addr_copy(addr, &add_addr_list[add_num]);
add_num++;
}
}
/* Reorder the mc mac address list maintained by driver */
for (i = 0; i < reserved_num; i++)
rte_ether_addr_copy(&reserved_addr_list[i], &hw->mc_addrs[i]);
for (i = 0; i < rm_num; i++) {
num = reserved_num + i;
rte_ether_addr_copy(&rm_addr_list[i], &hw->mc_addrs[num]);
}
*reserved_addr_num = reserved_num;
*add_addr_num = add_num;
*rm_addr_num = rm_num;
}
static int
hns3_set_mc_mac_addr_list(struct rte_eth_dev *dev,
struct rte_ether_addr *mc_addr_set,
uint32_t nb_mc_addr)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_ether_addr reserved_addr_list[HNS3_MC_MACADDR_NUM];
struct rte_ether_addr add_addr_list[HNS3_MC_MACADDR_NUM];
struct rte_ether_addr rm_addr_list[HNS3_MC_MACADDR_NUM];
struct rte_ether_addr *addr;
int reserved_addr_num;
int add_addr_num;
int rm_addr_num;
int mc_addr_num;
int num;
int ret;
int i;
/* Check if input parameters are valid */
ret = hns3_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
if (ret)
return ret;
rte_spinlock_lock(&hw->lock);
/*
* Calculate the mc mac address lists those should be removed and be
* added, Reorder the mc mac address list maintained by driver.
*/
mc_addr_num = (int)nb_mc_addr;
hns3_set_mc_addr_calc_addr(hw, mc_addr_set, mc_addr_num,
reserved_addr_list, &reserved_addr_num,
add_addr_list, &add_addr_num,
rm_addr_list, &rm_addr_num);
/* Remove mc mac addresses */
for (i = 0; i < rm_addr_num; i++) {
num = rm_addr_num - i - 1;
addr = &rm_addr_list[num];
ret = hns3_remove_mc_addr(hw, addr);
if (ret) {
rte_spinlock_unlock(&hw->lock);
return ret;
}
hw->mc_addrs_num--;
}
/* Add mc mac addresses */
for (i = 0; i < add_addr_num; i++) {
addr = &add_addr_list[i];
ret = hns3_add_mc_addr(hw, addr);
if (ret) {
rte_spinlock_unlock(&hw->lock);
return ret;
}
num = reserved_addr_num + i;
rte_ether_addr_copy(addr, &hw->mc_addrs[num]);
hw->mc_addrs_num++;
}
rte_spinlock_unlock(&hw->lock);
return 0;
}
static int
hns3_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
{
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
struct hns3_hw *hw = &hns->hw;
struct rte_ether_addr *addr;
int err = 0;
int ret;
int i;
for (i = 0; i < hw->mc_addrs_num; i++) {
addr = &hw->mc_addrs[i];
if (!rte_is_multicast_ether_addr(addr))
continue;
if (del)
ret = hns3_remove_mc_addr(hw, addr);
else
ret = hns3_add_mc_addr(hw, addr);
if (ret) {
err = ret;
hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
addr);
hns3_dbg(hw, "%s mc mac addr: %s failed for pf: ret = %d",
del ? "Remove" : "Restore", mac_str, ret);
}
}
return err;
}
static int
hns3_check_mq_mode(struct rte_eth_dev *dev)
{
enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct rte_eth_dcb_rx_conf *dcb_rx_conf;
struct rte_eth_dcb_tx_conf *dcb_tx_conf;
uint8_t num_tc;
int max_tc = 0;
int i;
if ((rx_mq_mode & ETH_MQ_RX_VMDQ_FLAG) ||
(tx_mq_mode == ETH_MQ_TX_VMDQ_DCB ||
tx_mq_mode == ETH_MQ_TX_VMDQ_ONLY)) {
hns3_err(hw, "VMDQ is not supported, rx_mq_mode = %d, tx_mq_mode = %d.",
rx_mq_mode, tx_mq_mode);
return -EOPNOTSUPP;
}
dcb_rx_conf = &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
dcb_tx_conf = &dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
if (rx_mq_mode & ETH_MQ_RX_DCB_FLAG) {
if (dcb_rx_conf->nb_tcs > pf->tc_max) {
hns3_err(hw, "nb_tcs(%u) > max_tc(%u) driver supported.",
dcb_rx_conf->nb_tcs, pf->tc_max);
return -EINVAL;
}
if (!(dcb_rx_conf->nb_tcs == HNS3_4_TCS ||
dcb_rx_conf->nb_tcs == HNS3_8_TCS)) {
hns3_err(hw, "on ETH_MQ_RX_DCB_RSS mode, "
"nb_tcs(%d) != %d or %d in rx direction.",
dcb_rx_conf->nb_tcs, HNS3_4_TCS, HNS3_8_TCS);
return -EINVAL;
}
if (dcb_rx_conf->nb_tcs != dcb_tx_conf->nb_tcs) {
hns3_err(hw, "num_tcs(%d) of tx is not equal to rx(%d)",
dcb_tx_conf->nb_tcs, dcb_rx_conf->nb_tcs);
return -EINVAL;
}
for (i = 0; i < HNS3_MAX_USER_PRIO; i++) {
if (dcb_rx_conf->dcb_tc[i] != dcb_tx_conf->dcb_tc[i]) {
hns3_err(hw, "dcb_tc[%d] = %u in rx direction, "
"is not equal to one in tx direction.",
i, dcb_rx_conf->dcb_tc[i]);
return -EINVAL;
}
if (dcb_rx_conf->dcb_tc[i] > max_tc)
max_tc = dcb_rx_conf->dcb_tc[i];
}
num_tc = max_tc + 1;
if (num_tc > dcb_rx_conf->nb_tcs) {
hns3_err(hw, "max num_tc(%u) mapped > nb_tcs(%u)",
num_tc, dcb_rx_conf->nb_tcs);
return -EINVAL;
}
}
return 0;
}
static int
hns3_bind_ring_with_vector(struct hns3_hw *hw, uint16_t vector_id, bool en,
enum hns3_ring_type queue_type, uint16_t queue_id)
{
struct hns3_cmd_desc desc;
struct hns3_ctrl_vector_chain_cmd *req =
(struct hns3_ctrl_vector_chain_cmd *)desc.data;
enum hns3_opcode_type op;
uint16_t tqp_type_and_id = 0;
uint16_t type;
uint16_t gl;
int ret;
op = en ? HNS3_OPC_ADD_RING_TO_VECTOR : HNS3_OPC_DEL_RING_TO_VECTOR;
hns3_cmd_setup_basic_desc(&desc, op, false);
req->int_vector_id = hns3_get_field(vector_id, HNS3_TQP_INT_ID_L_M,
HNS3_TQP_INT_ID_L_S);
req->int_vector_id_h = hns3_get_field(vector_id, HNS3_TQP_INT_ID_H_M,
HNS3_TQP_INT_ID_H_S);
if (queue_type == HNS3_RING_TYPE_RX)
gl = HNS3_RING_GL_RX;
else
gl = HNS3_RING_GL_TX;
type = queue_type;
hns3_set_field(tqp_type_and_id, HNS3_INT_TYPE_M, HNS3_INT_TYPE_S,
type);
hns3_set_field(tqp_type_and_id, HNS3_TQP_ID_M, HNS3_TQP_ID_S, queue_id);
hns3_set_field(tqp_type_and_id, HNS3_INT_GL_IDX_M, HNS3_INT_GL_IDX_S,
gl);
req->tqp_type_and_id[0] = rte_cpu_to_le_16(tqp_type_and_id);
req->int_cause_num = 1;
ret = hns3_cmd_send(hw, &desc, 1);
if (ret) {
hns3_err(hw, "%s TQP %u fail, vector_id = %u, ret = %d.",
en ? "Map" : "Unmap", queue_id, vector_id, ret);
return ret;
}
return 0;
}
static int
hns3_init_ring_with_vector(struct hns3_hw *hw)
{
uint16_t vec;
int ret;
int i;
/*
* In hns3 network engine, vector 0 is always the misc interrupt of this
* function, vector 1~N can be used respectively for the queues of the
* function. Tx and Rx queues with the same number share the interrupt
* vector. In the initialization clearing the all hardware mapping
* relationship configurations between queues and interrupt vectors is
* needed, so some error caused by the residual configurations, such as
* the unexpected Tx interrupt, can be avoid.
*/
vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE)
vec = vec - 1; /* the last interrupt is reserved */
hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num);
for (i = 0; i < hw->intr_tqps_num; i++) {
/*
* Set gap limiter/rate limiter/quanity limiter algorithm
* configuration for interrupt coalesce of queue's interrupt.
*/
hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
HNS3_TQP_INTR_GL_DEFAULT);
hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
HNS3_TQP_INTR_GL_DEFAULT);
hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
/*
* QL(quantity limiter) is not used currently, just set 0 to
* close it.
*/
hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT);
ret = hns3_bind_ring_with_vector(hw, vec, false,
HNS3_RING_TYPE_TX, i);
if (ret) {
PMD_INIT_LOG(ERR, "PF fail to unbind TX ring(%d) with "
"vector: %u, ret=%d", i, vec, ret);
return ret;
}
ret = hns3_bind_ring_with_vector(hw, vec, false,
HNS3_RING_TYPE_RX, i);
if (ret) {
PMD_INIT_LOG(ERR, "PF fail to unbind RX ring(%d) with "
"vector: %u, ret=%d", i, vec, ret);
return ret;
}
}
return 0;
}
static int
hns3_refresh_mtu(struct rte_eth_dev *dev, struct rte_eth_conf *conf)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
uint32_t max_rx_pkt_len;
uint16_t mtu;
int ret;
if (!(conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME))
return 0;
/*
* If jumbo frames are enabled, MTU needs to be refreshed
* according to the maximum RX packet length.
*/
max_rx_pkt_len = conf->rxmode.max_rx_pkt_len;
if (max_rx_pkt_len > HNS3_MAX_FRAME_LEN ||
max_rx_pkt_len <= HNS3_DEFAULT_FRAME_LEN) {
hns3_err(hw, "maximum Rx packet length must be greater than %u "
"and no more than %u when jumbo frame enabled.",
(uint16_t)HNS3_DEFAULT_FRAME_LEN,
(uint16_t)HNS3_MAX_FRAME_LEN);
return -EINVAL;
}
mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(max_rx_pkt_len);
ret = hns3_dev_mtu_set(dev, mtu);
if (ret)
return ret;
dev->data->mtu = mtu;
return 0;
}
static int
hns3_setup_dcb(struct rte_eth_dev *dev)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
int ret;
if (!hns3_dev_dcb_supported(hw)) {
hns3_err(hw, "this port does not support dcb configurations.");
return -EOPNOTSUPP;
}
if (hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE) {
hns3_err(hw, "MAC pause enabled, cannot config dcb info.");
return -EOPNOTSUPP;
}
ret = hns3_dcb_configure(hns);
if (ret)
hns3_err(hw, "failed to config dcb: %d", ret);
return ret;
}
static int
hns3_check_link_speed(struct hns3_hw *hw, uint32_t link_speeds)
{
int ret;
/*
* Some hardware doesn't support auto-negotiation, but users may not
* configure link_speeds (default 0), which means auto-negotiation.
* In this case, a warning message need to be printed, instead of
* an error.
*/
if (link_speeds == ETH_LINK_SPEED_AUTONEG &&
hw->mac.support_autoneg == 0) {
hns3_warn(hw, "auto-negotiation is not supported, use default fixed speed!");
return 0;
}
if (link_speeds != ETH_LINK_SPEED_AUTONEG) {
ret = hns3_check_port_speed(hw, link_speeds);
if (ret)
return ret;
}
return 0;
}
static int
hns3_check_dev_conf(struct rte_eth_dev *dev)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_eth_conf *conf = &dev->data->dev_conf;
int ret;
ret = hns3_check_mq_mode(dev);
if (ret)
return ret;
return hns3_check_link_speed(hw, conf->link_speeds);
}
static int
hns3_dev_configure(struct rte_eth_dev *dev)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct rte_eth_conf *conf = &dev->data->dev_conf;
enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
struct hns3_hw *hw = &hns->hw;
uint16_t nb_rx_q = dev->data->nb_rx_queues;
uint16_t nb_tx_q = dev->data->nb_tx_queues;
struct rte_eth_rss_conf rss_conf;
bool gro_en;
int ret;
hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q);
/*
* Some versions of hardware network engine does not support
* individually enable/disable/reset the Tx or Rx queue. These devices
* must enable/disable/reset Tx and Rx queues at the same time. When the
* numbers of Tx queues allocated by upper applications are not equal to
* the numbers of Rx queues, driver needs to setup fake Tx or Rx queues
* to adjust numbers of Tx/Rx queues. otherwise, network engine can not
* work as usual. But these fake queues are imperceptible, and can not
* be used by upper applications.
*/
ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
if (ret) {
hns3_err(hw, "fail to set Rx/Tx fake queues, ret = %d.", ret);
hw->cfg_max_queues = 0;
return ret;
}
hw->adapter_state = HNS3_NIC_CONFIGURING;
ret = hns3_check_dev_conf(dev);
if (ret)
goto cfg_err;
if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG) {
ret = hns3_setup_dcb(dev);
if (ret)
goto cfg_err;
}
/* When RSS is not configured, redirect the packet queue 0 */
if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
rss_conf = conf->rx_adv_conf.rss_conf;
hw->rss_dis_flag = false;
ret = hns3_dev_rss_hash_update(dev, &rss_conf);
if (ret)
goto cfg_err;
}
ret = hns3_refresh_mtu(dev, conf);
if (ret)
goto cfg_err;
ret = hns3_mbuf_dyn_rx_timestamp_register(dev, conf);
if (ret)
goto cfg_err;
ret = hns3_dev_configure_vlan(dev);
if (ret)
goto cfg_err;
/* config hardware GRO */
gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
ret = hns3_config_gro(hw, gro_en);
if (ret)
goto cfg_err;
hns3_init_rx_ptype_tble(dev);
hw->adapter_state = HNS3_NIC_CONFIGURED;
return 0;
cfg_err:
hw->cfg_max_queues = 0;
(void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
hw->adapter_state = HNS3_NIC_INITIALIZED;
return ret;
}
static int
hns3_set_mac_mtu(struct hns3_hw *hw, uint16_t new_mps)
{
struct hns3_config_max_frm_size_cmd *req;
struct hns3_cmd_desc desc;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAX_FRM_SIZE, false);
req = (struct hns3_config_max_frm_size_cmd *)desc.data;
req->max_frm_size = rte_cpu_to_le_16(new_mps);
req->min_frm_size = RTE_ETHER_MIN_LEN;
return hns3_cmd_send(hw, &desc, 1);
}
static int
hns3_config_mtu(struct hns3_hw *hw, uint16_t mps)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
uint16_t original_mps = hns->pf.mps;
int err;
int ret;
ret = hns3_set_mac_mtu(hw, mps);
if (ret) {
hns3_err(hw, "failed to set mtu, ret = %d", ret);
return ret;
}
hns->pf.mps = mps;
ret = hns3_buffer_alloc(hw);
if (ret) {
hns3_err(hw, "failed to allocate buffer, ret = %d", ret);
goto rollback;
}
return 0;
rollback:
err = hns3_set_mac_mtu(hw, original_mps);
if (err) {
hns3_err(hw, "fail to rollback MTU, err = %d", err);
return ret;
}
hns->pf.mps = original_mps;
return ret;
}
static int
hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
{
struct hns3_adapter *hns = dev->data->dev_private;
uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
struct hns3_hw *hw = &hns->hw;
bool is_jumbo_frame;
int ret;
if (dev->data->dev_started) {
hns3_err(hw, "Failed to set mtu, port %u must be stopped "
"before configuration", dev->data->port_id);
return -EBUSY;
}
rte_spinlock_lock(&hw->lock);
is_jumbo_frame = frame_size > HNS3_DEFAULT_FRAME_LEN ? true : false;
frame_size = RTE_MAX(frame_size, HNS3_DEFAULT_FRAME_LEN);
/*
* Maximum value of frame_size is HNS3_MAX_FRAME_LEN, so it can safely
* assign to "uint16_t" type variable.
*/
ret = hns3_config_mtu(hw, (uint16_t)frame_size);
if (ret) {
rte_spinlock_unlock(&hw->lock);
hns3_err(hw, "Failed to set mtu, port %u mtu %u: %d",
dev->data->port_id, mtu, ret);
return ret;
}
if (is_jumbo_frame)
dev->data->dev_conf.rxmode.offloads |=
DEV_RX_OFFLOAD_JUMBO_FRAME;
else
dev->data->dev_conf.rxmode.offloads &=
~DEV_RX_OFFLOAD_JUMBO_FRAME;
dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
rte_spinlock_unlock(&hw->lock);
return 0;
}
static uint32_t
hns3_get_copper_port_speed_capa(uint32_t supported_speed)
{
uint32_t speed_capa = 0;
if (supported_speed & HNS3_PHY_LINK_SPEED_10M_HD_BIT)
speed_capa |= ETH_LINK_SPEED_10M_HD;
if (supported_speed & HNS3_PHY_LINK_SPEED_10M_BIT)
speed_capa |= ETH_LINK_SPEED_10M;
if (supported_speed & HNS3_PHY_LINK_SPEED_100M_HD_BIT)
speed_capa |= ETH_LINK_SPEED_100M_HD;
if (supported_speed & HNS3_PHY_LINK_SPEED_100M_BIT)
speed_capa |= ETH_LINK_SPEED_100M;
if (supported_speed & HNS3_PHY_LINK_SPEED_1000M_BIT)
speed_capa |= ETH_LINK_SPEED_1G;
return speed_capa;
}
static uint32_t
hns3_get_firber_port_speed_capa(uint32_t supported_speed)
{
uint32_t speed_capa = 0;
if (supported_speed & HNS3_FIBER_LINK_SPEED_1G_BIT)
speed_capa |= ETH_LINK_SPEED_1G;
if (supported_speed & HNS3_FIBER_LINK_SPEED_10G_BIT)
speed_capa |= ETH_LINK_SPEED_10G;
if (supported_speed & HNS3_FIBER_LINK_SPEED_25G_BIT)
speed_capa |= ETH_LINK_SPEED_25G;
if (supported_speed & HNS3_FIBER_LINK_SPEED_40G_BIT)
speed_capa |= ETH_LINK_SPEED_40G;
if (supported_speed & HNS3_FIBER_LINK_SPEED_50G_BIT)
speed_capa |= ETH_LINK_SPEED_50G;
if (supported_speed & HNS3_FIBER_LINK_SPEED_100G_BIT)
speed_capa |= ETH_LINK_SPEED_100G;
if (supported_speed & HNS3_FIBER_LINK_SPEED_200G_BIT)
speed_capa |= ETH_LINK_SPEED_200G;
return speed_capa;
}
static uint32_t
hns3_get_speed_capa(struct hns3_hw *hw)
{
struct hns3_mac *mac = &hw->mac;
uint32_t speed_capa;
if (mac->media_type == HNS3_MEDIA_TYPE_COPPER)
speed_capa =
hns3_get_copper_port_speed_capa(mac->supported_speed);
else
speed_capa =
hns3_get_firber_port_speed_capa(mac->supported_speed);
if (mac->support_autoneg == 0)
speed_capa |= ETH_LINK_SPEED_FIXED;
return speed_capa;
}
int
hns3_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
{
struct hns3_adapter *hns = eth_dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
uint16_t queue_num = hw->tqps_num;
/*
* In interrupt mode, 'max_rx_queues' is set based on the number of
* MSI-X interrupt resources of the hardware.
