28dde5da50
Added support for lookaside IPsec protocol offload. Supported cases: -AEAD -Cipher+auth Command used for testing: ./dpdk-test-crypto-perf -c 0xf -- --devtype crypto_octeontx2 --ptest throughput --optype ipsec --cipher-algo aes-cbc --pool-sz 16384 --cipher-op encrypt --cipher-key-sz 16 --cipher-iv-sz 16 --auth-algo sha1-hmac --auth-op generate --digest-sz 16 --total-ops 10000000 --burst-sz 32 --buffer-sz 64,128,256,512,1024,1280,2048 ./dpdk-test-crypto-perf -c 0xf -- --devtype crypto_octeontx2 --ptest throughput --optype ipsec --aead-algo aes-gcm --pool-sz 16384 --aead-op encrypt --aead-key-sz 32 --aead-iv-sz 12 --aead-aad-sz 16 --digest-sz 16 --total-ops 10000000 --burst-sz 32 --buffer-sz 64,128,256,512,1024,1280,2048 Signed-off-by: Akhil Goyal <gakhil@marvell.com> Signed-off-by: Archana Muniganti <marchana@marvell.com>
509 lines
13 KiB
C
509 lines
13 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2017 Intel Corporation
|
|
*/
|
|
|
|
#include <stdbool.h>
|
|
|
|
#include <rte_crypto.h>
|
|
#include <rte_cryptodev.h>
|
|
#include <rte_cycles.h>
|
|
#include <rte_malloc.h>
|
|
|
|
#include "cperf_ops.h"
|
|
#include "cperf_test_pmd_cyclecount.h"
|
|
#include "cperf_test_common.h"
|
|
|
|
#define PRETTY_HDR_FMT "%12s%12s%12s%12s%12s%12s%12s%12s%12s%12s\n\n"
|
|
#define PRETTY_LINE_FMT "%12u%12u%12u%12u%12u%12u%12u%12.0f%12.0f%12.0f\n"
|
|
#define CSV_HDR_FMT "%s,%s,%s,%s,%s,%s,%s,%s,%s,%s\n"
|
|
#define CSV_LINE_FMT "%10u,%10u,%u,%u,%u,%u,%u,%.3f,%.3f,%.3f\n"
|
|
|
|
struct cperf_pmd_cyclecount_ctx {
|
|
uint8_t dev_id;
|
|
uint16_t qp_id;
|
|
uint8_t lcore_id;
|
|
|
|
struct rte_mempool *pool;
|
|
struct rte_crypto_op **ops;
|
|
struct rte_crypto_op **ops_processed;
|
|
|
|
struct rte_cryptodev_sym_session *sess;
|
|
|
|
cperf_populate_ops_t populate_ops;
|
|
|
|
uint32_t src_buf_offset;
|
|
uint32_t dst_buf_offset;
|
|
|
|
const struct cperf_options *options;
|
|
const struct cperf_test_vector *test_vector;
|
|
};
|
|
|
|
struct pmd_cyclecount_state {
|
|
struct cperf_pmd_cyclecount_ctx *ctx;
|
|
const struct cperf_options *opts;
|
|
uint32_t lcore;
|
|
uint64_t delay;
|
|
int linearize;
|
|
uint32_t ops_enqd;
|
|
uint32_t ops_deqd;
|
|
uint32_t ops_enq_retries;
|
|
uint32_t ops_deq_retries;
|
|
double cycles_per_build;
|
|
double cycles_per_enq;
|
|
double cycles_per_deq;
|
|
};
|
|
|
|
static const uint16_t iv_offset =
|
|
sizeof(struct rte_crypto_op) + sizeof(struct rte_crypto_sym_op);
|
|
|
|
static void
|
|
cperf_pmd_cyclecount_test_free(struct cperf_pmd_cyclecount_ctx *ctx)
|
|
{
|
|
if (!ctx)
|
|
return;
|
|
|
|
if (ctx->sess) {
|
|
#ifdef RTE_LIB_SECURITY
|
|
if (ctx->options->op_type == CPERF_PDCP ||
|
|
ctx->options->op_type == CPERF_DOCSIS) {
|
|
struct rte_security_ctx *sec_ctx =
|
|
(struct rte_security_ctx *)
|
|
rte_cryptodev_get_sec_ctx(ctx->dev_id);
|
|
rte_security_session_destroy(sec_ctx,
|
|
(struct rte_security_session *)ctx->sess);
|
|
} else
|
|
#endif
|
|
{
|
|
rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess);
|
|
rte_cryptodev_sym_session_free(ctx->sess);
|
|
}
|
|
}
|
|
|
|
if (ctx->pool)
|
|
rte_mempool_free(ctx->pool);
|
|
|
|
if (ctx->ops)
|
|
rte_free(ctx->ops);
|
|
|
|
if (ctx->ops_processed)
|
|
rte_free(ctx->ops_processed);
|
|
|
|
rte_free(ctx);
|
|
}
|
|
|
|
void *
|
|
