numam-dpdk/drivers/net/thunderx/nicvf_rxtx.c
Subrahmanyam Nilla 823ebfc219 net/thunderx: fix Tx desc corruption in scatter-gather mode
For performance reasons, word1 of send_hdr_s
sub descriptor was not cleared assuming it is always
having default value of zero since it comes from fixed
offsets of SQ buffer.
This is causing issues in case of SG mode because,
the size of send command might change and hence the word1
of send_hdr_s is not always at fixed offsets of the SQ buffer
and hence not having default value of zero.

This fixes the issue by clearing the word1 in case of SG mode
for every packet.

Fixes: 1c421f18e0 ("net/thunderx: add single and multi-segment Tx")
Cc: stable@dpdk.org

Signed-off-by: Subrahmanyam Nilla <snilla@caviumnetworks.com>
Signed-off-by: Nithin Dabilpuram <nithin.dabilpuram@caviumnetworks.com>
Acked-by: Jerin Jacob <jerin.jacob@caviumnetworks.com>
2018-11-14 00:35:53 +01:00

678 lines
20 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2016 Cavium, Inc
*/
#include <unistd.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <rte_atomic.h>
#include <rte_branch_prediction.h>
#include <rte_byteorder.h>
#include <rte_common.h>
#include <rte_cycles.h>
#include <rte_errno.h>
#include <rte_ethdev_driver.h>
#include <rte_ether.h>
#include <rte_log.h>
#include <rte_mbuf.h>
#include <rte_prefetch.h>
#include "base/nicvf_plat.h"
#include "nicvf_ethdev.h"
#include "nicvf_rxtx.h"
#include "nicvf_logs.h"
static inline void __hot
fill_sq_desc_header(union sq_entry_t *entry, struct rte_mbuf *pkt)
{
/* Local variable sqe to avoid read from sq desc memory*/
union sq_entry_t sqe;
uint64_t ol_flags;
/* Fill SQ header descriptor */
sqe.buff[0] = 0;
sqe.hdr.subdesc_type = SQ_DESC_TYPE_HEADER;
/* Number of sub-descriptors following this one */
sqe.hdr.subdesc_cnt = pkt->nb_segs;
sqe.hdr.tot_len = pkt->pkt_len;
ol_flags = pkt->ol_flags & NICVF_TX_OFFLOAD_MASK;
if (unlikely(ol_flags)) {
/* L4 cksum */
uint64_t l4_flags = ol_flags & PKT_TX_L4_MASK;
if (l4_flags == PKT_TX_TCP_CKSUM)
sqe.hdr.csum_l4 = SEND_L4_CSUM_TCP;
else if (l4_flags == PKT_TX_UDP_CKSUM)
sqe.hdr.csum_l4 = SEND_L4_CSUM_UDP;
else
sqe.hdr.csum_l4 = SEND_L4_CSUM_DISABLE;
sqe.hdr.l3_offset = pkt->l2_len;
sqe.hdr.l4_offset = pkt->l3_len + pkt->l2_len;
/* L3 cksum */
if (ol_flags & PKT_TX_IP_CKSUM)
sqe.hdr.csum_l3 = 1;
}
entry->buff[0] = sqe.buff[0];
}
static inline void __hot
fill_sq_desc_header_zero_w1(union sq_entry_t *entry,
struct rte_mbuf *pkt)
{
fill_sq_desc_header(entry, pkt);
entry->buff[1] = 0ULL;
}
void __hot
nicvf_single_pool_free_xmited_buffers(struct nicvf_txq *sq)
{
int j = 0;
uint32_t curr_head;