*/
if (hw->data->dev_conf.intr_conf.rxq == 1)
queue_num = hw->intr_tqps_num;
info->max_rx_queues = queue_num;
info->max_tx_queues = hw->tqps_num;
info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
info->max_mac_addrs = HNS3_UC_MACADDR_NUM;
info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
DEV_RX_OFFLOAD_TCP_CKSUM |
DEV_RX_OFFLOAD_UDP_CKSUM |
DEV_RX_OFFLOAD_SCTP_CKSUM |
DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
DEV_RX_OFFLOAD_KEEP_CRC |
DEV_RX_OFFLOAD_SCATTER |
DEV_RX_OFFLOAD_VLAN_STRIP |
DEV_RX_OFFLOAD_VLAN_FILTER |
DEV_RX_OFFLOAD_JUMBO_FRAME |
DEV_RX_OFFLOAD_RSS_HASH |
DEV_RX_OFFLOAD_TCP_LRO);
info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
DEV_TX_OFFLOAD_IPV4_CKSUM |
DEV_TX_OFFLOAD_TCP_CKSUM |
DEV_TX_OFFLOAD_UDP_CKSUM |
DEV_TX_OFFLOAD_SCTP_CKSUM |
DEV_TX_OFFLOAD_MULTI_SEGS |
DEV_TX_OFFLOAD_TCP_TSO |
DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
DEV_TX_OFFLOAD_GRE_TNL_TSO |
DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
DEV_TX_OFFLOAD_MBUF_FAST_FREE |
hns3_txvlan_cap_get(hw));
if (hns3_dev_outer_udp_cksum_supported(hw))
info->tx_offload_capa |= DEV_TX_OFFLOAD_OUTER_UDP_CKSUM;
if (hns3_dev_indep_txrx_supported(hw))
info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
if (hns3_dev_ptp_supported(hw))
info->rx_offload_capa |= DEV_RX_OFFLOAD_TIMESTAMP;
info->rx_desc_lim = (struct rte_eth_desc_lim) {
.nb_max = HNS3_MAX_RING_DESC,
.nb_min = HNS3_MIN_RING_DESC,
.nb_align = HNS3_ALIGN_RING_DESC,
};
info->tx_desc_lim = (struct rte_eth_desc_lim) {
.nb_max = HNS3_MAX_RING_DESC,
.nb_min = HNS3_MIN_RING_DESC,
.nb_align = HNS3_ALIGN_RING_DESC,
.nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
.nb_mtu_seg_max = hw->max_non_tso_bd_num,
};
info->speed_capa = hns3_get_speed_capa(hw);
info->default_rxconf = (struct rte_eth_rxconf) {
.rx_free_thresh = HNS3_DEFAULT_RX_FREE_THRESH,
/*
* If there are no available Rx buffer descriptors, incoming
* packets are always dropped by hardware based on hns3 network
* engine.
*/
.rx_drop_en = 1,
.offloads = 0,
};
info->default_txconf = (struct rte_eth_txconf) {
.tx_rs_thresh = HNS3_DEFAULT_TX_RS_THRESH,
.offloads = 0,
};
info->reta_size = hw->rss_ind_tbl_size;
info->hash_key_size = HNS3_RSS_KEY_SIZE;
info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
info->default_rxportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
info->default_txportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
info->default_rxportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
info->default_txportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
return 0;
}
static int
hns3_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
size_t fw_size)
{
struct hns3_adapter *hns = eth_dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
uint32_t version = hw->fw_version;
int ret;
ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
HNS3_FW_VERSION_BYTE3_S),
hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
HNS3_FW_VERSION_BYTE2_S),
hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
HNS3_FW_VERSION_BYTE1_S),
hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
HNS3_FW_VERSION_BYTE0_S));
if (ret < 0)
return -EINVAL;
ret += 1; /* add the size of '\0' */
if (fw_size < (size_t)ret)
return ret;
else
return 0;
}
static int
hns3_update_port_link_info(struct rte_eth_dev *eth_dev)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
int ret;
(void)hns3_update_link_status(hw);
ret = hns3_update_link_info(eth_dev);
if (ret)
hw->mac.link_status = ETH_LINK_DOWN;
return ret;
}
static void
hns3_setup_linkstatus(struct rte_eth_dev *eth_dev,
struct rte_eth_link *new_link)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
struct hns3_mac *mac = &hw->mac;
switch (mac->link_speed) {
case ETH_SPEED_NUM_10M:
case ETH_SPEED_NUM_100M:
case ETH_SPEED_NUM_1G:
case ETH_SPEED_NUM_10G:
case ETH_SPEED_NUM_25G:
case ETH_SPEED_NUM_40G:
case ETH_SPEED_NUM_50G:
case ETH_SPEED_NUM_100G:
case ETH_SPEED_NUM_200G:
if (mac->link_status)
new_link->link_speed = mac->link_speed;
break;
default:
if (mac->link_status)
new_link->link_speed = ETH_SPEED_NUM_UNKNOWN;
break;
}
if (!mac->link_status)
new_link->link_speed = ETH_SPEED_NUM_NONE;
new_link->link_duplex = mac->link_duplex;
new_link->link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
new_link->link_autoneg = mac->link_autoneg;
}
static int
hns3_dev_link_update(struct rte_eth_dev *eth_dev, int wait_to_complete)
{
#define HNS3_LINK_CHECK_INTERVAL 100 /* 100ms */
#define HNS3_MAX_LINK_CHECK_TIMES 20 /* 2s (100 * 20ms) in total */
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
uint32_t retry_cnt = HNS3_MAX_LINK_CHECK_TIMES;
struct hns3_mac *mac = &hw->mac;
struct rte_eth_link new_link;
int ret;
/* When port is stopped, report link down. */
if (eth_dev->data->dev_started == 0) {
new_link.link_autoneg = mac->link_autoneg;
new_link.link_duplex = mac->link_duplex;
new_link.link_speed = ETH_SPEED_NUM_NONE;
new_link.link_status = ETH_LINK_DOWN;
goto out;
}
do {
ret = hns3_update_port_link_info(eth_dev);
if (ret) {
hns3_err(hw, "failed to get port link info, ret = %d.",
ret);
break;
}
if (!wait_to_complete || mac->link_status == ETH_LINK_UP)
break;
rte_delay_ms(HNS3_LINK_CHECK_INTERVAL);
} while (retry_cnt--);
memset(&new_link, 0, sizeof(new_link));
hns3_setup_linkstatus(eth_dev, &new_link);
out:
return rte_eth_linkstatus_set(eth_dev, &new_link);
}
static int
hns3_parse_func_status(struct hns3_hw *hw, struct hns3_func_status_cmd *status)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
if (!(status->pf_state & HNS3_PF_STATE_DONE))
return -EINVAL;
pf->is_main_pf = (status->pf_state & HNS3_PF_STATE_MAIN) ? true : false;
return 0;
}
static int
hns3_query_function_status(struct hns3_hw *hw)
{
#define HNS3_QUERY_MAX_CNT 10
#define HNS3_QUERY_SLEEP_MSCOEND 1
struct hns3_func_status_cmd *req;
struct hns3_cmd_desc desc;
int timeout = 0;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_FUNC_STATUS, true);
req = (struct hns3_func_status_cmd *)desc.data;
do {
ret = hns3_cmd_send(hw, &desc, 1);
if (ret) {
PMD_INIT_LOG(ERR, "query function status failed %d",
ret);
return ret;
}
/* Check pf reset is done */
if (req->pf_state)
break;
rte_delay_ms(HNS3_QUERY_SLEEP_MSCOEND);
} while (timeout++ < HNS3_QUERY_MAX_CNT);
return hns3_parse_func_status(hw, req);
}
static int
hns3_get_pf_max_tqp_num(struct hns3_hw *hw)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
if (pf->tqp_config_mode == HNS3_FLEX_MAX_TQP_NUM_MODE) {
/*
* The total_tqps_num obtained from firmware is maximum tqp
* numbers of this port, which should be used for PF and VFs.
* There is no need for pf to have so many tqp numbers in
* most cases. RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
* coming from config file, is assigned to maximum queue number
* for the PF of this port by user. So users can modify the
* maximum queue number of PF according to their own application
* scenarios, which is more flexible to use. In addition, many
* memories can be saved due to allocating queue statistics
* room according to the actual number of queues required. The
* maximum queue number of PF for network engine with
* revision_id greater than 0x30 is assigned by config file.
*/
if (RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF <= 0) {
hns3_err(hw, "RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF(%d) "
"must be greater than 0.",
RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF);
return -EINVAL;
}
hw->tqps_num = RTE_MIN(RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
hw->total_tqps_num);
} else {
/*
* Due to the limitation on the number of PF interrupts
* available, the maximum queue number assigned to PF on
* the network engine with revision_id 0x21 is 64.
*/
hw->tqps_num = RTE_MIN(hw->total_tqps_num,
HNS3_MAX_TQP_NUM_HIP08_PF);
}
return 0;
}
static int
hns3_query_pf_resource(struct hns3_hw *hw)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
struct hns3_pf_res_cmd *req;
struct hns3_cmd_desc desc;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_PF_RSRC, true);
ret = hns3_cmd_send(hw, &desc, 1);
if (ret) {
PMD_INIT_LOG(ERR, "query pf resource failed %d", ret);
return ret;
}
req = (struct hns3_pf_res_cmd *)desc.data;
hw->total_tqps_num = rte_le_to_cpu_16(req->tqp_num) +
rte_le_to_cpu_16(req->ext_tqp_num);
ret = hns3_get_pf_max_tqp_num(hw);
if (ret)
return ret;
pf->pkt_buf_size = rte_le_to_cpu_16(req->buf_size) << HNS3_BUF_UNIT_S;
pf->func_num = rte_le_to_cpu_16(req->pf_own_fun_number);
if (req->tx_buf_size)
pf->tx_buf_size =
rte_le_to_cpu_16(req->tx_buf_size) << HNS3_BUF_UNIT_S;
else
pf->tx_buf_size = HNS3_DEFAULT_TX_BUF;
pf->tx_buf_size = roundup(pf->tx_buf_size, HNS3_BUF_SIZE_UNIT);
if (req->dv_buf_size)
pf->dv_buf_size =
rte_le_to_cpu_16(req->dv_buf_size) << HNS3_BUF_UNIT_S;
else
pf->dv_buf_size = HNS3_DEFAULT_DV;
pf->dv_buf_size = roundup(pf->dv_buf_size, HNS3_BUF_SIZE_UNIT);
hw->num_msi =
hns3_get_field(rte_le_to_cpu_16(req->nic_pf_intr_vector_number),
HNS3_PF_VEC_NUM_M, HNS3_PF_VEC_NUM_S);
return 0;
}
static void
hns3_parse_cfg(struct hns3_cfg *cfg, struct hns3_cmd_desc *desc)
{
struct hns3_cfg_param_cmd *req;
uint64_t mac_addr_tmp_high;
uint8_t ext_rss_size_max;
uint64_t mac_addr_tmp;
uint32_t i;
req = (struct hns3_cfg_param_cmd *)desc[0].data;
/* get the configuration */
cfg->tc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
HNS3_CFG_TC_NUM_M, HNS3_CFG_TC_NUM_S);
cfg->tqp_desc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
HNS3_CFG_TQP_DESC_N_M,
HNS3_CFG_TQP_DESC_N_S);
cfg->phy_addr = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
HNS3_CFG_PHY_ADDR_M,
HNS3_CFG_PHY_ADDR_S);
cfg->media_type = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
HNS3_CFG_MEDIA_TP_M,
HNS3_CFG_MEDIA_TP_S);
cfg->rx_buf_len = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
HNS3_CFG_RX_BUF_LEN_M,
HNS3_CFG_RX_BUF_LEN_S);
/* get mac address */
mac_addr_tmp = rte_le_to_cpu_32(req->param[2]);
mac_addr_tmp_high = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
HNS3_CFG_MAC_ADDR_H_M,
HNS3_CFG_MAC_ADDR_H_S);
mac_addr_tmp |= (mac_addr_tmp_high << 31) << 1;
cfg->default_speed = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
HNS3_CFG_DEFAULT_SPEED_M,
HNS3_CFG_DEFAULT_SPEED_S);
cfg->rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
HNS3_CFG_RSS_SIZE_M,
HNS3_CFG_RSS_SIZE_S);
for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
cfg->mac_addr[i] = (mac_addr_tmp >> (8 * i)) & 0xff;
req = (struct hns3_cfg_param_cmd *)desc[1].data;
cfg->numa_node_map = rte_le_to_cpu_32(req->param[0]);
cfg->speed_ability = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
HNS3_CFG_SPEED_ABILITY_M,
HNS3_CFG_SPEED_ABILITY_S);
cfg->umv_space = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
HNS3_CFG_UMV_TBL_SPACE_M,
HNS3_CFG_UMV_TBL_SPACE_S);
if (!cfg->umv_space)
cfg->umv_space = HNS3_DEFAULT_UMV_SPACE_PER_PF;
ext_rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[2]),
HNS3_CFG_EXT_RSS_SIZE_M,
HNS3_CFG_EXT_RSS_SIZE_S);
/*
* Field ext_rss_size_max obtained from firmware will be more flexible
* for future changes and expansions, which is an exponent of 2, instead
* of reading out directly. If this field is not zero, hns3 PF PMD
* driver uses it as rss_size_max under one TC. Device, whose revision
* id is greater than or equal to PCI_REVISION_ID_HIP09_A, obtains the
* maximum number of queues supported under a TC through this field.
*/
if (ext_rss_size_max)
cfg->rss_size_max = 1U << ext_rss_size_max;
}
/* hns3_get_board_cfg: query the static parameter from NCL_config file in flash
* @hw: pointer to struct hns3_hw
* @hcfg: the config structure to be getted
*/
static int
hns3_get_board_cfg(struct hns3_hw *hw, struct hns3_cfg *hcfg)
{
struct hns3_cmd_desc desc[HNS3_PF_CFG_DESC_NUM];
struct hns3_cfg_param_cmd *req;
uint32_t offset;
uint32_t i;
int ret;
for (i = 0; i < HNS3_PF_CFG_DESC_NUM; i++) {
offset = 0;
req = (struct hns3_cfg_param_cmd *)desc[i].data;
hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_CFG_PARAM,
true);
hns3_set_field(offset, HNS3_CFG_OFFSET_M, HNS3_CFG_OFFSET_S,
i * HNS3_CFG_RD_LEN_BYTES);
/* Len should be divided by 4 when send to hardware */
hns3_set_field(offset, HNS3_CFG_RD_LEN_M, HNS3_CFG_RD_LEN_S,
HNS3_CFG_RD_LEN_BYTES / HNS3_CFG_RD_LEN_UNIT);
req->offset = rte_cpu_to_le_32(offset);
}
ret = hns3_cmd_send(hw, desc, HNS3_PF_CFG_DESC_NUM);
if (ret) {
PMD_INIT_LOG(ERR, "get config failed %d.", ret);
return ret;
}
hns3_parse_cfg(hcfg, desc);
return 0;
}
static int
hns3_parse_speed(int speed_cmd, uint32_t *speed)
{
switch (speed_cmd) {
case HNS3_CFG_SPEED_10M:
*speed = ETH_SPEED_NUM_10M;
break;
case HNS3_CFG_SPEED_100M:
*speed = ETH_SPEED_NUM_100M;
break;
case HNS3_CFG_SPEED_1G:
*speed = ETH_SPEED_NUM_1G;
break;
case HNS3_CFG_SPEED_10G:
*speed = ETH_SPEED_NUM_10G;
break;
case HNS3_CFG_SPEED_25G:
*speed = ETH_SPEED_NUM_25G;
break;
case HNS3_CFG_SPEED_40G:
*speed = ETH_SPEED_NUM_40G;
break;
case HNS3_CFG_SPEED_50G:
*speed = ETH_SPEED_NUM_50G;
break;
case HNS3_CFG_SPEED_100G:
*speed = ETH_SPEED_NUM_100G;
break;
case HNS3_CFG_SPEED_200G:
*speed = ETH_SPEED_NUM_200G;
break;
default:
return -EINVAL;
}
return 0;
}
static void
hns3_set_default_dev_specifications(struct hns3_hw *hw)
{
hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
hw->rss_key_size = HNS3_RSS_KEY_SIZE;
hw->max_tm_rate = HNS3_ETHER_MAX_RATE;
hw->intr.int_ql_max = HNS3_INTR_QL_NONE;
}
static void
hns3_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
{
struct hns3_dev_specs_0_cmd *req0;
req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
hw->max_tm_rate = rte_le_to_cpu_32(req0->max_tm_rate);
hw->intr.int_ql_max = rte_le_to_cpu_16(req0->intr_ql_max);
}
static int
hns3_check_dev_specifications(struct hns3_hw *hw)
{
if (hw->rss_ind_tbl_size == 0 ||
hw->rss_ind_tbl_size > HNS3_RSS_IND_TBL_SIZE_MAX) {
hns3_err(hw, "the size of hash lookup table configured (%u)"
" exceeds the maximum(%u)", hw->rss_ind_tbl_size,
HNS3_RSS_IND_TBL_SIZE_MAX);
return -EINVAL;
}
return 0;
}
static int
hns3_query_dev_specifications(struct hns3_hw *hw)
{
struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
int ret;
int i;
for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
true);
desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
}
hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
if (ret)
return ret;
hns3_parse_dev_specifications(hw, desc);
return hns3_check_dev_specifications(hw);
}
static int
hns3_get_capability(struct hns3_hw *hw)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct rte_pci_device *pci_dev;
struct hns3_pf *pf = &hns->pf;
struct rte_eth_dev *eth_dev;
uint16_t device_id;
uint8_t revision;
int ret;
eth_dev = &rte_eth_devices[hw->data->port_id];
pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
device_id = pci_dev->id.device_id;
if (device_id == HNS3_DEV_ID_25GE_RDMA ||
device_id == HNS3_DEV_ID_50GE_RDMA ||
device_id == HNS3_DEV_ID_100G_RDMA_MACSEC ||
device_id == HNS3_DEV_ID_200G_RDMA)
hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_DCB_B, 1);
/* Get PCI revision id */
ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
HNS3_PCI_REVISION_ID);
if (ret != HNS3_PCI_REVISION_ID_LEN) {
PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
ret);
return -EIO;
}
hw->revision = revision;
if (revision < PCI_REVISION_ID_HIP09_A) {
hns3_set_default_dev_specifications(hw);
hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
hw->vlan_mode = HNS3_SW_SHIFT_AND_DISCARD_MODE;
hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE1;
hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
pf->tqp_config_mode = HNS3_FIXED_MAX_TQP_NUM_MODE;
hw->rss_info.ipv6_sctp_offload_supported = false;
hw->udp_cksum_mode = HNS3_SPECIAL_PORT_SW_CKSUM_MODE;
pf->support_multi_tc_pause = false;
return 0;
}
ret = hns3_query_dev_specifications(hw);
if (ret) {
PMD_INIT_LOG(ERR,
"failed to query dev specifications, ret = %d",
ret);
return ret;
}
hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
hw->vlan_mode = HNS3_HW_SHIFT_AND_DISCARD_MODE;
hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE2;
hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
pf->tqp_config_mode = HNS3_FLEX_MAX_TQP_NUM_MODE;
hw->rss_info.ipv6_sctp_offload_supported = true;
hw->udp_cksum_mode = HNS3_SPECIAL_PORT_HW_CKSUM_MODE;
pf->support_multi_tc_pause = true;
return 0;
}
static int
hns3_check_media_type(struct hns3_hw *hw, uint8_t media_type)
{
int ret;
switch (media_type) {
case HNS3_MEDIA_TYPE_COPPER:
if (!hns3_dev_copper_supported(hw)) {
PMD_INIT_LOG(ERR,
"Media type is copper, not supported.");
ret = -EOPNOTSUPP;
} else {
ret = 0;
}
break;
case HNS3_MEDIA_TYPE_FIBER:
ret = 0;
break;
case HNS3_MEDIA_TYPE_BACKPLANE:
PMD_INIT_LOG(ERR, "Media type is Backplane, not supported.");
ret = -EOPNOTSUPP;
break;
default:
PMD_INIT_LOG(ERR, "Unknown media type = %u!", media_type);
ret = -EINVAL;
break;
}
return ret;
}
static int
hns3_get_board_configuration(struct hns3_hw *hw)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
struct hns3_cfg cfg;
int ret;
ret = hns3_get_board_cfg(hw, &cfg);
if (ret) {
PMD_INIT_LOG(ERR, "get board config failed %d", ret);
return ret;
}
ret = hns3_check_media_type(hw, cfg.media_type);
if (ret)
return ret;
hw->mac.media_type = cfg.media_type;
hw->rss_size_max = cfg.rss_size_max;
hw->rss_dis_flag = false;
memcpy(hw->mac.mac_addr, cfg.mac_addr, RTE_ETHER_ADDR_LEN);
hw->mac.phy_addr = cfg.phy_addr;
hw->mac.default_addr_setted = false;
hw->num_tx_desc = cfg.tqp_desc_num;
hw->num_rx_desc = cfg.tqp_desc_num;
hw->dcb_info.num_pg = 1;
hw->dcb_info.hw_pfc_map = 0;
ret = hns3_parse_speed(cfg.default_speed, &hw->mac.link_speed);
if (ret) {
PMD_INIT_LOG(ERR, "Get wrong speed %u, ret = %d",
cfg.default_speed, ret);
return ret;
}
pf->tc_max = cfg.tc_num;
if (pf->tc_max > HNS3_MAX_TC_NUM || pf->tc_max < 1) {
PMD_INIT_LOG(WARNING,
"Get TC num(%u) from flash, set TC num to 1",
pf->tc_max);
pf->tc_max = 1;
}
/* Dev does not support DCB */
if (!hns3_dev_dcb_supported(hw)) {
pf->tc_max = 1;
pf->pfc_max = 0;
} else
pf->pfc_max = pf->tc_max;
hw->dcb_info.num_tc = 1;
hw->alloc_rss_size = RTE_MIN(hw->rss_size_max,
hw->tqps_num / hw->dcb_info.num_tc);
hns3_set_bit(hw->hw_tc_map, 0, 1);
pf->tx_sch_mode = HNS3_FLAG_TC_BASE_SCH_MODE;
pf->wanted_umv_size = cfg.umv_space;
return ret;
}
static int
hns3_get_configuration(struct hns3_hw *hw)
{
int ret;
ret = hns3_query_function_status(hw);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to query function status: %d.", ret);
return ret;
}
/* Get device capability */
ret = hns3_get_capability(hw);
if (ret) {
PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
return ret;
}
/* Get pf resource */
ret = hns3_query_pf_resource(hw);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to query pf resource: %d", ret);
return ret;
}
ret = hns3_get_board_configuration(hw);
if (ret) {
PMD_INIT_LOG(ERR, "failed to get board configuration: %d", ret);
return ret;
}
ret = hns3_query_dev_fec_info(hw);
if (ret)
PMD_INIT_LOG(ERR,
"failed to query FEC information, ret = %d", ret);
return ret;
}
static int
hns3_map_tqps_to_func(struct hns3_hw *hw, uint16_t func_id, uint16_t tqp_pid,
uint16_t tqp_vid, bool is_pf)
{
struct hns3_tqp_map_cmd *req;
struct hns3_cmd_desc desc;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SET_TQP_MAP, false);
req = (struct hns3_tqp_map_cmd *)desc.data;
req->tqp_id = rte_cpu_to_le_16(tqp_pid);
req->tqp_vf = func_id;
req->tqp_flag = 1 << HNS3_TQP_MAP_EN_B;
if (!is_pf)
req->tqp_flag |= (1 << HNS3_TQP_MAP_TYPE_B);
req->tqp_vid = rte_cpu_to_le_16(tqp_vid);
ret = hns3_cmd_send(hw, &desc, 1);
if (ret)
PMD_INIT_LOG(ERR, "TQP map failed %d", ret);
return ret;
}
static int
hns3_map_tqp(struct hns3_hw *hw)
{
int ret;
int i;
/*
* In current version, VF is not supported when PF is driven by DPDK
* driver, so we assign total tqps_num tqps allocated to this port
* to PF.
