numam-dpdk/drivers/net/sfc/sfc_ethdev.c
Andy Green ed5b98483a net/sfc: make sure that stats name is nul-terminated
Fixes: 73280c1e4ff2 ("net/sfc: support xstats retrieval by ID")
Fixes: 7b9891769f4b ("net/sfc: support extended statistics")
Cc: stable@dpdk.org

Signed-off-by: Andy Green <andy@warmcat.com>
Acked-by: Andrew Rybchenko <arybchenko@solarflare.com>
2018-05-14 23:32:23 +02:00

2110 lines
50 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 2016-2018 Solarflare Communications Inc.
* All rights reserved.
*
* This software was jointly developed between OKTET Labs (under contract
* for Solarflare) and Solarflare Communications, Inc.
*/
#include <rte_dev.h>
#include <rte_ethdev_driver.h>
#include <rte_ethdev_pci.h>
#include <rte_pci.h>
#include <rte_bus_pci.h>
#include <rte_errno.h>
#include <rte_string_fns.h>
#include "efx.h"
#include "sfc.h"
#include "sfc_debug.h"
#include "sfc_log.h"
#include "sfc_kvargs.h"
#include "sfc_ev.h"
#include "sfc_rx.h"
#include "sfc_tx.h"
#include "sfc_flow.h"
#include "sfc_dp.h"
#include "sfc_dp_rx.h"
uint32_t sfc_logtype_driver;
static struct sfc_dp_list sfc_dp_head =
TAILQ_HEAD_INITIALIZER(sfc_dp_head);
static int
sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
{
struct sfc_adapter *sa = dev->data->dev_private;
efx_nic_fw_info_t enfi;
int ret;
int rc;
/*
* Return value of the callback is likely supposed to be
* equal to or greater than 0, nevertheless, if an error
* occurs, it will be desirable to pass it to the caller
*/
if ((fw_version == NULL) || (fw_size == 0))
return -EINVAL;
rc = efx_nic_get_fw_version(sa->nic, &enfi);
if (rc != 0)
return -rc;
ret = snprintf(fw_version, fw_size,
"%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16,
enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1],
enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]);
if (ret < 0)
return ret;
if (enfi.enfi_dpcpu_fw_ids_valid) {
size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret);
int ret_extra;
ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset,
fw_size - dpcpu_fw_ids_offset,
" rx%" PRIx16 " tx%" PRIx16,
enfi.enfi_rx_dpcpu_fw_id,
enfi.enfi_tx_dpcpu_fw_id);
if (ret_extra < 0)
return ret_extra;
ret += ret_extra;
}
if (fw_size < (size_t)(++ret))
return ret;
else
return 0;
}
static void
sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
{
struct sfc_adapter *sa = dev->data->dev_private;
struct sfc_rss *rss = &sa->rss;
uint64_t txq_offloads_def = 0;
sfc_log_init(sa, "entry");
dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX;
/* Autonegotiation may be disabled */
dev_info->speed_capa = ETH_LINK_SPEED_FIXED;
if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_1000FDX)
dev_info->speed_capa |= ETH_LINK_SPEED_1G;
if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_10000FDX)
dev_info->speed_capa |= ETH_LINK_SPEED_10G;
if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_25000FDX)
dev_info->speed_capa |= ETH_LINK_SPEED_25G;
if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_40000FDX)
dev_info->speed_capa |= ETH_LINK_SPEED_40G;
if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_50000FDX)
dev_info->speed_capa |= ETH_LINK_SPEED_50G;
if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_100000FDX)
dev_info->speed_capa |= ETH_LINK_SPEED_100G;
dev_info->max_rx_queues = sa->rxq_max;
dev_info->max_tx_queues = sa->txq_max;
/* By default packets are dropped if no descriptors are available */
dev_info->default_rxconf.rx_drop_en = 1;
dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa);
/*
* rx_offload_capa includes both device and queue offloads since
* the latter may be requested on a per device basis which makes
* sense when some offloads are needed to be set on all queues.
*/
dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) |
dev_info->rx_queue_offload_capa;
dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa);
/*
* tx_offload_capa includes both device and queue offloads since
* the latter may be requested on a per device basis which makes
* sense when some offloads are needed to be set on all queues.