uint32_t head = sq->head;
struct rte_mbuf **txbuffs = sq->txbuffs;
void *obj_p[NICVF_MAX_TX_FREE_THRESH] __rte_cache_aligned;
curr_head = nicvf_addr_read(sq->sq_head) >> 4;
while (head != curr_head) {
if (txbuffs[head])
obj_p[j++] = txbuffs[head];
head = (head + 1) & sq->qlen_mask;
}
rte_mempool_put_bulk(sq->pool, obj_p, j);
sq->head = curr_head;
sq->xmit_bufs -= j;
NICVF_TX_ASSERT(sq->xmit_bufs >= 0);
}
void __hot
nicvf_multi_pool_free_xmited_buffers(struct nicvf_txq *sq)
{
uint32_t n = 0;
uint32_t curr_head;
uint32_t head = sq->head;
struct rte_mbuf **txbuffs = sq->txbuffs;
curr_head = nicvf_addr_read(sq->sq_head) >> 4;
while (head != curr_head) {
if (txbuffs[head]) {
rte_pktmbuf_free_seg(txbuffs[head]);
n++;
}
head = (head + 1) & sq->qlen_mask;
}
sq->head = curr_head;
sq->xmit_bufs -= n;
NICVF_TX_ASSERT(sq->xmit_bufs >= 0);
}
static inline uint32_t __hot
nicvf_free_tx_desc(struct nicvf_txq *sq)
{
return ((sq->head - sq->tail - 1) & sq->qlen_mask);
}
/* Send Header + Packet */
#define TX_DESC_PER_PKT 2
static inline uint32_t __hot
nicvf_free_xmitted_buffers(struct nicvf_txq *sq, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
uint32_t free_desc = nicvf_free_tx_desc(sq);
if (free_desc < nb_pkts * TX_DESC_PER_PKT ||
sq->xmit_bufs > sq->tx_free_thresh) {
if (unlikely(sq->pool == NULL))
sq->pool = tx_pkts[0]->pool;
sq->pool_free(sq);
/* Freed now, let see the number of free descs again */
free_desc = nicvf_free_tx_desc(sq);
}
return free_desc;
}
uint16_t __hot
nicvf_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
int i;
uint32_t free_desc;
uint32_t tail;
struct nicvf_txq *sq = tx_queue;
union sq_entry_t *desc_ptr = sq->desc;
struct rte_mbuf **txbuffs = sq->txbuffs;
struct rte_mbuf *pkt;
uint32_t qlen_mask = sq->qlen_mask;
tail = sq->tail;
free_desc = nicvf_free_xmitted_buffers(sq, tx_pkts, nb_pkts);
for (i = 0; i < nb_pkts && (int)free_desc >= TX_DESC_PER_PKT; i++) {
pkt = tx_pkts[i];
txbuffs[tail] = NULL;
fill_sq_desc_header(desc_ptr + tail, pkt);
tail = (tail + 1) & qlen_mask;
txbuffs[tail] = pkt;
fill_sq_desc_gather(desc_ptr + tail, pkt);
tail = (tail + 1) & qlen_mask;
free_desc -= TX_DESC_PER_PKT;
}
if (likely(i)) {
sq->tail = tail;
sq->xmit_bufs += i;
rte_wmb();
/* Inform HW to xmit the packets */
nicvf_addr_write(sq->sq_door, i * TX_DESC_PER_PKT);
}
return i;
}
uint16_t __hot
nicvf_xmit_pkts_multiseg(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
int i, k;
uint32_t used_desc, next_used_desc, used_bufs, free_desc, tail;
struct nicvf_txq *sq = tx_queue;
union sq_entry_t *desc_ptr = sq->desc;
struct rte_mbuf **txbuffs = sq->txbuffs;
struct rte_mbuf *pkt, *seg;