cperf_pmd_cyclecount_test_constructor(struct rte_mempool *sess_mp,
|
|
struct rte_mempool *sess_priv_mp,
|
|
uint8_t dev_id, uint16_t qp_id,
|
|
const struct cperf_options *options,
|
|
const struct cperf_test_vector *test_vector,
|
|
const struct cperf_op_fns *op_fns)
|
|
{
|
|
struct cperf_pmd_cyclecount_ctx *ctx = NULL;
|
|
|
|
/* preallocate buffers for crypto ops as they can get quite big */
|
|
size_t alloc_sz = sizeof(struct rte_crypto_op *) *
|
|
options->nb_descriptors;
|
|
|
|
ctx = rte_malloc(NULL, sizeof(struct cperf_pmd_cyclecount_ctx), 0);
|
|
if (ctx == NULL)
|
|
goto err;
|
|
|
|
ctx->dev_id = dev_id;
|
|
ctx->qp_id = qp_id;
|
|
|
|
ctx->populate_ops = op_fns->populate_ops;
|
|
ctx->options = options;
|
|
ctx->test_vector = test_vector;
|
|
|
|
/* IV goes at the end of the crypto operation */
|
|
uint16_t iv_offset = sizeof(struct rte_crypto_op) +
|
|
sizeof(struct rte_crypto_sym_op);
|
|
|
|
ctx->sess = op_fns->sess_create(sess_mp, sess_priv_mp, dev_id, options,
|
|
test_vector, iv_offset);
|
|
if (ctx->sess == NULL)
|
|
goto err;
|
|
|
|
if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id, 0,
|
|
&ctx->src_buf_offset, &ctx->dst_buf_offset,
|
|
&ctx->pool) < 0)
|
|
goto err;
|
|
|
|
ctx->ops = rte_malloc("ops", alloc_sz, 0);
|
|
if (!ctx->ops)
|
|
goto err;
|
|
|
|
ctx->ops_processed = rte_malloc("ops_processed", alloc_sz, 0);
|
|
if (!ctx->ops_processed)
|
|
goto err;
|
|
|
|
return ctx;
|
|
|
|
err:
|
|
cperf_pmd_cyclecount_test_free(ctx);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* benchmark alloc-build-free of ops */
|
|
static inline int
|
|
pmd_cyclecount_bench_ops(struct pmd_cyclecount_state *state, uint32_t cur_op,
|
|
uint16_t test_burst_size)
|
|
{
|
|
uint32_t iter_ops_left = state->opts->total_ops - cur_op;
|
|
uint32_t iter_ops_needed =
|
|
RTE_MIN(state->opts->nb_descriptors, iter_ops_left);
|
|
uint32_t cur_iter_op;
|
|
uint32_t imix_idx = 0;
|
|
|
|
for (cur_iter_op = 0; cur_iter_op < iter_ops_needed;
|
|
cur_iter_op += test_burst_size) {
|
|
uint32_t burst_size = RTE_MIN(iter_ops_needed - cur_iter_op,
|
|
test_burst_size);
|
|
struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op];
|
|
|
|
/* Allocate objects containing crypto operations and mbufs */
|
|
if (rte_mempool_get_bulk(state->ctx->pool, (void **)ops,
|
|
burst_size) != 0) {
|
|
RTE_LOG(ERR, USER1,
|
|
"Failed to allocate more crypto operations "
|
|
"from the crypto operation pool.\n"
|
|
"Consider increasing the pool size "
|
|
"with --pool-sz\n");
|
|
return -1;
|
|
}
|
|
|
|
/* Setup crypto op, attach mbuf etc */
|
|
(state->ctx->populate_ops)(ops,
|
|
state->ctx->src_buf_offset,
|
|
state->ctx->dst_buf_offset,
|
|
burst_size,
|
|
state->ctx->sess, state->opts,
|
|
state->ctx->test_vector, iv_offset,
|
|
&imix_idx, NULL);
|
|
|
|
#ifdef CPERF_LINEARIZATION_ENABLE
|
|
/* Check if source mbufs require coalescing */
|
|
if (state->linearize) {
|
|
uint8_t i;
|
|
for (i = 0; i < burst_size; i++) {
|
|
struct rte_mbuf *src = ops[i]->sym->m_src;
|
|
rte_pktmbuf_linearize(src);
|
|
}
|
|
}
|
|
#endif /* CPERF_LINEARIZATION_ENABLE */
|
|
rte_mempool_put_bulk(state->ctx->pool, (void **)ops,
|
|
burst_size);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* allocate and build ops (no free) */
|
|
static int
|
|
pmd_cyclecount_build_ops(struct pmd_cyclecount_state *state,
|
|