*/
dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) |
dev_info->tx_queue_offload_capa;
if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE;
dev_info->default_txconf.offloads |= txq_offloads_def;
if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) {
uint64_t rte_hf = 0;
unsigned int i;
for (i = 0; i < rss->hf_map_nb_entries; ++i)
rte_hf |= rss->hf_map[i].rte;
dev_info->reta_size = EFX_RSS_TBL_SIZE;
dev_info->hash_key_size = EFX_RSS_KEY_SIZE;
dev_info->flow_type_rss_offloads = rte_hf;
}
/* Initialize to hardware limits */
dev_info->rx_desc_lim.nb_max = EFX_RXQ_MAXNDESCS;
dev_info->rx_desc_lim.nb_min = EFX_RXQ_MINNDESCS;
/* The RXQ hardware requires that the descriptor count is a power
* of 2, but rx_desc_lim cannot properly describe that constraint.
*/
dev_info->rx_desc_lim.nb_align = EFX_RXQ_MINNDESCS;
/* Initialize to hardware limits */
dev_info->tx_desc_lim.nb_max = sa->txq_max_entries;
dev_info->tx_desc_lim.nb_min = EFX_TXQ_MINNDESCS;
/*
* The TXQ hardware requires that the descriptor count is a power
* of 2, but tx_desc_lim cannot properly describe that constraint
*/
dev_info->tx_desc_lim.nb_align = EFX_TXQ_MINNDESCS;
if (sa->dp_rx->get_dev_info != NULL)
sa->dp_rx->get_dev_info(dev_info);
if (sa->dp_tx->get_dev_info != NULL)
sa->dp_tx->get_dev_info(dev_info);
}
static const uint32_t *
sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev)
{
struct sfc_adapter *sa = dev->data->dev_private;
const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
uint32_t tunnel_encaps = encp->enc_tunnel_encapsulations_supported;
return sa->dp_rx->supported_ptypes_get(tunnel_encaps);
}
static int
sfc_dev_configure(struct rte_eth_dev *dev)
{
struct rte_eth_dev_data *dev_data = dev->data;
struct sfc_adapter *sa = dev_data->dev_private;
int rc;
sfc_log_init(sa, "entry n_rxq=%u n_txq=%u",
dev_data->nb_rx_queues, dev_data->nb_tx_queues);
sfc_adapter_lock(sa);
switch (sa->state) {
case SFC_ADAPTER_CONFIGURED:
/* FALLTHROUGH */
case SFC_ADAPTER_INITIALIZED:
rc = sfc_configure(sa);
break;
default:
sfc_err(sa, "unexpected adapter state %u to configure",
sa->state);
rc = EINVAL;
break;
}
sfc_adapter_unlock(sa);
sfc_log_init(sa, "done %d", rc);
SFC_ASSERT(rc >= 0);
return -rc;
}
static int
sfc_dev_start(struct rte_eth_dev *dev)
{
struct sfc_adapter *sa = dev->data->dev_private;
int rc;
sfc_log_init(sa, "entry");
sfc_adapter_lock(sa);
rc = sfc_start(sa);
sfc_adapter_unlock(sa);
sfc_log_init(sa, "done %d", rc);
SFC_ASSERT(rc >= 0);
return -rc;
}
static int
sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete)
{
struct sfc_adapter *sa = dev->data->dev_private;
struct rte_eth_link current_link;
int ret;
sfc_log_init(sa, "entry");
if (sa->state != SFC_ADAPTER_STARTED) {
sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, &current_link);
} else if (wait_to_complete) {
efx_link_mode_t link_mode;
if (efx_port_poll(sa->nic, &link_mode) != 0)
link_mode = EFX_LINK_UNKNOWN;
sfc_port_link_mode_to_info(link_mode, &current_link);
} else {
sfc_ev_mgmt_qpoll(sa);
rte_eth_linkstatus_get(dev, &current_link);
}
ret = rte_eth_linkstatus_set(dev, &current_link);
if (ret == 0)
sfc_notice(sa, "Link status is %s",
current_link.link_status ? "UP" : "DOWN");
return ret;
}
static void
sfc_dev_stop(struct rte_eth_dev *dev)
{
struct sfc_adapter *sa = dev->data->dev_private;
sfc_log_init(sa, "entry");
sfc_adapter_lock(sa);
sfc_stop(sa);
sfc_adapter_unlock(sa);
sfc_log_init(sa, "done");
}
static int
sfc_dev_set_link_up(struct rte_eth_dev *dev)
{
struct sfc_adapter *sa = dev->data->dev_private;
int rc;
sfc_log_init(sa, "entry");
sfc_adapter_lock(sa);
rc = sfc_start(sa);