uint32_t qlen_mask = sq->qlen_mask;
uint16_t nb_segs;
tail = sq->tail;
used_desc = 0;
used_bufs = 0;
free_desc = nicvf_free_xmitted_buffers(sq, tx_pkts, nb_pkts);
for (i = 0; i < nb_pkts; i++) {
pkt = tx_pkts[i];
nb_segs = pkt->nb_segs;
next_used_desc = used_desc + nb_segs + 1;
if (next_used_desc > free_desc)
break;
used_desc = next_used_desc;
used_bufs += nb_segs;
txbuffs[tail] = NULL;
fill_sq_desc_header_zero_w1(desc_ptr + tail, pkt);
tail = (tail + 1) & qlen_mask;
txbuffs[tail] = pkt;
fill_sq_desc_gather(desc_ptr + tail, pkt);
tail = (tail + 1) & qlen_mask;
seg = pkt->next;
for (k = 1; k < nb_segs; k++) {
txbuffs[tail] = seg;
fill_sq_desc_gather(desc_ptr + tail, seg);
tail = (tail + 1) & qlen_mask;
seg = seg->next;
}
}
if (likely(used_desc)) {
sq->tail = tail;
sq->xmit_bufs += used_bufs;
rte_wmb();
/* Inform HW to xmit the packets */
nicvf_addr_write(sq->sq_door, used_desc);
}
return i;
}
static const uint32_t ptype_table[16][16] __rte_cache_aligned = {
[L3_NONE][L4_NONE] = RTE_PTYPE_UNKNOWN,
[L3_NONE][L4_IPSEC_ESP] = RTE_PTYPE_UNKNOWN,
[L3_NONE][L4_IPFRAG] = RTE_PTYPE_L4_FRAG,
[L3_NONE][L4_IPCOMP] = RTE_PTYPE_UNKNOWN,
[L3_NONE][L4_TCP] = RTE_PTYPE_L4_TCP,
[L3_NONE][L4_UDP_PASS1] = RTE_PTYPE_L4_UDP,
[L3_NONE][L4_GRE] = RTE_PTYPE_TUNNEL_GRE,
[L3_NONE][L4_UDP_PASS2] = RTE_PTYPE_L4_UDP,
[L3_NONE][L4_UDP_GENEVE] = RTE_PTYPE_TUNNEL_GENEVE,
[L3_NONE][L4_UDP_VXLAN] = RTE_PTYPE_TUNNEL_VXLAN,
[L3_NONE][L4_NVGRE] = RTE_PTYPE_TUNNEL_NVGRE,
[L3_IPV4][L4_NONE] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_UNKNOWN,
[L3_IPV4][L4_IPSEC_ESP] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L3_IPV4,
[L3_IPV4][L4_IPFRAG] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_FRAG,
[L3_IPV4][L4_IPCOMP] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_UNKNOWN,
[L3_IPV4][L4_TCP] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP,
[L3_IPV4][L4_UDP_PASS1] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP,
[L3_IPV4][L4_GRE] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_GRE,
[L3_IPV4][L4_UDP_PASS2] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP,
[L3_IPV4][L4_UDP_GENEVE] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_GENEVE,
[L3_IPV4][L4_UDP_VXLAN] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_VXLAN,
[L3_IPV4][L4_NVGRE] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_NVGRE,
[L3_IPV4_OPT][L4_NONE] = RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_UNKNOWN,
[L3_IPV4_OPT][L4_IPSEC_ESP] = RTE_PTYPE_L3_IPV4_EXT |
RTE_PTYPE_L3_IPV4,
[L3_IPV4_OPT][L4_IPFRAG] = RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_FRAG,
