numam-dpdk/lib/librte_pmd_e1000/igb_rxtx.c
Stephen Hemminger 8e7bd48f75 igb: restore workaround errata with wthresh on 82576
The 82576 has known issues which require the write threshold to be set to 1.
See:
	http://download.intel.com/design/network/specupdt/82576_SPECUPDATE.pdf

If not then single packets will hang in transmit ring until more arrive.
Simple tests like ping will fail.

The workaround was in the wrong file (commit a30ebfbb8c).
Move it in igb one to restore original patch (7e9e49feea).

Signed-off-by: Stephen Hemminger <shemminger@vyatta.com>
Signed-off-by: Thomas Monjalon <thomas.monjalon@6wind.com>
2014-02-26 10:22:32 +01:00

2232 lines
64 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/queue.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <stdint.h>
#include <stdarg.h>
#include <inttypes.h>
#include <rte_interrupts.h>
#include <rte_byteorder.h>
#include <rte_common.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_pci.h>
#include <rte_memory.h>
#include <rte_memcpy.h>
#include <rte_memzone.h>
#include <rte_launch.h>
#include <rte_tailq.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_atomic.h>
#include <rte_branch_prediction.h>
#include <rte_ring.h>
#include <rte_mempool.h>
#include <rte_malloc.h>
#include <rte_mbuf.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_prefetch.h>
#include <rte_udp.h>
#include <rte_tcp.h>
#include <rte_sctp.h>
#include <rte_string_fns.h>
#include "e1000_logs.h"
#include "e1000/e1000_api.h"
#include "e1000_ethdev.h"
static inline struct rte_mbuf *
rte_rxmbuf_alloc(struct rte_mempool *mp)
{
struct rte_mbuf *m;
m = __rte_mbuf_raw_alloc(mp);
__rte_mbuf_sanity_check_raw(m, RTE_MBUF_PKT, 0);
return (m);
}
#define RTE_MBUF_DATA_DMA_ADDR(mb) \
(uint64_t) ((mb)->buf_physaddr + \
(uint64_t) ((char *)((mb)->pkt.data) - \
(char *)(mb)->buf_addr))
#define RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mb) \
(uint64_t) ((mb)->buf_physaddr + RTE_PKTMBUF_HEADROOM)
/**
* Structure associated with each descriptor of the RX ring of a RX queue.
*/
struct igb_rx_entry {
struct rte_mbuf *mbuf; /**< mbuf associated with RX descriptor. */
};
/**
* Structure associated with each descriptor of the TX ring of a TX queue.
*/
struct igb_tx_entry {
struct rte_mbuf *mbuf; /**< mbuf associated with TX desc, if any. */
uint16_t next_id; /**< Index of next descriptor in ring. */
uint16_t last_id; /**< Index of last scattered descriptor. */
};
/**
* Structure associated with each RX queue.
*/
struct igb_rx_queue {
struct rte_mempool *mb_pool; /**< mbuf pool to populate RX ring. */
volatile union e1000_adv_rx_desc *rx_ring; /**< RX ring virtual address. */
uint64_t rx_ring_phys_addr; /**< RX ring DMA address. */
volatile uint32_t *rdt_reg_addr; /**< RDT register address. */
volatile uint32_t *rdh_reg_addr; /**< RDH register address. */
struct igb_rx_entry *sw_ring; /**< address of RX software ring. */
struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */
struct rte_mbuf *pkt_last_seg; /**< Last segment of current packet. */
uint16_t nb_rx_desc; /**< number of RX descriptors. */
uint16_t rx_tail; /**< current value of RDT register. */
uint16_t nb_rx_hold; /**< number of held free RX desc. */
uint16_t rx_free_thresh; /**< max free RX desc to hold. */
uint16_t queue_id; /**< RX queue index. */
uint16_t reg_idx; /**< RX queue register index. */
uint8_t port_id; /**< Device port identifier. */
uint8_t pthresh; /**< Prefetch threshold register. */
uint8_t hthresh; /**< Host threshold register. */
uint8_t wthresh; /**< Write-back threshold register. */
uint8_t crc_len; /**< 0 if CRC stripped, 4 otherwise. */
uint8_t drop_en; /**< If not 0, set SRRCTL.Drop_En. */
};
/**
* Hardware context number
*/
enum igb_advctx_num {
IGB_CTX_0 = 0, /**< CTX0 */
IGB_CTX_1 = 1, /**< CTX1 */
IGB_CTX_NUM = 2, /**< CTX_NUM */
};
/**
* Strucutre to check if new context need be built
*/
struct igb_advctx_info {
uint16_t flags; /**< ol_flags related to context build. */
uint32_t cmp_mask; /**< compare mask for vlan_macip_lens */
union rte_vlan_macip vlan_macip_lens; /**< vlan, mac & ip length. */
};
/**
* Structure associated with each TX queue.
*/
struct igb_tx_queue {
volatile union e1000_adv_tx_desc *tx_ring; /**< TX ring address */
uint64_t tx_ring_phys_addr; /**< TX ring DMA address. */
struct igb_tx_entry *sw_ring; /**< virtual address of SW ring. */
volatile uint32_t *tdt_reg_addr; /**< Address of TDT register. */
uint32_t txd_type; /**< Device-specific TXD type */
uint16_t nb_tx_desc; /**< number of TX descriptors. */
uint16_t tx_tail; /**< Current value of TDT register. */
uint16_t tx_head;
/**< Index of first used TX descriptor. */
uint16_t queue_id; /**< TX queue index. */
uint16_t reg_idx; /**< TX queue register index. */
uint8_t port_id; /**< Device port identifier. */
uint8_t pthresh; /**< Prefetch threshold register. */
uint8_t hthresh; /**< Host threshold register. */
uint8_t wthresh; /**< Write-back threshold register. */
uint32_t ctx_curr;
/**< Current used hardware descriptor. */
uint32_t ctx_start;
/**< Start context position for transmit queue. */
struct igb_advctx_info ctx_cache[IGB_CTX_NUM];
/**< Hardware context history.*/
};
#if 1
#define RTE_PMD_USE_PREFETCH
#endif
#ifdef RTE_PMD_USE_PREFETCH
#define rte_igb_prefetch(p) rte_prefetch0(p)
#else
#define rte_igb_prefetch(p) do {} while(0)
#endif
#ifdef RTE_PMD_PACKET_PREFETCH
#define rte_packet_prefetch(p) rte_prefetch1(p)
#else
#define rte_packet_prefetch(p) do {} while(0)
#endif
/*
* Macro for VMDq feature for 1 GbE NIC.
*/
#define E1000_VMOLR_SIZE (8)
/*********************************************************************
*
* TX function
*
**********************************************************************/
/*
* Advanced context descriptor are almost same between igb/ixgbe
* This is a separate function, looking for optimization opportunity here
* Rework required to go with the pre-defined values.
*/
static inline void
igbe_set_xmit_ctx(struct igb_tx_queue* txq,
volatile struct e1000_adv_tx_context_desc *ctx_txd,
uint16_t ol_flags, uint32_t vlan_macip_lens)
{
uint32_t type_tucmd_mlhl;
uint32_t mss_l4len_idx;
uint32_t ctx_idx, ctx_curr;
uint32_t cmp_mask;
ctx_curr = txq->ctx_curr;
ctx_idx = ctx_curr + txq->ctx_start;
cmp_mask = 0;
type_tucmd_mlhl = 0;
if (ol_flags & PKT_TX_VLAN_PKT) {
cmp_mask |= TX_VLAN_CMP_MASK;
}
if (ol_flags & PKT_TX_IP_CKSUM) {
type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV4;
cmp_mask |= TX_MAC_LEN_CMP_MASK;
}
/* Specify which HW CTX to upload. */
mss_l4len_idx = (ctx_idx << E1000_ADVTXD_IDX_SHIFT);
switch (ol_flags & PKT_TX_L4_MASK) {
case PKT_TX_UDP_CKSUM:
type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP |
E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
mss_l4len_idx |= sizeof(struct udp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
cmp_mask |= TX_MACIP_LEN_CMP_MASK;
break;
case PKT_TX_TCP_CKSUM:
type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP |
E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
mss_l4len_idx |= sizeof(struct tcp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
cmp_mask |= TX_MACIP_LEN_CMP_MASK;
break;
case PKT_TX_SCTP_CKSUM:
type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_SCTP |
E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
mss_l4len_idx |= sizeof(struct sctp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
cmp_mask |= TX_MACIP_LEN_CMP_MASK;
break;
default:
type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_RSV |
E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
break;
}
txq->ctx_cache[ctx_curr].flags = ol_flags;
txq->ctx_cache[ctx_curr].cmp_mask = cmp_mask;
txq->ctx_cache[ctx_curr].vlan_macip_lens.data =
vlan_macip_lens & cmp_mask;
ctx_txd->type_tucmd_mlhl = rte_cpu_to_le_32(type_tucmd_mlhl);
ctx_txd->vlan_macip_lens = rte_cpu_to_le_32(vlan_macip_lens);
ctx_txd->mss_l4len_idx = rte_cpu_to_le_32(mss_l4len_idx);
ctx_txd->seqnum_seed = 0;
}
/*
* Check which hardware context can be used. Use the existing match
* or create a new context descriptor.