*/
for (i = 0; i < hw->total_tqps_num; i++) {
ret = hns3_map_tqps_to_func(hw, HNS3_PF_FUNC_ID, i, i, true);
if (ret)
return ret;
}
return 0;
}
static int
hns3_cfg_mac_speed_dup_hw(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
{
struct hns3_config_mac_speed_dup_cmd *req;
struct hns3_cmd_desc desc;
int ret;
req = (struct hns3_config_mac_speed_dup_cmd *)desc.data;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_SPEED_DUP, false);
hns3_set_bit(req->speed_dup, HNS3_CFG_DUPLEX_B, !!duplex ? 1 : 0);
switch (speed) {
case ETH_SPEED_NUM_10M:
hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10M);
break;
case ETH_SPEED_NUM_100M:
hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100M);
break;
case ETH_SPEED_NUM_1G:
hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_1G);
break;
case ETH_SPEED_NUM_10G:
hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10G);
break;
case ETH_SPEED_NUM_25G:
hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_25G);
break;
case ETH_SPEED_NUM_40G:
hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_40G);
break;
case ETH_SPEED_NUM_50G:
hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_50G);
break;
case ETH_SPEED_NUM_100G:
hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100G);
break;
case ETH_SPEED_NUM_200G:
hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_200G);
break;
default:
PMD_INIT_LOG(ERR, "invalid speed (%u)", speed);
return -EINVAL;
}
hns3_set_bit(req->mac_change_fec_en, HNS3_CFG_MAC_SPEED_CHANGE_EN_B, 1);
ret = hns3_cmd_send(hw, &desc, 1);
if (ret)
PMD_INIT_LOG(ERR, "mac speed/duplex config cmd failed %d", ret);
return ret;
}
static int
hns3_tx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
struct hns3_priv_buf *priv;
uint32_t i, total_size;
total_size = pf->pkt_buf_size;
/* alloc tx buffer for all enabled tc */
for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
priv = &buf_alloc->priv_buf[i];
if (hw->hw_tc_map & BIT(i)) {
if (total_size < pf->tx_buf_size)
return -ENOMEM;
priv->tx_buf_size = pf->tx_buf_size;
} else
priv->tx_buf_size = 0;
total_size -= priv->tx_buf_size;
}
return 0;
}
static int
hns3_tx_buffer_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
{
/* TX buffer size is unit by 128 byte */
#define HNS3_BUF_SIZE_UNIT_SHIFT 7
#define HNS3_BUF_SIZE_UPDATE_EN_MSK BIT(15)
struct hns3_tx_buff_alloc_cmd *req;
struct hns3_cmd_desc desc;
uint32_t buf_size;
uint32_t i;
int ret;
req = (struct hns3_tx_buff_alloc_cmd *)desc.data;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TX_BUFF_ALLOC, 0);
for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
buf_size = buf_alloc->priv_buf[i].tx_buf_size;
buf_size = buf_size >> HNS3_BUF_SIZE_UNIT_SHIFT;
req->tx_pkt_buff[i] = rte_cpu_to_le_16(buf_size |
HNS3_BUF_SIZE_UPDATE_EN_MSK);
}
ret = hns3_cmd_send(hw, &desc, 1);
if (ret)
PMD_INIT_LOG(ERR, "tx buffer alloc cmd failed %d", ret);
return ret;
}
static int
hns3_get_tc_num(struct hns3_hw *hw)
{
int cnt = 0;
uint8_t i;
for (i = 0; i < HNS3_MAX_TC_NUM; i++)
if (hw->hw_tc_map & BIT(i))
cnt++;
return cnt;
}
static uint32_t
hns3_get_rx_priv_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
{
struct hns3_priv_buf *priv;
uint32_t rx_priv = 0;
int i;
for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
priv = &buf_alloc->priv_buf[i];
if (priv->enable)
rx_priv += priv->buf_size;
}
return rx_priv;
}
static uint32_t
hns3_get_tx_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
{
uint32_t total_tx_size = 0;
uint32_t i;
for (i = 0; i < HNS3_MAX_TC_NUM; i++)
total_tx_size += buf_alloc->priv_buf[i].tx_buf_size;
return total_tx_size;
}
/* Get the number of pfc enabled TCs, which have private buffer */
static int
hns3_get_pfc_priv_num(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
{
struct hns3_priv_buf *priv;
int cnt = 0;
uint8_t i;
for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
priv = &buf_alloc->priv_buf[i];
if ((hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
cnt++;
}
return cnt;
}
/* Get the number of pfc disabled TCs, which have private buffer */
static int
hns3_get_no_pfc_priv_num(struct hns3_hw *hw,
struct hns3_pkt_buf_alloc *buf_alloc)
{
struct hns3_priv_buf *priv;
int cnt = 0;
uint8_t i;
for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
priv = &buf_alloc->priv_buf[i];
if (hw->hw_tc_map & BIT(i) &&
!(hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
cnt++;
}
return cnt;
}
static bool
hns3_is_rx_buf_ok(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc,
uint32_t rx_all)
{
uint32_t shared_buf_min, shared_buf_tc, shared_std, hi_thrd, lo_thrd;
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
uint32_t shared_buf, aligned_mps;
uint32_t rx_priv;
uint8_t tc_num;
uint8_t i;
tc_num = hns3_get_tc_num(hw);
aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
if (hns3_dev_dcb_supported(hw))
shared_buf_min = HNS3_BUF_MUL_BY * aligned_mps +
pf->dv_buf_size;
else
shared_buf_min = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF
+ pf->dv_buf_size;
shared_buf_tc = tc_num * aligned_mps + aligned_mps;
shared_std = roundup(RTE_MAX(shared_buf_min, shared_buf_tc),
HNS3_BUF_SIZE_UNIT);
rx_priv = hns3_get_rx_priv_buff_alloced(buf_alloc);
if (rx_all < rx_priv + shared_std)
return false;
shared_buf = rounddown(rx_all - rx_priv, HNS3_BUF_SIZE_UNIT);
buf_alloc->s_buf.buf_size = shared_buf;
if (hns3_dev_dcb_supported(hw)) {
buf_alloc->s_buf.self.high = shared_buf - pf->dv_buf_size;
buf_alloc->s_buf.self.low = buf_alloc->s_buf.self.high
- roundup(aligned_mps / HNS3_BUF_DIV_BY,
HNS3_BUF_SIZE_UNIT);
} else {
buf_alloc->s_buf.self.high =
aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
buf_alloc->s_buf.self.low = aligned_mps;
}
if (hns3_dev_dcb_supported(hw)) {
hi_thrd = shared_buf - pf->dv_buf_size;
if (tc_num <= NEED_RESERVE_TC_NUM)
hi_thrd = hi_thrd * BUF_RESERVE_PERCENT /
BUF_MAX_PERCENT;
if (tc_num)
hi_thrd = hi_thrd / tc_num;
hi_thrd = RTE_MAX(hi_thrd, HNS3_BUF_MUL_BY * aligned_mps);
hi_thrd = rounddown(hi_thrd, HNS3_BUF_SIZE_UNIT);
lo_thrd = hi_thrd - aligned_mps / HNS3_BUF_DIV_BY;
} else {
hi_thrd = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
lo_thrd = aligned_mps;
}
for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
buf_alloc->s_buf.tc_thrd[i].low = lo_thrd;
buf_alloc->s_buf.tc_thrd[i].high = hi_thrd;
}
return true;
}
static bool
hns3_rx_buf_calc_all(struct hns3_hw *hw, bool max,
struct hns3_pkt_buf_alloc *buf_alloc)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
struct hns3_priv_buf *priv;
uint32_t aligned_mps;
uint32_t rx_all;
uint8_t i;
rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
priv = &buf_alloc->priv_buf[i];
priv->enable = 0;
priv->wl.low = 0;
priv->wl.high = 0;
priv->buf_size = 0;
if (!(hw->hw_tc_map & BIT(i)))
continue;
priv->enable = 1;
if (hw->dcb_info.hw_pfc_map & BIT(i)) {
priv->wl.low = max ? aligned_mps : HNS3_BUF_SIZE_UNIT;
priv->wl.high = roundup(priv->wl.low + aligned_mps,
HNS3_BUF_SIZE_UNIT);
} else {
priv->wl.low = 0;
priv->wl.high = max ? (aligned_mps * HNS3_BUF_MUL_BY) :
aligned_mps;
}
priv->buf_size = priv->wl.high + pf->dv_buf_size;
}
return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
}
static bool
hns3_drop_nopfc_buf_till_fit(struct hns3_hw *hw,
struct hns3_pkt_buf_alloc *buf_alloc)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
struct hns3_priv_buf *priv;
int no_pfc_priv_num;
uint32_t rx_all;
uint8_t mask;
int i;
rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
no_pfc_priv_num = hns3_get_no_pfc_priv_num(hw, buf_alloc);
/* let the last to be cleared first */
for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
priv = &buf_alloc->priv_buf[i];
mask = BIT((uint8_t)i);
if (hw->hw_tc_map & mask &&
!(hw->dcb_info.hw_pfc_map & mask)) {
/* Clear the no pfc TC private buffer */
priv->wl.low = 0;
priv->wl.high = 0;
priv->buf_size = 0;
priv->enable = 0;
no_pfc_priv_num--;
}
if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
no_pfc_priv_num == 0)
break;
}
return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
}
static bool
hns3_drop_pfc_buf_till_fit(struct hns3_hw *hw,
struct hns3_pkt_buf_alloc *buf_alloc)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
struct hns3_priv_buf *priv;
uint32_t rx_all;
int pfc_priv_num;
uint8_t mask;
int i;
rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
pfc_priv_num = hns3_get_pfc_priv_num(hw, buf_alloc);
/* let the last to be cleared first */
for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
priv = &buf_alloc->priv_buf[i];
mask = BIT((uint8_t)i);
if (hw->hw_tc_map & mask && hw->dcb_info.hw_pfc_map & mask) {
/* Reduce the number of pfc TC with private buffer */
priv->wl.low = 0;
priv->enable = 0;
priv->wl.high = 0;
priv->buf_size = 0;
pfc_priv_num--;
}
if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
pfc_priv_num == 0)
break;
}
return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
}
static bool
hns3_only_alloc_priv_buff(struct hns3_hw *hw,
struct hns3_pkt_buf_alloc *buf_alloc)
{
#define COMPENSATE_BUFFER 0x3C00
#define COMPENSATE_HALF_MPS_NUM 5
#define PRIV_WL_GAP 0x1800
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
uint32_t tc_num = hns3_get_tc_num(hw);
uint32_t half_mps = pf->mps >> 1;
struct hns3_priv_buf *priv;
uint32_t min_rx_priv;
uint32_t rx_priv;
uint8_t i;
rx_priv = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
if (tc_num)
rx_priv = rx_priv / tc_num;
if (tc_num <= NEED_RESERVE_TC_NUM)
rx_priv = rx_priv * BUF_RESERVE_PERCENT / BUF_MAX_PERCENT;
/*
* Minimum value of private buffer in rx direction (min_rx_priv) is
* equal to "DV + 2.5 * MPS + 15KB". Driver only allocates rx private
* buffer if rx_priv is greater than min_rx_priv.
*/
min_rx_priv = pf->dv_buf_size + COMPENSATE_BUFFER +
COMPENSATE_HALF_MPS_NUM * half_mps;
min_rx_priv = roundup(min_rx_priv, HNS3_BUF_SIZE_UNIT);
rx_priv = rounddown(rx_priv, HNS3_BUF_SIZE_UNIT);
if (rx_priv < min_rx_priv)
return false;
for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
priv = &buf_alloc->priv_buf[i];
priv->enable = 0;
priv->wl.low = 0;
priv->wl.high = 0;
priv->buf_size = 0;
if (!(hw->hw_tc_map & BIT(i)))
continue;
priv->enable = 1;
priv->buf_size = rx_priv;
priv->wl.high = rx_priv - pf->dv_buf_size;
priv->wl.low = priv->wl.high - PRIV_WL_GAP;
}
buf_alloc->s_buf.buf_size = 0;
return true;
}
/*
* hns3_rx_buffer_calc: calculate the rx private buffer size for all TCs
* @hw: pointer to struct hns3_hw
* @buf_alloc: pointer to buffer calculation data
* @return: 0: calculate sucessful, negative: fail
*/
static int
hns3_rx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
{
/* When DCB is not supported, rx private buffer is not allocated. */
if (!hns3_dev_dcb_supported(hw)) {
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
uint32_t rx_all = pf->pkt_buf_size;
rx_all -= hns3_get_tx_buff_alloced(buf_alloc);
if (!hns3_is_rx_buf_ok(hw, buf_alloc, rx_all))
return -ENOMEM;
return 0;
}
/*
* Try to allocate privated packet buffer for all TCs without share
* buffer.
*/
if (hns3_only_alloc_priv_buff(hw, buf_alloc))
return 0;
/*
* Try to allocate privated packet buffer for all TCs with share
* buffer.
*/
if (hns3_rx_buf_calc_all(hw, true, buf_alloc))
return 0;
/*
* For different application scenes, the enabled port number, TC number
* and no_drop TC number are different. In order to obtain the better
* performance, software could allocate the buffer size and configure
* the waterline by trying to decrease the private buffer size according
* to the order, namely, waterline of valid tc, pfc disabled tc, pfc
* enabled tc.