uint32_t iter_ops_needed, uint16_t test_burst_size)
|
|
{
|
|
uint32_t cur_iter_op;
|
|
uint32_t imix_idx = 0;
|
|
|
|
for (cur_iter_op = 0; cur_iter_op < iter_ops_needed;
|
|
cur_iter_op += test_burst_size) {
|
|
uint32_t burst_size = RTE_MIN(
|
|
iter_ops_needed - cur_iter_op, test_burst_size);
|
|
struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op];
|
|
|
|
/* Allocate objects containing crypto operations and mbufs */
|
|
if (rte_mempool_get_bulk(state->ctx->pool, (void **)ops,
|
|
burst_size) != 0) {
|
|
RTE_LOG(ERR, USER1,
|
|
"Failed to allocate more crypto operations "
|
|
"from the crypto operation pool.\n"
|
|
"Consider increasing the pool size "
|
|
"with --pool-sz\n");
|
|
return -1;
|
|
}
|
|
|
|
/* Setup crypto op, attach mbuf etc */
|
|
(state->ctx->populate_ops)(ops,
|
|
state->ctx->src_buf_offset,
|
|
state->ctx->dst_buf_offset,
|
|
burst_size,
|
|
state->ctx->sess, state->opts,
|
|
state->ctx->test_vector, iv_offset,
|
|
&imix_idx, NULL);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* benchmark enqueue, returns number of ops enqueued */
|
|
static uint32_t
|
|
pmd_cyclecount_bench_enq(struct pmd_cyclecount_state *state,
|
|
uint32_t iter_ops_needed, uint16_t test_burst_size)
|
|
{
|
|
/* Enqueue full descriptor ring of ops on crypto device */
|
|
uint32_t cur_iter_op = 0;
|
|
while (cur_iter_op < iter_ops_needed) {
|
|
uint32_t burst_size = RTE_MIN(iter_ops_needed - cur_iter_op,
|
|
test_burst_size);
|
|
struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op];
|
|
uint32_t burst_enqd;
|
|
|
|
burst_enqd = rte_cryptodev_enqueue_burst(state->ctx->dev_id,
|
|
state->ctx->qp_id, ops, burst_size);
|
|
|
|
/* if we couldn't enqueue anything, the queue is full */
|
|
if (!burst_enqd) {
|
|
/* don't try to dequeue anything we didn't enqueue */
|
|
return cur_iter_op;
|
|
}
|
|
|
|
if (burst_enqd < burst_size)
|
|
state->ops_enq_retries++;
|
|
state->ops_enqd += burst_enqd;
|
|
cur_iter_op += burst_enqd;
|
|
}
|
|
return iter_ops_needed;
|
|
}
|
|
|
|
/* benchmark dequeue */
|
|
static void
|
|
pmd_cyclecount_bench_deq(struct pmd_cyclecount_state *state,
|
|
uint32_t iter_ops_needed, uint16_t test_burst_size)
|
|
{
|
|
/* Dequeue full descriptor ring of ops on crypto device */
|
|
uint32_t cur_iter_op = 0;
|
|
while (cur_iter_op < iter_ops_needed) {
|
|
uint32_t burst_size = RTE_MIN(iter_ops_needed - cur_iter_op,
|
|
test_burst_size);
|
|
struct rte_crypto_op **ops_processed =
|
|
&state->ctx->ops[cur_iter_op];
|
|
uint32_t burst_deqd;
|
|
|
|
burst_deqd = rte_cryptodev_dequeue_burst(state->ctx->dev_id,
|
|
state->ctx->qp_id, ops_processed, burst_size);
|
|
|
|
if (burst_deqd < burst_size)
|
|
state->ops_deq_retries++;
|
|
state->ops_deqd += burst_deqd;
|
|
cur_iter_op += burst_deqd;
|
|
}
|
|
}
|
|
|
|
/* run benchmark per burst size */
|
|
static inline int
|
|
pmd_cyclecount_bench_burst_sz(
|
|
struct pmd_cyclecount_state *state, uint16_t test_burst_size)
|
|
{
|
|
uint64_t tsc_start;
|
|
uint64_t tsc_end;
|
|
uint64_t tsc_op;
|
|
uint64_t tsc_enq;
|
|
uint64_t tsc_deq;
|
|
uint32_t cur_op;
|
|
|
|
/* reset all counters */
|
|
tsc_enq = 0;
|
|
tsc_deq = 0;
|
|
state->ops_enqd = 0;
|
|
state->ops_enq_retries = 0;
|
|
state->ops_deqd = 0;
|
|
state->ops_deq_retries = 0;
|
|
|
|
/*
|
|
* Benchmark crypto op alloc-build-free separately.