sfc_adapter_unlock(sa);
SFC_ASSERT(rc >= 0);
return -rc;
}
static int
sfc_dev_set_link_down(struct rte_eth_dev *dev)
{
struct sfc_adapter *sa = dev->data->dev_private;
sfc_log_init(sa, "entry");
sfc_adapter_lock(sa);
sfc_stop(sa);
sfc_adapter_unlock(sa);
return 0;
}
static void
sfc_dev_close(struct rte_eth_dev *dev)
{
struct sfc_adapter *sa = dev->data->dev_private;
sfc_log_init(sa, "entry");
sfc_adapter_lock(sa);
switch (sa->state) {
case SFC_ADAPTER_STARTED:
sfc_stop(sa);
SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED);
/* FALLTHROUGH */
case SFC_ADAPTER_CONFIGURED:
sfc_close(sa);
SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED);
/* FALLTHROUGH */
case SFC_ADAPTER_INITIALIZED:
break;
default:
sfc_err(sa, "unexpected adapter state %u on close", sa->state);
break;
}
sfc_adapter_unlock(sa);
sfc_log_init(sa, "done");
}
static void
sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode,
boolean_t enabled)
{
struct sfc_port *port;
boolean_t *toggle;
struct sfc_adapter *sa = dev->data->dev_private;
boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI);
const char *desc = (allmulti) ? "all-multi" : "promiscuous";
sfc_adapter_lock(sa);
port = &sa->port;
toggle = (allmulti) ? (&port->allmulti) : (&port->promisc);
if (*toggle != enabled) {
*toggle = enabled;
if (port->isolated) {
sfc_warn(sa, "isolated mode is active on the port");
sfc_warn(sa, "the change is to be applied on the next "
"start provided that isolated mode is "
"disabled prior the next start");
} else if ((sa->state == SFC_ADAPTER_STARTED) &&
(sfc_set_rx_mode(sa) != 0)) {
*toggle = !(enabled);
sfc_warn(sa, "Failed to %s %s mode",
((enabled) ? "enable" : "disable"), desc);
}
}
sfc_adapter_unlock(sa);
}
static void
sfc_dev_promisc_enable(struct rte_eth_dev *dev)
{
sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE);
}
static void
sfc_dev_promisc_disable(struct rte_eth_dev *dev)
{
sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE);
}
static void
sfc_dev_allmulti_enable(struct rte_eth_dev *dev)
{
sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE);
}
static void
sfc_dev_allmulti_disable(struct rte_eth_dev *dev)
{
sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE);
}
static int
sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id,
uint16_t nb_rx_desc, unsigned int socket_id,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mb_pool)
{
struct sfc_adapter *sa = dev->data->dev_private;
int rc;
sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u",
rx_queue_id, nb_rx_desc, socket_id);
sfc_adapter_lock(sa);
rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id,
rx_conf, mb_pool);
if (rc != 0)
goto fail_rx_qinit;
dev->data->rx_queues[rx_queue_id] = sa->rxq_info[rx_queue_id].rxq->dp;
sfc_adapter_unlock(sa);
return 0;
fail_rx_qinit:
sfc_adapter_unlock(sa);
SFC_ASSERT(rc > 0);
return -rc;
}
static void
sfc_rx_queue_release(void *queue)
{
struct sfc_dp_rxq *dp_rxq = queue;
struct sfc_rxq *rxq;
struct sfc_adapter *sa;
unsigned int sw_index;
if (dp_rxq == NULL)
return;
rxq = sfc_rxq_by_dp_rxq(dp_rxq);
sa = rxq->evq->sa;
sfc_adapter_lock(sa);
sw_index = sfc_rxq_sw_index(rxq);
sfc_log_init(sa, "RxQ=%u", sw_index);
sa->eth_dev->data->rx_queues[sw_index] = NULL;
sfc_rx_qfini(sa, sw_index);
sfc_adapter_unlock(sa);
}
static int
sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id,
uint16_t nb_tx_desc, unsigned int socket_id,
const struct rte_eth_txconf *tx_conf)
{
struct sfc_adapter *sa = dev->data->dev_private;
int rc;
sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u",
tx_queue_id, nb_tx_desc, socket_id);
sfc_adapter_lock(sa);
rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf);
if (rc != 0)
goto fail_tx_qinit;
dev->data->tx_queues[tx_queue_id] = sa->txq_info[tx_queue_id].txq->dp;
sfc_adapter_unlock(sa);
return 0;
fail_tx_qinit:
sfc_adapter_unlock(sa);
SFC_ASSERT(rc > 0);
return -rc;
}
static void
sfc_tx_queue_release(void *queue)
{
struct sfc_dp_txq *dp_txq = queue;
struct sfc_txq *txq;
unsigned int sw_index;
struct sfc_adapter *sa;
if (dp_txq == NULL)
return;
txq = sfc_txq_by_dp_txq(dp_txq);
sw_index = sfc_txq_sw_index(txq);
SFC_ASSERT(txq->evq != NULL);
sa = txq->evq->sa;
sfc_log_init(sa, "TxQ = %u", sw_index);
sfc_adapter_lock(sa);
SFC_ASSERT(sw_index < sa->eth_dev->data->nb_tx_queues);
sa->eth_dev->data->tx_queues[sw_index] = NULL;
sfc_tx_qfini(sa, sw_index);
sfc_adapter_unlock(sa);
}
static int
sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
{
struct sfc_adapter *sa = dev->data->dev_private;
struct sfc_port *port = &sa->port;
uint64_t *mac_stats;
int ret;
rte_spinlock_lock(&port->mac_stats_lock);
ret = sfc_port_update_mac_stats(sa);
if (ret != 0)
goto unlock;
mac_stats = port->mac_stats_buf;
if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask,
EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) {
stats->ipackets =
mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] +
mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] +
mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS];
stats->opackets =
mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] +
mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] +
mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS];
stats->ibytes =
mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] +
mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] +
mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES];
stats->obytes =
mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] +
mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] +
mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES];
stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_OVERFLOW];
stats->ierrors = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS];
stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS];
} else {
stats->ipackets = mac_stats[EFX_MAC_RX_PKTS];
stats->opackets = mac_stats[EFX_MAC_TX_PKTS];
stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS];
stats->obytes = mac_stats[EFX_MAC_TX_OCTETS];
/*
* Take into account stats which are whenever supported
* on EF10. If some stat is not supported by current
* firmware variant or HW revision, it is guaranteed
* to be zero in mac_stats.
*/
stats->imissed =
mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] +
mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] +
mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] +
mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] +
mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] +
mac_stats[EFX_MAC_PM_TRUNC_QBB] +
mac_stats[EFX_MAC_PM_DISCARD_QBB] +
mac_stats[EFX_MAC_PM_DISCARD_MAPPING] +
mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] +
mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS];
stats->ierrors =
mac_stats[EFX_MAC_RX_FCS_ERRORS] +
mac_stats[EFX_MAC_RX_ALIGN_ERRORS] +
mac_stats[EFX_MAC_RX_JABBER_PKTS];
/* no oerrors counters supported on EF10 */
}
unlock:
rte_spinlock_unlock(&port->mac_stats_lock);
SFC_ASSERT(ret >= 0);
return -ret;
}
static void
sfc_stats_reset(struct rte_eth_dev *dev)
{
struct sfc_adapter *sa = dev->data->dev_private;
struct sfc_port *port = &sa->port;
int rc;
if (sa->state != SFC_ADAPTER_STARTED) {
/*
* The operation cannot be done if port is not started; it