*/
if (hns3_rx_buf_calc_all(hw, false, buf_alloc))
return 0;
if (hns3_drop_nopfc_buf_till_fit(hw, buf_alloc))
return 0;
if (hns3_drop_pfc_buf_till_fit(hw, buf_alloc))
return 0;
return -ENOMEM;
}
static int
hns3_rx_priv_buf_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
{
struct hns3_rx_priv_buff_cmd *req;
struct hns3_cmd_desc desc;
uint32_t buf_size;
int ret;
int i;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_PRIV_BUFF_ALLOC, false);
req = (struct hns3_rx_priv_buff_cmd *)desc.data;
/* Alloc private buffer TCs */
for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
struct hns3_priv_buf *priv = &buf_alloc->priv_buf[i];
req->buf_num[i] =
rte_cpu_to_le_16(priv->buf_size >> HNS3_BUF_UNIT_S);
req->buf_num[i] |= rte_cpu_to_le_16(1 << HNS3_TC0_PRI_BUF_EN_B);
}
buf_size = buf_alloc->s_buf.buf_size;
req->shared_buf = rte_cpu_to_le_16((buf_size >> HNS3_BUF_UNIT_S) |
(1 << HNS3_TC0_PRI_BUF_EN_B));
ret = hns3_cmd_send(hw, &desc, 1);
if (ret)
PMD_INIT_LOG(ERR, "rx private buffer alloc cmd failed %d", ret);
return ret;
}
static int
hns3_rx_priv_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
{
#define HNS3_RX_PRIV_WL_ALLOC_DESC_NUM 2
struct hns3_rx_priv_wl_buf *req;
struct hns3_priv_buf *priv;
struct hns3_cmd_desc desc[HNS3_RX_PRIV_WL_ALLOC_DESC_NUM];
int i, j;
int ret;
for (i = 0; i < HNS3_RX_PRIV_WL_ALLOC_DESC_NUM; i++) {
hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_PRIV_WL_ALLOC,
false);
req = (struct hns3_rx_priv_wl_buf *)desc[i].data;
/* The first descriptor set the NEXT bit to 1 */
if (i == 0)
desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
else
desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
uint32_t idx = i * HNS3_TC_NUM_ONE_DESC + j;
priv = &buf_alloc->priv_buf[idx];
req->tc_wl[j].high = rte_cpu_to_le_16(priv->wl.high >>
HNS3_BUF_UNIT_S);
req->tc_wl[j].high |=
rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
req->tc_wl[j].low = rte_cpu_to_le_16(priv->wl.low >>
HNS3_BUF_UNIT_S);
req->tc_wl[j].low |=
rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
}
}
/* Send 2 descriptor at one time */
ret = hns3_cmd_send(hw, desc, HNS3_RX_PRIV_WL_ALLOC_DESC_NUM);
if (ret)
PMD_INIT_LOG(ERR, "rx private waterline config cmd failed %d",
ret);
return ret;
}
static int
hns3_common_thrd_config(struct hns3_hw *hw,
struct hns3_pkt_buf_alloc *buf_alloc)
{
#define HNS3_RX_COM_THRD_ALLOC_DESC_NUM 2
struct hns3_shared_buf *s_buf = &buf_alloc->s_buf;
struct hns3_rx_com_thrd *req;
struct hns3_cmd_desc desc[HNS3_RX_COM_THRD_ALLOC_DESC_NUM];
struct hns3_tc_thrd *tc;
int tc_idx;
int i, j;
int ret;
for (i = 0; i < HNS3_RX_COM_THRD_ALLOC_DESC_NUM; i++) {
hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_COM_THRD_ALLOC,
false);
req = (struct hns3_rx_com_thrd *)&desc[i].data;
/* The first descriptor set the NEXT bit to 1 */
if (i == 0)
desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
else
desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
tc_idx = i * HNS3_TC_NUM_ONE_DESC + j;
tc = &s_buf->tc_thrd[tc_idx];
req->com_thrd[j].high =
rte_cpu_to_le_16(tc->high >> HNS3_BUF_UNIT_S);
req->com_thrd[j].high |=
rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
req->com_thrd[j].low =
rte_cpu_to_le_16(tc->low >> HNS3_BUF_UNIT_S);
req->com_thrd[j].low |=
rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
}
}
/* Send 2 descriptors at one time */
ret = hns3_cmd_send(hw, desc, HNS3_RX_COM_THRD_ALLOC_DESC_NUM);
if (ret)
PMD_INIT_LOG(ERR, "common threshold config cmd failed %d", ret);
return ret;
}
static int
hns3_common_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
{
struct hns3_shared_buf *buf = &buf_alloc->s_buf;
struct hns3_rx_com_wl *req;
struct hns3_cmd_desc desc;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_COM_WL_ALLOC, false);
req = (struct hns3_rx_com_wl *)desc.data;
req->com_wl.high = rte_cpu_to_le_16(buf->self.high >> HNS3_BUF_UNIT_S);
req->com_wl.high |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
req->com_wl.low = rte_cpu_to_le_16(buf->self.low >> HNS3_BUF_UNIT_S);
req->com_wl.low |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
ret = hns3_cmd_send(hw, &desc, 1);
if (ret)
PMD_INIT_LOG(ERR, "common waterline config cmd failed %d", ret);
return ret;
}
int
hns3_buffer_alloc(struct hns3_hw *hw)
{
struct hns3_pkt_buf_alloc pkt_buf;
int ret;
memset(&pkt_buf, 0, sizeof(pkt_buf));
ret = hns3_tx_buffer_calc(hw, &pkt_buf);
if (ret) {
PMD_INIT_LOG(ERR,
"could not calc tx buffer size for all TCs %d",
ret);
return ret;
}
ret = hns3_tx_buffer_alloc(hw, &pkt_buf);
if (ret) {
PMD_INIT_LOG(ERR, "could not alloc tx buffers %d", ret);
return ret;
}
ret = hns3_rx_buffer_calc(hw, &pkt_buf);
if (ret) {
PMD_INIT_LOG(ERR,
"could not calc rx priv buffer size for all TCs %d",
ret);
return ret;
}
ret = hns3_rx_priv_buf_alloc(hw, &pkt_buf);
if (ret) {
PMD_INIT_LOG(ERR, "could not alloc rx priv buffer %d", ret);
return ret;
}
if (hns3_dev_dcb_supported(hw)) {
ret = hns3_rx_priv_wl_config(hw, &pkt_buf);
if (ret) {
PMD_INIT_LOG(ERR,
"could not configure rx private waterline %d",
ret);
return ret;
}
ret = hns3_common_thrd_config(hw, &pkt_buf);
if (ret) {
PMD_INIT_LOG(ERR,
"could not configure common threshold %d",
ret);
return ret;
}
}
ret = hns3_common_wl_config(hw, &pkt_buf);
if (ret)
PMD_INIT_LOG(ERR, "could not configure common waterline %d",
ret);
return ret;
}
static int
hns3_mac_init(struct hns3_hw *hw)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_mac *mac = &hw->mac;
struct hns3_pf *pf = &hns->pf;
int ret;
pf->support_sfp_query = true;
mac->link_duplex = ETH_LINK_FULL_DUPLEX;
ret = hns3_cfg_mac_speed_dup_hw(hw, mac->link_speed, mac->link_duplex);
if (ret) {
PMD_INIT_LOG(ERR, "Config mac speed dup fail ret = %d", ret);
return ret;
}
mac->link_status = ETH_LINK_DOWN;
return hns3_config_mtu(hw, pf->mps);
}
static int
hns3_get_mac_ethertype_cmd_status(uint16_t cmdq_resp, uint8_t resp_code)
{
#define HNS3_ETHERTYPE_SUCCESS_ADD 0
#define HNS3_ETHERTYPE_ALREADY_ADD 1
#define HNS3_ETHERTYPE_MGR_TBL_OVERFLOW 2
#define HNS3_ETHERTYPE_KEY_CONFLICT 3
int return_status;
if (cmdq_resp) {
PMD_INIT_LOG(ERR,
"cmdq execute failed for get_mac_ethertype_cmd_status, status=%u.\n",
cmdq_resp);
return -EIO;
}
switch (resp_code) {
case HNS3_ETHERTYPE_SUCCESS_ADD:
case HNS3_ETHERTYPE_ALREADY_ADD:
return_status = 0;
break;
case HNS3_ETHERTYPE_MGR_TBL_OVERFLOW:
PMD_INIT_LOG(ERR,
"add mac ethertype failed for manager table overflow.");
return_status = -EIO;
break;
case HNS3_ETHERTYPE_KEY_CONFLICT:
PMD_INIT_LOG(ERR, "add mac ethertype failed for key conflict.");
return_status = -EIO;
break;
default:
PMD_INIT_LOG(ERR,
"add mac ethertype failed for undefined, code=%u.",
resp_code);
return_status = -EIO;
break;
}
return return_status;
}
static int
hns3_add_mgr_tbl(struct hns3_hw *hw,
const struct hns3_mac_mgr_tbl_entry_cmd *req)
{
struct hns3_cmd_desc desc;
uint8_t resp_code;
uint16_t retval;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_ETHTYPE_ADD, false);
memcpy(desc.data, req, sizeof(struct hns3_mac_mgr_tbl_entry_cmd));
ret = hns3_cmd_send(hw, &desc, 1);
if (ret) {
PMD_INIT_LOG(ERR,
"add mac ethertype failed for cmd_send, ret =%d.",
ret);
return ret;
}
resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
retval = rte_le_to_cpu_16(desc.retval);
return hns3_get_mac_ethertype_cmd_status(retval, resp_code);
}
static void
hns3_prepare_mgr_tbl(struct hns3_mac_mgr_tbl_entry_cmd *mgr_table,
int *table_item_num)
{
struct hns3_mac_mgr_tbl_entry_cmd *tbl;
/*
* In current version, we add one item in management table as below:
* 0x0180C200000E -- LLDP MC address
*/
tbl = mgr_table;
tbl->flags = HNS3_MAC_MGR_MASK_VLAN_B;
tbl->ethter_type = rte_cpu_to_le_16(HNS3_MAC_ETHERTYPE_LLDP);
tbl->mac_addr_hi32 = rte_cpu_to_le_32(htonl(0x0180C200));
tbl->mac_addr_lo16 = rte_cpu_to_le_16(htons(0x000E));
tbl->i_port_bitmap = 0x1;
*table_item_num = 1;
}
static int
hns3_init_mgr_tbl(struct hns3_hw *hw)
{
#define HNS_MAC_MGR_TBL_MAX_SIZE 16
struct hns3_mac_mgr_tbl_entry_cmd mgr_table[HNS_MAC_MGR_TBL_MAX_SIZE];
int table_item_num;
int ret;
int i;
memset(mgr_table, 0, sizeof(mgr_table));
hns3_prepare_mgr_tbl(mgr_table, &table_item_num);
for (i = 0; i < table_item_num; i++) {
ret = hns3_add_mgr_tbl(hw, &mgr_table[i]);
if (ret) {
PMD_INIT_LOG(ERR, "add mac ethertype failed, ret =%d",
ret);
return ret;
}
}
return 0;
}
static void
hns3_promisc_param_init(struct hns3_promisc_param *param, bool en_uc,
bool en_mc, bool en_bc, int vport_id)
{
if (!param)
return;
memset(param, 0, sizeof(struct hns3_promisc_param));
if (en_uc)
param->enable = HNS3_PROMISC_EN_UC;
if (en_mc)
param->enable |= HNS3_PROMISC_EN_MC;
if (en_bc)
param->enable |= HNS3_PROMISC_EN_BC;
param->vf_id = vport_id;
}
static int
hns3_cmd_set_promisc_mode(struct hns3_hw *hw, struct hns3_promisc_param *param)
{
struct hns3_promisc_cfg_cmd *req;
struct hns3_cmd_desc desc;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_PROMISC_MODE, false);
req = (struct hns3_promisc_cfg_cmd *)desc.data;
req->vf_id = param->vf_id;
req->flag = (param->enable << HNS3_PROMISC_EN_B) |
HNS3_PROMISC_TX_EN_B | HNS3_PROMISC_RX_EN_B;
ret = hns3_cmd_send(hw, &desc, 1);
if (ret)
PMD_INIT_LOG(ERR, "Set promisc mode fail, ret = %d", ret);
return ret;
}
static int
hns3_set_promisc_mode(struct hns3_hw *hw, bool en_uc_pmc, bool en_mc_pmc)
{
struct hns3_promisc_param param;
bool en_bc_pmc = true;
uint8_t vf_id;
/*
* In current version VF is not supported when PF is driven by DPDK
* driver, just need to configure parameters for PF vport.
*/
vf_id = HNS3_PF_FUNC_ID;
hns3_promisc_param_init(&param, en_uc_pmc, en_mc_pmc, en_bc_pmc, vf_id);
return hns3_cmd_set_promisc_mode(hw, &param);
}
static int
hns3_promisc_init(struct hns3_hw *hw)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
struct hns3_promisc_param param;
uint16_t func_id;
int ret;
ret = hns3_set_promisc_mode(hw, false, false);
if (ret) {
PMD_INIT_LOG(ERR, "failed to set promisc mode, ret = %d", ret);
return ret;
}
/*
* In current version VFs are not supported when PF is driven by DPDK
* driver. After PF has been taken over by DPDK, the original VF will
* be invalid. So, there is a possibility of entry residues. It should
* clear VFs's promisc mode to avoid unnecessary bandwidth usage
* during init.
*/
for (func_id = HNS3_1ST_VF_FUNC_ID; func_id < pf->func_num; func_id++) {
hns3_promisc_param_init(&param, false, false, false, func_id);
ret = hns3_cmd_set_promisc_mode(hw, &param);
if (ret) {
PMD_INIT_LOG(ERR, "failed to clear vf:%u promisc mode,"
" ret = %d", func_id, ret);
return ret;
}
}
return 0;
}
static void
hns3_promisc_uninit(struct hns3_hw *hw)
{
struct hns3_promisc_param param;
uint16_t func_id;
int ret;
func_id = HNS3_PF_FUNC_ID;
/*
* In current version VFs are not supported when PF is driven by
* DPDK driver, and VFs' promisc mode status has been cleared during
* init and their status will not change. So just clear PF's promisc
* mode status during uninit.
*/
hns3_promisc_param_init(&param, false, false, false, func_id);
ret = hns3_cmd_set_promisc_mode(hw, &param);
if (ret)
PMD_INIT_LOG(ERR, "failed to clear promisc status during"
" uninit, ret = %d", ret);
}
static int
hns3_dev_promiscuous_enable(struct rte_eth_dev *dev)
{
bool allmulti = dev->data->all_multicast ? true : false;
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
uint64_t offloads;
int err;
int ret;
rte_spinlock_lock(&hw->lock);
ret = hns3_set_promisc_mode(hw, true, true);
if (ret) {
rte_spinlock_unlock(&hw->lock);
hns3_err(hw, "failed to enable promiscuous mode, ret = %d",
ret);
return ret;
}
/*
* When promiscuous mode was enabled, disable the vlan filter to let
* all packets coming in in the receiving direction.
*/
offloads = dev->data->dev_conf.rxmode.offloads;
if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
ret = hns3_enable_vlan_filter(hns, false);
if (ret) {
hns3_err(hw, "failed to enable promiscuous mode due to "
"failure to disable vlan filter, ret = %d",
ret);
err = hns3_set_promisc_mode(hw, false, allmulti);
if (err)
hns3_err(hw, "failed to restore promiscuous "
"status after disable vlan filter "
"failed during enabling promiscuous "
"mode, ret = %d", ret);
}
}
rte_spinlock_unlock(&hw->lock);
return ret;
}
static int
hns3_dev_promiscuous_disable(struct rte_eth_dev *dev)
{
bool allmulti = dev->data->all_multicast ? true : false;
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
uint64_t offloads;
int err;
int ret;
/* If now in all_multicast mode, must remain in all_multicast mode. */
rte_spinlock_lock(&hw->lock);
ret = hns3_set_promisc_mode(hw, false, allmulti);
if (ret) {
rte_spinlock_unlock(&hw->lock);
hns3_err(hw, "failed to disable promiscuous mode, ret = %d",
ret);
return ret;
}
/* when promiscuous mode was disabled, restore the vlan filter status */
offloads = dev->data->dev_conf.rxmode.offloads;
if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
ret = hns3_enable_vlan_filter(hns, true);
if (ret) {
hns3_err(hw, "failed to disable promiscuous mode due to"
" failure to restore vlan filter, ret = %d",
ret);
err = hns3_set_promisc_mode(hw, true, true);
if (err)
hns3_err(hw, "failed to restore promiscuous "
"status after enabling vlan filter "
"failed during disabling promiscuous "
"mode, ret = %d", ret);
}
}
rte_spinlock_unlock(&hw->lock);
return ret;
}
static int
hns3_dev_allmulticast_enable(struct rte_eth_dev *dev)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
int ret;
if (dev->data->promiscuous)
return 0;
rte_spinlock_lock(&hw->lock);
ret = hns3_set_promisc_mode(hw, false, true);
rte_spinlock_unlock(&hw->lock);
if (ret)
hns3_err(hw, "failed to enable allmulticast mode, ret = %d",
ret);
return ret;
}
static int
hns3_dev_allmulticast_disable(struct rte_eth_dev *dev)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
int ret;
/* If now in promiscuous mode, must remain in all_multicast mode. */
if (dev->data->promiscuous)
return 0;
rte_spinlock_lock(&hw->lock);
ret = hns3_set_promisc_mode(hw, false, false);
rte_spinlock_unlock(&hw->lock);
if (ret)
hns3_err(hw, "failed to disable allmulticast mode, ret = %d",
ret);
return ret;
}
static int
hns3_dev_promisc_restore(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
bool allmulti = hw->data->all_multicast ? true : false;
int ret;
if (hw->data->promiscuous) {
ret = hns3_set_promisc_mode(hw, true, true);
if (ret)
hns3_err(hw, "failed to restore promiscuous mode, "
"ret = %d", ret);
return ret;
}
ret = hns3_set_promisc_mode(hw, false, allmulti);
if (ret)
hns3_err(hw, "failed to restore allmulticast mode, ret = %d",
ret);
return ret;
}
static int
hns3_get_sfp_info(struct hns3_hw *hw, struct hns3_mac *mac_info)
{
struct hns3_sfp_info_cmd *resp;
struct hns3_cmd_desc desc;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GET_SFP_INFO, true);
resp = (struct hns3_sfp_info_cmd *)desc.data;
resp->query_type = HNS3_ACTIVE_QUERY;
ret = hns3_cmd_send(hw, &desc, 1);
if (ret == -EOPNOTSUPP) {
hns3_warn(hw, "firmware does not support get SFP info,"
" ret = %d.", ret);
return ret;
} else if (ret) {
hns3_err(hw, "get sfp info failed, ret = %d.", ret);
return ret;
}
/*
* In some case, the speed of MAC obtained from firmware may be 0, it
* shouldn't be set to mac->speed.
*/
if (!rte_le_to_cpu_32(resp->sfp_speed))
return 0;
mac_info->link_speed = rte_le_to_cpu_32(resp->sfp_speed);
/*
* if resp->supported_speed is 0, it means it's an old version
* firmware, do not update these params.
*/
if (resp->supported_speed) {
mac_info->query_type = HNS3_ACTIVE_QUERY;
mac_info->supported_speed =
rte_le_to_cpu_32(resp->supported_speed);
mac_info->support_autoneg = resp->autoneg_ability;
mac_info->link_autoneg = (resp->autoneg == 0) ? ETH_LINK_FIXED
: ETH_LINK_AUTONEG;
} else {
mac_info->query_type = HNS3_DEFAULT_QUERY;
}
return 0;
}
static uint8_t
hns3_check_speed_dup(uint8_t duplex, uint32_t speed)
{
if (!(speed == ETH_SPEED_NUM_10M || speed == ETH_SPEED_NUM_100M))
duplex = ETH_LINK_FULL_DUPLEX;
return duplex;
}
static int
hns3_cfg_mac_speed_dup(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
{
struct hns3_mac *mac = &hw->mac;
int ret;
duplex = hns3_check_speed_dup(duplex, speed);
if (mac->link_speed == speed && mac->link_duplex == duplex)
return 0;
ret = hns3_cfg_mac_speed_dup_hw(hw, speed, duplex);
if (ret)
return ret;
ret = hns3_port_shaper_update(hw, speed);
if (ret)
return ret;
mac->link_speed = speed;
mac->link_duplex = duplex;
return 0;
}
static int
hns3_update_fiber_link_info(struct hns3_hw *hw)
{
struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw);
struct hns3_mac *mac = &hw->mac;
struct hns3_mac mac_info;
int ret;
/* If firmware do not support get SFP/qSFP speed, return directly */
if (!pf->support_sfp_query)
return 0;
memset(&mac_info, 0, sizeof(struct hns3_mac));
ret = hns3_get_sfp_info(hw, &mac_info);
if (ret == -EOPNOTSUPP) {
pf->support_sfp_query = false;
return ret;
} else if (ret)
return ret;
/* Do nothing if no SFP */
if (mac_info.link_speed == ETH_SPEED_NUM_NONE)
return 0;
/*
* If query_type is HNS3_ACTIVE_QUERY, it is no need
* to reconfigure the speed of MAC. Otherwise, it indicates
* that the current firmware only supports to obtain the
* speed of the SFP, and the speed of MAC needs to reconfigure.
*/
mac->query_type = mac_info.query_type;
if (mac->query_type == HNS3_ACTIVE_QUERY) {
if (mac_info.link_speed != mac->link_speed) {
ret = hns3_port_shaper_update(hw, mac_info.link_speed);
if (ret)
return ret;
}
mac->link_speed = mac_info.link_speed;
mac->supported_speed = mac_info.supported_speed;
mac->support_autoneg = mac_info.support_autoneg;
mac->link_autoneg = mac_info.link_autoneg;
return 0;
}
/* Config full duplex for SFP */
return hns3_cfg_mac_speed_dup(hw, mac_info.link_speed,
ETH_LINK_FULL_DUPLEX);
}
static void
hns3_parse_copper_phy_params(struct hns3_cmd_desc *desc, struct hns3_mac *mac)
{
#define HNS3_PHY_SUPPORTED_SPEED_MASK 0x2f
struct hns3_phy_params_bd0_cmd *req;
uint32_t supported;
req = (struct hns3_phy_params_bd0_cmd *)desc[0].data;
mac->link_speed = rte_le_to_cpu_32(req->speed);
mac->link_duplex = hns3_get_bit(req->duplex,
HNS3_PHY_DUPLEX_CFG_B);
mac->link_autoneg = hns3_get_bit(req->autoneg,
HNS3_PHY_AUTONEG_CFG_B);
mac->advertising = rte_le_to_cpu_32(req->advertising);
mac->lp_advertising = rte_le_to_cpu_32(req->lp_advertising);
supported = rte_le_to_cpu_32(req->supported);
mac->supported_speed = supported & HNS3_PHY_SUPPORTED_SPEED_MASK;
mac->support_autoneg = !!(supported & HNS3_PHY_LINK_MODE_AUTONEG_BIT);
}
static int
hns3_get_copper_phy_params(struct hns3_hw *hw, struct hns3_mac *mac)
{
struct hns3_cmd_desc desc[HNS3_PHY_PARAM_CFG_BD_NUM];
uint16_t i;
int ret;
for (i = 0; i < HNS3_PHY_PARAM_CFG_BD_NUM - 1; i++) {
hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG,
true);
desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
}
hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG, true);
ret = hns3_cmd_send(hw, desc, HNS3_PHY_PARAM_CFG_BD_NUM);
if (ret) {
hns3_err(hw, "get phy parameters failed, ret = %d.", ret);
return ret;
}
hns3_parse_copper_phy_params(desc, mac);
return 0;
}
static int
hns3_update_copper_link_info(struct hns3_hw *hw)
{
struct hns3_mac *mac = &hw->mac;
struct hns3_mac mac_info;
int ret;
memset(&mac_info, 0, sizeof(struct hns3_mac));
ret = hns3_get_copper_phy_params(hw, &mac_info);
if (ret)
return ret;
if (mac_info.link_speed != mac->link_speed) {
ret = hns3_port_shaper_update(hw, mac_info.link_speed);
if (ret)
return ret;
}
mac->link_speed = mac_info.link_speed;
mac->link_duplex = mac_info.link_duplex;
mac->link_autoneg = mac_info.link_autoneg;
mac->supported_speed = mac_info.supported_speed;
mac->advertising = mac_info.advertising;
mac->lp_advertising = mac_info.lp_advertising;
mac->support_autoneg = mac_info.support_autoneg;
return 0;
}
static int
hns3_update_link_info(struct rte_eth_dev *eth_dev)
{
struct hns3_adapter *hns = eth_dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
int ret = 0;
if (hw->mac.media_type == HNS3_MEDIA_TYPE_COPPER)
ret = hns3_update_copper_link_info(hw);
else if (hw->mac.media_type == HNS3_MEDIA_TYPE_FIBER)
ret = hns3_update_fiber_link_info(hw);
return ret;
}
static int
hns3_cfg_mac_mode(struct hns3_hw *hw, bool enable)
{
struct hns3_config_mac_mode_cmd *req;
struct hns3_cmd_desc desc;
uint32_t loop_en = 0;
uint8_t val = 0;
int ret;
req = (struct hns3_config_mac_mode_cmd *)desc.data;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAC_MODE, false);
if (enable)
val = 1;
hns3_set_bit(loop_en, HNS3_MAC_TX_EN_B, val);
hns3_set_bit(loop_en, HNS3_MAC_RX_EN_B, val);
hns3_set_bit(loop_en, HNS3_MAC_PAD_TX_B, val);
hns3_set_bit(loop_en, HNS3_MAC_PAD_RX_B, val);
hns3_set_bit(loop_en, HNS3_MAC_1588_TX_B, 0);
hns3_set_bit(loop_en, HNS3_MAC_1588_RX_B, 0);
hns3_set_bit(loop_en, HNS3_MAC_APP_LP_B, 0);
hns3_set_bit(loop_en, HNS3_MAC_LINE_LP_B, 0);
hns3_set_bit(loop_en, HNS3_MAC_FCS_TX_B, val);
hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_B, val);
/*
* If DEV_RX_OFFLOAD_KEEP_CRC offload is set, MAC will not strip CRC
* when receiving frames. Otherwise, CRC will be stripped.