*/
static inline uint32_t
what_advctx_update(struct igb_tx_queue *txq, uint16_t flags,
uint32_t vlan_macip_lens)
{
/* If match with the current context */
if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
(txq->ctx_cache[txq->ctx_curr].vlan_macip_lens.data ==
(txq->ctx_cache[txq->ctx_curr].cmp_mask & vlan_macip_lens)))) {
return txq->ctx_curr;
}
/* If match with the second context */
txq->ctx_curr ^= 1;
if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
(txq->ctx_cache[txq->ctx_curr].vlan_macip_lens.data ==
(txq->ctx_cache[txq->ctx_curr].cmp_mask & vlan_macip_lens)))) {
return txq->ctx_curr;
}
/* Mismatch, use the previous context */
return (IGB_CTX_NUM);
}
static inline uint32_t
tx_desc_cksum_flags_to_olinfo(uint16_t ol_flags)
{
static const uint32_t l4_olinfo[2] = {0, E1000_ADVTXD_POPTS_TXSM};
static const uint32_t l3_olinfo[2] = {0, E1000_ADVTXD_POPTS_IXSM};
uint32_t tmp;
tmp = l4_olinfo[(ol_flags & PKT_TX_L4_MASK) != PKT_TX_L4_NO_CKSUM];
tmp |= l3_olinfo[(ol_flags & PKT_TX_IP_CKSUM) != 0];
return tmp;
}
static inline uint32_t
tx_desc_vlan_flags_to_cmdtype(uint16_t ol_flags)
{
static uint32_t vlan_cmd[2] = {0, E1000_ADVTXD_DCMD_VLE};
return vlan_cmd[(ol_flags & PKT_TX_VLAN_PKT) != 0];
}
uint16_t
eth_igb_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct igb_tx_queue *txq;
struct igb_tx_entry *sw_ring;
struct igb_tx_entry *txe, *txn;
volatile union e1000_adv_tx_desc *txr;
volatile union e1000_adv_tx_desc *txd;
struct rte_mbuf *tx_pkt;
struct rte_mbuf *m_seg;
uint64_t buf_dma_addr;
uint32_t olinfo_status;
uint32_t cmd_type_len;
uint32_t pkt_len;
uint16_t slen;
uint16_t ol_flags;
uint16_t tx_end;
uint16_t tx_id;
uint16_t tx_last;
uint16_t nb_tx;
uint16_t tx_ol_req;
uint32_t new_ctx = 0;
uint32_t ctx = 0;
uint32_t vlan_macip_lens;
txq = tx_queue;
sw_ring = txq->sw_ring;
txr = txq->tx_ring;
tx_id = txq->tx_tail;
txe = &sw_ring[tx_id];
for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
tx_pkt = *tx_pkts++;
pkt_len = tx_pkt->pkt.pkt_len;
RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
/*
* The number of descriptors that must be allocated for a
* packet is the number of segments of that packet, plus 1
* Context Descriptor for the VLAN Tag Identifier, if any.
* Determine the last TX descriptor to allocate in the TX ring
* for the packet, starting from the current position (tx_id)
* in the ring.
*/
tx_last = (uint16_t) (tx_id + tx_pkt->pkt.nb_segs - 1);
ol_flags = tx_pkt->ol_flags;
vlan_macip_lens = tx_pkt->pkt.vlan_macip.data;
tx_ol_req = (uint16_t)(ol_flags & PKT_TX_OFFLOAD_MASK);
/* If a Context Descriptor need be built . */
if (tx_ol_req) {
ctx = what_advctx_update(txq, tx_ol_req,
vlan_macip_lens);
/* Only allocate context descriptor if required*/
new_ctx = (ctx == IGB_CTX_NUM);
ctx = txq->ctx_curr;
tx_last = (uint16_t) (tx_last + new_ctx);
}
if (tx_last >= txq->nb_tx_desc)
tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
" tx_first=%u tx_last=%u\n",
(unsigned) txq->port_id,
(unsigned) txq->queue_id,
(unsigned) pkt_len,
(unsigned) tx_id,
(unsigned) tx_last);
/*
* Check if there are enough free descriptors in the TX ring
* to transmit the next packet.
* This operation is based on the two following rules:
*
* 1- Only check that the last needed TX descriptor can be
* allocated (by construction, if that descriptor is free,
* all intermediate ones are also free).
*
* For this purpose, the index of the last TX descriptor
* used for a packet (the "last descriptor" of a packet)
* is recorded in the TX entries (the last one included)
* that are associated with all TX descriptors allocated
* for that packet.
*
* 2- Avoid to allocate the last free TX descriptor of the
* ring, in order to never set the TDT register with the
* same value stored in parallel by the NIC in the TDH
* register, which makes the TX engine of the NIC enter
* in a deadlock situation.
*
* By extension, avoid to allocate a free descriptor that
* belongs to the last set of free descriptors allocated
* to the same packet previously transmitted.
*/
/*
* The "last descriptor" of the previously sent packet, if any,
* which used the last descriptor to allocate.
*/
tx_end = sw_ring[tx_last].last_id;
/*
* The next descriptor following that "last descriptor" in the
* ring.
*/
tx_end = sw_ring[tx_end].next_id;
/*
* The "last descriptor" associated with that next descriptor.
*/
tx_end = sw_ring[tx_end].last_id;
/*
* Check that this descriptor is free.
*/
if (! (txr[tx_end].wb.status & E1000_TXD_STAT_DD)) {
if (nb_tx == 0)
return (0);
goto end_of_tx;
}
/*
* Set common flags of all TX Data Descriptors.
*
* The following bits must be set in all Data Descriptors:
* - E1000_ADVTXD_DTYP_DATA
* - E1000_ADVTXD_DCMD_DEXT
*
* The following bits must be set in the first Data Descriptor
* and are ignored in the other ones:
* - E1000_ADVTXD_DCMD_IFCS
* - E1000_ADVTXD_MAC_1588
* - E1000_ADVTXD_DCMD_VLE
*
* The following bits must only be set in the last Data
* Descriptor:
* - E1000_TXD_CMD_EOP
*
* The following bits can be set in any Data Descriptor, but
* are only set in the last Data Descriptor:
* - E1000_TXD_CMD_RS
*/
cmd_type_len = txq->txd_type |
E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
olinfo_status = (pkt_len << E1000_ADVTXD_PAYLEN_SHIFT);
#if defined(RTE_LIBRTE_IEEE1588)
if (ol_flags & PKT_TX_IEEE1588_TMST)
cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
#endif
if (tx_ol_req) {
/* Setup TX Advanced context descriptor if required */
if (new_ctx) {
volatile struct e1000_adv_tx_context_desc *
ctx_txd;
ctx_txd = (volatile struct
e1000_adv_tx_context_desc *)
&txr[tx_id];
txn = &sw_ring[txe->next_id];
RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
if (txe->mbuf != NULL) {
rte_pktmbuf_free_seg(txe->mbuf);
txe->mbuf = NULL;
}
igbe_set_xmit_ctx(txq, ctx_txd, tx_ol_req,
vlan_macip_lens);
txe->last_id = tx_last;
tx_id = txe->next_id;
txe = txn;
}
/* Setup the TX Advanced Data Descriptor */
cmd_type_len |= tx_desc_vlan_flags_to_cmdtype(ol_flags);
olinfo_status |= tx_desc_cksum_flags_to_olinfo(ol_flags);
olinfo_status |= (ctx << E1000_ADVTXD_IDX_SHIFT);
}
m_seg = tx_pkt;
do {
txn = &sw_ring[txe->next_id];
txd = &txr[tx_id];
if (txe->mbuf != NULL)
rte_pktmbuf_free_seg(txe->mbuf);
txe->mbuf = m_seg;
/*
* Set up transmit descriptor.
*/
slen = (uint16_t) m_seg->pkt.data_len;
buf_dma_addr = RTE_MBUF_DATA_DMA_ADDR(m_seg);
txd->read.buffer_addr =
rte_cpu_to_le_64(buf_dma_addr);
txd->read.cmd_type_len =
rte_cpu_to_le_32(cmd_type_len | slen);
txd->read.olinfo_status =
rte_cpu_to_le_32(olinfo_status);
txe->last_id = tx_last;
tx_id = txe->next_id;
txe = txn;
m_seg = m_seg->pkt.next;
} while (m_seg != NULL);
/*
* The last packet data descriptor needs End Of Packet (EOP)
* and Report Status (RS).
*/
txd->read.cmd_type_len |=
rte_cpu_to_le_32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS);
}
end_of_tx:
rte_wmb();
/*
* Set the Transmit Descriptor Tail (TDT).
