1094dd940e
With symbols going though experimental/stable stages, we accumulated a lot of discrepancies about inclusion of the rte_compat.h header. Some headers are including it where unneeded, while others rely on implicit inclusion. Fix unneeded inclusions: $ git grep -l include..rte_compat.h | xargs grep -LE '__rte_(internal|experimental)' | xargs sed -i -e '/#include..rte_compat.h/d' Fix missing inclusion, by inserting rte_compat.h before the first inclusion of a DPDK header: $ git grep -lE '__rte_(internal|experimental)' | xargs grep -L include..rte_compat.h | xargs sed -i -e \ '0,/#include..\(rte_\|.*pmd.h.$\)/{ s/\(#include..\(rte_\|.*pmd.h.$\)\)/#include <rte_compat.h>\n\1/ }' Fix missing inclusion, by inserting rte_compat.h after the last inclusion of a non DPDK header: $ for file in $(git grep -lE '__rte_(internal|experimental)' | xargs grep -L include..rte_compat.h); do tac $file > $file.$$ sed -i -e \ '0,/#include../{ s/\(#include..*$\)/#include <rte_compat.h>\n\n\1/ }' $file.$$ tac $file.$$ > $file rm $file.$$ done Fix missing inclusion, by inserting rte_compat.h after the header guard: $ git grep -lE '__rte_(internal|experimental)' | xargs grep -L include..rte_compat.h | xargs sed -i -e \ '0,/#define/{ s/\(#define .*$\)/\1\n\n#include <rte_compat.h>/ }' And finally, exclude rte_compat.h itself. $ git checkout lib/eal/include/rte_compat.h At the end of all this, we have a clean tree: $ git grep -lE '__rte_(internal|experimental)' | xargs grep -L include..rte_compat.h buildtools/check-symbols.sh devtools/checkpatches.sh doc/guides/contributing/abi_policy.rst doc/guides/rel_notes/release_20_11.rst lib/eal/include/rte_compat.h Signed-off-by: David Marchand <david.marchand@redhat.com> Acked-by: Bruce Richardson <bruce.richardson@intel.com> Acked-by: Andrew Rybchenko <andrew.rybchenko@oktetlabs.ru>
513 lines
16 KiB
C
513 lines
16 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2017-2018 Intel Corporation
|
|
*/
|
|
|
|
#ifndef _RTE_COMP_H_
|
|
#define _RTE_COMP_H_
|
|
|
|
/**
|
|
* @file rte_comp.h
|
|
*
|
|
* RTE definitions for Data Compression Service
|
|
*
|
|
*/
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
#include <rte_compat.h>
|
|
#include <rte_mbuf.h>
|
|
|
|
/**
|
|
* compression service feature flags
|
|
*
|
|
* @note New features flags should be added to the end of the list
|
|
*
|
|
* Keep these flags synchronised with rte_comp_get_feature_name()
|
|
*/
|
|
#define RTE_COMP_FF_STATEFUL_COMPRESSION (1ULL << 0)
|
|
/**< Stateful compression is supported */
|
|
#define RTE_COMP_FF_STATEFUL_DECOMPRESSION (1ULL << 1)
|
|
/**< Stateful decompression is supported */
|
|
#define RTE_COMP_FF_OOP_SGL_IN_SGL_OUT (1ULL << 2)
|
|
/**< Out-of-place Scatter-gather (SGL) buffers,
|
|
* with multiple segments, are supported in input and output
|
|
*/
|
|
#define RTE_COMP_FF_OOP_SGL_IN_LB_OUT (1ULL << 3)
|
|
/**< Out-of-place Scatter-gather (SGL) buffers are supported
|
|
* in input, combined with linear buffers (LB), with a
|
|
* single segment, in output
|
|
*/
|
|
#define RTE_COMP_FF_OOP_LB_IN_SGL_OUT (1ULL << 4)
|
|
/**< Out-of-place Scatter-gather (SGL) buffers are supported
|
|
