numam-dpdk/lib/power/power_cppc_cpufreq.c
Richael Zhuang d37462e56c power: check frequencies count before filling array
The freqs array size is RTE_MAX_LCORE_FREQS. Before filling the
array with num_freqs elements, restrict the total num to
RTE_MAX_LCORE_FREQS. This fix aims to fix the coverity scan issue
like:
Overrunning array "pi->freqs" of 256 bytes by passing it to a
function which accesses it at byte offset 464.

Coverity issue: 371913
Fixes: ef1cc88f18 ("power: support cppc_cpufreq driver")
Cc: stable@dpdk.org

Signed-off-by: Richael Zhuang <richael.zhuang@arm.com>
Acked-by: David Hunt <david.hunt@intel.com>
2021-07-24 10:09:58 +02:00

686 lines
17 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2021 Intel Corporation
* Copyright(c) 2021 Arm Limited
*/
#include <rte_memcpy.h>
#include <rte_memory.h>
#include "power_cppc_cpufreq.h"
#include "power_common.h"
/* macros used for rounding frequency to nearest 100000 */
#define FREQ_ROUNDING_DELTA 50000
#define ROUND_FREQ_TO_N_100000 100000
/* the unit of highest_perf and nominal_perf differs on different arm platforms.
* For highest_perf, it maybe 300 or 3000000, both means 3.0GHz.
*/
#define UNIT_DIFF 10000
#define POWER_CONVERT_TO_DECIMAL 10
#define POWER_GOVERNOR_USERSPACE "userspace"
#define POWER_SYSFILE_SETSPEED \
"/sys/devices/system/cpu/cpu%u/cpufreq/scaling_setspeed"
#define POWER_SYSFILE_SCALING_MAX_FREQ \
"/sys/devices/system/cpu/cpu%u/cpufreq/scaling_max_freq"
#define POWER_SYSFILE_SCALING_MIN_FREQ \
"/sys/devices/system/cpu/cpu%u/cpufreq/scaling_min_freq"
#define POWER_SYSFILE_HIGHEST_PERF \
"/sys/devices/system/cpu/cpu%u/acpi_cppc/highest_perf"
#define POWER_SYSFILE_NOMINAL_PERF \
"/sys/devices/system/cpu/cpu%u/acpi_cppc/nominal_perf"
#define POWER_SYSFILE_SYS_MAX \
"/sys/devices/system/cpu/cpu%u/cpufreq/cpuinfo_max_freq"
#define POWER_CPPC_DRIVER "cppc-cpufreq"
#define BUS_FREQ 100000
enum power_state {
POWER_IDLE = 0,
POWER_ONGOING,
POWER_USED,
POWER_UNKNOWN
};
/**
* Power info per lcore.
*/
struct cppc_power_info {
unsigned int lcore_id; /**< Logical core id */
uint32_t state; /**< Power in use state */
FILE *f; /**< FD of scaling_setspeed */
char governor_ori[32]; /**< Original governor name */
uint32_t curr_idx; /**< Freq index in freqs array */
uint32_t highest_perf; /**< system wide max freq */
uint32_t nominal_perf; /**< system wide nominal freq */
uint16_t turbo_available; /**< Turbo Boost available */
uint16_t turbo_enable; /**< Turbo Boost enable/disable */
uint32_t nb_freqs; /**< number of available freqs */
uint32_t freqs[RTE_MAX_LCORE_FREQS]; /**< Frequency array */
} __rte_cache_aligned;
static struct cppc_power_info lcore_power_info[RTE_MAX_LCORE];
/**
* It is to set specific freq for specific logical core, according to the index
* of supported frequencies.
*/
static int
set_freq_internal(struct cppc_power_info *pi, uint32_t idx)
{
if (idx >= RTE_MAX_LCORE_FREQS || idx >= pi->nb_freqs) {
RTE_LOG(ERR, POWER, "Invalid frequency index %u, which "
"should be less than %u\n", idx, pi->nb_freqs);
return -1;
}
/* Check if it is the same as current */
if (idx == pi->curr_idx)
return 0;
POWER_DEBUG_TRACE("Frequency[%u] %u to be set for lcore %u\n",
idx, pi->freqs[idx], pi->lcore_id);
if (fseek(pi->f, 0, SEEK_SET) < 0) {
RTE_LOG(ERR, POWER, "Fail to set file position indicator to 0 "
"for setting frequency for lcore %u\n", pi->lcore_id);
return -1;
}
if (fprintf(pi->f, "%u", pi->freqs[idx]) < 0) {
RTE_LOG(ERR, POWER, "Fail to write new frequency for "
"lcore %u\n", pi->lcore_id);
return -1;
}
fflush(pi->f);
pi->curr_idx = idx;
return 1;
}
/**
* It is to check the current scaling governor by reading sys file, and then
* set it into 'userspace' if it is not by writing the sys file. The original
* governor will be saved for rolling back.