*/
E1000_PCI_REG_WRITE(txq->tdt_reg_addr, tx_id);
PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
(unsigned) txq->port_id, (unsigned) txq->queue_id,
(unsigned) tx_id, (unsigned) nb_tx);
txq->tx_tail = tx_id;
return (nb_tx);
}
/*********************************************************************
*
* RX functions
*
**********************************************************************/
static inline uint16_t
rx_desc_hlen_type_rss_to_pkt_flags(uint32_t hl_tp_rs)
{
uint16_t pkt_flags;
static uint16_t ip_pkt_types_map[16] = {
0, PKT_RX_IPV4_HDR, PKT_RX_IPV4_HDR_EXT, PKT_RX_IPV4_HDR_EXT,
PKT_RX_IPV6_HDR, 0, 0, 0,
PKT_RX_IPV6_HDR_EXT, 0, 0, 0,
PKT_RX_IPV6_HDR_EXT, 0, 0, 0,
};
#if defined(RTE_LIBRTE_IEEE1588)
static uint32_t ip_pkt_etqf_map[8] = {
0, 0, 0, PKT_RX_IEEE1588_PTP,
0, 0, 0, 0,
};
pkt_flags = (uint16_t)((hl_tp_rs & E1000_RXDADV_PKTTYPE_ETQF) ?
ip_pkt_etqf_map[(hl_tp_rs >> 4) & 0x07] :
ip_pkt_types_map[(hl_tp_rs >> 4) & 0x0F]);
#else
pkt_flags = (uint16_t)((hl_tp_rs & E1000_RXDADV_PKTTYPE_ETQF) ? 0 :
ip_pkt_types_map[(hl_tp_rs >> 4) & 0x0F]);
#endif
return (uint16_t)(pkt_flags | (((hl_tp_rs & 0x0F) == 0) ?
0 : PKT_RX_RSS_HASH));
}
static inline uint16_t
rx_desc_status_to_pkt_flags(uint32_t rx_status)
{
uint16_t pkt_flags;
/* Check if VLAN present */
pkt_flags = (uint16_t)((rx_status & E1000_RXD_STAT_VP) ?
PKT_RX_VLAN_PKT : 0);
#if defined(RTE_LIBRTE_IEEE1588)
if (rx_status & E1000_RXD_STAT_TMST)
pkt_flags = (uint16_t)(pkt_flags | PKT_RX_IEEE1588_TMST);
#endif
return pkt_flags;
}
static inline uint16_t
rx_desc_error_to_pkt_flags(uint32_t rx_status)
{
/*
* Bit 30: IPE, IPv4 checksum error
* Bit 29: L4I, L4I integrity error
*/
static uint16_t error_to_pkt_flags_map[4] = {
0, PKT_RX_L4_CKSUM_BAD, PKT_RX_IP_CKSUM_BAD,
PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD
};
return error_to_pkt_flags_map[(rx_status >>
E1000_RXD_ERR_CKSUM_BIT) & E1000_RXD_ERR_CKSUM_MSK];
}
uint16_t
eth_igb_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct igb_rx_queue *rxq;
volatile union e1000_adv_rx_desc *rx_ring;
volatile union e1000_adv_rx_desc *rxdp;
struct igb_rx_entry *sw_ring;
struct igb_rx_entry *rxe;
struct rte_mbuf *rxm;
struct rte_mbuf *nmb;
union e1000_adv_rx_desc rxd;
uint64_t dma_addr;
uint32_t staterr;
uint32_t hlen_type_rss;
uint16_t pkt_len;
uint16_t rx_id;
uint16_t nb_rx;
uint16_t nb_hold;
uint16_t pkt_flags;
nb_rx = 0;
nb_hold = 0;
rxq = rx_queue;
rx_id = rxq->rx_tail;
rx_ring = rxq->rx_ring;
sw_ring = rxq->sw_ring;
while (nb_rx < nb_pkts) {
/*
* The order of operations here is important as the DD status
* bit must not be read after any other descriptor fields.
* rx_ring and rxdp are pointing to volatile data so the order
* of accesses cannot be reordered by the compiler. If they were
* not volatile, they could be reordered which could lead to
* using invalid descriptor fields when read from rxd.
*/
rxdp = &rx_ring[rx_id];
staterr = rxdp->wb.upper.status_error;
if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
break;
rxd = *rxdp;
/*
* End of packet.
*
* If the E1000_RXD_STAT_EOP flag is not set, the RX packet is
* likely to be invalid and to be dropped by the various
* validation checks performed by the network stack.
*
* Allocate a new mbuf to replenish the RX ring descriptor.
* If the allocation fails:
* - arrange for that RX descriptor to be the first one
* being parsed the next time the receive function is
* invoked [on the same queue].
*
* - Stop parsing the RX ring and return immediately.
*
* This policy do not drop the packet received in the RX
* descriptor for which the allocation of a new mbuf failed.
* Thus, it allows that packet to be later retrieved if
* mbuf have been freed in the mean time.
* As a side effect, holding RX descriptors instead of
* systematically giving them back to the NIC may lead to
* RX ring exhaustion situations.
* However, the NIC can gracefully prevent such situations
* to happen by sending specific "back-pressure" flow control
* frames to its peer(s).
*/
PMD_RX_LOG(DEBUG, "\nport_id=%u queue_id=%u rx_id=%u "
"staterr=0x%x pkt_len=%u\n",
(unsigned) rxq->port_id, (unsigned) rxq->queue_id,
(unsigned) rx_id, (unsigned) staterr,
(unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
nmb = rte_rxmbuf_alloc(rxq->mb_pool);
if (nmb == NULL) {
PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
"queue_id=%u\n", (unsigned) rxq->port_id,
(unsigned) rxq->queue_id);
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
break;
}
nb_hold++;
rxe = &sw_ring[rx_id];
rx_id++;
if (rx_id == rxq->nb_rx_desc)
rx_id = 0;
/* Prefetch next mbuf while processing current one. */
rte_igb_prefetch(sw_ring[rx_id].mbuf);
/*
* When next RX descriptor is on a cache-line boundary,
* prefetch the next 4 RX descriptors and the next 8 pointers
* to mbufs.
*/
if ((rx_id & 0x3) == 0) {
rte_igb_prefetch(&rx_ring[rx_id]);
rte_igb_prefetch(&sw_ring[rx_id]);
}
rxm = rxe->mbuf;
rxe->mbuf = nmb;
dma_addr =
rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
rxdp->read.hdr_addr = dma_addr;
rxdp->read.pkt_addr = dma_addr;
/*
* Initialize the returned mbuf.
* 1) setup generic mbuf fields:
* - number of segments,
* - next segment,
* - packet length,
* - RX port identifier.
* 2) integrate hardware offload data, if any:
* - RSS flag & hash,
* - IP checksum flag,
* - VLAN TCI, if any,
* - error flags.
*/
pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.wb.upper.length) -
rxq->crc_len);
rxm->pkt.data = (char*) rxm->buf_addr + RTE_PKTMBUF_HEADROOM;
rte_packet_prefetch(rxm->pkt.data);
rxm->pkt.nb_segs = 1;
rxm->pkt.next = NULL;
rxm->pkt.pkt_len = pkt_len;
rxm->pkt.data_len = pkt_len;
rxm->pkt.in_port = rxq->port_id;
rxm->pkt.hash.rss = rxd.wb.lower.hi_dword.rss;
hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
/* Only valid if PKT_RX_VLAN_PKT set in pkt_flags */
rxm->pkt.vlan_macip.f.vlan_tci =
rte_le_to_cpu_16(rxd.wb.upper.vlan);
pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(hlen_type_rss);
pkt_flags = (uint16_t)(pkt_flags |
rx_desc_status_to_pkt_flags(staterr));
pkt_flags = (uint16_t)(pkt_flags |
rx_desc_error_to_pkt_flags(staterr));
rxm->ol_flags = pkt_flags;
/*
* Store the mbuf address into the next entry of the array
* of returned packets.
*/
rx_pkts[nb_rx++] = rxm;
}
rxq->rx_tail = rx_id;
/*
* If the number of free RX descriptors is greater than the RX free
* threshold of the queue, advance the Receive Descriptor Tail (RDT)
* register.
* Update the RDT with the value of the last processed RX descriptor
* minus 1, to guarantee that the RDT register is never equal to the
* RDH register, which creates a "full" ring situtation from the
* hardware point of view...
*/
nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
if (nb_hold > rxq->rx_free_thresh) {
PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
"nb_hold=%u nb_rx=%u\n",
(unsigned) rxq->port_id, (unsigned) rxq->queue_id,
(unsigned) rx_id, (unsigned) nb_hold,
(unsigned) nb_rx);
rx_id = (uint16_t) ((rx_id == 0) ?
(rxq->nb_rx_desc - 1) : (rx_id - 1));
E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
nb_hold = 0;
}
rxq->nb_rx_hold = nb_hold;
return (nb_rx);
}
uint16_t
eth_igb_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct igb_rx_queue *rxq;
volatile union e1000_adv_rx_desc *rx_ring;
volatile union e1000_adv_rx_desc *rxdp;
struct igb_rx_entry *sw_ring;
struct igb_rx_entry *rxe;
struct rte_mbuf *first_seg;
struct rte_mbuf *last_seg;
struct rte_mbuf *rxm;
struct rte_mbuf *nmb;
union e1000_adv_rx_desc rxd;
uint64_t dma; /* Physical address of mbuf data buffer */
uint32_t staterr;
uint32_t hlen_type_rss;
uint16_t rx_id;
uint16_t nb_rx;
uint16_t nb_hold;
uint16_t data_len;
uint16_t pkt_flags;
nb_rx = 0;
nb_hold = 0;
rxq = rx_queue;
rx_id = rxq->rx_tail;
rx_ring = rxq->rx_ring;
sw_ring = rxq->sw_ring;
/*
* Retrieve RX context of current packet, if any.