[L3_IPV4_OPT][L4_IPCOMP] = RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_UNKNOWN,
[L3_IPV4_OPT][L4_TCP] = RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_TCP,
[L3_IPV4_OPT][L4_UDP_PASS1] = RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_UDP,
[L3_IPV4_OPT][L4_GRE] = RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_GRE,
[L3_IPV4_OPT][L4_UDP_PASS2] = RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_UDP,
[L3_IPV4_OPT][L4_UDP_GENEVE] = RTE_PTYPE_L3_IPV4_EXT |
RTE_PTYPE_TUNNEL_GENEVE,
[L3_IPV4_OPT][L4_UDP_VXLAN] = RTE_PTYPE_L3_IPV4_EXT |
RTE_PTYPE_TUNNEL_VXLAN,
[L3_IPV4_OPT][L4_NVGRE] = RTE_PTYPE_L3_IPV4_EXT |
RTE_PTYPE_TUNNEL_NVGRE,
[L3_IPV6][L4_NONE] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_UNKNOWN,
[L3_IPV6][L4_IPSEC_ESP] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L3_IPV4,
[L3_IPV6][L4_IPFRAG] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_FRAG,
[L3_IPV6][L4_IPCOMP] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_UNKNOWN,
[L3_IPV6][L4_TCP] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP,
[L3_IPV6][L4_UDP_PASS1] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP,
[L3_IPV6][L4_GRE] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_TUNNEL_GRE,
[L3_IPV6][L4_UDP_PASS2] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP,
[L3_IPV6][L4_UDP_GENEVE] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_TUNNEL_GENEVE,
[L3_IPV6][L4_UDP_VXLAN] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_TUNNEL_VXLAN,
[L3_IPV6][L4_NVGRE] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_TUNNEL_NVGRE,
[L3_IPV6_OPT][L4_NONE] = RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_UNKNOWN,
[L3_IPV6_OPT][L4_IPSEC_ESP] = RTE_PTYPE_L3_IPV6_EXT |
RTE_PTYPE_L3_IPV4,
[L3_IPV6_OPT][L4_IPFRAG] = RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_FRAG,
[L3_IPV6_OPT][L4_IPCOMP] = RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_UNKNOWN,
[L3_IPV6_OPT][L4_TCP] = RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_TCP,
[L3_IPV6_OPT][L4_UDP_PASS1] = RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_UDP,
[L3_IPV6_OPT][L4_GRE] = RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_TUNNEL_GRE,
[L3_IPV6_OPT][L4_UDP_PASS2] = RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_UDP,
[L3_IPV6_OPT][L4_UDP_GENEVE] = RTE_PTYPE_L3_IPV6_EXT |
RTE_PTYPE_TUNNEL_GENEVE,
[L3_IPV6_OPT][L4_UDP_VXLAN] = RTE_PTYPE_L3_IPV6_EXT |
RTE_PTYPE_TUNNEL_VXLAN,
[L3_IPV6_OPT][L4_NVGRE] = RTE_PTYPE_L3_IPV6_EXT |
RTE_PTYPE_TUNNEL_NVGRE,
[L3_ET_STOP][L4_NONE] = RTE_PTYPE_UNKNOWN,
[L3_ET_STOP][L4_IPSEC_ESP] = RTE_PTYPE_UNKNOWN,
[L3_ET_STOP][L4_IPFRAG] = RTE_PTYPE_L4_FRAG,