|
|
*/
|
|
tsc_start = rte_rdtsc_precise();
|
|
|
|
for (cur_op = 0; cur_op < state->opts->total_ops;
|
|
cur_op += state->opts->nb_descriptors) {
|
|
if (unlikely(pmd_cyclecount_bench_ops(
|
|
state, cur_op, test_burst_size)))
|
|
return -1;
|
|
}
|
|
|
|
tsc_end = rte_rdtsc_precise();
|
|
tsc_op = tsc_end - tsc_start;
|
|
|
|
|
|
/*
|
|
* Hardware acceleration cyclecount benchmarking loop.
|
|
*
|
|
* We're benchmarking raw enq/deq performance by filling up the device
|
|
* queue, so we never get any failed enqs unless the driver won't accept
|
|
* the exact number of descriptors we requested, or the driver won't
|
|
* wrap around the end of the TX ring. However, since we're only
|
|
* dequeueing once we've filled up the queue, we have to benchmark it
|
|
* piecemeal and then average out the results.
|
|
*/
|
|
cur_op = 0;
|
|
while (cur_op < state->opts->total_ops) {
|
|
uint32_t iter_ops_left = state->opts->total_ops - cur_op;
|
|
uint32_t iter_ops_needed = RTE_MIN(
|
|
state->opts->nb_descriptors, iter_ops_left);
|
|
uint32_t iter_ops_allocd = iter_ops_needed;
|
|
|
|
/* allocate and build ops */
|
|
if (unlikely(pmd_cyclecount_build_ops(state, iter_ops_needed,
|
|
test_burst_size)))
|
|
return -1;
|
|
|
|
tsc_start = rte_rdtsc_precise();
|
|
|
|
/* fill up TX ring */
|
|
iter_ops_needed = pmd_cyclecount_bench_enq(state,
|
|
iter_ops_needed, test_burst_size);
|
|
|
|
tsc_end = rte_rdtsc_precise();
|
|
|
|
tsc_enq += tsc_end - tsc_start;
|
|
|
|
/* allow for HW to catch up */
|
|
if (state->delay)
|
|
rte_delay_us_block(state->delay);
|
|
|
|
tsc_start = rte_rdtsc_precise();
|
|
|
|
/* drain RX ring */
|
|
pmd_cyclecount_bench_deq(state, iter_ops_needed,
|
|
test_burst_size);
|
|
|
|
tsc_end = rte_rdtsc_precise();
|
|
|
|
tsc_deq += tsc_end - tsc_start;
|
|
|
|
cur_op += iter_ops_needed;
|
|
|
|
/*
|
|
* we may not have processed all ops that we allocated, so
|
|
* free everything we've allocated.