* in output, combined with linear buffers (LB) in input
|
|
*/
|
|
#define RTE_COMP_FF_ADLER32_CHECKSUM (1ULL << 5)
|
|
/**< Adler-32 Checksum is supported */
|
|
#define RTE_COMP_FF_CRC32_CHECKSUM (1ULL << 6)
|
|
/**< CRC32 Checksum is supported */
|
|
#define RTE_COMP_FF_CRC32_ADLER32_CHECKSUM (1ULL << 7)
|
|
/**< Adler-32/CRC32 Checksum is supported */
|
|
#define RTE_COMP_FF_MULTI_PKT_CHECKSUM (1ULL << 8)
|
|
/**< Generation of checksum across multiple stateless packets is supported */
|
|
#define RTE_COMP_FF_SHA1_HASH (1ULL << 9)
|
|
/**< SHA1 Hash is supported */
|
|
#define RTE_COMP_FF_SHA2_SHA256_HASH (1ULL << 10)
|
|
/**< SHA256 Hash of SHA2 family is supported */
|
|
#define RTE_COMP_FF_NONCOMPRESSED_BLOCKS (1ULL << 11)
|
|
/**< Creation of non-compressed blocks using RTE_COMP_LEVEL_NONE is supported */
|
|
#define RTE_COMP_FF_SHAREABLE_PRIV_XFORM (1ULL << 12)
|
|
/**< Private xforms created by the PMD can be shared
|
|
* across multiple stateless operations. If not set, then app needs
|
|
* to create as many priv_xforms as it expects to have stateless
|
|
* operations in-flight.
|
|
*/
|
|
#define RTE_COMP_FF_HUFFMAN_FIXED (1ULL << 13)
|
|
/**< Fixed huffman encoding is supported */
|
|
#define RTE_COMP_FF_HUFFMAN_DYNAMIC (1ULL << 14)
|
|
/**< Dynamic huffman encoding is supported */
|
|
|
|
/** Status of comp operation */
|
|
enum rte_comp_op_status {
|
|
RTE_COMP_OP_STATUS_SUCCESS = 0,
|
|
/**< Operation completed successfully */
|
|
RTE_COMP_OP_STATUS_NOT_PROCESSED,
|
|
/**< Operation has not yet been processed by the device */
|
|
RTE_COMP_OP_STATUS_INVALID_ARGS,
|
|
/**< Operation failed due to invalid arguments in request */
|
|
RTE_COMP_OP_STATUS_ERROR,
|
|
/**< Error handling operation */
|
|
RTE_COMP_OP_STATUS_INVALID_STATE,
|
|
/**< Operation is invoked in invalid state */
|
|
RTE_COMP_OP_STATUS_OUT_OF_SPACE_TERMINATED,
|
|
/**< Output buffer ran out of space before operation completed.
|
|
* Error case. Application must resubmit all data with a larger
|
|
* output buffer.
|
|
*/
|
|
RTE_COMP_OP_STATUS_OUT_OF_SPACE_RECOVERABLE,
|
|
/**< Output buffer ran out of space before operation completed, but this
|
|
* is not an error case. Output data up to op.produced can be used and
|
|
* next op in the stream should continue on from op.consumed+1.
|
|
*/
|
|
};
|
|
|
|
/** Compression Algorithms */
|
|
enum rte_comp_algorithm {
|
|
RTE_COMP_ALGO_UNSPECIFIED = 0,
|
|
/** No Compression algorithm */
|
|
RTE_COMP_ALGO_NULL,
|
|
/**< No compression.
|
|
* Pass-through, data is copied unchanged from source buffer to
|
|
* destination buffer.
|
|
*/
|
|
RTE_COMP_ALGO_DEFLATE,
|
|
/**< DEFLATE compression algorithm
|
|
* https://tools.ietf.org/html/rfc1951
|
|
*/
|
|
RTE_COMP_ALGO_LZS,
|
|
/**< LZS compression algorithm
|
|
* https://tools.ietf.org/html/rfc2395
|
|
*/
|
|
RTE_COMP_ALGO_LIST_END
|
|
};
|
|
|
|
/** Compression Hash Algorithms */
|
|
enum rte_comp_hash_algorithm {
|
|
RTE_COMP_HASH_ALGO_NONE = 0,
|
|
/**< No hash */
|
|
RTE_COMP_HASH_ALGO_SHA1,
|
|
/**< SHA1 hash algorithm */
|
|
RTE_COMP_HASH_ALGO_SHA2_256,
|
|
/**< SHA256 hash algorithm of SHA2 family */
|
|
RTE_COMP_HASH_ALGO_LIST_END
|
|
};
|
|
|
|
/**< Compression Level.