[L3_ET_STOP][L4_IPCOMP] = RTE_PTYPE_UNKNOWN,
[L3_ET_STOP][L4_TCP] = RTE_PTYPE_L4_TCP,
[L3_ET_STOP][L4_UDP_PASS1] = RTE_PTYPE_L4_UDP,
[L3_ET_STOP][L4_GRE] = RTE_PTYPE_TUNNEL_GRE,
[L3_ET_STOP][L4_UDP_PASS2] = RTE_PTYPE_L4_UDP,
[L3_ET_STOP][L4_UDP_GENEVE] = RTE_PTYPE_TUNNEL_GENEVE,
[L3_ET_STOP][L4_UDP_VXLAN] = RTE_PTYPE_TUNNEL_VXLAN,
[L3_ET_STOP][L4_NVGRE] = RTE_PTYPE_TUNNEL_NVGRE,
[L3_OTHER][L4_NONE] = RTE_PTYPE_UNKNOWN,
[L3_OTHER][L4_IPSEC_ESP] = RTE_PTYPE_UNKNOWN,
[L3_OTHER][L4_IPFRAG] = RTE_PTYPE_L4_FRAG,
[L3_OTHER][L4_IPCOMP] = RTE_PTYPE_UNKNOWN,
[L3_OTHER][L4_TCP] = RTE_PTYPE_L4_TCP,
[L3_OTHER][L4_UDP_PASS1] = RTE_PTYPE_L4_UDP,
[L3_OTHER][L4_GRE] = RTE_PTYPE_TUNNEL_GRE,
[L3_OTHER][L4_UDP_PASS2] = RTE_PTYPE_L4_UDP,
[L3_OTHER][L4_UDP_GENEVE] = RTE_PTYPE_TUNNEL_GENEVE,
[L3_OTHER][L4_UDP_VXLAN] = RTE_PTYPE_TUNNEL_VXLAN,
[L3_OTHER][L4_NVGRE] = RTE_PTYPE_TUNNEL_NVGRE,
};
static inline uint32_t __hot
nicvf_rx_classify_pkt(cqe_rx_word0_t cqe_rx_w0)
{
return ptype_table[cqe_rx_w0.l3_type][cqe_rx_w0.l4_type];
}
static inline uint64_t __hot
nicvf_set_olflags(const cqe_rx_word0_t cqe_rx_w0)
{
static const uint64_t flag_table[3] __rte_cache_aligned = {
PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD,
PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_UNKNOWN,
PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD,
};
const uint8_t idx = (cqe_rx_w0.err_opcode == CQE_RX_ERR_L4_CHK) << 1 |
(cqe_rx_w0.err_opcode == CQE_RX_ERR_IP_CHK);
return flag_table[idx];
}
static inline int __hot
nicvf_fill_rbdr(struct nicvf_rxq *rxq, int to_fill)
{
int i;
uint32_t ltail, next_tail;
struct nicvf_rbdr *rbdr = rxq->shared_rbdr;
uint64_t mbuf_phys_off = rxq->mbuf_phys_off;
struct rbdr_entry_t *desc = rbdr->desc;
uint32_t qlen_mask = rbdr->qlen_mask;
uintptr_t door = rbdr->rbdr_door;
void *obj_p[NICVF_MAX_RX_FREE_THRESH] __rte_cache_aligned;
if (unlikely(rte_mempool_get_bulk(rxq->pool, obj_p, to_fill) < 0)) {
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
to_fill;
return 0;
}
NICVF_RX_ASSERT((unsigned int)to_fill <= (qlen_mask -
(nicvf_addr_read(rbdr->rbdr_status) & NICVF_RBDR_COUNT_MASK)));
next_tail = __atomic_fetch_add(&rbdr->next_tail, to_fill,
__ATOMIC_ACQUIRE);
ltail = next_tail;
for (i = 0; i < to_fill; i++) {
struct rbdr_entry_t *entry = desc + (ltail & qlen_mask);
entry->full_addr = nicvf_mbuff_virt2phy((uintptr_t)obj_p[i],
mbuf_phys_off);
ltail++;
}
while (__atomic_load_n(&rbdr->tail, __ATOMIC_RELAXED) != next_tail)
rte_pause();
__atomic_store_n(&rbdr->tail, ltail, __ATOMIC_RELEASE);
nicvf_addr_write(door, to_fill);
return to_fill;
}
static inline int32_t __hot