* will be scheduled to be done during the next port start
*/
port->mac_stats_reset_pending = B_TRUE;
return;
}
rc = sfc_port_reset_mac_stats(sa);
if (rc != 0)
sfc_err(sa, "failed to reset statistics (rc = %d)", rc);
}
static int
sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
unsigned int xstats_count)
{
struct sfc_adapter *sa = dev->data->dev_private;
struct sfc_port *port = &sa->port;
uint64_t *mac_stats;
int rc;
unsigned int i;
int nstats = 0;
rte_spinlock_lock(&port->mac_stats_lock);
rc = sfc_port_update_mac_stats(sa);
if (rc != 0) {
SFC_ASSERT(rc > 0);
nstats = -rc;
goto unlock;
}
mac_stats = port->mac_stats_buf;
for (i = 0; i < EFX_MAC_NSTATS; ++i) {
if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
if (xstats != NULL && nstats < (int)xstats_count) {
xstats[nstats].id = nstats;
xstats[nstats].value = mac_stats[i];
}
nstats++;
}
}
unlock:
rte_spinlock_unlock(&port->mac_stats_lock);
return nstats;
}
static int
sfc_xstats_get_names(struct rte_eth_dev *dev,
struct rte_eth_xstat_name *xstats_names,
unsigned int xstats_count)
{
struct sfc_adapter *sa = dev->data->dev_private;
struct sfc_port *port = &sa->port;
unsigned int i;
unsigned int nstats = 0;
for (i = 0; i < EFX_MAC_NSTATS; ++i) {
if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
if (xstats_names != NULL && nstats < xstats_count)
strlcpy(xstats_names[nstats].name,
efx_mac_stat_name(sa->nic, i),
sizeof(xstats_names[0].name));
nstats++;
}
}
return nstats;
}
static int
sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
uint64_t *values, unsigned int n)
{
struct sfc_adapter *sa = dev->data->dev_private;
struct sfc_port *port = &sa->port;
uint64_t *mac_stats;
unsigned int nb_supported = 0;
unsigned int nb_written = 0;
unsigned int i;
int ret;
int rc;
if (unlikely(values == NULL) ||
unlikely((ids == NULL) && (n < port->mac_stats_nb_supported)))
return port->mac_stats_nb_supported;
rte_spinlock_lock(&port->mac_stats_lock);
rc = sfc_port_update_mac_stats(sa);
if (rc != 0) {
SFC_ASSERT(rc > 0);
ret = -rc;
goto unlock;
}
mac_stats = port->mac_stats_buf;
for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) {
if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i))
continue;
if ((ids == NULL) || (ids[nb_written] == nb_supported))
values[nb_written++] = mac_stats[i];
++nb_supported;
}
ret = nb_written;
unlock:
rte_spinlock_unlock(&port->mac_stats_lock);
return ret;
}
static int
sfc_xstats_get_names_by_id(struct rte_eth_dev *dev,
struct rte_eth_xstat_name *xstats_names,
const uint64_t *ids, unsigned int size)
{
struct sfc_adapter *sa = dev->data->dev_private;
struct sfc_port *port = &sa->port;
unsigned int nb_supported = 0;
unsigned int nb_written = 0;
unsigned int i;
if (unlikely(xstats_names == NULL) ||
unlikely((ids == NULL) && (size < port->mac_stats_nb_supported)))
return port->mac_stats_nb_supported;
for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) {
if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i))
continue;
if ((ids == NULL) || (ids[nb_written] == nb_supported)) {
char *name = xstats_names[nb_written++].name;
strlcpy(name, efx_mac_stat_name(sa->nic, i),
sizeof(xstats_names[0].name));
}
++nb_supported;
}
return nb_written;
}
static int
sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
{
struct sfc_adapter *sa = dev->data->dev_private;
unsigned int wanted_fc, link_fc;
memset(fc_conf, 0, sizeof(*fc_conf));
sfc_adapter_lock(sa);
if (sa->state == SFC_ADAPTER_STARTED)
efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc);
else
link_fc = sa->port.flow_ctrl;
switch (link_fc) {
case 0:
fc_conf->mode = RTE_FC_NONE;