|
|
* The number is interpreted by each PMD differently. However, lower numbers
|
|
* give fastest compression, at the expense of compression ratio while
|
|
* higher numbers may give better compression ratios but are likely slower.
|
|
*/
|
|
#define RTE_COMP_LEVEL_PMD_DEFAULT (-1)
|
|
/** Use PMD Default */
|
|
#define RTE_COMP_LEVEL_NONE (0)
|
|
/** Output uncompressed blocks if supported by the specified algorithm */
|
|
#define RTE_COMP_LEVEL_MIN (1)
|
|
/** Use minimum compression level supported by the PMD */
|
|
#define RTE_COMP_LEVEL_MAX (9)
|
|
/** Use maximum compression level supported by the PMD */
|
|
|
|
/** Compression checksum types */
|
|
enum rte_comp_checksum_type {
|
|
RTE_COMP_CHECKSUM_NONE,
|
|
/**< No checksum generated */
|
|
RTE_COMP_CHECKSUM_CRC32,
|
|
/**< Generates a CRC32 checksum, as used by gzip */
|
|
RTE_COMP_CHECKSUM_ADLER32,
|
|
/**< Generates an Adler-32 checksum, as used by zlib */
|
|
RTE_COMP_CHECKSUM_CRC32_ADLER32,
|
|
/**< Generates both Adler-32 and CRC32 checksums, concatenated.
|
|
* CRC32 is in the lower 32bits, Adler-32 in the upper 32 bits.
|
|
*/
|
|
};
|
|
|
|
|
|
/** Compression Huffman Type - used by DEFLATE algorithm */
|
|
enum rte_comp_huffman {
|
|
RTE_COMP_HUFFMAN_DEFAULT,
|
|
/**< PMD may choose which Huffman codes to use */
|
|
RTE_COMP_HUFFMAN_FIXED,
|
|
/**< Use Fixed Huffman codes */
|
|
RTE_COMP_HUFFMAN_DYNAMIC,
|
|
/**< Use Dynamic Huffman codes */
|
|
};
|
|
|
|
/** Compression flush flags */
|
|
enum rte_comp_flush_flag {
|
|
RTE_COMP_FLUSH_NONE,
|
|
/**< Data is not flushed. Output may remain in the compressor and be
|
|
* processed during a following op. It may not be possible to decompress
|
|
* output until a later op with some other flush flag has been sent.
|
|
*/
|
|
RTE_COMP_FLUSH_SYNC,
|
|
/**< All data should be flushed to output buffer. Output data can be
|
|
* decompressed. However state and history is not cleared, so future
|
|
* operations may use history from this operation.
|
|
*/
|
|
RTE_COMP_FLUSH_FULL,
|
|
/**< All data should be flushed to output buffer. Output data can be
|
|
* decompressed. State and history data is cleared, so future
|
|
* ops will be independent of ops processed before this.
|
|
*/
|
|
RTE_COMP_FLUSH_FINAL
|
|
/**< Same as RTE_COMP_FLUSH_FULL but if op.algo is RTE_COMP_ALGO_DEFLATE
|
|
* then bfinal bit is set in the last block.
|
|
*/
|
|
};
|
|
|
|
/** Compression transform types */
|
|
enum rte_comp_xform_type {
|
|
RTE_COMP_COMPRESS,
|
|
/**< Compression service - compress */
|
|
RTE_COMP_DECOMPRESS,
|
|
/**< Compression service - decompress */
|
|
};
|
|
|
|
/** Compression operation type */
|
|
enum rte_comp_op_type {
|
|
RTE_COMP_OP_STATELESS,
|
|
/**< All data to be processed is submitted in the op, no state or
|
|
* history from previous ops is used and none will be stored for future
|
|
* ops. Flush flag must be set to either FLUSH_FULL or FLUSH_FINAL.