*/
static int
power_set_governor_userspace(struct cppc_power_info *pi)
{
return power_set_governor(pi->lcore_id, POWER_GOVERNOR_USERSPACE,
pi->governor_ori, sizeof(pi->governor_ori));
}
static int
power_check_turbo(struct cppc_power_info *pi)
{
FILE *f_nom = NULL, *f_max = NULL, *f_cmax = NULL;
int ret = -1;
uint32_t nominal_perf = 0, highest_perf = 0, cpuinfo_max_freq = 0;
open_core_sysfs_file(&f_max, "r", POWER_SYSFILE_HIGHEST_PERF,
pi->lcore_id);
if (f_max == NULL) {
RTE_LOG(ERR, POWER, "failed to open %s\n",
POWER_SYSFILE_HIGHEST_PERF);
goto err;
}
open_core_sysfs_file(&f_nom, "r", POWER_SYSFILE_NOMINAL_PERF,
pi->lcore_id);
if (f_nom == NULL) {
RTE_LOG(ERR, POWER, "failed to open %s\n",
POWER_SYSFILE_NOMINAL_PERF);
goto err;
}
open_core_sysfs_file(&f_cmax, "r", POWER_SYSFILE_SYS_MAX,
pi->lcore_id);
if (f_cmax == NULL) {
RTE_LOG(ERR, POWER, "failed to open %s\n",
POWER_SYSFILE_SYS_MAX);
goto err;
}
ret = read_core_sysfs_u32(f_max, &highest_perf);
if (ret < 0) {
RTE_LOG(ERR, POWER, "Failed to read %s\n",
POWER_SYSFILE_HIGHEST_PERF);
goto err;
}
ret = read_core_sysfs_u32(f_nom, &nominal_perf);
if (ret < 0) {
RTE_LOG(ERR, POWER, "Failed to read %s\n",
POWER_SYSFILE_NOMINAL_PERF);
goto err;
}
ret = read_core_sysfs_u32(f_cmax, &cpuinfo_max_freq);
if (ret < 0) {
RTE_LOG(ERR, POWER, "Failed to read %s\n",
POWER_SYSFILE_SYS_MAX);
goto err;
}
pi->highest_perf = highest_perf;
pi->nominal_perf = nominal_perf;
if ((highest_perf > nominal_perf) && ((cpuinfo_max_freq == highest_perf)
|| cpuinfo_max_freq == highest_perf * UNIT_DIFF)) {
pi->turbo_available = 1;
pi->turbo_enable = 1;
ret = 0;
POWER_DEBUG_TRACE("Lcore %u can do Turbo Boost! highest perf %u, "
"nominal perf %u\n",
pi->lcore_id, highest_perf, nominal_perf);
} else {
pi->turbo_available = 0;
pi->turbo_enable = 0;
POWER_DEBUG_TRACE("Lcore %u Turbo not available! highest perf %u, "
"nominal perf %u\n",
pi->lcore_id, highest_perf, nominal_perf);
}
err:
if (f_max != NULL)
fclose(f_max);
if (f_nom != NULL)
fclose(f_nom);
if (f_cmax != NULL)
fclose(f_cmax);
return ret;
}
/**
* It is to get the available frequencies of the specific lcore by reading the
* sys file.
*/
static int
power_get_available_freqs(struct cppc_power_info *pi)
{
FILE *f_min = NULL, *f_max = NULL;
int ret = -1;
uint32_t scaling_min_freq = 0, scaling_max_freq = 0, nominal_perf = 0;
uint32_t i, num_freqs = 0;
open_core_sysfs_file(&f_max, "r", POWER_SYSFILE_SCALING_MAX_FREQ,
pi->lcore_id);
if (f_max == NULL) {
RTE_LOG(ERR, POWER, "failed to open %s\n",
POWER_SYSFILE_SCALING_MAX_FREQ);
goto out;
}
open_core_sysfs_file(&f_min, "r", POWER_SYSFILE_SCALING_MIN_FREQ,
pi->lcore_id);
if (f_min == NULL) {
RTE_LOG(ERR, POWER, "failed to open %s\n",
POWER_SYSFILE_SCALING_MIN_FREQ);
goto out;
}
ret = read_core_sysfs_u32(f_max, &scaling_max_freq);
if (ret < 0) {
RTE_LOG(ERR, POWER, "Failed to read %s\n",
POWER_SYSFILE_SCALING_MAX_FREQ);
goto out;
}
ret = read_core_sysfs_u32(f_min, &scaling_min_freq);
if (ret < 0) {
RTE_LOG(ERR, POWER, "Failed to read %s\n",
POWER_SYSFILE_SCALING_MIN_FREQ);
goto out;
}
power_check_turbo(pi);
if (scaling_max_freq < scaling_min_freq)
goto out;
/* If turbo is available then there is one extra freq bucket
* to store the sys max freq which value is scaling_max_freq
*/
nominal_perf = (pi->nominal_perf < UNIT_DIFF) ?