break;
case EFX_FCNTL_RESPOND:
fc_conf->mode = RTE_FC_RX_PAUSE;
break;
case EFX_FCNTL_GENERATE:
fc_conf->mode = RTE_FC_TX_PAUSE;
break;
case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE):
fc_conf->mode = RTE_FC_FULL;
break;
default:
sfc_err(sa, "%s: unexpected flow control value %#x",
__func__, link_fc);
}
fc_conf->autoneg = sa->port.flow_ctrl_autoneg;
sfc_adapter_unlock(sa);
return 0;
}
static int
sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
{
struct sfc_adapter *sa = dev->data->dev_private;
struct sfc_port *port = &sa->port;
unsigned int fcntl;
int rc;
if (fc_conf->high_water != 0 || fc_conf->low_water != 0 ||
fc_conf->pause_time != 0 || fc_conf->send_xon != 0 ||
fc_conf->mac_ctrl_frame_fwd != 0) {
sfc_err(sa, "unsupported flow control settings specified");
rc = EINVAL;
goto fail_inval;
}
switch (fc_conf->mode) {
case RTE_FC_NONE:
fcntl = 0;
break;
case RTE_FC_RX_PAUSE:
fcntl = EFX_FCNTL_RESPOND;
break;
case RTE_FC_TX_PAUSE:
fcntl = EFX_FCNTL_GENERATE;
break;
case RTE_FC_FULL:
fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE;
break;
default:
rc = EINVAL;
goto fail_inval;
}
sfc_adapter_lock(sa);
if (sa->state == SFC_ADAPTER_STARTED) {
rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg);
if (rc != 0)
goto fail_mac_fcntl_set;
}
port->flow_ctrl = fcntl;
port->flow_ctrl_autoneg = fc_conf->autoneg;
sfc_adapter_unlock(sa);
return 0;
fail_mac_fcntl_set:
sfc_adapter_unlock(sa);
fail_inval:
SFC_ASSERT(rc > 0);
return -rc;
}
static int
sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu)
{
struct sfc_adapter *sa = dev->data->dev_private;
size_t pdu = EFX_MAC_PDU(mtu);
size_t old_pdu;
int rc;
sfc_log_init(sa, "mtu=%u", mtu);
rc = EINVAL;
if (pdu < EFX_MAC_PDU_MIN) {
sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)",
(unsigned int)mtu, (unsigned int)pdu,
EFX_MAC_PDU_MIN);
goto fail_inval;
}
if (pdu > EFX_MAC_PDU_MAX) {
sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)",
(unsigned int)mtu, (unsigned int)pdu,
EFX_MAC_PDU_MAX);
goto fail_inval;
}
sfc_adapter_lock(sa);
if (pdu != sa->port.pdu) {
if (sa->state == SFC_ADAPTER_STARTED) {
sfc_stop(sa);
old_pdu = sa->port.pdu;
sa->port.pdu = pdu;
rc = sfc_start(sa);
if (rc != 0)
goto fail_start;
} else {
sa->port.pdu = pdu;
}
}
/*
* The driver does not use it, but other PMDs update jumbo_frame
* flag and max_rx_pkt_len when MTU is set.
*/
if (mtu > ETHER_MAX_LEN) {
struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME;
rxmode->jumbo_frame = 1;
}
dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu;
sfc_adapter_unlock(sa);
sfc_log_init(sa, "done");
return 0;
fail_start:
sa->port.pdu = old_pdu;
if (sfc_start(sa) != 0)
sfc_err(sa, "cannot start with neither new (%u) nor old (%u) "
"PDU max size - port is stopped",
(unsigned int)pdu, (unsigned int)old_pdu);
sfc_adapter_unlock(sa);
fail_inval:
sfc_log_init(sa, "failed %d", rc);
SFC_ASSERT(rc > 0);
return -rc;
}
static int
sfc_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr)
{
struct sfc_adapter *sa = dev->data->dev_private;
const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
struct sfc_port *port = &sa->port;
struct ether_addr *old_addr = &dev->data->mac_addrs[0];
int rc = 0;
sfc_adapter_lock(sa);
/*
* Copy the address to the device private data so that
* it could be recalled in the case of adapter restart.
*/
ether_addr_copy(mac_addr, &port->default_mac_addr);
/*
* Neither of the two following checks can return
* an error. The new MAC address is preserved in
* the device private data and can be activated
* on the next port start if the user prevents
* isolated mode from being enabled.