|
|
*/
|
|
RTE_COMP_OP_STATEFUL
|
|
/**< There may be more data to be processed after this op, it's part of
|
|
* a stream of data. State and history from previous ops can be used
|
|
* and resulting state and history can be stored for future ops,
|
|
* depending on flush flag.
|
|
*/
|
|
};
|
|
|
|
|
|
/** Parameters specific to the deflate algorithm */
|
|
struct rte_comp_deflate_params {
|
|
enum rte_comp_huffman huffman;
|
|
/**< Compression huffman encoding type */
|
|
};
|
|
|
|
/** Setup Data for compression */
|
|
struct rte_comp_compress_xform {
|
|
enum rte_comp_algorithm algo;
|
|
/**< Algorithm to use for compress operation */
|
|
union {
|
|
struct rte_comp_deflate_params deflate;
|
|
/**< Parameters specific to the deflate algorithm */
|
|
}; /**< Algorithm specific parameters */
|
|
int level;
|
|
/**< Compression level */
|
|
uint8_t window_size;
|
|
/**< Base two log value of sliding window to be used. If window size
|
|
* can't be supported by the PMD then it may fall back to a smaller
|
|
* size. This is likely to result in a worse compression ratio.
|
|
*/
|
|
enum rte_comp_checksum_type chksum;
|
|
/**< Type of checksum to generate on the uncompressed data */
|
|
enum rte_comp_hash_algorithm hash_algo;
|
|
/**< Hash algorithm to be used with compress operation. Hash is always
|
|
* done on plaintext.
|
|
*/
|
|
};
|
|
|
|
/**
|
|
* Setup Data for decompression.
|
|
*/
|
|
struct rte_comp_decompress_xform {
|
|
enum rte_comp_algorithm algo;
|
|
/**< Algorithm to use for decompression */
|
|
enum rte_comp_checksum_type chksum;
|
|
/**< Type of checksum to generate on the decompressed data */
|
|
uint8_t window_size;
|
|
/**< Base two log value of sliding window which was used to generate
|
|
* compressed data. If window size can't be supported by the PMD then
|
|
* setup of stream or private_xform should fail.
|
|
*/
|
|
enum rte_comp_hash_algorithm hash_algo;
|
|
/**< Hash algorithm to be used with decompress operation. Hash is always
|
|
* done on plaintext.
|
|
*/
|
|
};
|
|
|
|
/**
|
|
* Compression transform structure.
|
|
*
|
|
* This is used to specify the compression transforms required.
|
|
* Each transform structure can hold a single transform, the type field is
|
|
* used to specify which transform is contained within the union.
|
|
*/
|
|
struct rte_comp_xform {
|
|
enum rte_comp_xform_type type;
|
|
/**< xform type */
|
|
union {
|
|
struct rte_comp_compress_xform compress;
|
|
/**< xform for compress operation */
|
|
struct rte_comp_decompress_xform decompress;
|
|
/**< decompress xform */
|
|
};
|
|
};
|
|
|
|
/**
|
|
* Compression Operation.
|
|
*
|
|
* This structure contains data relating to performing a compression
|
|
* operation on the referenced mbuf data buffers.
|
|
*
|
|
* Comp operations are enqueued and dequeued in comp PMDs using the
|
|
* rte_compressdev_enqueue_burst() / rte_compressdev_dequeue_burst() APIs
|
|
*/
|
|
struct rte_comp_op {
|
|
enum rte_comp_op_type op_type;
|
|
union {
|
|
void *private_xform;
|
|
/**< Stateless private PMD data derived from an rte_comp_xform.
|
|
* A handle returned by rte_compressdev_private_xform_create()
|
|
* must be attached to operations of op_type RTE_COMP_STATELESS.
|
|
*/
|
|
void *stream;
|
|
/**< Private PMD data derived initially from an rte_comp_xform,
|
|
* which holds state and history data and evolves as operations
|
|
* are processed. rte_compressdev_stream_create() must be called
|
|
* on a device for all STATEFUL data streams and the resulting
|
|
* stream attached to the one or more operations associated
|
|
* with the data stream.