pi->nominal_perf * UNIT_DIFF : pi->nominal_perf;
num_freqs = (nominal_perf - scaling_min_freq) / BUS_FREQ + 1 +
pi->turbo_available;
if (num_freqs >= RTE_MAX_LCORE_FREQS) {
RTE_LOG(ERR, POWER, "Too many available frequencies: %d\n",
num_freqs);
goto out;
}
/* Generate the freq bucket array. */
for (i = 0, pi->nb_freqs = 0; i < num_freqs; i++) {
if ((i == 0) && pi->turbo_available)
pi->freqs[pi->nb_freqs++] = scaling_max_freq;
else
pi->freqs[pi->nb_freqs++] =
nominal_perf - (i - pi->turbo_available) * BUS_FREQ;
}
ret = 0;
POWER_DEBUG_TRACE("%d frequency(s) of lcore %u are available\n",
num_freqs, pi->lcore_id);
out:
if (f_min != NULL)
fclose(f_min);
if (f_max != NULL)
fclose(f_max);
return ret;
}
/**
* It is to fopen the sys file for the future setting the lcore frequency.
*/
static int
power_init_for_setting_freq(struct cppc_power_info *pi)
{
FILE *f = NULL;
char buf[BUFSIZ];
uint32_t i, freq;
int ret;
open_core_sysfs_file(&f, "rw+", POWER_SYSFILE_SETSPEED, pi->lcore_id);
if (f == NULL) {
RTE_LOG(ERR, POWER, "failed to open %s\n",
POWER_SYSFILE_SETSPEED);
goto err;
}
ret = read_core_sysfs_s(f, buf, sizeof(buf));
if (ret < 0) {
RTE_LOG(ERR, POWER, "Failed to read %s\n",
POWER_SYSFILE_SETSPEED);
goto err;
}
freq = strtoul(buf, NULL, POWER_CONVERT_TO_DECIMAL);
/* convert the frequency to nearest 100000 value
* Ex: if freq=1396789 then freq_conv=1400000
* Ex: if freq=800030 then freq_conv=800000
*/
unsigned int freq_conv = 0;
freq_conv = (freq + FREQ_ROUNDING_DELTA)
/ ROUND_FREQ_TO_N_100000;
freq_conv = freq_conv * ROUND_FREQ_TO_N_100000;
for (i = 0; i < pi->nb_freqs; i++) {
if (freq_conv == pi->freqs[i]) {
pi->curr_idx = i;
pi->f = f;
return 0;
}
}
err:
if (f != NULL)
fclose(f);
return -1;
}
int
power_cppc_cpufreq_check_supported(void)
{
return cpufreq_check_scaling_driver(POWER_CPPC_DRIVER);
}
int
power_cppc_cpufreq_init(unsigned int lcore_id)
{
struct cppc_power_info *pi;
uint32_t exp_state;
if (lcore_id >= RTE_MAX_LCORE) {
RTE_LOG(ERR, POWER, "Lcore id %u can not exceeds %u\n",
lcore_id, RTE_MAX_LCORE - 1U);
return -1;
}
pi = &lcore_power_info[lcore_id];
exp_state = POWER_IDLE;
/* The power in use state works as a guard variable between
* the CPU frequency control initialization and exit process.
* The ACQUIRE memory ordering here pairs with the RELEASE
* ordering below as lock to make sure the frequency operations
* in the critical section are done under the correct state.