*/
if (port->isolated) {
sfc_warn(sa, "isolated mode is active on the port");
sfc_warn(sa, "will not set MAC address");
goto unlock;
}
if (sa->state != SFC_ADAPTER_STARTED) {
sfc_notice(sa, "the port is not started");
sfc_notice(sa, "the new MAC address will be set on port start");
goto unlock;
}
if (encp->enc_allow_set_mac_with_installed_filters) {
rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes);
if (rc != 0) {
sfc_err(sa, "cannot set MAC address (rc = %u)", rc);
goto unlock;
}
/*
* Changing the MAC address by means of MCDI request
* has no effect on received traffic, therefore
* we also need to update unicast filters
*/
rc = sfc_set_rx_mode(sa);
if (rc != 0) {
sfc_err(sa, "cannot set filter (rc = %u)", rc);
/* Rollback the old address */
(void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes);
(void)sfc_set_rx_mode(sa);
}
} else {
sfc_warn(sa, "cannot set MAC address with filters installed");
sfc_warn(sa, "adapter will be restarted to pick the new MAC");
sfc_warn(sa, "(some traffic may be dropped)");
/*
* Since setting MAC address with filters installed is not
* allowed on the adapter, the new MAC address will be set
* by means of adapter restart. sfc_start() shall retrieve
* the new address from the device private data and set it.
*/
sfc_stop(sa);
rc = sfc_start(sa);
if (rc != 0)
sfc_err(sa, "cannot restart adapter (rc = %u)", rc);
}
unlock:
if (rc != 0)
ether_addr_copy(old_addr, &port->default_mac_addr);
sfc_adapter_unlock(sa);
SFC_ASSERT(rc >= 0);
return -rc;
}
static int
sfc_set_mc_addr_list(struct rte_eth_dev *dev, struct ether_addr *mc_addr_set,
uint32_t nb_mc_addr)
{
struct sfc_adapter *sa = dev->data->dev_private;
struct sfc_port *port = &sa->port;
uint8_t *mc_addrs = port->mcast_addrs;
int rc;
unsigned int i;
if (port->isolated) {
sfc_err(sa, "isolated mode is active on the port");
sfc_err(sa, "will not set multicast address list");
return -ENOTSUP;
}
if (mc_addrs == NULL)
return -ENOBUFS;
if (nb_mc_addr > port->max_mcast_addrs) {
sfc_err(sa, "too many multicast addresses: %u > %u",
nb_mc_addr, port->max_mcast_addrs);
return -EINVAL;
}
for (i = 0; i < nb_mc_addr; ++i) {
rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes,
EFX_MAC_ADDR_LEN);
mc_addrs += EFX_MAC_ADDR_LEN;
}
port->nb_mcast_addrs = nb_mc_addr;
if (sa->state != SFC_ADAPTER_STARTED)
return 0;
rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs,
port->nb_mcast_addrs);
if (rc != 0)
sfc_err(sa, "cannot set multicast address list (rc = %u)", rc);
SFC_ASSERT(rc > 0);
return -rc;
}
/*
* The function is used by the secondary process as well. It must not
* use any process-local pointers from the adapter data.
*/
static void
sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id,
struct rte_eth_rxq_info *qinfo)
{
struct sfc_adapter *sa = dev->data->dev_private;
struct sfc_rxq_info *rxq_info;
struct sfc_rxq *rxq;
sfc_adapter_lock(sa);
SFC_ASSERT(rx_queue_id < sa->rxq_count);
rxq_info = &sa->rxq_info[rx_queue_id];
rxq = rxq_info->rxq;
SFC_ASSERT(rxq != NULL);
qinfo->mp = rxq->refill_mb_pool;
qinfo->conf.rx_free_thresh = rxq->refill_threshold;
qinfo->conf.rx_drop_en = 1;
qinfo->conf.rx_deferred_start = rxq_info->deferred_start;
qinfo->conf.offloads = DEV_RX_OFFLOAD_IPV4_CKSUM |
DEV_RX_OFFLOAD_UDP_CKSUM |
DEV_RX_OFFLOAD_TCP_CKSUM;
if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) {
qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER;
qinfo->scattered_rx = 1;
}
qinfo->nb_desc = rxq_info->entries;
sfc_adapter_unlock(sa);
}
/*
* The function is used by the secondary process as well. It must not
* use any process-local pointers from the adapter data.