nicvf_rx_pkts_to_process(struct nicvf_rxq *rxq, uint16_t nb_pkts,
int32_t available_space)
{
if (unlikely(available_space < nb_pkts))
rxq->available_space = nicvf_addr_read(rxq->cq_status)
& NICVF_CQ_CQE_COUNT_MASK;
return RTE_MIN(nb_pkts, available_space);
}
static inline void __hot
nicvf_rx_offload(cqe_rx_word0_t cqe_rx_w0, cqe_rx_word2_t cqe_rx_w2,
struct rte_mbuf *pkt)
{
if (likely(cqe_rx_w0.rss_alg)) {
pkt->hash.rss = cqe_rx_w2.rss_tag;
pkt->ol_flags |= PKT_RX_RSS_HASH;
}
}
static __rte_always_inline uint16_t
nicvf_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts,
const uint32_t flag)
{
uint32_t i, to_process;
struct cqe_rx_t *cqe_rx;
struct rte_mbuf *pkt;
cqe_rx_word0_t cqe_rx_w0;
cqe_rx_word1_t cqe_rx_w1;
cqe_rx_word2_t cqe_rx_w2;
cqe_rx_word3_t cqe_rx_w3;
struct nicvf_rxq *rxq = rx_queue;
union cq_entry_t *desc = rxq->desc;
const uint64_t cqe_mask = rxq->qlen_mask;
uint64_t rb0_ptr, mbuf_phys_off = rxq->mbuf_phys_off;
const uint64_t mbuf_init = rxq->mbuf_initializer.value;
uint32_t cqe_head = rxq->head & cqe_mask;
int32_t available_space = rxq->available_space;
const uint8_t rbptr_offset = rxq->rbptr_offset;
to_process = nicvf_rx_pkts_to_process(rxq, nb_pkts, available_space);
for (i = 0; i < to_process; i++) {
rte_prefetch_non_temporal(&desc[cqe_head + 2]);
cqe_rx = (struct cqe_rx_t *)&desc[cqe_head];
NICVF_RX_ASSERT(((struct cq_entry_type_t *)cqe_rx)->cqe_type
== CQE_TYPE_RX);
NICVF_LOAD_PAIR(cqe_rx_w0.u64, cqe_rx_w1.u64, cqe_rx);
NICVF_LOAD_PAIR(cqe_rx_w2.u64, cqe_rx_w3.u64, &cqe_rx->word2);
rb0_ptr = *((uint64_t *)cqe_rx + rbptr_offset);
pkt = (struct rte_mbuf *)nicvf_mbuff_phy2virt
(rb0_ptr - cqe_rx_w1.align_pad, mbuf_phys_off);
if (flag & NICVF_RX_OFFLOAD_NONE)
pkt->ol_flags = 0;
if (flag & NICVF_RX_OFFLOAD_CKSUM)
pkt->ol_flags = nicvf_set_olflags(cqe_rx_w0);
if (flag & NICVF_RX_OFFLOAD_VLAN_STRIP) {
if (unlikely(cqe_rx_w0.vlan_stripped)) {
pkt->ol_flags |= PKT_RX_VLAN
| PKT_RX_VLAN_STRIPPED;
pkt->vlan_tci =
rte_cpu_to_be_16(cqe_rx_w2.vlan_tci);
}
}
pkt->data_len = cqe_rx_w3.rb0_sz;
pkt->pkt_len = cqe_rx_w3.rb0_sz;
pkt->packet_type = nicvf_rx_classify_pkt(cqe_rx_w0);
nicvf_mbuff_init_update(pkt, mbuf_init, cqe_rx_w1.align_pad);
nicvf_rx_offload(cqe_rx_w0, cqe_rx_w2, pkt);
rx_pkts[i] = pkt;
cqe_head = (cqe_head + 1) & cqe_mask;
nicvf_prefetch_store_keep(pkt);
}
if (likely(to_process)) {
rxq->available_space -= to_process;
rxq->head = cqe_head;
nicvf_addr_write(rxq->cq_door, to_process);
rxq->recv_buffers += to_process;
}
if (rxq->recv_buffers > rxq->rx_free_thresh) {
rxq->recv_buffers -= nicvf_fill_rbdr(rxq, rxq->rx_free_thresh);
NICVF_RX_ASSERT(rxq->recv_buffers >= 0);
}