*/
if (!__atomic_compare_exchange_n(&(pi->state), &exp_state,
POWER_ONGOING, 0,
__ATOMIC_ACQUIRE, __ATOMIC_RELAXED)) {
RTE_LOG(INFO, POWER, "Power management of lcore %u is "
"in use\n", lcore_id);
return -1;
}
pi->lcore_id = lcore_id;
/* Check and set the governor */
if (power_set_governor_userspace(pi) < 0) {
RTE_LOG(ERR, POWER, "Cannot set governor of lcore %u to "
"userspace\n", lcore_id);
goto fail;
}
/* Get the available frequencies */
if (power_get_available_freqs(pi) < 0) {
RTE_LOG(ERR, POWER, "Cannot get available frequencies of "
"lcore %u\n", lcore_id);
goto fail;
}
/* Init for setting lcore frequency */
if (power_init_for_setting_freq(pi) < 0) {
RTE_LOG(ERR, POWER, "Cannot init for setting frequency for "
"lcore %u\n", lcore_id);
goto fail;
}
/* Set freq to max by default */
if (power_cppc_cpufreq_freq_max(lcore_id) < 0) {
RTE_LOG(ERR, POWER, "Cannot set frequency of lcore %u "
"to max\n", lcore_id);
goto fail;
}
RTE_LOG(INFO, POWER, "Initialized successfully for lcore %u "
"power management\n", lcore_id);
__atomic_store_n(&(pi->state), POWER_USED, __ATOMIC_RELEASE);
return 0;
fail:
__atomic_store_n(&(pi->state), POWER_UNKNOWN, __ATOMIC_RELEASE);
return -1;
}
/**
* It is to check the governor and then set the original governor back if
* needed by writing the sys file.
*/
static int
power_set_governor_original(struct cppc_power_info *pi)
{
return power_set_governor(pi->lcore_id, pi->governor_ori, NULL, 0);
}
int
power_cppc_cpufreq_exit(unsigned int lcore_id)
{
struct cppc_power_info *pi;
uint32_t exp_state;
if (lcore_id >= RTE_MAX_LCORE) {
RTE_LOG(ERR, POWER, "Lcore id %u can not exceeds %u\n",
lcore_id, RTE_MAX_LCORE - 1U);
return -1;
}
pi = &lcore_power_info[lcore_id];
exp_state = POWER_USED;
/* The power in use state works as a guard variable between
* the CPU frequency control initialization and exit process.
* The ACQUIRE memory ordering here pairs with the RELEASE
* ordering below as lock to make sure the frequency operations
* in the critical section are done under the correct state.
*/
if (!__atomic_compare_exchange_n(&(pi->state), &exp_state,
POWER_ONGOING, 0,
__ATOMIC_ACQUIRE, __ATOMIC_RELAXED)) {
RTE_LOG(INFO, POWER, "Power management of lcore %u is "
"not used\n", lcore_id);
return -1;
}
/* Close FD of setting freq */
fclose(pi->f);
pi->f = NULL;
/* Set the governor back to the original */
if (power_set_governor_original(pi) < 0) {
RTE_LOG(ERR, POWER, "Cannot set the governor of %u back "
"to the original\n", lcore_id);
goto fail;
}
RTE_LOG(INFO, POWER, "Power management of lcore %u has exited from "
"'userspace' mode and been set back to the "
"original\n", lcore_id);
__atomic_store_n(&(pi->state), POWER_IDLE, __ATOMIC_RELEASE);
return 0;
fail:
__atomic_store_n(&(pi->state), POWER_UNKNOWN, __ATOMIC_RELEASE);
return -1;
}
uint32_t
power_cppc_cpufreq_freqs(unsigned int lcore_id, uint32_t *freqs, uint32_t num)
{
struct cppc_power_info *pi;
if (lcore_id >= RTE_MAX_LCORE) {
RTE_LOG(ERR, POWER, "Invalid lcore ID\n");
return 0;
}
if (freqs == NULL) {
RTE_LOG(ERR, POWER, "NULL buffer supplied\n");
return 0;
}
pi = &lcore_power_info[lcore_id];
if (num < pi->nb_freqs) {
RTE_LOG(ERR, POWER, "Buffer size is not enough\n");
return 0;
}
rte_memcpy(freqs, pi->freqs, pi->nb_freqs * sizeof(uint32_t));
return pi->nb_freqs;
}
uint32_t
power_cppc_cpufreq_get_freq(unsigned int lcore_id)
{
if (lcore_id >= RTE_MAX_LCORE) {
RTE_LOG(ERR, POWER, "Invalid lcore ID\n");
return RTE_POWER_INVALID_FREQ_INDEX;
}
return lcore_power_info[lcore_id].curr_idx;
}
int
power_cppc_cpufreq_set_freq(unsigned int lcore_id, uint32_t index)
{