|
|
*/
|
|
rte_mempool_put_bulk(state->ctx->pool,
|
|
(void **)state->ctx->ops, iter_ops_allocd);
|
|
}
|
|
|
|
state->cycles_per_build = (double)tsc_op / state->opts->total_ops;
|
|
state->cycles_per_enq = (double)tsc_enq / state->ops_enqd;
|
|
state->cycles_per_deq = (double)tsc_deq / state->ops_deqd;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
cperf_pmd_cyclecount_test_runner(void *test_ctx)
|
|
{
|
|
struct pmd_cyclecount_state state = {0};
|
|
const struct cperf_options *opts;
|
|
uint16_t test_burst_size;
|
|
uint8_t burst_size_idx = 0;
|
|
|
|
state.ctx = test_ctx;
|
|
opts = state.ctx->options;
|
|
state.opts = opts;
|
|
state.lcore = rte_lcore_id();
|
|
state.linearize = 0;
|
|
|
|
static rte_atomic16_t display_once = RTE_ATOMIC16_INIT(0);
|
|
static bool warmup = true;
|
|
|
|
/*
|
|
* We need a small delay to allow for hardware to process all the crypto
|
|
* operations. We can't automatically figure out what the delay should
|
|
* be, so we leave it up to the user (by default it's 0).
|
|
*/
|
|
state.delay = 1000 * opts->pmdcc_delay;
|
|
|
|
#ifdef CPERF_LINEARIZATION_ENABLE
|
|
struct rte_cryptodev_info dev_info;
|
|
|
|
/* Check if source mbufs require coalescing */
|
|
if (opts->segments_sz < ctx->options->max_buffer_size) {
|
|
rte_cryptodev_info_get(state.ctx->dev_id, &dev_info);
|
|
if ((dev_info.feature_flags &
|
|
RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) ==
|
|
0) {
|
|
state.linearize = 1;
|
|
}
|
|
}
|
|
#endif /* CPERF_LINEARIZATION_ENABLE */
|
|
|
|
state.ctx->lcore_id = state.lcore;
|
|
|
|
/* Get first size from range or list */
|
|
if (opts->inc_burst_size != 0)
|
|
test_burst_size = opts->min_burst_size;
|
|
else
|
|
test_burst_size = opts->burst_size_list[0];
|
|
|
|
while (test_burst_size <= opts->max_burst_size) {
|
|
/* do a benchmark run */
|
|
if (pmd_cyclecount_bench_burst_sz(&state, test_burst_size))
|
|
return -1;
|
|
|
|
/*
|
|
* First run is always a warm up run.
|
|
*/
|
|
if (warmup) {
|
|
warmup = false;
|
|
continue;
|
|
}
|
|
|
|
if (!opts->csv) {
|
|
if (rte_atomic16_test_and_set(&display_once))
|
|
printf(PRETTY_HDR_FMT, "lcore id", "Buf Size",
|
|
"Burst Size", "Enqueued",
|
|
"Dequeued", "Enq Retries",
|
|
"Deq Retries", "Cycles/Op",
|
|
"Cycles/Enq", "Cycles/Deq");
|
|
|
|
printf(PRETTY_LINE_FMT, state.ctx->lcore_id,
|
|
opts->test_buffer_size, test_burst_size,
|
|
state.ops_enqd, state.ops_deqd,
|
|
state.ops_enq_retries,
|
|
state.ops_deq_retries,
|
|
state.cycles_per_build,
|
|
state.cycles_per_enq,
|
|
state.cycles_per_deq);
|
|
} else {
|
|
if (rte_atomic16_test_and_set(&display_once))
|
|
printf(CSV_HDR_FMT, "# lcore id", "Buf Size",
|
|
"Burst Size", "Enqueued",
|
|
"Dequeued", "Enq Retries",
|
|
"Deq Retries", "Cycles/Op",
|
|
"Cycles/Enq", "Cycles/Deq");
|
|
|
|
printf(CSV_LINE_FMT, state.ctx->lcore_id,
|
|
opts->test_buffer_size, test_burst_size,
|
|
state.ops_enqd, state.ops_deqd,
|
|
state.ops_enq_retries,
|
|
state.ops_deq_retries,
|
|
state.cycles_per_build,
|
|
state.cycles_per_enq,
|
|
state.cycles_per_deq);
|
|
}
|
|
|
|
/* Get next size from range or list */
|
|
if (opts->inc_burst_size != 0)
|
|
test_burst_size += opts->inc_burst_size;
|
|
else {
|
|
if (++burst_size_idx == opts->burst_size_count)
|
|
break;
|
|
test_burst_size = opts->burst_size_list[burst_size_idx];
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
cperf_pmd_cyclecount_test_destructor(void *arg)
|
|
{
|
|
struct cperf_pmd_cyclecount_ctx *ctx = arg;
|
|
|
|
if (ctx == NULL)
|
|
return;
|
|
|
|
cperf_pmd_cyclecount_test_free(ctx);
|
|
}
|