*/
first_seg = rxq->pkt_first_seg;
last_seg = rxq->pkt_last_seg;
while (nb_rx < nb_pkts) {
next_desc:
/*
* The order of operations here is important as the DD status
* bit must not be read after any other descriptor fields.
* rx_ring and rxdp are pointing to volatile data so the order
* of accesses cannot be reordered by the compiler. If they were
* not volatile, they could be reordered which could lead to
* using invalid descriptor fields when read from rxd.
*/
rxdp = &rx_ring[rx_id];
staterr = rxdp->wb.upper.status_error;
if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
break;
rxd = *rxdp;
/*
* Descriptor done.
*
* Allocate a new mbuf to replenish the RX ring descriptor.
* If the allocation fails:
* - arrange for that RX descriptor to be the first one
* being parsed the next time the receive function is
* invoked [on the same queue].
*
* - Stop parsing the RX ring and return immediately.
*
* This policy does not drop the packet received in the RX
* descriptor for which the allocation of a new mbuf failed.
* Thus, it allows that packet to be later retrieved if
* mbuf have been freed in the mean time.
* As a side effect, holding RX descriptors instead of
* systematically giving them back to the NIC may lead to
* RX ring exhaustion situations.
* However, the NIC can gracefully prevent such situations
* to happen by sending specific "back-pressure" flow control
* frames to its peer(s).
*/
PMD_RX_LOG(DEBUG, "\nport_id=%u queue_id=%u rx_id=%u "
"staterr=0x%x data_len=%u\n",
(unsigned) rxq->port_id, (unsigned) rxq->queue_id,
(unsigned) rx_id, (unsigned) staterr,
(unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
nmb = rte_rxmbuf_alloc(rxq->mb_pool);
if (nmb == NULL) {
PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
"queue_id=%u\n", (unsigned) rxq->port_id,
(unsigned) rxq->queue_id);
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
break;
}
nb_hold++;
rxe = &sw_ring[rx_id];
rx_id++;
if (rx_id == rxq->nb_rx_desc)
rx_id = 0;
/* Prefetch next mbuf while processing current one. */
rte_igb_prefetch(sw_ring[rx_id].mbuf);
/*
* When next RX descriptor is on a cache-line boundary,
* prefetch the next 4 RX descriptors and the next 8 pointers
* to mbufs.
*/
if ((rx_id & 0x3) == 0) {
rte_igb_prefetch(&rx_ring[rx_id]);
rte_igb_prefetch(&sw_ring[rx_id]);
}
/*
* Update RX descriptor with the physical address of the new
* data buffer of the new allocated mbuf.
*/
rxm = rxe->mbuf;
rxe->mbuf = nmb;
dma = rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
rxdp->read.pkt_addr = dma;
rxdp->read.hdr_addr = dma;
/*
* Set data length & data buffer address of mbuf.
*/
data_len = rte_le_to_cpu_16(rxd.wb.upper.length);
rxm->pkt.data_len = data_len;
rxm->pkt.data = (char*) rxm->buf_addr + RTE_PKTMBUF_HEADROOM;
/*
* If this is the first buffer of the received packet,
* set the pointer to the first mbuf of the packet and
* initialize its context.
* Otherwise, update the total length and the number of segments
* of the current scattered packet, and update the pointer to
* the last mbuf of the current packet.
*/
if (first_seg == NULL) {
first_seg = rxm;
first_seg->pkt.pkt_len = data_len;
first_seg->pkt.nb_segs = 1;
} else {
first_seg->pkt.pkt_len += data_len;
first_seg->pkt.nb_segs++;
last_seg->pkt.next = rxm;
}
/*
* If this is not the last buffer of the received packet,
* update the pointer to the last mbuf of the current scattered
* packet and continue to parse the RX ring.
*/
if (! (staterr & E1000_RXD_STAT_EOP)) {
last_seg = rxm;
goto next_desc;
}
/*
* This is the last buffer of the received packet.
* If the CRC is not stripped by the hardware:
* - Subtract the CRC length from the total packet length.
* - If the last buffer only contains the whole CRC or a part
* of it, free the mbuf associated to the last buffer.
* If part of the CRC is also contained in the previous
* mbuf, subtract the length of that CRC part from the
* data length of the previous mbuf.
*/
rxm->pkt.next = NULL;
if (unlikely(rxq->crc_len > 0)) {
first_seg->pkt.pkt_len -= ETHER_CRC_LEN;
if (data_len <= ETHER_CRC_LEN) {
rte_pktmbuf_free_seg(rxm);
first_seg->pkt.nb_segs--;
last_seg->pkt.data_len = (uint16_t)
(last_seg->pkt.data_len -
(ETHER_CRC_LEN - data_len));
last_seg->pkt.next = NULL;
} else
rxm->pkt.data_len =
(uint16_t) (data_len - ETHER_CRC_LEN);
}
/*
* Initialize the first mbuf of the returned packet:
* - RX port identifier,
* - hardware offload data, if any:
* - RSS flag & hash,
* - IP checksum flag,
* - VLAN TCI, if any,
* - error flags.
*/
first_seg->pkt.in_port = rxq->port_id;
first_seg->pkt.hash.rss = rxd.wb.lower.hi_dword.rss;
/*
* The vlan_tci field is only valid when PKT_RX_VLAN_PKT is
* set in the pkt_flags field.
*/
first_seg->pkt.vlan_macip.f.vlan_tci =
rte_le_to_cpu_16(rxd.wb.upper.vlan);
hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(hlen_type_rss);
pkt_flags = (uint16_t)(pkt_flags |
rx_desc_status_to_pkt_flags(staterr));
pkt_flags = (uint16_t)(pkt_flags |
rx_desc_error_to_pkt_flags(staterr));
first_seg->ol_flags = pkt_flags;
/* Prefetch data of first segment, if configured to do so. */
rte_packet_prefetch(first_seg->pkt.data);
/*
* Store the mbuf address into the next entry of the array
* of returned packets.
*/
rx_pkts[nb_rx++] = first_seg;
/*
* Setup receipt context for a new packet.
*/
first_seg = NULL;
}
/*
* Record index of the next RX descriptor to probe.
*/
rxq->rx_tail = rx_id;
/*
* Save receive context.
*/
rxq->pkt_first_seg = first_seg;
rxq->pkt_last_seg = last_seg;
/*
* If the number of free RX descriptors is greater than the RX free
* threshold of the queue, advance the Receive Descriptor Tail (RDT)
* register.
* Update the RDT with the value of the last processed RX descriptor
* minus 1, to guarantee that the RDT register is never equal to the
* RDH register, which creates a "full" ring situtation from the
* hardware point of view...
*/
nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
if (nb_hold > rxq->rx_free_thresh) {
PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
"nb_hold=%u nb_rx=%u\n",
(unsigned) rxq->port_id, (unsigned) rxq->queue_id,
(unsigned) rx_id, (unsigned) nb_hold,
(unsigned) nb_rx);
rx_id = (uint16_t) ((rx_id == 0) ?
(rxq->nb_rx_desc - 1) : (rx_id - 1));
E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
nb_hold = 0;
}
rxq->nb_rx_hold = nb_hold;
return (nb_rx);
}
/*
* Rings setup and release.
*
* TDBA/RDBA should be aligned on 16 byte boundary. But TDLEN/RDLEN should be
* multiple of 128 bytes. So we align TDBA/RDBA on 128 byte boundary.
* This will also optimize cache line size effect.
* H/W supports up to cache line size 128.
*/
#define IGB_ALIGN 128
/*
* Maximum number of Ring Descriptors.