*/
if (hw->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, 0);
else
hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, val);
hns3_set_bit(loop_en, HNS3_MAC_TX_OVERSIZE_TRUNCATE_B, val);
hns3_set_bit(loop_en, HNS3_MAC_RX_OVERSIZE_TRUNCATE_B, val);
hns3_set_bit(loop_en, HNS3_MAC_TX_UNDER_MIN_ERR_B, val);
req->txrx_pad_fcs_loop_en = rte_cpu_to_le_32(loop_en);
ret = hns3_cmd_send(hw, &desc, 1);
if (ret)
PMD_INIT_LOG(ERR, "mac enable fail, ret =%d.", ret);
return ret;
}
static int
hns3_get_mac_link_status(struct hns3_hw *hw)
{
struct hns3_link_status_cmd *req;
struct hns3_cmd_desc desc;
int link_status;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_LINK_STATUS, true);
ret = hns3_cmd_send(hw, &desc, 1);
if (ret) {
hns3_err(hw, "get link status cmd failed %d", ret);
return ETH_LINK_DOWN;
}
req = (struct hns3_link_status_cmd *)desc.data;
link_status = req->status & HNS3_LINK_STATUS_UP_M;
return !!link_status;
}
static bool
hns3_update_link_status(struct hns3_hw *hw)
{
int state;
state = hns3_get_mac_link_status(hw);
if (state != hw->mac.link_status) {
hw->mac.link_status = state;
hns3_warn(hw, "Link status change to %s!", state ? "up" : "down");
return true;
}
return false;
}
void
hns3_update_linkstatus_and_event(struct hns3_hw *hw, bool query)
{
struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
struct rte_eth_link new_link;
int ret;
if (query)
hns3_update_port_link_info(dev);
memset(&new_link, 0, sizeof(new_link));
hns3_setup_linkstatus(dev, &new_link);
ret = rte_eth_linkstatus_set(dev, &new_link);
if (ret == 0 && dev->data->dev_conf.intr_conf.lsc != 0)
hns3_start_report_lse(dev);
}
static void
hns3_service_handler(void *param)
{
struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
struct hns3_adapter *hns = eth_dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
if (!hns3_is_reset_pending(hns))
hns3_update_linkstatus_and_event(hw, true);
else
hns3_warn(hw, "Cancel the query when reset is pending");
rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, eth_dev);
}
static int
hns3_init_hardware(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
int ret;
ret = hns3_map_tqp(hw);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to map tqp: %d", ret);
return ret;
}
ret = hns3_init_umv_space(hw);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to init umv space: %d", ret);
return ret;
}
ret = hns3_mac_init(hw);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to init MAC: %d", ret);
goto err_mac_init;
}
ret = hns3_init_mgr_tbl(hw);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to init manager table: %d", ret);
goto err_mac_init;
}
ret = hns3_promisc_init(hw);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to init promisc: %d",
ret);
goto err_mac_init;
}
ret = hns3_init_vlan_config(hns);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to init vlan: %d", ret);
goto err_mac_init;
}
ret = hns3_dcb_init(hw);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to init dcb: %d", ret);
goto err_mac_init;
}
ret = hns3_init_fd_config(hns);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to init flow director: %d", ret);
goto err_mac_init;
}
ret = hns3_config_tso(hw, HNS3_TSO_MSS_MIN, HNS3_TSO_MSS_MAX);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to config tso: %d", ret);
goto err_mac_init;
}
ret = hns3_config_gro(hw, false);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
goto err_mac_init;
}
/*
* In the initialization clearing the all hardware mapping relationship
* configurations between queues and interrupt vectors is needed, so
* some error caused by the residual configurations, such as the
* unexpected interrupt, can be avoid.
*/
ret = hns3_init_ring_with_vector(hw);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
goto err_mac_init;
}
return 0;
err_mac_init:
hns3_uninit_umv_space(hw);
return ret;
}
static int
hns3_clear_hw(struct hns3_hw *hw)
{
struct hns3_cmd_desc desc;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_HW_STATE, false);
ret = hns3_cmd_send(hw, &desc, 1);
if (ret && ret != -EOPNOTSUPP)
return ret;
return 0;
}
static void
hns3_config_all_msix_error(struct hns3_hw *hw, bool enable)
{
uint32_t val;
/*
* The new firmware support report more hardware error types by
* msix mode. These errors are defined as RAS errors in hardware
* and belong to a different type from the MSI-x errors processed
* by the network driver.
*
* Network driver should open the new error report on initialization.
*/
val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
hns3_set_bit(val, HNS3_VECTOR0_ALL_MSIX_ERR_B, enable ? 1 : 0);
hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, val);
}
static uint32_t
hns3_set_firber_default_support_speed(struct hns3_hw *hw)
{
struct hns3_mac *mac = &hw->mac;
switch (mac->link_speed) {
case ETH_SPEED_NUM_1G:
return HNS3_FIBER_LINK_SPEED_1G_BIT;
case ETH_SPEED_NUM_10G:
return HNS3_FIBER_LINK_SPEED_10G_BIT;
case ETH_SPEED_NUM_25G:
return HNS3_FIBER_LINK_SPEED_25G_BIT;
case ETH_SPEED_NUM_40G:
return HNS3_FIBER_LINK_SPEED_40G_BIT;
case ETH_SPEED_NUM_50G:
return HNS3_FIBER_LINK_SPEED_50G_BIT;
case ETH_SPEED_NUM_100G:
return HNS3_FIBER_LINK_SPEED_100G_BIT;
case ETH_SPEED_NUM_200G:
return HNS3_FIBER_LINK_SPEED_200G_BIT;
default:
hns3_warn(hw, "invalid speed %u Mbps.", mac->link_speed);
return 0;
}
}
/*
* Validity of supported_speed for firber and copper media type can be
* guaranteed by the following policy:
* Copper:
* Although the initialization of the phy in the firmware may not be
* completed, the firmware can guarantees that the supported_speed is
* an valid value.
* Firber:
* If the version of firmware supports the acitive query way of the
* HNS3_OPC_GET_SFP_INFO opcode, the supported_speed can be obtained
* through it. If unsupported, use the SFP's speed as the value of the
* supported_speed.
*/
static int
hns3_get_port_supported_speed(struct rte_eth_dev *eth_dev)
{
struct hns3_adapter *hns = eth_dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
struct hns3_mac *mac = &hw->mac;
int ret;
ret = hns3_update_link_info(eth_dev);
if (ret)
return ret;
if (mac->media_type == HNS3_MEDIA_TYPE_FIBER) {
/*
* Some firmware does not support the report of supported_speed,
* and only report the effective speed of SFP. In this case, it
* is necessary to use the SFP's speed as the supported_speed.
*/
if (mac->supported_speed == 0)
mac->supported_speed =
hns3_set_firber_default_support_speed(hw);
}
return 0;
}
static void
hns3_get_fc_autoneg_capability(struct hns3_adapter *hns)
{
struct hns3_mac *mac = &hns->hw.mac;
if (mac->media_type == HNS3_MEDIA_TYPE_COPPER) {
hns->pf.support_fc_autoneg = true;
return;
}
/*
* Flow control auto-negotiation requires the cooperation of the driver
* and firmware. Currently, the optical port does not support flow
* control auto-negotiation.
*/
hns->pf.support_fc_autoneg = false;
}
static int
hns3_init_pf(struct rte_eth_dev *eth_dev)
{
struct rte_device *dev = eth_dev->device;
struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
struct hns3_adapter *hns = eth_dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
int ret;
PMD_INIT_FUNC_TRACE();
/* Get hardware io base address from pcie BAR2 IO space */
hw->io_base = pci_dev->mem_resource[2].addr;
/* Firmware command queue initialize */
ret = hns3_cmd_init_queue(hw);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
goto err_cmd_init_queue;
}
hns3_clear_all_event_cause(hw);
/* Firmware command initialize */
ret = hns3_cmd_init(hw);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
goto err_cmd_init;
}
hns3_tx_push_init(eth_dev);
/*
* To ensure that the hardware environment is clean during
* initialization, the driver actively clear the hardware environment
* during initialization, including PF and corresponding VFs' vlan, mac,
* flow table configurations, etc.
*/
ret = hns3_clear_hw(hw);
if (ret) {
PMD_INIT_LOG(ERR, "failed to clear hardware: %d", ret);
goto err_cmd_init;
}
/* Hardware statistics of imissed registers cleared. */
ret = hns3_update_imissed_stats(hw, true);
if (ret) {
hns3_err(hw, "clear imissed stats failed, ret = %d", ret);
goto err_cmd_init;
}
hns3_config_all_msix_error(hw, true);
ret = rte_intr_callback_register(&pci_dev->intr_handle,
hns3_interrupt_handler,
eth_dev);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
goto err_intr_callback_register;
}
ret = hns3_ptp_init(hw);
if (ret)
goto err_get_config;
/* Enable interrupt */
rte_intr_enable(&pci_dev->intr_handle);
hns3_pf_enable_irq0(hw);
/* Get configuration */
ret = hns3_get_configuration(hw);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
goto err_get_config;
}
ret = hns3_tqp_stats_init(hw);
if (ret)
goto err_get_config;
ret = hns3_init_hardware(hns);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to init hardware: %d", ret);
goto err_init_hw;
}
/* Initialize flow director filter list & hash */
ret = hns3_fdir_filter_init(hns);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to alloc hashmap for fdir: %d", ret);
goto err_fdir;
}
hns3_rss_set_default_args(hw);
ret = hns3_enable_hw_error_intr(hns, true);
if (ret) {
PMD_INIT_LOG(ERR, "fail to enable hw error interrupts: %d",
ret);
goto err_enable_intr;
}
ret = hns3_get_port_supported_speed(eth_dev);
if (ret) {
PMD_INIT_LOG(ERR, "failed to get speed capabilities supported "
"by device, ret = %d.", ret);
goto err_supported_speed;
}
hns3_get_fc_autoneg_capability(hns);
hns3_tm_conf_init(eth_dev);
return 0;
err_supported_speed:
(void)hns3_enable_hw_error_intr(hns, false);
err_enable_intr:
hns3_fdir_filter_uninit(hns);
err_fdir:
hns3_uninit_umv_space(hw);
err_init_hw:
hns3_tqp_stats_uninit(hw);
err_get_config:
hns3_pf_disable_irq0(hw);
rte_intr_disable(&pci_dev->intr_handle);
hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
eth_dev);
err_intr_callback_register:
err_cmd_init:
hns3_cmd_uninit(hw);
hns3_cmd_destroy_queue(hw);
err_cmd_init_queue:
hw->io_base = NULL;
return ret;
}
static void
hns3_uninit_pf(struct rte_eth_dev *eth_dev)
{
struct hns3_adapter *hns = eth_dev->data->dev_private;
struct rte_device *dev = eth_dev->device;
struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
struct hns3_hw *hw = &hns->hw;
PMD_INIT_FUNC_TRACE();
hns3_tm_conf_uninit(eth_dev);
hns3_enable_hw_error_intr(hns, false);
hns3_rss_uninit(hns);
(void)hns3_config_gro(hw, false);
hns3_promisc_uninit(hw);
hns3_fdir_filter_uninit(hns);
hns3_uninit_umv_space(hw);
hns3_tqp_stats_uninit(hw);
hns3_config_mac_tnl_int(hw, false);
hns3_pf_disable_irq0(hw);
rte_intr_disable(&pci_dev->intr_handle);
hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
eth_dev);
hns3_config_all_msix_error(hw, false);
hns3_cmd_uninit(hw);
hns3_cmd_destroy_queue(hw);
hw->io_base = NULL;
}
static uint32_t
hns3_convert_link_speeds2bitmap_copper(uint32_t link_speeds)
{
uint32_t speed_bit;
switch (link_speeds & ~ETH_LINK_SPEED_FIXED) {
case ETH_LINK_SPEED_10M:
speed_bit = HNS3_PHY_LINK_SPEED_10M_BIT;
break;
case ETH_LINK_SPEED_10M_HD:
speed_bit = HNS3_PHY_LINK_SPEED_10M_HD_BIT;
break;
case ETH_LINK_SPEED_100M:
speed_bit = HNS3_PHY_LINK_SPEED_100M_BIT;
break;
case ETH_LINK_SPEED_100M_HD:
speed_bit = HNS3_PHY_LINK_SPEED_100M_HD_BIT;
break;
case ETH_LINK_SPEED_1G:
speed_bit = HNS3_PHY_LINK_SPEED_1000M_BIT;
break;
default:
speed_bit = 0;
break;
}
return speed_bit;
}
static uint32_t
hns3_convert_link_speeds2bitmap_fiber(uint32_t link_speeds)
{
uint32_t speed_bit;
switch (link_speeds & ~ETH_LINK_SPEED_FIXED) {
case ETH_LINK_SPEED_1G:
speed_bit = HNS3_FIBER_LINK_SPEED_1G_BIT;
break;
case ETH_LINK_SPEED_10G:
speed_bit = HNS3_FIBER_LINK_SPEED_10G_BIT;
break;
case ETH_LINK_SPEED_25G:
speed_bit = HNS3_FIBER_LINK_SPEED_25G_BIT;
break;
case ETH_LINK_SPEED_40G:
speed_bit = HNS3_FIBER_LINK_SPEED_40G_BIT;
break;
case ETH_LINK_SPEED_50G:
speed_bit = HNS3_FIBER_LINK_SPEED_50G_BIT;
break;
case ETH_LINK_SPEED_100G:
speed_bit = HNS3_FIBER_LINK_SPEED_100G_BIT;
break;
case ETH_LINK_SPEED_200G:
speed_bit = HNS3_FIBER_LINK_SPEED_200G_BIT;
break;
default:
speed_bit = 0;
break;
}
return speed_bit;
}
static int
hns3_check_port_speed(struct hns3_hw *hw, uint32_t link_speeds)
{
struct hns3_mac *mac = &hw->mac;
uint32_t supported_speed = mac->supported_speed;
uint32_t speed_bit = 0;
if (mac->media_type == HNS3_MEDIA_TYPE_COPPER)
speed_bit = hns3_convert_link_speeds2bitmap_copper(link_speeds);
else if (mac->media_type == HNS3_MEDIA_TYPE_FIBER)
speed_bit = hns3_convert_link_speeds2bitmap_fiber(link_speeds);
if (!(speed_bit & supported_speed)) {
hns3_err(hw, "link_speeds(0x%x) exceeds the supported speed capability or is incorrect.",
link_speeds);
return -EINVAL;
}
return 0;
}
static inline uint32_t
hns3_get_link_speed(uint32_t link_speeds)
{
uint32_t speed = ETH_SPEED_NUM_NONE;
if (link_speeds & ETH_LINK_SPEED_10M ||
link_speeds & ETH_LINK_SPEED_10M_HD)
speed = ETH_SPEED_NUM_10M;
if (link_speeds & ETH_LINK_SPEED_100M ||
link_speeds & ETH_LINK_SPEED_100M_HD)
speed = ETH_SPEED_NUM_100M;
if (link_speeds & ETH_LINK_SPEED_1G)
speed = ETH_SPEED_NUM_1G;
if (link_speeds & ETH_LINK_SPEED_10G)
speed = ETH_SPEED_NUM_10G;
if (link_speeds & ETH_LINK_SPEED_25G)
speed = ETH_SPEED_NUM_25G;
if (link_speeds & ETH_LINK_SPEED_40G)
speed = ETH_SPEED_NUM_40G;
if (link_speeds & ETH_LINK_SPEED_50G)
speed = ETH_SPEED_NUM_50G;
if (link_speeds & ETH_LINK_SPEED_100G)
speed = ETH_SPEED_NUM_100G;
if (link_speeds & ETH_LINK_SPEED_200G)
speed = ETH_SPEED_NUM_200G;
return speed;
}
static uint8_t
hns3_get_link_duplex(uint32_t link_speeds)
{
if ((link_speeds & ETH_LINK_SPEED_10M_HD) ||
(link_speeds & ETH_LINK_SPEED_100M_HD))
return ETH_LINK_HALF_DUPLEX;
else
return ETH_LINK_FULL_DUPLEX;
}
static int
hns3_set_copper_port_link_speed(struct hns3_hw *hw,
struct hns3_set_link_speed_cfg *cfg)
{
struct hns3_cmd_desc desc[HNS3_PHY_PARAM_CFG_BD_NUM];
struct hns3_phy_params_bd0_cmd *req;
uint16_t i;
for (i = 0; i < HNS3_PHY_PARAM_CFG_BD_NUM - 1; i++) {
hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG,
false);
desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
}
hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG, false);
req = (struct hns3_phy_params_bd0_cmd *)desc[0].data;
req->autoneg = cfg->autoneg;
/*
* The full speed capability is used to negotiate when
* auto-negotiation is enabled.
*/
if (cfg->autoneg) {
req->advertising = HNS3_PHY_LINK_SPEED_10M_BIT |
HNS3_PHY_LINK_SPEED_10M_HD_BIT |
HNS3_PHY_LINK_SPEED_100M_BIT |
HNS3_PHY_LINK_SPEED_100M_HD_BIT |
HNS3_PHY_LINK_SPEED_1000M_BIT;
} else {
req->speed = cfg->speed;
req->duplex = cfg->duplex;
}
return hns3_cmd_send(hw, desc, HNS3_PHY_PARAM_CFG_BD_NUM);
}
static int
hns3_set_autoneg(struct hns3_hw *hw, bool enable)
{
struct hns3_config_auto_neg_cmd *req;
struct hns3_cmd_desc desc;
uint32_t flag = 0;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_AN_MODE, false);
req = (struct hns3_config_auto_neg_cmd *)desc.data;
if (enable)
hns3_set_bit(flag, HNS3_MAC_CFG_AN_EN_B, 1);
req->cfg_an_cmd_flag = rte_cpu_to_le_32(flag);
ret = hns3_cmd_send(hw, &desc, 1);
if (ret)
hns3_err(hw, "autoneg set cmd failed, ret = %d.", ret);
return ret;
}
static int
hns3_set_fiber_port_link_speed(struct hns3_hw *hw,
struct hns3_set_link_speed_cfg *cfg)
{
int ret;
if (hw->mac.support_autoneg) {
ret = hns3_set_autoneg(hw, cfg->autoneg);
if (ret) {
hns3_err(hw, "failed to configure auto-negotiation.");
return ret;
}
/*
* To enable auto-negotiation, we only need to open the switch
* of auto-negotiation, then firmware sets all speed
* capabilities.
*/
if (cfg->autoneg)
return 0;
}
/*
* Some hardware doesn't support auto-negotiation, but users may not
* configure link_speeds (default 0), which means auto-negotiation.
* In this case, it should return success.
*/
if (cfg->autoneg)
return 0;
return hns3_cfg_mac_speed_dup(hw, cfg->speed, cfg->duplex);
}
static int
hns3_set_port_link_speed(struct hns3_hw *hw,
struct hns3_set_link_speed_cfg *cfg)
{
int ret;
if (hw->mac.media_type == HNS3_MEDIA_TYPE_COPPER) {
#if defined(RTE_HNS3_ONLY_1630_FPGA)
struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw);
if (pf->is_tmp_phy)
return 0;
#endif
ret = hns3_set_copper_port_link_speed(hw, cfg);
if (ret) {
hns3_err(hw, "failed to set copper port link speed,"
"ret = %d.", ret);
return ret;
}
} else if (hw->mac.media_type == HNS3_MEDIA_TYPE_FIBER) {
ret = hns3_set_fiber_port_link_speed(hw, cfg);
if (ret) {
hns3_err(hw, "failed to set fiber port link speed,"
"ret = %d.", ret);
return ret;
}
}
return 0;
}
static int
hns3_apply_link_speed(struct hns3_hw *hw)
{
struct rte_eth_conf *conf = &hw->data->dev_conf;
struct hns3_set_link_speed_cfg cfg;
memset(&cfg, 0, sizeof(struct hns3_set_link_speed_cfg));
cfg.autoneg = (conf->link_speeds == ETH_LINK_SPEED_AUTONEG) ?