|
|
* All operations in a stream must be sent to the same device.
|
|
*/
|
|
};
|
|
|
|
struct rte_mempool *mempool;
|
|
/**< Pool from which operation is allocated */
|
|
rte_iova_t iova_addr;
|
|
/**< IOVA address of this operation */
|
|
struct rte_mbuf *m_src;
|
|
/**< source mbuf
|
|
* The total size of the input buffer(s) can be retrieved using
|
|
* rte_pktmbuf_pkt_len(m_src). The max data size which can fit in a
|
|
* single mbuf is limited by the uint16_t rte_mbuf.data_len to 64k-1.
|
|
* If the input data is bigger than this it can be passed to the PMD in
|
|
* a chain of mbufs if the PMD's capabilities indicate it supports this.
|
|
*/
|
|
struct rte_mbuf *m_dst;
|
|
/**< destination mbuf
|
|
* The total size of the output buffer(s) can be retrieved using
|
|
* rte_pktmbuf_pkt_len(m_dst). The max data size which can fit in a
|
|
* single mbuf is limited by the uint16_t rte_mbuf.data_len to 64k-1.
|
|
* If the output data is expected to be bigger than this a chain of
|
|
* mbufs can be passed to the PMD if the PMD's capabilities indicate
|
|
* it supports this.
|
|
*
|
|
* @note, if incompressible data is passed to an engine for compression
|
|
* using RTE_COMP_ALGO_DEFLATE, it's possible for the output data
|
|
* to be larger than the uncompressed data, due to the inclusion
|
|
* of the DEFLATE header blocks. The size of m_dst should accommodate
|
|
* this, else OUT_OF_SPACE errors can be expected in this case.
|
|
*/
|
|
|
|
struct {
|
|
uint32_t offset;
|
|
/**< Starting point for compression or decompression,
|
|
* specified as number of bytes from start of packet in
|
|
* source buffer.
|
|
* This offset starts from the first segment
|
|
* of the buffer, in case the m_src is a chain of mbufs.
|
|
* Starting point for checksum generation in compress direction.
|
|
*/
|
|
uint32_t length;
|
|
/**< The length, in bytes, of the data in source buffer
|
|
* to be compressed or decompressed.
|
|
* Also the length of the data over which the checksum
|
|
* should be generated in compress direction
|
|
*/
|
|
} src;
|
|
struct {
|
|
uint32_t offset;
|
|
/**< Starting point for writing output data, specified as
|
|
* number of bytes from start of packet in dest
|
|
* buffer.
|
|
* This offset starts from the first segment
|
|
* of the buffer, in case the m_dst is a chain of mbufs.
|
|
* Starting point for checksum generation in
|
|
* decompress direction.
|
|
*/
|
|
} dst;
|
|
struct {
|
|
uint8_t *digest;
|
|
/**< Output buffer to store hash output, if enabled in xform.
|
|
* Buffer would contain valid value only after an op with
|
|
* flush flag = RTE_COMP_FLUSH_FULL/FLUSH_FINAL is processed
|
|
* successfully.
|
|
*
|
|
* Length of buffer should be contiguous and large enough to
|
|
* accommodate digest produced by specific hash algo.
|
|
*/
|
|
rte_iova_t iova_addr;
|
|
/**< IO address of the buffer */
|
|
} hash;
|
|
enum rte_comp_flush_flag flush_flag;
|
|
/**< Defines flush characteristics for the output data.
|
|
* Only applicable in compress direction
|
|
*/
|
|
uint64_t input_chksum;
|
|
/**< An input checksum can be provided to generate a
|
|
* cumulative checksum across sequential blocks in a STATELESS stream.
|
|
* Checksum type is as specified in xform chksum_type
|
|
*/
|
|
uint64_t output_chksum;
|
|
/**< If a checksum is generated it will be written in here.
|
|
* Checksum type is as specified in xform chksum_type.
|
|
*/
|
|
uint32_t consumed;
|
|
/**< The number of bytes from the source buffer
|
|
* which were compressed/decompressed.
|
|
*/
|
|
uint32_t produced;
|
|
/**< The number of bytes written to the destination buffer
|
|
* which were compressed/decompressed.