*
* Since RDLEN/TDLEN should be multiple of 128bytes, the number of ring
* desscriptors should meet the following condition:
* (num_ring_desc * sizeof(struct e1000_rx/tx_desc)) % 128 == 0
*/
#define IGB_MIN_RING_DESC 32
#define IGB_MAX_RING_DESC 4096
static const struct rte_memzone *
ring_dma_zone_reserve(struct rte_eth_dev *dev, const char *ring_name,
uint16_t queue_id, uint32_t ring_size, int socket_id)
{
char z_name[RTE_MEMZONE_NAMESIZE];
const struct rte_memzone *mz;
rte_snprintf(z_name, sizeof(z_name), "%s_%s_%d_%d",
dev->driver->pci_drv.name, ring_name,
dev->data->port_id, queue_id);
mz = rte_memzone_lookup(z_name);
if (mz)
return mz;
#ifdef RTE_LIBRTE_XEN_DOM0
return rte_memzone_reserve_bounded(z_name, ring_size,
socket_id, 0, IGB_ALIGN, RTE_PGSIZE_2M);
#else
return rte_memzone_reserve_aligned(z_name, ring_size,
socket_id, 0, IGB_ALIGN);
#endif
}
static void
igb_tx_queue_release_mbufs(struct igb_tx_queue *txq)
{
unsigned i;
if (txq->sw_ring != NULL) {
for (i = 0; i < txq->nb_tx_desc; i++) {
if (txq->sw_ring[i].mbuf != NULL) {
rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
txq->sw_ring[i].mbuf = NULL;
}
}
}
}
static void
igb_tx_queue_release(struct igb_tx_queue *txq)
{
if (txq != NULL) {
igb_tx_queue_release_mbufs(txq);
rte_free(txq->sw_ring);
rte_free(txq);
}
}
void
eth_igb_tx_queue_release(void *txq)
{
igb_tx_queue_release(txq);
}
static void
igb_reset_tx_queue_stat(struct igb_tx_queue *txq)
{
txq->tx_head = 0;
txq->tx_tail = 0;
txq->ctx_curr = 0;
memset((void*)&txq->ctx_cache, 0,
IGB_CTX_NUM * sizeof(struct igb_advctx_info));
}
static void
igb_reset_tx_queue(struct igb_tx_queue *txq, struct rte_eth_dev *dev)
{
static const union e1000_adv_tx_desc zeroed_desc = { .read = {
.buffer_addr = 0}};
struct igb_tx_entry *txe = txq->sw_ring;
uint16_t i, prev;
struct e1000_hw *hw;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/* Zero out HW ring memory */
for (i = 0; i < txq->nb_tx_desc; i++) {
txq->tx_ring[i] = zeroed_desc;
}
/* Initialize ring entries */
prev = (uint16_t)(txq->nb_tx_desc - 1);
for (i = 0; i < txq->nb_tx_desc; i++) {
volatile union e1000_adv_tx_desc *txd = &(txq->tx_ring[i]);
txd->wb.status = E1000_TXD_STAT_DD;
txe[i].mbuf = NULL;
txe[i].last_id = i;
txe[prev].next_id = i;
prev = i;
}
txq->txd_type = E1000_ADVTXD_DTYP_DATA;
/* 82575 specific, each tx queue will use 2 hw contexts */
if (hw->mac.type == e1000_82575)
txq->ctx_start = txq->queue_id * IGB_CTX_NUM;
igb_reset_tx_queue_stat(txq);
}
int
eth_igb_tx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx,
uint16_t nb_desc,
unsigned int socket_id,
const struct rte_eth_txconf *tx_conf)
{
const struct rte_memzone *tz;
struct igb_tx_queue *txq;
struct e1000_hw *hw;
uint32_t size;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/*
* Validate number of transmit descriptors.
* It must not exceed hardware maximum, and must be multiple
* of IGB_ALIGN.
*/
if (((nb_desc * sizeof(union e1000_adv_tx_desc)) % IGB_ALIGN) != 0 ||
(nb_desc > IGB_MAX_RING_DESC) || (nb_desc < IGB_MIN_RING_DESC)) {
return -EINVAL;
}
/*
* The tx_free_thresh and tx_rs_thresh values are not used in the 1G
* driver.
*/
if (tx_conf->tx_free_thresh != 0)
RTE_LOG(WARNING, PMD,
"The tx_free_thresh parameter is not "
"used for the 1G driver.\n");
if (tx_conf->tx_rs_thresh != 0)
RTE_LOG(WARNING, PMD,
"The tx_rs_thresh parameter is not "
"used for the 1G driver.\n");
if (tx_conf->tx_thresh.wthresh == 0)
RTE_LOG(WARNING, PMD,
"To improve 1G driver performance, consider setting "
"the TX WTHRESH value to 4, 8, or 16.\n");
/* Free memory prior to re-allocation if needed */
if (dev->data->tx_queues[queue_idx] != NULL)
igb_tx_queue_release(dev->data->tx_queues[queue_idx]);
/* First allocate the tx queue data structure */
txq = rte_zmalloc("ethdev TX queue", sizeof(struct igb_tx_queue),
CACHE_LINE_SIZE);
if (txq == NULL)
return (-ENOMEM);
/*
* Allocate TX ring hardware descriptors. A memzone large enough to
* handle the maximum ring size is allocated in order to allow for
* resizing in later calls to the queue setup function.
*/
size = sizeof(union e1000_adv_tx_desc) * IGB_MAX_RING_DESC;
tz = ring_dma_zone_reserve(dev, "tx_ring", queue_idx,
size, socket_id);
if (tz == NULL) {
igb_tx_queue_release(txq);
return (-ENOMEM);
}
txq->nb_tx_desc = nb_desc;
txq->pthresh = tx_conf->tx_thresh.pthresh;
txq->hthresh = tx_conf->tx_thresh.hthresh;
txq->wthresh = tx_conf->tx_thresh.wthresh;
if (txq->wthresh > 0 && hw->mac.type == e1000_82576)
txq->wthresh = 1;
txq->queue_id = queue_idx;
txq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
txq->port_id = dev->data->port_id;
txq->tdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_TDT(txq->reg_idx));
#ifndef RTE_LIBRTE_XEN_DOM0
txq->tx_ring_phys_addr = (uint64_t) tz->phys_addr;
#else
txq->tx_ring_phys_addr = rte_mem_phy2mch(tz->memseg_id, tz->phys_addr);
#endif
txq->tx_ring = (union e1000_adv_tx_desc *) tz->addr;
/* Allocate software ring */
txq->sw_ring = rte_zmalloc("txq->sw_ring",
sizeof(struct igb_tx_entry) * nb_desc,
CACHE_LINE_SIZE);
if (txq->sw_ring == NULL) {
igb_tx_queue_release(txq);
return (-ENOMEM);
}
PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64"\n",
txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
igb_reset_tx_queue(txq, dev);
dev->tx_pkt_burst = eth_igb_xmit_pkts;
dev->data->tx_queues[queue_idx] = txq;
return (0);
}
static void
igb_rx_queue_release_mbufs(struct igb_rx_queue *rxq)
{
unsigned i;
if (rxq->sw_ring != NULL) {
for (i = 0; i < rxq->nb_rx_desc; i++) {
if (rxq->sw_ring[i].mbuf != NULL) {
rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
rxq->sw_ring[i].mbuf = NULL;
}
}
}
}
static void
igb_rx_queue_release(struct igb_rx_queue *rxq)
{
if (rxq != NULL) {
igb_rx_queue_release_mbufs(rxq);
rte_free(rxq->sw_ring);
rte_free(rxq);
}
}
void
eth_igb_rx_queue_release(void *rxq)
{
igb_rx_queue_release(rxq);
}
static void
igb_reset_rx_queue(struct igb_rx_queue *rxq)
{
static const union e1000_adv_rx_desc zeroed_desc = { .read = {
.pkt_addr = 0}};
unsigned i;
/* Zero out HW ring memory */
for (i = 0; i < rxq->nb_rx_desc; i++) {
rxq->rx_ring[i] = zeroed_desc;
}
rxq->rx_tail = 0;
rxq->pkt_first_seg = NULL;
rxq->pkt_last_seg = NULL;
}
int
eth_igb_rx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx,
uint16_t nb_desc,
unsigned int socket_id,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mp)
{
const struct rte_memzone *rz;
struct igb_rx_queue *rxq;
struct e1000_hw *hw;
unsigned int size;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/*
* Validate number of receive descriptors.
* It must not exceed hardware maximum, and must be multiple
* of IGB_ALIGN.
*/
if (((nb_desc * sizeof(union e1000_adv_rx_desc)) % IGB_ALIGN) != 0 ||
(nb_desc > IGB_MAX_RING_DESC) || (nb_desc < IGB_MIN_RING_DESC)) {
return (-EINVAL);
}
/* Free memory prior to re-allocation if needed */
if (dev->data->rx_queues[queue_idx] != NULL) {
igb_rx_queue_release(dev->data->rx_queues[queue_idx]);
dev->data->rx_queues[queue_idx] = NULL;
}
/* First allocate the RX queue data structure. */
rxq = rte_zmalloc("ethdev RX queue", sizeof(struct igb_rx_queue),
CACHE_LINE_SIZE);
if (rxq == NULL)
return (-ENOMEM);
rxq->mb_pool = mp;
rxq->nb_rx_desc = nb_desc;
rxq->pthresh = rx_conf->rx_thresh.pthresh;
rxq->hthresh = rx_conf->rx_thresh.hthresh;
rxq->wthresh = rx_conf->rx_thresh.wthresh;
if (rxq->wthresh > 0 && hw->mac.type == e1000_82576)
rxq->wthresh = 1;
rxq->drop_en = rx_conf->rx_drop_en;
rxq->rx_free_thresh = rx_conf->rx_free_thresh;
rxq->queue_id = queue_idx;
rxq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
rxq->port_id = dev->data->port_id;
rxq->crc_len = (uint8_t) ((dev->data->dev_conf.rxmode.hw_strip_crc) ? 0 :
ETHER_CRC_LEN);
/*
* Allocate RX ring hardware descriptors. A memzone large enough to
* handle the maximum ring size is allocated in order to allow for
* resizing in later calls to the queue setup function.