ETH_LINK_AUTONEG : ETH_LINK_FIXED;
if (cfg.autoneg != ETH_LINK_AUTONEG) {
cfg.speed = hns3_get_link_speed(conf->link_speeds);
cfg.duplex = hns3_get_link_duplex(conf->link_speeds);
}
return hns3_set_port_link_speed(hw, &cfg);
}
static int
hns3_do_start(struct hns3_adapter *hns, bool reset_queue)
{
struct hns3_hw *hw = &hns->hw;
int ret;
ret = hns3_update_queue_map_configure(hns);
if (ret) {
hns3_err(hw, "failed to update queue mapping configuration, ret = %d",
ret);
return ret;
}
/* Note: hns3_tm_conf_update must be called after configuring DCB. */
ret = hns3_tm_conf_update(hw);
if (ret) {
PMD_INIT_LOG(ERR, "failed to update tm conf, ret = %d.", ret);
return ret;
}
hns3_enable_rxd_adv_layout(hw);
ret = hns3_init_queues(hns, reset_queue);
if (ret) {
PMD_INIT_LOG(ERR, "failed to init queues, ret = %d.", ret);
return ret;
}
ret = hns3_cfg_mac_mode(hw, true);
if (ret) {
PMD_INIT_LOG(ERR, "failed to enable MAC, ret = %d", ret);
goto err_config_mac_mode;
}
ret = hns3_apply_link_speed(hw);
if (ret)
goto err_set_link_speed;
return 0;
err_set_link_speed:
(void)hns3_cfg_mac_mode(hw, false);
err_config_mac_mode:
hns3_dev_release_mbufs(hns);
/*
* Here is exception handling, hns3_reset_all_tqps will have the
* corresponding error message if it is handled incorrectly, so it is
* not necessary to check hns3_reset_all_tqps return value, here keep
* ret as the error code causing the exception.
*/
(void)hns3_reset_all_tqps(hns);
return ret;
}
static int
hns3_map_rx_interrupt(struct rte_eth_dev *dev)
{
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint16_t base = RTE_INTR_VEC_ZERO_OFFSET;
uint16_t vec = RTE_INTR_VEC_ZERO_OFFSET;
uint32_t intr_vector;
uint16_t q_id;
int ret;
/*
* hns3 needs a separate interrupt to be used as event interrupt which
* could not be shared with task queue pair, so KERNEL drivers need
* support multiple interrupt vectors.
*/
if (dev->data->dev_conf.intr_conf.rxq == 0 ||
!rte_intr_cap_multiple(intr_handle))
return 0;
rte_intr_disable(intr_handle);
intr_vector = hw->used_rx_queues;
/* creates event fd for each intr vector when MSIX is used */
if (rte_intr_efd_enable(intr_handle, intr_vector))
return -EINVAL;
if (intr_handle->intr_vec == NULL) {
intr_handle->intr_vec =
rte_zmalloc("intr_vec",
hw->used_rx_queues * sizeof(int), 0);
if (intr_handle->intr_vec == NULL) {
hns3_err(hw, "failed to allocate %u rx_queues intr_vec",
hw->used_rx_queues);
ret = -ENOMEM;
goto alloc_intr_vec_error;
}
}
if (rte_intr_allow_others(intr_handle)) {
vec = RTE_INTR_VEC_RXTX_OFFSET;
base = RTE_INTR_VEC_RXTX_OFFSET;
}
for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
ret = hns3_bind_ring_with_vector(hw, vec, true,
HNS3_RING_TYPE_RX, q_id);
if (ret)
goto bind_vector_error;
intr_handle->intr_vec[q_id] = vec;
/*
* If there are not enough efds (e.g. not enough interrupt),
* remaining queues will be bond to the last interrupt.
*/
if (vec < base + intr_handle->nb_efd - 1)
vec++;
}
rte_intr_enable(intr_handle);
return 0;
bind_vector_error:
rte_free(intr_handle->intr_vec);
intr_handle->intr_vec = NULL;
alloc_intr_vec_error:
rte_intr_efd_disable(intr_handle);
return ret;
}
static int
hns3_restore_rx_interrupt(struct hns3_hw *hw)
{
struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
uint16_t q_id;
int ret;
if (dev->data->dev_conf.intr_conf.rxq == 0)
return 0;
if (rte_intr_dp_is_en(intr_handle)) {
for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
ret = hns3_bind_ring_with_vector(hw,
intr_handle->intr_vec[q_id], true,
HNS3_RING_TYPE_RX, q_id);
if (ret)
return ret;
}
}
return 0;
}
static void
hns3_restore_filter(struct rte_eth_dev *dev)
{
hns3_restore_rss_filter(dev);
}
static int
hns3_dev_start(struct rte_eth_dev *dev)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
int ret;
PMD_INIT_FUNC_TRACE();
if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
return -EBUSY;
rte_spinlock_lock(&hw->lock);
hw->adapter_state = HNS3_NIC_STARTING;
ret = hns3_do_start(hns, true);
if (ret) {
hw->adapter_state = HNS3_NIC_CONFIGURED;
rte_spinlock_unlock(&hw->lock);
return ret;
}
ret = hns3_map_rx_interrupt(dev);
if (ret)
goto map_rx_inter_err;
/*
* There are three register used to control the status of a TQP
* (contains a pair of Tx queue and Rx queue) in the new version network
* engine. One is used to control the enabling of Tx queue, the other is
* used to control the enabling of Rx queue, and the last is the master
* switch used to control the enabling of the tqp. The Tx register and
* TQP register must be enabled at the same time to enable a Tx queue.
* The same applies to the Rx queue. For the older network engine, this
* function only refresh the enabled flag, and it is used to update the
* status of queue in the dpdk framework.
*/
ret = hns3_start_all_txqs(dev);
if (ret)
goto map_rx_inter_err;
ret = hns3_start_all_rxqs(dev);
if (ret)
goto start_all_rxqs_fail;
hw->adapter_state = HNS3_NIC_STARTED;
rte_spinlock_unlock(&hw->lock);
hns3_rx_scattered_calc(dev);
hns3_set_rxtx_function(dev);
hns3_mp_req_start_rxtx(dev);
hns3_restore_filter(dev);
/* Enable interrupt of all rx queues before enabling queues */
hns3_dev_all_rx_queue_intr_enable(hw, true);
/*
* After finished the initialization, enable tqps to receive/transmit
* packets and refresh all queue status.
*/
hns3_start_tqps(hw);
hns3_tm_dev_start_proc(hw);
if (dev->data->dev_conf.intr_conf.lsc != 0)
hns3_dev_link_update(dev, 0);
rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, dev);
hns3_info(hw, "hns3 dev start successful!");
return 0;
start_all_rxqs_fail:
hns3_stop_all_txqs(dev);
map_rx_inter_err:
(void)hns3_do_stop(hns);
hw->adapter_state = HNS3_NIC_CONFIGURED;
rte_spinlock_unlock(&hw->lock);
return ret;
}
static int
hns3_do_stop(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
int ret;
/*
* The "hns3_do_stop" function will also be called by .stop_service to
* prepare reset. At the time of global or IMP reset, the command cannot
* be sent to stop the tx/rx queues. The mbuf in Tx/Rx queues may be
* accessed during the reset process. So the mbuf can not be released
* during reset and is required to be released after the reset is
* completed.
*/
if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0)
hns3_dev_release_mbufs(hns);
ret = hns3_cfg_mac_mode(hw, false);
if (ret)
return ret;
hw->mac.link_status = ETH_LINK_DOWN;
if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0) {
hns3_configure_all_mac_addr(hns, true);
ret = hns3_reset_all_tqps(hns);
if (ret) {
hns3_err(hw, "failed to reset all queues ret = %d.",
ret);
return ret;
}
}
hw->mac.default_addr_setted = false;
return 0;
}
static void
hns3_unmap_rx_interrupt(struct rte_eth_dev *dev)
{
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
uint16_t q_id;
if (dev->data->dev_conf.intr_conf.rxq == 0)
return;
/* unmap the ring with vector */
if (rte_intr_allow_others(intr_handle)) {
vec = RTE_INTR_VEC_RXTX_OFFSET;
base = RTE_INTR_VEC_RXTX_OFFSET;
}
if (rte_intr_dp_is_en(intr_handle)) {
for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
(void)hns3_bind_ring_with_vector(hw, vec, false,
HNS3_RING_TYPE_RX,
q_id);
if (vec < base + intr_handle->nb_efd - 1)
vec++;
}
}
/* Clean datapath event and queue/vec mapping */
rte_intr_efd_disable(intr_handle);
if (intr_handle->intr_vec) {
rte_free(intr_handle->intr_vec);
intr_handle->intr_vec = NULL;
}
}
static int
hns3_dev_stop(struct rte_eth_dev *dev)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
PMD_INIT_FUNC_TRACE();
dev->data->dev_started = 0;
hw->adapter_state = HNS3_NIC_STOPPING;
hns3_set_rxtx_function(dev);
rte_wmb();
/* Disable datapath on secondary process. */
hns3_mp_req_stop_rxtx(dev);
/* Prevent crashes when queues are still in use. */
rte_delay_ms(hw->cfg_max_queues);
rte_spinlock_lock(&hw->lock);
if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
hns3_tm_dev_stop_proc(hw);
hns3_config_mac_tnl_int(hw, false);
hns3_stop_tqps(hw);
hns3_do_stop(hns);
hns3_unmap_rx_interrupt(dev);
hw->adapter_state = HNS3_NIC_CONFIGURED;
}
hns3_rx_scattered_reset(dev);
rte_eal_alarm_cancel(hns3_service_handler, dev);
hns3_stop_report_lse(dev);
rte_spinlock_unlock(&hw->lock);
return 0;
}
static int
hns3_dev_close(struct rte_eth_dev *eth_dev)
{
struct hns3_adapter *hns = eth_dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
int ret = 0;
if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
rte_free(eth_dev->process_private);
eth_dev->process_private = NULL;
return 0;
}
if (hw->adapter_state == HNS3_NIC_STARTED)
ret = hns3_dev_stop(eth_dev);
hw->adapter_state = HNS3_NIC_CLOSING;
hns3_reset_abort(hns);
hw->adapter_state = HNS3_NIC_CLOSED;
hns3_configure_all_mc_mac_addr(hns, true);
hns3_remove_all_vlan_table(hns);
hns3_vlan_txvlan_cfg(hns, HNS3_PORT_BASE_VLAN_DISABLE, 0);
hns3_uninit_pf(eth_dev);
hns3_free_all_queues(eth_dev);
rte_free(hw->reset.wait_data);
rte_free(eth_dev->process_private);
eth_dev->process_private = NULL;
hns3_mp_uninit_primary();
hns3_warn(hw, "Close port %u finished", hw->data->port_id);
return ret;
}
static void
hns3_get_autoneg_rxtx_pause_copper(struct hns3_hw *hw, bool *rx_pause,
bool *tx_pause)
{
struct hns3_mac *mac = &hw->mac;
uint32_t advertising = mac->advertising;
uint32_t lp_advertising = mac->lp_advertising;
*rx_pause = false;
*tx_pause = false;
if (advertising & lp_advertising & HNS3_PHY_LINK_MODE_PAUSE_BIT) {
*rx_pause = true;
*tx_pause = true;
} else if (advertising & lp_advertising &
HNS3_PHY_LINK_MODE_ASYM_PAUSE_BIT) {
if (advertising & HNS3_PHY_LINK_MODE_PAUSE_BIT)
*rx_pause = true;
else if (lp_advertising & HNS3_PHY_LINK_MODE_PAUSE_BIT)
*tx_pause = true;
}
}
static enum hns3_fc_mode
hns3_get_autoneg_fc_mode(struct hns3_hw *hw)
{
enum hns3_fc_mode current_mode;
bool rx_pause = false;
bool tx_pause = false;
switch (hw->mac.media_type) {
case HNS3_MEDIA_TYPE_COPPER:
hns3_get_autoneg_rxtx_pause_copper(hw, &rx_pause, &tx_pause);
break;
/*
* Flow control auto-negotiation is not supported for fiber and
* backpalne media type.
*/
case HNS3_MEDIA_TYPE_FIBER:
case HNS3_MEDIA_TYPE_BACKPLANE:
hns3_err(hw, "autoneg FC mode can't be obtained, but flow control auto-negotiation is enabled.");
current_mode = hw->requested_fc_mode;
goto out;
default:
hns3_err(hw, "autoneg FC mode can't be obtained for unknown media type(%u).",
hw->mac.media_type);
current_mode = HNS3_FC_NONE;
goto out;
}
if (rx_pause && tx_pause)
current_mode = HNS3_FC_FULL;
else if (rx_pause)
current_mode = HNS3_FC_RX_PAUSE;
else if (tx_pause)
current_mode = HNS3_FC_TX_PAUSE;
else
current_mode = HNS3_FC_NONE;
out:
return current_mode;
}
static enum hns3_fc_mode
hns3_get_current_fc_mode(struct rte_eth_dev *dev)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct hns3_mac *mac = &hw->mac;
/*
* When the flow control mode is obtained, the device may not complete
* auto-negotiation. It is necessary to wait for link establishment.
*/
(void)hns3_dev_link_update(dev, 1);
/*
* If the link auto-negotiation of the nic is disabled, or the flow
* control auto-negotiation is not supported, the forced flow control
* mode is used.
*/
if (mac->link_autoneg == 0 || !pf->support_fc_autoneg)
return hw->requested_fc_mode;
return hns3_get_autoneg_fc_mode(hw);
}
static int
hns3_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
enum hns3_fc_mode current_mode;
current_mode = hns3_get_current_fc_mode(dev);
switch (current_mode) {
case HNS3_FC_FULL:
fc_conf->mode = RTE_FC_FULL;
break;
case HNS3_FC_TX_PAUSE:
fc_conf->mode = RTE_FC_TX_PAUSE;
break;
case HNS3_FC_RX_PAUSE:
fc_conf->mode = RTE_FC_RX_PAUSE;
break;
case HNS3_FC_NONE:
default:
fc_conf->mode = RTE_FC_NONE;
break;
}
fc_conf->pause_time = pf->pause_time;
fc_conf->autoneg = pf->support_fc_autoneg ? hw->mac.link_autoneg : 0;
return 0;
}
static int
hns3_check_fc_autoneg_valid(struct hns3_hw *hw, uint8_t autoneg)
{
struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw);
if (!pf->support_fc_autoneg) {
if (autoneg != 0) {
hns3_err(hw, "unsupported fc auto-negotiation setting.");
return -EOPNOTSUPP;
}
/*
* Flow control auto-negotiation of the NIC is not supported,
* but other auto-negotiation features may be supported.
*/
if (autoneg != hw->mac.link_autoneg) {
hns3_err(hw, "please use 'link_speeds' in struct rte_eth_conf to disable autoneg!");
return -EOPNOTSUPP;
}
return 0;
}
/*
* If flow control auto-negotiation of the NIC is supported, all
* auto-negotiation features are supported.
*/
if (autoneg != hw->mac.link_autoneg) {
hns3_err(hw, "please use 'link_speeds' in struct rte_eth_conf to change autoneg!");
return -EOPNOTSUPP;
}
return 0;
}
static int
hns3_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
int ret;
if (fc_conf->high_water || fc_conf->low_water ||
fc_conf->send_xon || fc_conf->mac_ctrl_frame_fwd) {
hns3_err(hw, "Unsupported flow control settings specified, "
"high_water(%u), low_water(%u), send_xon(%u) and "
"mac_ctrl_frame_fwd(%u) must be set to '0'",
fc_conf->high_water, fc_conf->low_water,
fc_conf->send_xon, fc_conf->mac_ctrl_frame_fwd);
return -EINVAL;
}
ret = hns3_check_fc_autoneg_valid(hw, fc_conf->autoneg);
if (ret)
return ret;
if (!fc_conf->pause_time) {
hns3_err(hw, "Invalid pause time %u setting.",
fc_conf->pause_time);
return -EINVAL;
}
if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE)) {
hns3_err(hw, "PFC is enabled. Cannot set MAC pause. "
"current_fc_status = %d", hw->current_fc_status);
return -EOPNOTSUPP;
}
if (hw->num_tc > 1 && !pf->support_multi_tc_pause) {
hns3_err(hw, "in multi-TC scenarios, MAC pause is not supported.");
return -EOPNOTSUPP;
}
rte_spinlock_lock(&hw->lock);
ret = hns3_fc_enable(dev, fc_conf);
rte_spinlock_unlock(&hw->lock);
return ret;
}
static int
hns3_priority_flow_ctrl_set(struct rte_eth_dev *dev,
struct rte_eth_pfc_conf *pfc_conf)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
int ret;
if (!hns3_dev_dcb_supported(hw)) {
hns3_err(hw, "This port does not support dcb configurations.");
return -EOPNOTSUPP;
}
if (pfc_conf->fc.high_water || pfc_conf->fc.low_water ||
pfc_conf->fc.send_xon || pfc_conf->fc.mac_ctrl_frame_fwd) {
hns3_err(hw, "Unsupported flow control settings specified, "
"high_water(%u), low_water(%u), send_xon(%u) and "
"mac_ctrl_frame_fwd(%u) must be set to '0'",
pfc_conf->fc.high_water, pfc_conf->fc.low_water,
pfc_conf->fc.send_xon,
pfc_conf->fc.mac_ctrl_frame_fwd);
return -EINVAL;
}
if (pfc_conf->fc.autoneg) {
hns3_err(hw, "Unsupported fc auto-negotiation setting.");
return -EINVAL;
}
if (pfc_conf->fc.pause_time == 0) {
hns3_err(hw, "Invalid pause time %u setting.",
pfc_conf->fc.pause_time);
return -EINVAL;
}
if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
hw->current_fc_status == HNS3_FC_STATUS_PFC)) {
hns3_err(hw, "MAC pause is enabled. Cannot set PFC."