return to_process;
}
uint16_t __hot
nicvf_recv_pkts_no_offload(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
return nicvf_recv_pkts(rx_queue, rx_pkts, nb_pkts,
NICVF_RX_OFFLOAD_NONE);
}
uint16_t __hot
nicvf_recv_pkts_cksum(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
return nicvf_recv_pkts(rx_queue, rx_pkts, nb_pkts,
NICVF_RX_OFFLOAD_CKSUM);
}
uint16_t __hot
nicvf_recv_pkts_vlan_strip(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
return nicvf_recv_pkts(rx_queue, rx_pkts, nb_pkts,
NICVF_RX_OFFLOAD_NONE | NICVF_RX_OFFLOAD_VLAN_STRIP);
}
uint16_t __hot
nicvf_recv_pkts_cksum_vlan_strip(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
return nicvf_recv_pkts(rx_queue, rx_pkts, nb_pkts,
NICVF_RX_OFFLOAD_CKSUM | NICVF_RX_OFFLOAD_VLAN_STRIP);
}
static __rte_always_inline uint16_t __hot
nicvf_process_cq_mseg_entry(struct cqe_rx_t *cqe_rx,
uint64_t mbuf_phys_off,
struct rte_mbuf **rx_pkt, uint8_t rbptr_offset,
uint64_t mbuf_init, const uint32_t flag)
{
struct rte_mbuf *pkt, *seg, *prev;
cqe_rx_word0_t cqe_rx_w0;
cqe_rx_word1_t cqe_rx_w1;
cqe_rx_word2_t cqe_rx_w2;
uint16_t *rb_sz, nb_segs, seg_idx;
uint64_t *rb_ptr;
NICVF_LOAD_PAIR(cqe_rx_w0.u64, cqe_rx_w1.u64, cqe_rx);
NICVF_RX_ASSERT(cqe_rx_w0.cqe_type == CQE_TYPE_RX);
cqe_rx_w2 = cqe_rx->word2;
rb_sz = &cqe_rx->word3.rb0_sz;
rb_ptr = (uint64_t *)cqe_rx + rbptr_offset;
nb_segs = cqe_rx_w0.rb_cnt;
pkt = (struct rte_mbuf *)nicvf_mbuff_phy2virt
(rb_ptr[0] - cqe_rx_w1.align_pad, mbuf_phys_off);
pkt->pkt_len = cqe_rx_w1.pkt_len;
pkt->data_len = rb_sz[nicvf_frag_num(0)];
nicvf_mbuff_init_mseg_update(
pkt, mbuf_init, cqe_rx_w1.align_pad, nb_segs);
pkt->packet_type = nicvf_rx_classify_pkt(cqe_rx_w0);
if (flag & NICVF_RX_OFFLOAD_NONE)
pkt->ol_flags = 0;
if (flag & NICVF_RX_OFFLOAD_CKSUM)
pkt->ol_flags = nicvf_set_olflags(cqe_rx_w0);
if (flag & NICVF_RX_OFFLOAD_VLAN_STRIP) {
if (unlikely(cqe_rx_w0.vlan_stripped)) {
pkt->ol_flags |= PKT_RX_VLAN
| PKT_RX_VLAN_STRIPPED;
pkt->vlan_tci = rte_cpu_to_be_16(cqe_rx_w2.vlan_tci);
}
}
nicvf_rx_offload(cqe_rx_w0, cqe_rx_w2, pkt);
*rx_pkt = pkt;
prev = pkt;
for (seg_idx = 1; seg_idx < nb_segs; seg_idx++) {
seg = (struct rte_mbuf *)nicvf_mbuff_phy2virt
(rb_ptr[seg_idx], mbuf_phys_off);
prev->next = seg;
seg->data_len = rb_sz[nicvf_frag_num(seg_idx)];
nicvf_mbuff_init_update(seg, mbuf_init, 0);
prev = seg;
}
prev->next = NULL;
return nb_segs;
}
static __rte_always_inline uint16_t __hot
nicvf_recv_pkts_multiseg(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts, const uint32_t flag)
{
union cq_entry_t *cq_entry;
struct cqe_rx_t *cqe_rx;
struct nicvf_rxq *rxq = rx_queue;