*/
size = sizeof(union e1000_adv_rx_desc) * IGB_MAX_RING_DESC;
rz = ring_dma_zone_reserve(dev, "rx_ring", queue_idx, size, socket_id);
if (rz == NULL) {
igb_rx_queue_release(rxq);
return (-ENOMEM);
}
rxq->rdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDT(rxq->reg_idx));
rxq->rdh_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDH(rxq->reg_idx));
#ifndef RTE_LIBRTE_XEN_DOM0
rxq->rx_ring_phys_addr = (uint64_t) rz->phys_addr;
#else
rxq->rx_ring_phys_addr = rte_mem_phy2mch(rz->memseg_id, rz->phys_addr);
#endif
rxq->rx_ring = (union e1000_adv_rx_desc *) rz->addr;
/* Allocate software ring. */
rxq->sw_ring = rte_zmalloc("rxq->sw_ring",
sizeof(struct igb_rx_entry) * nb_desc,
CACHE_LINE_SIZE);
if (rxq->sw_ring == NULL) {
igb_rx_queue_release(rxq);
return (-ENOMEM);
}
PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64"\n",
rxq->sw_ring, rxq->rx_ring, rxq->rx_ring_phys_addr);
dev->data->rx_queues[queue_idx] = rxq;
igb_reset_rx_queue(rxq);
return 0;
}
uint32_t
eth_igb_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
#define IGB_RXQ_SCAN_INTERVAL 4
volatile union e1000_adv_rx_desc *rxdp;
struct igb_rx_queue *rxq;
uint32_t desc = 0;
if (rx_queue_id >= dev->data->nb_rx_queues) {
PMD_RX_LOG(ERR, "Invalid RX queue id=%d\n", rx_queue_id);
return 0;
}
rxq = dev->data->rx_queues[rx_queue_id];
rxdp = &(rxq->rx_ring[rxq->rx_tail]);
while ((desc < rxq->nb_rx_desc) &&
(rxdp->wb.upper.status_error & E1000_RXD_STAT_DD)) {
desc += IGB_RXQ_SCAN_INTERVAL;
rxdp += IGB_RXQ_SCAN_INTERVAL;
if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
rxdp = &(rxq->rx_ring[rxq->rx_tail +
desc - rxq->nb_rx_desc]);
}
return 0;
}
int
eth_igb_rx_descriptor_done(void *rx_queue, uint16_t offset)
{
volatile union e1000_adv_rx_desc *rxdp;
struct igb_rx_queue *rxq = rx_queue;
uint32_t desc;
if (unlikely(offset >= rxq->nb_rx_desc))
return 0;
desc = rxq->rx_tail + offset;
if (desc >= rxq->nb_rx_desc)
desc -= rxq->nb_rx_desc;
rxdp = &rxq->rx_ring[desc];
return !!(rxdp->wb.upper.status_error & E1000_RXD_STAT_DD);
}
void
igb_dev_clear_queues(struct rte_eth_dev *dev)
{
uint16_t i;
struct igb_tx_queue *txq;
struct igb_rx_queue *rxq;
for (i = 0; i < dev->data->nb_tx_queues; i++) {
txq = dev->data->tx_queues[i];
if (txq != NULL) {
igb_tx_queue_release_mbufs(txq);
igb_reset_tx_queue(txq, dev);
}
}
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
if (rxq != NULL) {
igb_rx_queue_release_mbufs(rxq);
igb_reset_rx_queue(rxq);
}
}
}
/**
* Receive Side Scaling (RSS).
* See section 7.1.1.7 in the following document:
* "Intel 82576 GbE Controller Datasheet" - Revision 2.45 October 2009
*
* Principles:
* The source and destination IP addresses of the IP header and the source and
* destination ports of TCP/UDP headers, if any, of received packets are hashed
* against a configurable random key to compute a 32-bit RSS hash result.
* The seven (7) LSBs of the 32-bit hash result are used as an index into a
* 128-entry redirection table (RETA). Each entry of the RETA provides a 3-bit
* RSS output index which is used as the RX queue index where to store the
* received packets.
* The following output is supplied in the RX write-back descriptor:
* - 32-bit result of the Microsoft RSS hash function,
* - 4-bit RSS type field.
*/
/*
* RSS random key supplied in section 7.1.1.7.3 of the Intel 82576 datasheet.
* Used as the default key.
*/
static uint8_t rss_intel_key[40] = {
0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
};
static void
igb_rss_disable(struct rte_eth_dev *dev)
{
struct e1000_hw *hw;
uint32_t mrqc;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
mrqc = E1000_READ_REG(hw, E1000_MRQC);
mrqc &= ~E1000_MRQC_ENABLE_MASK;
E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
}
static void
igb_rss_configure(struct rte_eth_dev *dev)
{
struct e1000_hw *hw;
uint8_t *hash_key;
uint32_t rss_key;
uint32_t mrqc;
uint32_t shift;
uint16_t rss_hf;
uint16_t i;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
rss_hf = dev->data->dev_conf.rx_adv_conf.rss_conf.rss_hf;
if (rss_hf == 0) /* Disable RSS. */ {
igb_rss_disable(dev);
return;
}
hash_key = dev->data->dev_conf.rx_adv_conf.rss_conf.rss_key;
if (hash_key == NULL)
hash_key = rss_intel_key; /* Default hash key. */
/* Fill in RSS hash key. */
for (i = 0; i < 10; i++) {
rss_key = hash_key[(i * 4)];
rss_key |= hash_key[(i * 4) + 1] << 8;
rss_key |= hash_key[(i * 4) + 2] << 16;
rss_key |= hash_key[(i * 4) + 3] << 24;
E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key);
}
/* Fill in redirection table. */
shift = (hw->mac.type == e1000_82575) ? 6 : 0;
for (i = 0; i < 128; i++) {
union e1000_reta {
uint32_t dword;
uint8_t bytes[4];
} reta;
uint8_t q_idx;
q_idx = (uint8_t) ((dev->data->nb_rx_queues > 1) ?
i % dev->data->nb_rx_queues : 0);
reta.bytes[i & 3] = (uint8_t) (q_idx << shift);
if ((i & 3) == 3)
E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta.dword);
}
/* Set configured hashing functions in MRQC register. */
mrqc = E1000_MRQC_ENABLE_RSS_4Q; /* RSS enabled. */
if (rss_hf & ETH_RSS_IPV4)
mrqc |= E1000_MRQC_RSS_FIELD_IPV4;
if (rss_hf & ETH_RSS_IPV4_TCP)
mrqc |= E1000_MRQC_RSS_FIELD_IPV4_TCP;
if (rss_hf & ETH_RSS_IPV6)
mrqc |= E1000_MRQC_RSS_FIELD_IPV6;
if (rss_hf & ETH_RSS_IPV6_EX)
mrqc |= E1000_MRQC_RSS_FIELD_IPV6_EX;
if (rss_hf & ETH_RSS_IPV6_TCP)
mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP;
if (rss_hf & ETH_RSS_IPV6_TCP_EX)
mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
if (rss_hf & ETH_RSS_IPV4_UDP)
mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
if (rss_hf & ETH_RSS_IPV6_UDP)
mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
if (rss_hf & ETH_RSS_IPV6_UDP_EX)
mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP_EX;
E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
}
/*
* Check if the mac type support VMDq or not.
* Return 1 if it supports, otherwise, return 0.
*/
static int
igb_is_vmdq_supported(const struct rte_eth_dev *dev)
{
const struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
switch (hw->mac.type) {
case e1000_82576:
case e1000_82580:
case e1000_i350:
return 1;
case e1000_82540:
case e1000_82541:
case e1000_82542:
case e1000_82543:
case e1000_82544:
case e1000_82545:
case e1000_82546:
case e1000_82547:
case e1000_82571:
case e1000_82572:
case e1000_82573:
case e1000_82574:
case e1000_82583:
case e1000_i210:
case e1000_i211:
default:
PMD_INIT_LOG(ERR, "Cannot support VMDq feature\n");
return 0;
}
}
static int
igb_vmdq_rx_hw_configure(struct rte_eth_dev *dev)
{
struct rte_eth_vmdq_rx_conf *cfg;
struct e1000_hw *hw;
uint32_t mrqc, vt_ctl, vmolr, rctl;
int i;
PMD_INIT_LOG(DEBUG, ">>");
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_rx_conf;
/* Check if mac type can support VMDq, return value of 0 means NOT support */
if (igb_is_vmdq_supported(dev) == 0)
return -1;
igb_rss_disable(dev);
/* RCTL: eanble VLAN filter */
rctl = E1000_READ_REG(hw, E1000_RCTL);
rctl |= E1000_RCTL_VFE;
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
/* MRQC: enable vmdq */
mrqc = E1000_READ_REG(hw, E1000_MRQC);
mrqc |= E1000_MRQC_ENABLE_VMDQ;
E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
/* VTCTL: pool selection according to VLAN tag */
vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL);
if (cfg->enable_default_pool)
vt_ctl |= (cfg->default_pool << E1000_VT_CTL_DEFAULT_POOL_SHIFT);
vt_ctl |= E1000_VT_CTL_IGNORE_MAC;
E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl);
/*
* VMOLR: set STRVLAN as 1 if IGMAC in VTCTL is set as 1
* Both 82576 and 82580 support it
*/
if (hw->mac.type != e1000_i350) {
for (i = 0; i < E1000_VMOLR_SIZE; i++) {
vmolr = E1000_READ_REG(hw, E1000_VMOLR(i));
vmolr |= E1000_VMOLR_STRVLAN;
E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr);
}
}
/* VFTA - enable all vlan filters */
for (i = 0; i < IGB_VFTA_SIZE; i++)
E1000_WRITE_REG(hw, (E1000_VFTA+(i*4)), UINT32_MAX);
/* VFRE: 8 pools enabling for rx, both 82576 and i350 support it */
if (hw->mac.type != e1000_82580)
E1000_WRITE_REG(hw, E1000_VFRE, E1000_MBVFICR_VFREQ_MASK);
/*
* RAH/RAL - allow pools to read specific mac addresses
* In this case, all pools should be able to read from mac addr 0
*/
E1000_WRITE_REG(hw, E1000_RAH(0), (E1000_RAH_AV | UINT16_MAX));
E1000_WRITE_REG(hw, E1000_RAL(0), UINT32_MAX);
/* VLVF: set up filters for vlan tags as configured */
for (i = 0; i < cfg->nb_pool_maps; i++) {
/* set vlan id in VF register and set the valid bit */
E1000_WRITE_REG(hw, E1000_VLVF(i), (E1000_VLVF_VLANID_ENABLE | \
(cfg->pool_map[i].vlan_id & ETH_VLAN_ID_MAX) | \
((cfg->pool_map[i].pools << E1000_VLVF_POOLSEL_SHIFT ) & \
E1000_VLVF_POOLSEL_MASK)));
}
E1000_WRITE_FLUSH(hw);
return 0;
}
/*********************************************************************
*
* Enable receive unit.