"current_fc_status = %d", hw->current_fc_status);
return -EOPNOTSUPP;
}
rte_spinlock_lock(&hw->lock);
ret = hns3_dcb_pfc_enable(dev, pfc_conf);
rte_spinlock_unlock(&hw->lock);
return ret;
}
static int
hns3_get_dcb_info(struct rte_eth_dev *dev, struct rte_eth_dcb_info *dcb_info)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
enum rte_eth_rx_mq_mode mq_mode = dev->data->dev_conf.rxmode.mq_mode;
int i;
rte_spinlock_lock(&hw->lock);
if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG)
dcb_info->nb_tcs = pf->local_max_tc;
else
dcb_info->nb_tcs = 1;
for (i = 0; i < HNS3_MAX_USER_PRIO; i++)
dcb_info->prio_tc[i] = hw->dcb_info.prio_tc[i];
for (i = 0; i < dcb_info->nb_tcs; i++)
dcb_info->tc_bws[i] = hw->dcb_info.pg_info[0].tc_dwrr[i];
for (i = 0; i < hw->num_tc; i++) {
dcb_info->tc_queue.tc_rxq[0][i].base = hw->alloc_rss_size * i;
dcb_info->tc_queue.tc_txq[0][i].base =
hw->tc_queue[i].tqp_offset;
dcb_info->tc_queue.tc_rxq[0][i].nb_queue = hw->alloc_rss_size;
dcb_info->tc_queue.tc_txq[0][i].nb_queue =
hw->tc_queue[i].tqp_count;
}
rte_spinlock_unlock(&hw->lock);
return 0;
}
static int
hns3_reinit_dev(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
int ret;
ret = hns3_cmd_init(hw);
if (ret) {
hns3_err(hw, "Failed to init cmd: %d", ret);
return ret;
}
ret = hns3_reset_all_tqps(hns);
if (ret) {
hns3_err(hw, "Failed to reset all queues: %d", ret);
return ret;
}
ret = hns3_init_hardware(hns);
if (ret) {
hns3_err(hw, "Failed to init hardware: %d", ret);
return ret;
}
ret = hns3_enable_hw_error_intr(hns, true);
if (ret) {
hns3_err(hw, "fail to enable hw error interrupts: %d",
ret);
return ret;
}
hns3_info(hw, "Reset done, driver initialization finished.");
return 0;
}
static bool
is_pf_reset_done(struct hns3_hw *hw)
{
uint32_t val, reg, reg_bit;
switch (hw->reset.level) {
case HNS3_IMP_RESET:
reg = HNS3_GLOBAL_RESET_REG;
reg_bit = HNS3_IMP_RESET_BIT;
break;
case HNS3_GLOBAL_RESET:
reg = HNS3_GLOBAL_RESET_REG;
reg_bit = HNS3_GLOBAL_RESET_BIT;
break;
case HNS3_FUNC_RESET:
reg = HNS3_FUN_RST_ING;
reg_bit = HNS3_FUN_RST_ING_B;
break;
case HNS3_FLR_RESET:
default:
hns3_err(hw, "Wait for unsupported reset level: %d",
hw->reset.level);
return true;
}
val = hns3_read_dev(hw, reg);
if (hns3_get_bit(val, reg_bit))
return false;
else
return true;
}
bool
hns3_is_reset_pending(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
enum hns3_reset_level reset;
hns3_check_event_cause(hns, NULL);
reset = hns3_get_reset_level(hns, &hw->reset.pending);
if (reset != HNS3_NONE_RESET && hw->reset.level != HNS3_NONE_RESET &&
hw->reset.level < reset) {
hns3_warn(hw, "High level reset %d is pending", reset);
return true;
}
reset = hns3_get_reset_level(hns, &hw->reset.request);
if (reset != HNS3_NONE_RESET && hw->reset.level != HNS3_NONE_RESET &&
hw->reset.level < reset) {
hns3_warn(hw, "High level reset %d is request", reset);
return true;
}
return false;
}
static int
hns3_wait_hardware_ready(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
struct hns3_wait_data *wait_data = hw->reset.wait_data;
struct timeval tv;
if (wait_data->result == HNS3_WAIT_SUCCESS)
return 0;
else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
hns3_clock_gettime(&tv);
hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
tv.tv_sec, tv.tv_usec);
return -ETIME;
} else if (wait_data->result == HNS3_WAIT_REQUEST)
return -EAGAIN;
wait_data->hns = hns;
wait_data->check_completion = is_pf_reset_done;
wait_data->end_ms = (uint64_t)HNS3_RESET_WAIT_CNT *
HNS3_RESET_WAIT_MS + hns3_clock_gettime_ms();
wait_data->interval = HNS3_RESET_WAIT_MS * USEC_PER_MSEC;
wait_data->count = HNS3_RESET_WAIT_CNT;
wait_data->result = HNS3_WAIT_REQUEST;
rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
return -EAGAIN;
}
static int
hns3_func_reset_cmd(struct hns3_hw *hw, int func_id)
{
struct hns3_cmd_desc desc;
struct hns3_reset_cmd *req = (struct hns3_reset_cmd *)desc.data;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_RST_TRIGGER, false);
hns3_set_bit(req->mac_func_reset, HNS3_CFG_RESET_FUNC_B, 1);
req->fun_reset_vfid = func_id;
return hns3_cmd_send(hw, &desc, 1);
}
static int
hns3_imp_reset_cmd(struct hns3_hw *hw)
{
struct hns3_cmd_desc desc;
hns3_cmd_setup_basic_desc(&desc, 0xFFFE, false);
desc.data[0] = 0xeedd;
return hns3_cmd_send(hw, &desc, 1);
}
static void
hns3_msix_process(struct hns3_adapter *hns, enum hns3_reset_level reset_level)
{
struct hns3_hw *hw = &hns->hw;
struct timeval tv;
uint32_t val;
hns3_clock_gettime(&tv);
if (hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG) ||
hns3_read_dev(hw, HNS3_FUN_RST_ING)) {
hns3_warn(hw, "Don't process msix during resetting time=%ld.%.6ld",
tv.tv_sec, tv.tv_usec);
return;
}
switch (reset_level) {
case HNS3_IMP_RESET:
hns3_imp_reset_cmd(hw);
hns3_warn(hw, "IMP Reset requested time=%ld.%.6ld",
tv.tv_sec, tv.tv_usec);
break;
case HNS3_GLOBAL_RESET:
val = hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG);
hns3_set_bit(val, HNS3_GLOBAL_RESET_BIT, 1);
hns3_write_dev(hw, HNS3_GLOBAL_RESET_REG, val);
hns3_warn(hw, "Global Reset requested time=%ld.%.6ld",
tv.tv_sec, tv.tv_usec);
break;
case HNS3_FUNC_RESET:
hns3_warn(hw, "PF Reset requested time=%ld.%.6ld",
tv.tv_sec, tv.tv_usec);
/* schedule again to check later */
hns3_atomic_set_bit(HNS3_FUNC_RESET, &hw->reset.pending);
hns3_schedule_reset(hns);
break;
default:
hns3_warn(hw, "Unsupported reset level: %d", reset_level);
return;
}
hns3_atomic_clear_bit(reset_level, &hw->reset.request);
}
static enum hns3_reset_level
hns3_get_reset_level(struct hns3_adapter *hns, uint64_t *levels)
{
struct hns3_hw *hw = &hns->hw;
enum hns3_reset_level reset_level = HNS3_NONE_RESET;
/* Return the highest priority reset level amongst all */
if (hns3_atomic_test_bit(HNS3_IMP_RESET, levels))
reset_level = HNS3_IMP_RESET;
else if (hns3_atomic_test_bit(HNS3_GLOBAL_RESET, levels))
reset_level = HNS3_GLOBAL_RESET;
else if (hns3_atomic_test_bit(HNS3_FUNC_RESET, levels))
reset_level = HNS3_FUNC_RESET;
else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
reset_level = HNS3_FLR_RESET;
if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
return HNS3_NONE_RESET;
return reset_level;
}
static void
hns3_record_imp_error(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
uint32_t reg_val;
reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B)) {
hns3_warn(hw, "Detected IMP RD poison!");
hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B, 0);
hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
}
if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B)) {
hns3_warn(hw, "Detected IMP CMDQ error!");
hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B, 0);
hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
}
}
static int
hns3_prepare_reset(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
uint32_t reg_val;
int ret;
switch (hw->reset.level) {
case HNS3_FUNC_RESET:
ret = hns3_func_reset_cmd(hw, HNS3_PF_FUNC_ID);
if (ret)
return ret;
/*
* After performaning pf reset, it is not necessary to do the
* mailbox handling or send any command to firmware, because
* any mailbox handling or command to firmware is only valid
* after hns3_cmd_init is called.
*/
__atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
hw->reset.stats.request_cnt++;
break;
case HNS3_IMP_RESET:
hns3_record_imp_error(hns);
reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val |
BIT(HNS3_VECTOR0_IMP_RESET_INT_B));
break;
default:
break;
}
return 0;
}
static int
hns3_set_rst_done(struct hns3_hw *hw)
{
struct hns3_pf_rst_done_cmd *req;
struct hns3_cmd_desc desc;
req = (struct hns3_pf_rst_done_cmd *)desc.data;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_PF_RST_DONE, false);
req->pf_rst_done |= HNS3_PF_RESET_DONE_BIT;
return hns3_cmd_send(hw, &desc, 1);
}
static int
hns3_stop_service(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
struct rte_eth_dev *eth_dev;
eth_dev = &rte_eth_devices[hw->data->port_id];
hw->mac.link_status = ETH_LINK_DOWN;
if (hw->adapter_state == HNS3_NIC_STARTED) {
rte_eal_alarm_cancel(hns3_service_handler, eth_dev);
hns3_update_linkstatus_and_event(hw, false);
}
hns3_set_rxtx_function(eth_dev);
rte_wmb();
/* Disable datapath on secondary process. */
hns3_mp_req_stop_rxtx(eth_dev);
rte_delay_ms(hw->cfg_max_queues);
rte_spinlock_lock(&hw->lock);
if (hns->hw.adapter_state == HNS3_NIC_STARTED ||
hw->adapter_state == HNS3_NIC_STOPPING) {
hns3_enable_all_queues(hw, false);
hns3_do_stop(hns);
hw->reset.mbuf_deferred_free = true;
} else
hw->reset.mbuf_deferred_free = false;
/*
* It is cumbersome for hardware to pick-and-choose entries for deletion
* from table space. Hence, for function reset software intervention is
* required to delete the entries
*/
if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0)
hns3_configure_all_mc_mac_addr(hns, true);
rte_spinlock_unlock(&hw->lock);
return 0;
}
static int
hns3_start_service(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
struct rte_eth_dev *eth_dev;
if (hw->reset.level == HNS3_IMP_RESET ||
hw->reset.level == HNS3_GLOBAL_RESET)
hns3_set_rst_done(hw);
eth_dev = &rte_eth_devices[hw->data->port_id];
hns3_set_rxtx_function(eth_dev);
hns3_mp_req_start_rxtx(eth_dev);
if (hw->adapter_state == HNS3_NIC_STARTED) {
/*
* This API parent function already hold the hns3_hw.lock, the
* hns3_service_handler may report lse, in bonding application
* it will call driver's ops which may acquire the hns3_hw.lock
* again, thus lead to deadlock.
* We defer calls hns3_service_handler to avoid the deadlock.
*/
rte_eal_alarm_set(HNS3_SERVICE_QUICK_INTERVAL,
hns3_service_handler, eth_dev);
/* Enable interrupt of all rx queues before enabling queues */
hns3_dev_all_rx_queue_intr_enable(hw, true);
/*
* Enable state of each rxq and txq will be recovered after
* reset, so we need to restore them before enable all tqps;
*/
hns3_restore_tqp_enable_state(hw);
/*
* When finished the initialization, enable queues to receive
* and transmit packets.
*/
hns3_enable_all_queues(hw, true);
}
return 0;
}
static int
hns3_restore_conf(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
int ret;
ret = hns3_configure_all_mac_addr(hns, false);
if (ret)
return ret;
ret = hns3_configure_all_mc_mac_addr(hns, false);
if (ret)
goto err_mc_mac;
ret = hns3_dev_promisc_restore(hns);
if (ret)
goto err_promisc;
ret = hns3_restore_vlan_table(hns);
if (ret)
goto err_promisc;
ret = hns3_restore_vlan_conf(hns);
if (ret)
goto err_promisc;
ret = hns3_restore_all_fdir_filter(hns);
if (ret)
goto err_promisc;
ret = hns3_restore_ptp(hns);
if (ret)
goto err_promisc;
ret = hns3_restore_rx_interrupt(hw);
if (ret)
goto err_promisc;
ret = hns3_restore_gro_conf(hw);
if (ret)
goto err_promisc;
ret = hns3_restore_fec(hw);
if (ret)
goto err_promisc;
if (hns->hw.adapter_state == HNS3_NIC_STARTED) {
ret = hns3_do_start(hns, false);
if (ret)
goto err_promisc;
hns3_info(hw, "hns3 dev restart successful!");
} else if (hw->adapter_state == HNS3_NIC_STOPPING)
hw->adapter_state = HNS3_NIC_CONFIGURED;
return 0;
err_promisc:
hns3_configure_all_mc_mac_addr(hns, true);
err_mc_mac:
hns3_configure_all_mac_addr(hns, true);
return ret;
}
static void
hns3_reset_service(void *param)
{
struct hns3_adapter *hns = (struct hns3_adapter *)param;
struct hns3_hw *hw = &hns->hw;
enum hns3_reset_level reset_level;
struct timeval tv_delta;
struct timeval tv_start;
struct timeval tv;
uint64_t msec;
int ret;
/*
* The interrupt is not triggered within the delay time.
* The interrupt may have been lost. It is necessary to handle
* the interrupt to recover from the error.
*/
if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
SCHEDULE_DEFERRED) {
__atomic_store_n(&hw->reset.schedule, SCHEDULE_REQUESTED,
__ATOMIC_RELAXED);
hns3_err(hw, "Handling interrupts in delayed tasks");
hns3_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
if (reset_level == HNS3_NONE_RESET) {
hns3_err(hw, "No reset level is set, try IMP reset");
hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
}
}
__atomic_store_n(&hw->reset.schedule, SCHEDULE_NONE, __ATOMIC_RELAXED);
/*
* Check if there is any ongoing reset in the hardware. This status can
* be checked from reset_pending. If there is then, we need to wait for
* hardware to complete reset.
* a. If we are able to figure out in reasonable time that hardware
* has fully resetted then, we can proceed with driver, client
* reset.
* b. else, we can come back later to check this status so re-sched
* now.
*/
reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
if (reset_level != HNS3_NONE_RESET) {
hns3_clock_gettime(&tv_start);
ret = hns3_reset_process(hns, reset_level);
hns3_clock_gettime(&tv);
timersub(&tv, &tv_start, &tv_delta);
msec = hns3_clock_calctime_ms(&tv_delta);
if (msec > HNS3_RESET_PROCESS_MS)
hns3_err(hw, "%d handle long time delta %" PRIu64
" ms time=%ld.%.6ld",
hw->reset.level, msec,
tv.tv_sec, tv.tv_usec);
if (ret == -EAGAIN)
return;
}
/* Check if we got any *new* reset requests to be honored */
reset_level = hns3_get_reset_level(hns, &hw->reset.request);
if (reset_level != HNS3_NONE_RESET)
hns3_msix_process(hns, reset_level);
}
static unsigned int
hns3_get_speed_capa_num(uint16_t device_id)
{
unsigned int num;
switch (device_id) {
case HNS3_DEV_ID_25GE:
case HNS3_DEV_ID_25GE_RDMA:
num = 2;
break;
case HNS3_DEV_ID_100G_RDMA_MACSEC:
case HNS3_DEV_ID_200G_RDMA:
num = 1;
break;
default:
num = 0;
break;
}
return num;
}
static int
hns3_get_speed_fec_capa(struct rte_eth_fec_capa *speed_fec_capa,
uint16_t device_id)
{
switch (device_id) {
case HNS3_DEV_ID_25GE:
/* fallthrough */
case HNS3_DEV_ID_25GE_RDMA:
speed_fec_capa[0].speed = speed_fec_capa_tbl[1].speed;
speed_fec_capa[0].capa = speed_fec_capa_tbl[1].capa;
/* In HNS3 device, the 25G NIC is compatible with 10G rate */
speed_fec_capa[1].speed = speed_fec_capa_tbl[0].speed;
speed_fec_capa[1].capa = speed_fec_capa_tbl[0].capa;
break;
case HNS3_DEV_ID_100G_RDMA_MACSEC:
speed_fec_capa[0].speed = speed_fec_capa_tbl[4].speed;
speed_fec_capa[0].capa = speed_fec_capa_tbl[4].capa;
break;
case HNS3_DEV_ID_200G_RDMA:
speed_fec_capa[0].speed = speed_fec_capa_tbl[5].speed;
speed_fec_capa[0].capa = speed_fec_capa_tbl[5].capa;
break;
default:
return -ENOTSUP;
}
return 0;
}
static int
hns3_fec_get_capability(struct rte_eth_dev *dev,
struct rte_eth_fec_capa *speed_fec_capa,
unsigned int num)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
uint16_t device_id = pci_dev->id.device_id;
unsigned int capa_num;
int ret;
capa_num = hns3_get_speed_capa_num(device_id);
if (capa_num == 0) {
hns3_err(hw, "device(0x%x) is not supported by hns3 PMD",
device_id);
return -ENOTSUP;
}
if (speed_fec_capa == NULL || num < capa_num)
return capa_num;
ret = hns3_get_speed_fec_capa(speed_fec_capa, device_id);
if (ret)
return -ENOTSUP;
return capa_num;
}
static int
get_current_fec_auto_state(struct hns3_hw *hw, uint8_t *state)
{
struct hns3_config_fec_cmd *req;
struct hns3_cmd_desc desc;
int ret;
/*
* CMD(HNS3_OPC_CONFIG_FEC_MODE) read is not supported
* in device of link speed
* below 10 Gbps.
*/
if (hw->mac.link_speed < ETH_SPEED_NUM_10G) {
*state = 0;
return 0;
}
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, true);
req = (struct hns3_config_fec_cmd *)desc.data;
ret = hns3_cmd_send(hw, &desc, 1);
if (ret) {
hns3_err(hw, "get current fec auto state failed, ret = %d",
ret);
return ret;
}
*state = req->fec_mode & (1U << HNS3_MAC_CFG_FEC_AUTO_EN_B);
return 0;
}
static int
hns3_fec_get_internal(struct hns3_hw *hw, uint32_t *fec_capa)
{
struct hns3_sfp_info_cmd *resp;
uint32_t tmp_fec_capa;
uint8_t auto_state;
struct hns3_cmd_desc desc;
int ret;
/*
* If link is down and AUTO is enabled, AUTO is returned, otherwise,
* configured FEC mode is returned.
* If link is up, current FEC mode is returned.
*/
if (hw->mac.link_status == ETH_LINK_DOWN) {
ret = get_current_fec_auto_state(hw, &auto_state);
if (ret)
return ret;
if (auto_state == 0x1) {
*fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(AUTO);
return 0;
}
}
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GET_SFP_INFO, true);
resp = (struct hns3_sfp_info_cmd *)desc.data;
resp->query_type = HNS3_ACTIVE_QUERY;
ret = hns3_cmd_send(hw, &desc, 1);
if (ret == -EOPNOTSUPP) {
hns3_err(hw, "IMP do not support get FEC, ret = %d", ret);
return ret;
} else if (ret) {
hns3_err(hw, "get FEC failed, ret = %d", ret);
return ret;
}
/*
* FEC mode order defined in hns3 hardware is inconsistend with
* that defined in the ethdev library. So the sequence needs
* to be converted.
*/
switch (resp->active_fec) {
case HNS3_HW_FEC_MODE_NOFEC:
tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC);
break;
case HNS3_HW_FEC_MODE_BASER:
tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(BASER);
break;
case HNS3_HW_FEC_MODE_RS:
tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(RS);
break;
default:
tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC);
break;
}
*fec_capa = tmp_fec_capa;
return 0;
}
static int
hns3_fec_get(struct rte_eth_dev *dev, uint32_t *fec_capa)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
return hns3_fec_get_internal(hw, fec_capa);
}
static int
hns3_set_fec_hw(struct hns3_hw *hw, uint32_t mode)
{
struct hns3_config_fec_cmd *req;
struct hns3_cmd_desc desc;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, false);
req = (struct hns3_config_fec_cmd *)desc.data;
switch (mode) {
case RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC):
hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_OFF);
break;
case RTE_ETH_FEC_MODE_CAPA_MASK(BASER):
hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_BASER);
break;
case RTE_ETH_FEC_MODE_CAPA_MASK(RS):
hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_RS);
break;
case RTE_ETH_FEC_MODE_CAPA_MASK(AUTO):
hns3_set_bit(req->fec_mode, HNS3_MAC_CFG_FEC_AUTO_EN_B, 1);
break;
default:
return 0;
}
ret = hns3_cmd_send(hw, &desc, 1);
if (ret)
hns3_err(hw, "set fec mode failed, ret = %d", ret);
return ret;
}
static uint32_t
get_current_speed_fec_cap(struct hns3_hw *hw, struct rte_eth_fec_capa *fec_capa)
{
struct hns3_mac *mac = &hw->mac;
uint32_t cur_capa;
switch (mac->link_speed) {
case ETH_SPEED_NUM_10G:
cur_capa = fec_capa[1].capa;
break;
case ETH_SPEED_NUM_25G:
case ETH_SPEED_NUM_100G:
case ETH_SPEED_NUM_200G:
cur_capa = fec_capa[0].capa;
break;
default:
cur_capa = 0;
break;
}
return cur_capa;
}
static bool
is_fec_mode_one_bit_set(uint32_t mode)
{
int cnt = 0;
uint8_t i;
for (i = 0; i < sizeof(mode); i++)
if (mode >> i & 0x1)
cnt++;
return cnt == 1 ? true : false;
}
static int
hns3_fec_set(struct rte_eth_dev *dev, uint32_t mode)
{
#define FEC_CAPA_NUM 2
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
struct hns3_pf *pf = &hns->pf;
struct rte_eth_fec_capa fec_capa[FEC_CAPA_NUM];
uint32_t cur_capa;
uint32_t num = FEC_CAPA_NUM;
int ret;
ret = hns3_fec_get_capability(dev, fec_capa, num);
if (ret < 0)
return ret;
/* HNS3 PMD driver only support one bit set mode, e.g. 0x1, 0x4 */
if (!is_fec_mode_one_bit_set(mode)) {
hns3_err(hw, "FEC mode(0x%x) not supported in HNS3 PMD, "
"FEC mode should be only one bit set", mode);
return -EINVAL;
}
/*
* Check whether the configured mode is within the FEC capability.