union cq_entry_t *desc = rxq->desc;
const uint64_t cqe_mask = rxq->qlen_mask;
uint64_t mbuf_phys_off = rxq->mbuf_phys_off;
uint32_t i, to_process, cqe_head, buffers_consumed = 0;
int32_t available_space = rxq->available_space;
uint16_t nb_segs;
const uint64_t mbuf_init = rxq->mbuf_initializer.value;
const uint8_t rbptr_offset = rxq->rbptr_offset;
cqe_head = rxq->head & cqe_mask;
to_process = nicvf_rx_pkts_to_process(rxq, nb_pkts, available_space);
for (i = 0; i < to_process; i++) {
rte_prefetch_non_temporal(&desc[cqe_head + 2]);
cq_entry = &desc[cqe_head];
cqe_rx = (struct cqe_rx_t *)cq_entry;
nb_segs = nicvf_process_cq_mseg_entry(cqe_rx, mbuf_phys_off,
rx_pkts + i, rbptr_offset, mbuf_init, flag);
buffers_consumed += nb_segs;
cqe_head = (cqe_head + 1) & cqe_mask;
nicvf_prefetch_store_keep(rx_pkts[i]);
}
if (likely(to_process)) {
rxq->available_space -= to_process;
rxq->head = cqe_head;
nicvf_addr_write(rxq->cq_door, to_process);
rxq->recv_buffers += buffers_consumed;
}
if (rxq->recv_buffers > rxq->rx_free_thresh) {
rxq->recv_buffers -= nicvf_fill_rbdr(rxq, rxq->rx_free_thresh);
NICVF_RX_ASSERT(rxq->recv_buffers >= 0);
}
return to_process;
}
uint16_t __hot
nicvf_recv_pkts_multiseg_no_offload(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
return nicvf_recv_pkts_multiseg(rx_queue, rx_pkts, nb_pkts,
NICVF_RX_OFFLOAD_NONE);
}
uint16_t __hot
nicvf_recv_pkts_multiseg_cksum(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
return nicvf_recv_pkts_multiseg(rx_queue, rx_pkts, nb_pkts,
NICVF_RX_OFFLOAD_CKSUM);
}
uint16_t __hot
nicvf_recv_pkts_multiseg_vlan_strip(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
return nicvf_recv_pkts_multiseg(rx_queue, rx_pkts, nb_pkts,
NICVF_RX_OFFLOAD_NONE | NICVF_RX_OFFLOAD_VLAN_STRIP);
}
uint16_t __hot
nicvf_recv_pkts_multiseg_cksum_vlan_strip(void *rx_queue,
struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
return nicvf_recv_pkts_multiseg(rx_queue, rx_pkts, nb_pkts,
NICVF_RX_OFFLOAD_CKSUM | NICVF_RX_OFFLOAD_VLAN_STRIP);
}
uint32_t
nicvf_dev_rx_queue_count(struct rte_eth_dev *dev, uint16_t queue_idx)
{
struct nicvf_rxq *rxq;
rxq = dev->data->rx_queues[queue_idx];
return nicvf_addr_read(rxq->cq_status) & NICVF_CQ_CQE_COUNT_MASK;
}
uint32_t
nicvf_dev_rbdr_refill(struct rte_eth_dev *dev, uint16_t queue_idx)
{
struct nicvf_rxq *rxq;
uint32_t to_process;
uint32_t rx_free;
rxq = dev->data->rx_queues[queue_idx];
to_process = rxq->recv_buffers;
while (rxq->recv_buffers > 0) {
rx_free = RTE_MIN(rxq->recv_buffers, NICVF_MAX_RX_FREE_THRESH);
rxq->recv_buffers -= nicvf_fill_rbdr(rxq, rx_free);
}
assert(rxq->recv_buffers == 0);
return to_process;
}