*
**********************************************************************/
static int
igb_alloc_rx_queue_mbufs(struct igb_rx_queue *rxq)
{
struct igb_rx_entry *rxe = rxq->sw_ring;
uint64_t dma_addr;
unsigned i;
/* Initialize software ring entries. */
for (i = 0; i < rxq->nb_rx_desc; i++) {
volatile union e1000_adv_rx_desc *rxd;
struct rte_mbuf *mbuf = rte_rxmbuf_alloc(rxq->mb_pool);
if (mbuf == NULL) {
PMD_INIT_LOG(ERR, "RX mbuf alloc failed "
"queue_id=%hu\n", rxq->queue_id);
igb_rx_queue_release(rxq);
return (-ENOMEM);
}
dma_addr =
rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mbuf));
rxd = &rxq->rx_ring[i];
rxd->read.hdr_addr = dma_addr;
rxd->read.pkt_addr = dma_addr;
rxe[i].mbuf = mbuf;
}
return 0;
}
#define E1000_MRQC_DEF_Q_SHIFT (3)
static int
igb_dev_mq_rx_configure(struct rte_eth_dev *dev)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t mrqc;
if (RTE_ETH_DEV_SRIOV(dev).active == ETH_8_POOLS) {
/*
* SRIOV active scheme
* FIXME if support RSS together with VMDq & SRIOV
*/
mrqc = E1000_MRQC_ENABLE_VMDQ;
/* 011b Def_Q ignore, according to VT_CTL.DEF_PL */
mrqc |= 0x3 << E1000_MRQC_DEF_Q_SHIFT;
E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
} else if(RTE_ETH_DEV_SRIOV(dev).active == 0) {
/*
* SRIOV inactive scheme
*/
switch (dev->data->dev_conf.rxmode.mq_mode) {
case ETH_MQ_RX_RSS:
igb_rss_configure(dev);
break;
case ETH_MQ_RX_VMDQ_ONLY:
/*Configure general VMDQ only RX parameters*/
igb_vmdq_rx_hw_configure(dev);
break;
case ETH_MQ_RX_NONE:
/* if mq_mode is none, disable rss mode.*/
default:
igb_rss_disable(dev);
break;
}
}
return 0;
}
int
eth_igb_rx_init(struct rte_eth_dev *dev)
{
struct e1000_hw *hw;
struct igb_rx_queue *rxq;
struct rte_pktmbuf_pool_private *mbp_priv;
uint32_t rctl;
uint32_t rxcsum;
uint32_t srrctl;
uint16_t buf_size;
uint16_t rctl_bsize;
uint16_t i;
int ret;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
srrctl = 0;
/*
* Make sure receives are disabled while setting
* up the descriptor ring.
*/
rctl = E1000_READ_REG(hw, E1000_RCTL);
E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
/*
* Configure support of jumbo frames, if any.
*/
if (dev->data->dev_conf.rxmode.jumbo_frame == 1) {
rctl |= E1000_RCTL_LPE;
/*
* Set maximum packet length by default, and might be updated
* together with enabling/disabling dual VLAN.
*/
E1000_WRITE_REG(hw, E1000_RLPML,
dev->data->dev_conf.rxmode.max_rx_pkt_len +
VLAN_TAG_SIZE);
} else
rctl &= ~E1000_RCTL_LPE;
/* Configure and enable each RX queue. */
rctl_bsize = 0;
dev->rx_pkt_burst = eth_igb_recv_pkts;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
uint64_t bus_addr;
uint32_t rxdctl;
rxq = dev->data->rx_queues[i];
/* Allocate buffers for descriptor rings and set up queue */
ret = igb_alloc_rx_queue_mbufs(rxq);
if (ret)
return ret;
/*
* Reset crc_len in case it was changed after queue setup by a
* call to configure
*/
rxq->crc_len =
(uint8_t)(dev->data->dev_conf.rxmode.hw_strip_crc ?
0 : ETHER_CRC_LEN);
bus_addr = rxq->rx_ring_phys_addr;
E1000_WRITE_REG(hw, E1000_RDLEN(rxq->reg_idx),
rxq->nb_rx_desc *
sizeof(union e1000_adv_rx_desc));
E1000_WRITE_REG(hw, E1000_RDBAH(rxq->reg_idx),
(uint32_t)(bus_addr >> 32));
E1000_WRITE_REG(hw, E1000_RDBAL(rxq->reg_idx), (uint32_t)bus_addr);
srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
/*
* Configure RX buffer size.
*/
mbp_priv = rte_mempool_get_priv(rxq->mb_pool);
buf_size = (uint16_t) (mbp_priv->mbuf_data_room_size -
RTE_PKTMBUF_HEADROOM);
if (buf_size >= 1024) {
/*
* Configure the BSIZEPACKET field of the SRRCTL
* register of the queue.
* Value is in 1 KB resolution, from 1 KB to 127 KB.
* If this field is equal to 0b, then RCTL.BSIZE
* determines the RX packet buffer size.
*/
srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) &
E1000_SRRCTL_BSIZEPKT_MASK);
buf_size = (uint16_t) ((srrctl &
E1000_SRRCTL_BSIZEPKT_MASK) <<
E1000_SRRCTL_BSIZEPKT_SHIFT);
/* It adds dual VLAN length for supporting dual VLAN */
if ((dev->data->dev_conf.rxmode.max_rx_pkt_len +
2 * VLAN_TAG_SIZE) > buf_size){
dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
dev->data->scattered_rx = 1;
}
} else {
/*
* Use BSIZE field of the device RCTL register.
*/
if ((rctl_bsize == 0) || (rctl_bsize > buf_size))
rctl_bsize = buf_size;
dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
dev->data->scattered_rx = 1;
}
/* Set if packets are dropped when no descriptors available */
if (rxq->drop_en)
srrctl |= E1000_SRRCTL_DROP_EN;
E1000_WRITE_REG(hw, E1000_SRRCTL(rxq->reg_idx), srrctl);
/* Enable this RX queue. */
rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(rxq->reg_idx));
rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
rxdctl &= 0xFFF00000;
rxdctl |= (rxq->pthresh & 0x1F);
rxdctl |= ((rxq->hthresh & 0x1F) << 8);
rxdctl |= ((rxq->wthresh & 0x1F) << 16);
E1000_WRITE_REG(hw, E1000_RXDCTL(rxq->reg_idx), rxdctl);
}
/*
* Setup BSIZE field of RCTL register, if needed.
* Buffer sizes >= 1024 are not [supposed to be] setup in the RCTL
* register, since the code above configures the SRRCTL register of
* the RX queue in such a case.
* All configurable sizes are:
* 16384: rctl |= (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX);
* 8192: rctl |= (E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX);
* 4096: rctl |= (E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX);
* 2048: rctl |= E1000_RCTL_SZ_2048;
* 1024: rctl |= E1000_RCTL_SZ_1024;
* 512: rctl |= E1000_RCTL_SZ_512;
* 256: rctl |= E1000_RCTL_SZ_256;
*/
if (rctl_bsize > 0) {
if (rctl_bsize >= 512) /* 512 <= buf_size < 1024 - use 512 */
rctl |= E1000_RCTL_SZ_512;
else /* 256 <= buf_size < 512 - use 256 */
rctl |= E1000_RCTL_SZ_256;
}
/*
* Configure RSS if device configured with multiple RX queues.
*/
igb_dev_mq_rx_configure(dev);
/* Update the rctl since igb_dev_mq_rx_configure may change its value */
rctl |= E1000_READ_REG(hw, E1000_RCTL);
/*
* Setup the Checksum Register.
* Receive Full-Packet Checksum Offload is mutually exclusive with RSS.