* If not, the configured mode will not be supported.
*/
cur_capa = get_current_speed_fec_cap(hw, fec_capa);
if (!(cur_capa & mode)) {
hns3_err(hw, "unsupported FEC mode = 0x%x", mode);
return -EINVAL;
}
rte_spinlock_lock(&hw->lock);
ret = hns3_set_fec_hw(hw, mode);
if (ret) {
rte_spinlock_unlock(&hw->lock);
return ret;
}
pf->fec_mode = mode;
rte_spinlock_unlock(&hw->lock);
return 0;
}
static int
hns3_restore_fec(struct hns3_hw *hw)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
uint32_t mode = pf->fec_mode;
int ret;
ret = hns3_set_fec_hw(hw, mode);
if (ret)
hns3_err(hw, "restore fec mode(0x%x) failed, ret = %d",
mode, ret);
return ret;
}
static int
hns3_query_dev_fec_info(struct hns3_hw *hw)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(hns);
int ret;
ret = hns3_fec_get_internal(hw, &pf->fec_mode);
if (ret)
hns3_err(hw, "query device FEC info failed, ret = %d", ret);
return ret;
}
static bool
hns3_optical_module_existed(struct hns3_hw *hw)
{
struct hns3_cmd_desc desc;
bool existed;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GET_SFP_EXIST, true);
ret = hns3_cmd_send(hw, &desc, 1);
if (ret) {
hns3_err(hw,
"fail to get optical module exist state, ret = %d.\n",
ret);
return false;
}
existed = !!desc.data[0];
return existed;
}
static int
hns3_get_module_eeprom_data(struct hns3_hw *hw, uint32_t offset,
uint32_t len, uint8_t *data)
{
#define HNS3_SFP_INFO_CMD_NUM 6
#define HNS3_SFP_INFO_MAX_LEN \
(HNS3_SFP_INFO_BD0_LEN + \
(HNS3_SFP_INFO_CMD_NUM - 1) * HNS3_SFP_INFO_BDX_LEN)
struct hns3_cmd_desc desc[HNS3_SFP_INFO_CMD_NUM];
struct hns3_sfp_info_bd0_cmd *sfp_info_bd0;
uint16_t read_len;
uint16_t copy_len;
int ret;
int i;
for (i = 0; i < HNS3_SFP_INFO_CMD_NUM; i++) {
hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_SFP_EEPROM,
true);
if (i < HNS3_SFP_INFO_CMD_NUM - 1)
desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
}
sfp_info_bd0 = (struct hns3_sfp_info_bd0_cmd *)desc[0].data;
sfp_info_bd0->offset = rte_cpu_to_le_16((uint16_t)offset);
read_len = RTE_MIN(len, HNS3_SFP_INFO_MAX_LEN);
sfp_info_bd0->read_len = rte_cpu_to_le_16((uint16_t)read_len);
ret = hns3_cmd_send(hw, desc, HNS3_SFP_INFO_CMD_NUM);
if (ret) {
hns3_err(hw, "fail to get module EEPROM info, ret = %d.\n",
ret);
return ret;
}
/* The data format in BD0 is different with the others. */
copy_len = RTE_MIN(len, HNS3_SFP_INFO_BD0_LEN);
memcpy(data, sfp_info_bd0->data, copy_len);
read_len = copy_len;
for (i = 1; i < HNS3_SFP_INFO_CMD_NUM; i++) {
if (read_len >= len)
break;
copy_len = RTE_MIN(len - read_len, HNS3_SFP_INFO_BDX_LEN);
memcpy(data + read_len, desc[i].data, copy_len);
read_len += copy_len;
}
return (int)read_len;
}
static int
hns3_get_module_eeprom(struct rte_eth_dev *dev,
struct rte_dev_eeprom_info *info)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
uint32_t offset = info->offset;
uint32_t len = info->length;
uint8_t *data = info->data;
uint32_t read_len = 0;
if (hw->mac.media_type != HNS3_MEDIA_TYPE_FIBER)
return -ENOTSUP;
if (!hns3_optical_module_existed(hw)) {
hns3_err(hw, "fail to read module EEPROM: no module is connected.\n");
return -EIO;
}
while (read_len < len) {
int ret;
ret = hns3_get_module_eeprom_data(hw, offset + read_len,
len - read_len,
data + read_len);
if (ret < 0)
return -EIO;
read_len += ret;
}
return 0;
}
static int
hns3_get_module_info(struct rte_eth_dev *dev,
struct rte_eth_dev_module_info *modinfo)
{
#define HNS3_SFF8024_ID_SFP 0x03
#define HNS3_SFF8024_ID_QSFP_8438 0x0c
#define HNS3_SFF8024_ID_QSFP_8436_8636 0x0d
#define HNS3_SFF8024_ID_QSFP28_8636 0x11
#define HNS3_SFF_8636_V1_3 0x03
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
struct rte_dev_eeprom_info info;
struct hns3_sfp_type sfp_type;
int ret;
memset(&sfp_type, 0, sizeof(sfp_type));
memset(&info, 0, sizeof(info));
info.data = (uint8_t *)&sfp_type;
info.length = sizeof(sfp_type);
ret = hns3_get_module_eeprom(dev, &info);
if (ret)
return ret;
switch (sfp_type.type) {
case HNS3_SFF8024_ID_SFP:
modinfo->type = RTE_ETH_MODULE_SFF_8472;
modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8472_LEN;
break;
case HNS3_SFF8024_ID_QSFP_8438:
modinfo->type = RTE_ETH_MODULE_SFF_8436;
modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8436_MAX_LEN;
break;
case HNS3_SFF8024_ID_QSFP_8436_8636:
if (sfp_type.ext_type < HNS3_SFF_8636_V1_3) {
modinfo->type = RTE_ETH_MODULE_SFF_8436;
modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8436_MAX_LEN;
} else {
modinfo->type = RTE_ETH_MODULE_SFF_8636;
modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8636_MAX_LEN;
}
break;
case HNS3_SFF8024_ID_QSFP28_8636:
modinfo->type = RTE_ETH_MODULE_SFF_8636;
modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8636_MAX_LEN;
break;
default:
hns3_err(hw, "unknown module, type = %u, extra_type = %u.\n",
sfp_type.type, sfp_type.ext_type);
return -EINVAL;
}
return 0;
}
void
hns3_clock_gettime(struct timeval *tv)
{
#ifdef CLOCK_MONOTONIC_RAW /* Defined in glibc bits/time.h */
#define CLOCK_TYPE CLOCK_MONOTONIC_RAW
#else
#define CLOCK_TYPE CLOCK_MONOTONIC
#endif
#define NSEC_TO_USEC_DIV 1000
struct timespec spec;
(void)clock_gettime(CLOCK_TYPE, &spec);
tv->tv_sec = spec.tv_sec;
tv->tv_usec = spec.tv_nsec / NSEC_TO_USEC_DIV;
}
uint64_t
hns3_clock_calctime_ms(struct timeval *tv)
{
return (uint64_t)tv->tv_sec * MSEC_PER_SEC +
tv->tv_usec / USEC_PER_MSEC;
}
uint64_t
hns3_clock_gettime_ms(void)
{
struct timeval tv;
hns3_clock_gettime(&tv);
return hns3_clock_calctime_ms(&tv);
}
static int
hns3_parse_io_hint_func(const char *key, const char *value, void *extra_args)
{
uint32_t hint = HNS3_IO_FUNC_HINT_NONE;
RTE_SET_USED(key);
if (strcmp(value, "vec") == 0)
hint = HNS3_IO_FUNC_HINT_VEC;
else if (strcmp(value, "sve") == 0)
hint = HNS3_IO_FUNC_HINT_SVE;
else if (strcmp(value, "simple") == 0)
hint = HNS3_IO_FUNC_HINT_SIMPLE;
else if (strcmp(value, "common") == 0)
hint = HNS3_IO_FUNC_HINT_COMMON;
/* If the hint is valid then update output parameters */
if (hint != HNS3_IO_FUNC_HINT_NONE)
*(uint32_t *)extra_args = hint;
return 0;
}
static const char *
hns3_get_io_hint_func_name(uint32_t hint)
{
switch (hint) {
case HNS3_IO_FUNC_HINT_VEC:
return "vec";
case HNS3_IO_FUNC_HINT_SVE:
return "sve";
case HNS3_IO_FUNC_HINT_SIMPLE:
return "simple";
case HNS3_IO_FUNC_HINT_COMMON:
return "common";
default:
return "none";
}
}
static int
hns3_parse_dev_caps_mask(const char *key, const char *value, void *extra_args)
{
uint64_t val;
RTE_SET_USED(key);
val = strtoull(value, NULL, 16);
*(uint64_t *)extra_args = val;
return 0;
}
void
hns3_parse_devargs(struct rte_eth_dev *dev)
{
struct hns3_adapter *hns = dev->data->dev_private;
uint32_t rx_func_hint = HNS3_IO_FUNC_HINT_NONE;
uint32_t tx_func_hint = HNS3_IO_FUNC_HINT_NONE;
struct hns3_hw *hw = &hns->hw;
uint64_t dev_caps_mask = 0;
struct rte_kvargs *kvlist;
if (dev->device->devargs == NULL)
return;
kvlist = rte_kvargs_parse(dev->device->devargs->args, NULL);
if (!kvlist)
return;
(void)rte_kvargs_process(kvlist, HNS3_DEVARG_RX_FUNC_HINT,
&hns3_parse_io_hint_func, &rx_func_hint);
(void)rte_kvargs_process(kvlist, HNS3_DEVARG_TX_FUNC_HINT,
&hns3_parse_io_hint_func, &tx_func_hint);
(void)rte_kvargs_process(kvlist, HNS3_DEVARG_DEV_CAPS_MASK,
&hns3_parse_dev_caps_mask, &dev_caps_mask);
rte_kvargs_free(kvlist);
if (rx_func_hint != HNS3_IO_FUNC_HINT_NONE)
hns3_warn(hw, "parsed %s = %s.", HNS3_DEVARG_RX_FUNC_HINT,
hns3_get_io_hint_func_name(rx_func_hint));
hns->rx_func_hint = rx_func_hint;
if (tx_func_hint != HNS3_IO_FUNC_HINT_NONE)
hns3_warn(hw, "parsed %s = %s.", HNS3_DEVARG_TX_FUNC_HINT,
hns3_get_io_hint_func_name(tx_func_hint));
hns->tx_func_hint = tx_func_hint;
if (dev_caps_mask != 0)
hns3_warn(hw, "parsed %s = 0x%" PRIx64 ".",
HNS3_DEVARG_DEV_CAPS_MASK, dev_caps_mask);
hns->dev_caps_mask = dev_caps_mask;
}
static const struct eth_dev_ops hns3_eth_dev_ops = {
.dev_configure = hns3_dev_configure,
.dev_start = hns3_dev_start,
.dev_stop = hns3_dev_stop,
.dev_close = hns3_dev_close,
.promiscuous_enable = hns3_dev_promiscuous_enable,
.promiscuous_disable = hns3_dev_promiscuous_disable,
.allmulticast_enable = hns3_dev_allmulticast_enable,
.allmulticast_disable = hns3_dev_allmulticast_disable,
.mtu_set = hns3_dev_mtu_set,
.stats_get = hns3_stats_get,
.stats_reset = hns3_stats_reset,
.xstats_get = hns3_dev_xstats_get,
.xstats_get_names = hns3_dev_xstats_get_names,
.xstats_reset = hns3_dev_xstats_reset,
.xstats_get_by_id = hns3_dev_xstats_get_by_id,
.xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
.dev_infos_get = hns3_dev_infos_get,
.fw_version_get = hns3_fw_version_get,
.rx_queue_setup = hns3_rx_queue_setup,
.tx_queue_setup = hns3_tx_queue_setup,
.rx_queue_release = hns3_dev_rx_queue_release,
.tx_queue_release = hns3_dev_tx_queue_release,
.rx_queue_start = hns3_dev_rx_queue_start,
.rx_queue_stop = hns3_dev_rx_queue_stop,
.tx_queue_start = hns3_dev_tx_queue_start,
.tx_queue_stop = hns3_dev_tx_queue_stop,
.rx_queue_intr_enable = hns3_dev_rx_queue_intr_enable,
.rx_queue_intr_disable = hns3_dev_rx_queue_intr_disable,
.rxq_info_get = hns3_rxq_info_get,
.txq_info_get = hns3_txq_info_get,
.rx_burst_mode_get = hns3_rx_burst_mode_get,
.tx_burst_mode_get = hns3_tx_burst_mode_get,
.flow_ctrl_get = hns3_flow_ctrl_get,
.flow_ctrl_set = hns3_flow_ctrl_set,
.priority_flow_ctrl_set = hns3_priority_flow_ctrl_set,
.mac_addr_add = hns3_add_mac_addr,
.mac_addr_remove = hns3_remove_mac_addr,
.mac_addr_set = hns3_set_default_mac_addr,
.set_mc_addr_list = hns3_set_mc_mac_addr_list,
.link_update = hns3_dev_link_update,
.rss_hash_update = hns3_dev_rss_hash_update,
.rss_hash_conf_get = hns3_dev_rss_hash_conf_get,
.reta_update = hns3_dev_rss_reta_update,
.reta_query = hns3_dev_rss_reta_query,
.flow_ops_get = hns3_dev_flow_ops_get,
.vlan_filter_set = hns3_vlan_filter_set,
.vlan_tpid_set = hns3_vlan_tpid_set,
.vlan_offload_set = hns3_vlan_offload_set,
.vlan_pvid_set = hns3_vlan_pvid_set,
.get_reg = hns3_get_regs,
.get_module_info = hns3_get_module_info,
.get_module_eeprom = hns3_get_module_eeprom,
.get_dcb_info = hns3_get_dcb_info,
.dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
.fec_get_capability = hns3_fec_get_capability,
.fec_get = hns3_fec_get,
.fec_set = hns3_fec_set,
.tm_ops_get = hns3_tm_ops_get,
.tx_done_cleanup = hns3_tx_done_cleanup,
.timesync_enable = hns3_timesync_enable,
.timesync_disable = hns3_timesync_disable,
.timesync_read_rx_timestamp = hns3_timesync_read_rx_timestamp,
.timesync_read_tx_timestamp = hns3_timesync_read_tx_timestamp,
.timesync_adjust_time = hns3_timesync_adjust_time,
.timesync_read_time = hns3_timesync_read_time,
.timesync_write_time = hns3_timesync_write_time,
};
static const struct hns3_reset_ops hns3_reset_ops = {
.reset_service = hns3_reset_service,
.stop_service = hns3_stop_service,
.prepare_reset = hns3_prepare_reset,
.wait_hardware_ready = hns3_wait_hardware_ready,
.reinit_dev = hns3_reinit_dev,
.restore_conf = hns3_restore_conf,
.start_service = hns3_start_service,
};
static int
hns3_dev_init(struct rte_eth_dev *eth_dev)
{
struct hns3_adapter *hns = eth_dev->data->dev_private;
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
struct rte_ether_addr *eth_addr;
struct hns3_hw *hw = &hns->hw;
int ret;
PMD_INIT_FUNC_TRACE();
eth_dev->process_private = (struct hns3_process_private *)
rte_zmalloc_socket("hns3_filter_list",
sizeof(struct hns3_process_private),
RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
if (eth_dev->process_private == NULL) {
PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
return -ENOMEM;
}
hns3_flow_init(eth_dev);
hns3_set_rxtx_function(eth_dev);
eth_dev->dev_ops = &hns3_eth_dev_ops;
eth_dev->rx_queue_count = hns3_rx_queue_count;
if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
ret = hns3_mp_init_secondary();
if (ret) {
PMD_INIT_LOG(ERR, "Failed to init for secondary "
"process, ret = %d", ret);
goto err_mp_init_secondary;
}
hw->secondary_cnt++;
hns3_tx_push_init(eth_dev);
return 0;
}
ret = hns3_mp_init_primary();
if (ret) {
PMD_INIT_LOG(ERR,
"Failed to init for primary process, ret = %d",
ret);
goto err_mp_init_primary;
}
hw->adapter_state = HNS3_NIC_UNINITIALIZED;
hns->is_vf = false;
hw->data = eth_dev->data;
hns3_parse_devargs(eth_dev);
/*
* Set default max packet size according to the mtu
* default vale in DPDK frame.
*/
hns->pf.mps = hw->data->mtu + HNS3_ETH_OVERHEAD;
ret = hns3_reset_init(hw);
if (ret)
goto err_init_reset;
hw->reset.ops = &hns3_reset_ops;
ret = hns3_init_pf(eth_dev);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to init pf: %d", ret);
goto err_init_pf;
}
/* Allocate memory for storing MAC addresses */
eth_dev->data->mac_addrs = rte_zmalloc("hns3-mac",
sizeof(struct rte_ether_addr) *
HNS3_UC_MACADDR_NUM, 0);
if (eth_dev->data->mac_addrs == NULL) {
PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
"to store MAC addresses",
sizeof(struct rte_ether_addr) *
HNS3_UC_MACADDR_NUM);
ret = -ENOMEM;
goto err_rte_zmalloc;
}
eth_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
if (!rte_is_valid_assigned_ether_addr(eth_addr)) {
rte_eth_random_addr(hw->mac.mac_addr);
hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
(struct rte_ether_addr *)hw->mac.mac_addr);
hns3_warn(hw, "default mac_addr from firmware is an invalid "
"unicast address, using random MAC address %s",
mac_str);
}
rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
&eth_dev->data->mac_addrs[0]);
hw->adapter_state = HNS3_NIC_INITIALIZED;
if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
SCHEDULE_PENDING) {
hns3_err(hw, "Reschedule reset service after dev_init");
hns3_schedule_reset(hns);
} else {
/* IMP will wait ready flag before reset */
hns3_notify_reset_ready(hw, false);
}
hns3_info(hw, "hns3 dev initialization successful!");
return 0;
err_rte_zmalloc:
hns3_uninit_pf(eth_dev);
err_init_pf:
rte_free(hw->reset.wait_data);
err_init_reset:
hns3_mp_uninit_primary();
err_mp_init_primary:
err_mp_init_secondary:
eth_dev->dev_ops = NULL;
eth_dev->rx_pkt_burst = NULL;
eth_dev->rx_descriptor_status = NULL;
eth_dev->tx_pkt_burst = NULL;
eth_dev->tx_pkt_prepare = NULL;
eth_dev->tx_descriptor_status = NULL;
rte_free(eth_dev->process_private);
eth_dev->process_private = NULL;
return ret;
}
static int
hns3_dev_uninit(struct rte_eth_dev *eth_dev)
{
struct hns3_adapter *hns = eth_dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
PMD_INIT_FUNC_TRACE();
if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
rte_free(eth_dev->process_private);
eth_dev->process_private = NULL;
return 0;
}
if (hw->adapter_state < HNS3_NIC_CLOSING)
hns3_dev_close(eth_dev);
hw->adapter_state = HNS3_NIC_REMOVED;
return 0;
}
static int
eth_hns3_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_probe(pci_dev,
sizeof(struct hns3_adapter),
hns3_dev_init);
}
static int
eth_hns3_pci_remove(struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_remove(pci_dev, hns3_dev_uninit);
}
static const struct rte_pci_id pci_id_hns3_map[] = {
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_GE) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE_RDMA) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_50GE_RDMA) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_MACSEC) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_200G_RDMA) },
{ .vendor_id = 0, }, /* sentinel */
};
static struct rte_pci_driver rte_hns3_pmd = {
.id_table = pci_id_hns3_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
.probe = eth_hns3_pci_probe,
.remove = eth_hns3_pci_remove,
};
RTE_PMD_REGISTER_PCI(net_hns3, rte_hns3_pmd);
RTE_PMD_REGISTER_PCI_TABLE(net_hns3, pci_id_hns3_map);
RTE_PMD_REGISTER_KMOD_DEP(net_hns3, "* igb_uio | vfio-pci");
RTE_PMD_REGISTER_PARAM_STRING(net_hns3,
HNS3_DEVARG_RX_FUNC_HINT "=vec|sve|simple|common "
HNS3_DEVARG_TX_FUNC_HINT "=vec|sve|simple|common "
HNS3_DEVARG_DEV_CAPS_MASK "=<1-65535> ");
RTE_LOG_REGISTER_SUFFIX(hns3_logtype_init, init, NOTICE);
RTE_LOG_REGISTER_SUFFIX(hns3_logtype_driver, driver, NOTICE);