if (lcore_id >= RTE_MAX_LCORE) {
RTE_LOG(ERR, POWER, "Invalid lcore ID\n");
return -1;
}
return set_freq_internal(&(lcore_power_info[lcore_id]), index);
}
int
power_cppc_cpufreq_freq_down(unsigned int lcore_id)
{
struct cppc_power_info *pi;
if (lcore_id >= RTE_MAX_LCORE) {
RTE_LOG(ERR, POWER, "Invalid lcore ID\n");
return -1;
}
pi = &lcore_power_info[lcore_id];
if (pi->curr_idx + 1 == pi->nb_freqs)
return 0;
/* Frequencies in the array are from high to low. */
return set_freq_internal(pi, pi->curr_idx + 1);
}
int
power_cppc_cpufreq_freq_up(unsigned int lcore_id)
{
struct cppc_power_info *pi;
if (lcore_id >= RTE_MAX_LCORE) {
RTE_LOG(ERR, POWER, "Invalid lcore ID\n");
return -1;
}
pi = &lcore_power_info[lcore_id];
if (pi->curr_idx == 0 || (pi->curr_idx == 1 &&
pi->turbo_available && !pi->turbo_enable))
return 0;
/* Frequencies in the array are from high to low. */
return set_freq_internal(pi, pi->curr_idx - 1);
}
int
power_cppc_cpufreq_freq_max(unsigned int lcore_id)
{
if (lcore_id >= RTE_MAX_LCORE) {
RTE_LOG(ERR, POWER, "Invalid lcore ID\n");
return -1;
}
/* Frequencies in the array are from high to low. */
if (lcore_power_info[lcore_id].turbo_available) {
if (lcore_power_info[lcore_id].turbo_enable)
/* Set to Turbo */
return set_freq_internal(
&lcore_power_info[lcore_id], 0);
else
/* Set to max non-turbo */
return set_freq_internal(
&lcore_power_info[lcore_id], 1);
} else
return set_freq_internal(&lcore_power_info[lcore_id], 0);
}
int
power_cppc_cpufreq_freq_min(unsigned int lcore_id)
{
struct cppc_power_info *pi;
if (lcore_id >= RTE_MAX_LCORE) {
RTE_LOG(ERR, POWER, "Invalid lcore ID\n");
return -1;
}
pi = &lcore_power_info[lcore_id];
/* Frequencies in the array are from high to low. */
return set_freq_internal(pi, pi->nb_freqs - 1);
}
int
power_cppc_turbo_status(unsigned int lcore_id)
{
struct cppc_power_info *pi;
if (lcore_id >= RTE_MAX_LCORE) {
RTE_LOG(ERR, POWER, "Invalid lcore ID\n");
return -1;
}
pi = &lcore_power_info[lcore_id];
return pi->turbo_enable;
}
int
power_cppc_enable_turbo(unsigned int lcore_id)
{
struct cppc_power_info *pi;
if (lcore_id >= RTE_MAX_LCORE) {
RTE_LOG(ERR, POWER, "Invalid lcore ID\n");
return -1;
}
pi = &lcore_power_info[lcore_id];
if (pi->turbo_available)
pi->turbo_enable = 1;
else {
pi->turbo_enable = 0;
RTE_LOG(ERR, POWER,
"Failed to enable turbo on lcore %u\n",
lcore_id);
return -1;
}
/* TODO: must set to max once enbling Turbo? Considering add condition:
* if ((pi->turbo_available) && (pi->curr_idx <= 1))
*/
/* Max may have changed, so call to max function */
if (power_cppc_cpufreq_freq_max(lcore_id) < 0) {
RTE_LOG(ERR, POWER,
"Failed to set frequency of lcore %u to max\n",
lcore_id);
return -1;
}
return 0;
}
int
power_cppc_disable_turbo(unsigned int lcore_id)
{
struct cppc_power_info *pi;
if (lcore_id >= RTE_MAX_LCORE) {
RTE_LOG(ERR, POWER, "Invalid lcore ID\n");
return -1;
}
pi = &lcore_power_info[lcore_id];
pi->turbo_enable = 0;
if ((pi->turbo_available) && (pi->curr_idx <= 1)) {
/* Try to set freq to max by default coming out of turbo */
if (power_cppc_cpufreq_freq_max(lcore_id) < 0) {
RTE_LOG(ERR, POWER,
"Failed to set frequency of lcore %u to max\n",
lcore_id);
return -1;
}
}
return 0;
}
int
power_cppc_get_capabilities(unsigned int lcore_id,
struct rte_power_core_capabilities *caps)
{
struct cppc_power_info *pi;
if (lcore_id >= RTE_MAX_LCORE) {
RTE_LOG(ERR, POWER, "Invalid lcore ID\n");
return -1;
}
if (caps == NULL) {
RTE_LOG(ERR, POWER, "Invalid argument\n");
return -1;
}
pi = &lcore_power_info[lcore_id];
caps->capabilities = 0;
caps->turbo = !!(pi->turbo_available);
return 0;
}