*/
rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
rxcsum |= E1000_RXCSUM_PCSD;
/* Enable both L3/L4 rx checksum offload */
if (dev->data->dev_conf.rxmode.hw_ip_checksum)
rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
else
rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
/* Setup the Receive Control Register. */
if (dev->data->dev_conf.rxmode.hw_strip_crc) {
rctl |= E1000_RCTL_SECRC; /* Strip Ethernet CRC. */
/* set STRCRC bit in all queues */
if (hw->mac.type == e1000_i350 ||
hw->mac.type == e1000_i210 ||
hw->mac.type == e1000_i211 ||
hw->mac.type == e1000_i354) {
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
uint32_t dvmolr = E1000_READ_REG(hw,
E1000_DVMOLR(rxq->reg_idx));
dvmolr |= E1000_DVMOLR_STRCRC;
E1000_WRITE_REG(hw, E1000_DVMOLR(rxq->reg_idx), dvmolr);
}
}
} else {
rctl &= ~E1000_RCTL_SECRC; /* Do not Strip Ethernet CRC. */
/* clear STRCRC bit in all queues */
if (hw->mac.type == e1000_i350 ||
hw->mac.type == e1000_i210 ||
hw->mac.type == e1000_i211 ||
hw->mac.type == e1000_i354) {
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
uint32_t dvmolr = E1000_READ_REG(hw,
E1000_DVMOLR(rxq->reg_idx));
dvmolr &= ~E1000_DVMOLR_STRCRC;
E1000_WRITE_REG(hw, E1000_DVMOLR(rxq->reg_idx), dvmolr);
}
}
}
rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
E1000_RCTL_RDMTS_HALF |
(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
/* Make sure VLAN Filters are off. */
if (dev->data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_VMDQ_ONLY)
rctl &= ~E1000_RCTL_VFE;
/* Don't store bad packets. */
rctl &= ~E1000_RCTL_SBP;
/* Enable Receives. */
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
/*
* Setup the HW Rx Head and Tail Descriptor Pointers.
* This needs to be done after enable.
*/
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
E1000_WRITE_REG(hw, E1000_RDH(rxq->reg_idx), 0);
E1000_WRITE_REG(hw, E1000_RDT(rxq->reg_idx), rxq->nb_rx_desc - 1);
}
return 0;
}
/*********************************************************************
*
* Enable transmit unit.
*
**********************************************************************/
void
eth_igb_tx_init(struct rte_eth_dev *dev)
{
struct e1000_hw *hw;
struct igb_tx_queue *txq;
uint32_t tctl;
uint32_t txdctl;
uint16_t i;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/* Setup the Base and Length of the Tx Descriptor Rings. */
for (i = 0; i < dev->data->nb_tx_queues; i++) {
uint64_t bus_addr;
txq = dev->data->tx_queues[i];
bus_addr = txq->tx_ring_phys_addr;
E1000_WRITE_REG(hw, E1000_TDLEN(txq->reg_idx),
txq->nb_tx_desc *
sizeof(union e1000_adv_tx_desc));
E1000_WRITE_REG(hw, E1000_TDBAH(txq->reg_idx),
(uint32_t)(bus_addr >> 32));
E1000_WRITE_REG(hw, E1000_TDBAL(txq->reg_idx), (uint32_t)bus_addr);
/* Setup the HW Tx Head and Tail descriptor pointers. */
E1000_WRITE_REG(hw, E1000_TDT(txq->reg_idx), 0);
E1000_WRITE_REG(hw, E1000_TDH(txq->reg_idx), 0);
/* Setup Transmit threshold registers. */
txdctl = E1000_READ_REG(hw, E1000_TXDCTL(txq->reg_idx));
txdctl |= txq->pthresh & 0x1F;
txdctl |= ((txq->hthresh & 0x1F) << 8);
txdctl |= ((txq->wthresh & 0x1F) << 16);
txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
E1000_WRITE_REG(hw, E1000_TXDCTL(txq->reg_idx), txdctl);
}
/* Program the Transmit Control Register. */
tctl = E1000_READ_REG(hw, E1000_TCTL);
tctl &= ~E1000_TCTL_CT;
tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
e1000_config_collision_dist(hw);
/* This write will effectively turn on the transmit unit. */
E1000_WRITE_REG(hw, E1000_TCTL, tctl);
}
/*********************************************************************
*
* Enable VF receive unit.
*
**********************************************************************/
int
eth_igbvf_rx_init(struct rte_eth_dev *dev)
{
struct e1000_hw *hw;
struct igb_rx_queue *rxq;
struct rte_pktmbuf_pool_private *mbp_priv;
uint32_t srrctl;
uint16_t buf_size;
uint16_t rctl_bsize;
uint16_t i;
int ret;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/* Configure and enable each RX queue. */
rctl_bsize = 0;
dev->rx_pkt_burst = eth_igb_recv_pkts;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
uint64_t bus_addr;
uint32_t rxdctl;
rxq = dev->data->rx_queues[i];
/* Allocate buffers for descriptor rings and set up queue */
ret = igb_alloc_rx_queue_mbufs(rxq);
if (ret)
return ret;
bus_addr = rxq->rx_ring_phys_addr;
E1000_WRITE_REG(hw, E1000_RDLEN(i),
rxq->nb_rx_desc *
sizeof(union e1000_adv_rx_desc));
E1000_WRITE_REG(hw, E1000_RDBAH(i),
(uint32_t)(bus_addr >> 32));
E1000_WRITE_REG(hw, E1000_RDBAL(i), (uint32_t)bus_addr);
srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
/*
* Configure RX buffer size.
*/
mbp_priv = rte_mempool_get_priv(rxq->mb_pool);
buf_size = (uint16_t) (mbp_priv->mbuf_data_room_size -
RTE_PKTMBUF_HEADROOM);
if (buf_size >= 1024) {
/*
* Configure the BSIZEPACKET field of the SRRCTL
* register of the queue.
* Value is in 1 KB resolution, from 1 KB to 127 KB.
* If this field is equal to 0b, then RCTL.BSIZE
* determines the RX packet buffer size.
*/
srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) &
E1000_SRRCTL_BSIZEPKT_MASK);
buf_size = (uint16_t) ((srrctl &
E1000_SRRCTL_BSIZEPKT_MASK) <<
E1000_SRRCTL_BSIZEPKT_SHIFT);
/* It adds dual VLAN length for supporting dual VLAN */
if ((dev->data->dev_conf.rxmode.max_rx_pkt_len +
2 * VLAN_TAG_SIZE) > buf_size){
dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
dev->data->scattered_rx = 1;
}
} else {
/*
* Use BSIZE field of the device RCTL register.
*/
if ((rctl_bsize == 0) || (rctl_bsize > buf_size))
rctl_bsize = buf_size;
dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
dev->data->scattered_rx = 1;
}
/* Set if packets are dropped when no descriptors available */
if (rxq->drop_en)
srrctl |= E1000_SRRCTL_DROP_EN;
E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
/* Enable this RX queue. */
rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
rxdctl &= 0xFFF00000;
rxdctl |= (rxq->pthresh & 0x1F);
rxdctl |= ((rxq->hthresh & 0x1F) << 8);
if (hw->mac.type == e1000_82576) {
/*
* Workaround of 82576 VF Erratum
* force set WTHRESH to 1
* to avoid Write-Back not triggered sometimes
*/
rxdctl |= 0x10000;
PMD_INIT_LOG(DEBUG, "Force set RX WTHRESH to 1 !\n");
}
else
rxdctl |= ((rxq->wthresh & 0x1F) << 16);
E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
}
/*
* Setup the HW Rx Head and Tail Descriptor Pointers.
* This needs to be done after enable.
*/
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
E1000_WRITE_REG(hw, E1000_RDH(i), 0);
E1000_WRITE_REG(hw, E1000_RDT(i), rxq->nb_rx_desc - 1);
}
return 0;
}
/*********************************************************************
*
* Enable VF transmit unit.
*
**********************************************************************/
void
eth_igbvf_tx_init(struct rte_eth_dev *dev)
{
struct e1000_hw *hw;
struct igb_tx_queue *txq;
uint32_t txdctl;
uint16_t i;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/* Setup the Base and Length of the Tx Descriptor Rings. */
for (i = 0; i < dev->data->nb_tx_queues; i++) {
uint64_t bus_addr;
txq = dev->data->tx_queues[i];
bus_addr = txq->tx_ring_phys_addr;
E1000_WRITE_REG(hw, E1000_TDLEN(i),
txq->nb_tx_desc *
sizeof(union e1000_adv_tx_desc));
E1000_WRITE_REG(hw, E1000_TDBAH(i),
(uint32_t)(bus_addr >> 32));
E1000_WRITE_REG(hw, E1000_TDBAL(i), (uint32_t)bus_addr);
/* Setup the HW Tx Head and Tail descriptor pointers. */
E1000_WRITE_REG(hw, E1000_TDT(i), 0);
E1000_WRITE_REG(hw, E1000_TDH(i), 0);
/* Setup Transmit threshold registers. */
txdctl = E1000_READ_REG(hw, E1000_TXDCTL(i));
txdctl |= txq->pthresh & 0x1F;
txdctl |= ((txq->hthresh & 0x1F) << 8);
if (hw->mac.type == e1000_82576) {
/*
* Workaround of 82576 VF Erratum
* force set WTHRESH to 1
* to avoid Write-Back not triggered sometimes
*/
txdctl |= 0x10000;
PMD_INIT_LOG(DEBUG, "Force set TX WTHRESH to 1 !\n");
}
else
txdctl |= ((txq->wthresh & 0x1F) << 16);
txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
}
}