|
|
*/
|
|
uint64_t debug_status;
|
|
/**<
|
|
* Status of the operation is returned in the status param.
|
|
* This field allows the PMD to pass back extra
|
|
* pmd-specific debug information. Value is not defined on the API.
|
|
*/
|
|
uint8_t status;
|
|
/**<
|
|
* Operation status - use values from enum rte_comp_status.
|
|
* This is reset to
|
|
* RTE_COMP_OP_STATUS_NOT_PROCESSED on allocation from mempool and
|
|
* will be set to RTE_COMP_OP_STATUS_SUCCESS after operation
|
|
* is successfully processed by a PMD
|
|
*/
|
|
} __rte_cache_aligned;
|
|
|
|
/**
|
|
* Creates an operation pool
|
|
*
|
|
* @param name
|
|
* Compress pool name
|
|
* @param nb_elts
|
|
* Number of elements in pool
|
|
* @param cache_size
|
|
* Number of elements to cache on lcore, see
|
|
* *rte_mempool_create* for further details about cache size
|
|
* @param user_size
|
|
* Size of private data to allocate for user with each operation
|
|
* @param socket_id
|
|
* Socket to identifier allocate memory on
|
|
* @return
|
|
* - On success pointer to mempool
|
|
* - On failure NULL
|
|
*/
|
|
__rte_experimental
|
|
struct rte_mempool *
|
|
rte_comp_op_pool_create(const char *name,
|
|
unsigned int nb_elts, unsigned int cache_size,
|
|
uint16_t user_size, int socket_id);
|
|
|
|
/**
|
|
* Allocate an operation from a mempool with default parameters set
|
|
*
|
|
* @param mempool
|
|
* Compress operation mempool
|
|
*
|
|
* @return
|
|
* - On success returns a valid rte_comp_op structure
|
|
* - On failure returns NULL
|
|
*/
|
|
__rte_experimental
|
|
struct rte_comp_op *
|
|
rte_comp_op_alloc(struct rte_mempool *mempool);
|
|
|
|
/**
|
|
* Bulk allocate operations from a mempool with default parameters set
|
|
*
|
|
* @param mempool
|
|
* Compress operation mempool
|
|
* @param ops
|
|
* Array to place allocated operations
|
|
* @param nb_ops
|
|
* Number of operations to allocate
|
|
* @return
|
|
* - nb_ops: Success, the nb_ops requested was allocated
|
|
* - 0: Not enough entries in the mempool; no ops are retrieved.
|
|
*/
|
|
__rte_experimental
|
|
int
|
|
rte_comp_op_bulk_alloc(struct rte_mempool *mempool,
|
|
struct rte_comp_op **ops, uint16_t nb_ops);
|
|
|
|
/**
|
|
* Free operation structure
|
|
* If operation has been allocate from a rte_mempool, then the operation will
|
|
* be returned to the mempool.
|
|
*
|
|
* @param op
|
|
* Compress operation pointer allocated from rte_comp_op_alloc()
|
|
* If op is NULL, no operation is performed.
|
|
*/
|
|
__rte_experimental
|
|
void
|
|
rte_comp_op_free(struct rte_comp_op *op);
|
|
|
|
/**
|
|
* Bulk free operation structures
|
|
* If operations have been allocated from an rte_mempool, then the operations
|
|
* will be returned to the mempool.
|
|
* The array entry will be cleared.
|
|
*
|
|
* @param ops
|
|
* Array of Compress operations
|
|
* @param nb_ops
|
|
* Number of operations to free
|
|
*/
|
|
__rte_experimental
|
|
void
|
|
rte_comp_op_bulk_free(struct rte_comp_op **ops, uint16_t nb_ops);
|
|
|
|
/**
|
|
* Get the name of a compress service feature flag
|
|
*
|
|
* @param flag
|
|
* The mask describing the flag
|
|
*
|
|
* @return
|
|
* The name of this flag, or NULL if it's not a valid feature flag.
|
|
*/
|
|
__rte_experimental
|
|
const char *
|
|
rte_comp_get_feature_name(uint64_t flag);
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif /* _RTE_COMP_H_ */
|