*/
static void
sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id,
struct rte_eth_txq_info *qinfo)
{
struct sfc_adapter *sa = dev->data->dev_private;
struct sfc_txq_info *txq_info;
sfc_adapter_lock(sa);
SFC_ASSERT(tx_queue_id < sa->txq_count);
txq_info = &sa->txq_info[tx_queue_id];
SFC_ASSERT(txq_info->txq != NULL);
memset(qinfo, 0, sizeof(*qinfo));
qinfo->conf.txq_flags = txq_info->txq->flags;
qinfo->conf.offloads = txq_info->txq->offloads;
qinfo->conf.tx_free_thresh = txq_info->txq->free_thresh;
qinfo->conf.tx_deferred_start = txq_info->deferred_start;
qinfo->nb_desc = txq_info->entries;
sfc_adapter_unlock(sa);
}
static uint32_t
sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
struct sfc_adapter *sa = dev->data->dev_private;
sfc_log_init(sa, "RxQ=%u", rx_queue_id);
return sfc_rx_qdesc_npending(sa, rx_queue_id);
}
static int
sfc_rx_descriptor_done(void *queue, uint16_t offset)
{
struct sfc_dp_rxq *dp_rxq = queue;
return sfc_rx_qdesc_done(dp_rxq, offset);
}
static int
sfc_rx_descriptor_status(void *queue, uint16_t offset)
{
struct sfc_dp_rxq *dp_rxq = queue;
struct sfc_rxq *rxq = sfc_rxq_by_dp_rxq(dp_rxq);
return rxq->evq->sa->dp_rx->qdesc_status(dp_rxq, offset);
}
static int
sfc_tx_descriptor_status(void *queue, uint16_t offset)
{
struct sfc_dp_txq *dp_txq = queue;
struct sfc_txq *txq = sfc_txq_by_dp_txq(dp_txq);
return txq->evq->sa->dp_tx->qdesc_status(dp_txq, offset);
}
static int
sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
struct sfc_adapter *sa = dev->data->dev_private;
int rc;
sfc_log_init(sa, "RxQ=%u", rx_queue_id);
sfc_adapter_lock(sa);
rc = EINVAL;
if (sa->state != SFC_ADAPTER_STARTED)
goto fail_not_started;
rc = sfc_rx_qstart(sa, rx_queue_id);
if (rc != 0)
goto fail_rx_qstart;
sa->rxq_info[rx_queue_id].deferred_started = B_TRUE;
sfc_adapter_unlock(sa);
return 0;
fail_rx_qstart:
fail_not_started:
sfc_adapter_unlock(sa);
SFC_ASSERT(rc > 0);
return -rc;
}
static int
sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
struct sfc_adapter *sa = dev->data->dev_private;
sfc_log_init(sa, "RxQ=%u", rx_queue_id);
sfc_adapter_lock(sa);
sfc_rx_qstop(sa, rx_queue_id);
sa->rxq_info[rx_queue_id].deferred_started = B_FALSE;
sfc_adapter_unlock(sa);
return 0;
}
static int
sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
{
struct sfc_adapter *sa = dev->data->dev_private;
int rc;
sfc_log_init(sa, "TxQ = %u", tx_queue_id);
sfc_adapter_lock(sa);
rc = EINVAL;
if (sa->state != SFC_ADAPTER_STARTED)
goto fail_not_started;
rc = sfc_tx_qstart(sa, tx_queue_id);
if (rc != 0)
goto fail_tx_qstart;
sa->txq_info[tx_queue_id].deferred_started = B_TRUE;
sfc_adapter_unlock(sa);
return 0;
fail_tx_qstart:
fail_not_started:
sfc_adapter_unlock(sa);
SFC_ASSERT(rc > 0);
return -rc;
}
static int
sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
{
struct sfc_adapter *sa = dev->data->dev_private;
sfc_log_init(sa, "TxQ = %u", tx_queue_id);
sfc_adapter_lock(sa);
sfc_tx_qstop(sa, tx_queue_id);
sa->txq_info[tx_queue_id].deferred_started = B_FALSE;
sfc_adapter_unlock(sa);
return 0;
}
static efx_tunnel_protocol_t
sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type)
{
switch (rte_type) {
case RTE_TUNNEL_TYPE_VXLAN:
return EFX_TUNNEL_PROTOCOL_VXLAN;
case RTE_TUNNEL_TYPE_GENEVE:
return EFX_TUNNEL_PROTOCOL_GENEVE;
default:
return EFX_TUNNEL_NPROTOS;
}
}
enum sfc_udp_tunnel_op_e {
SFC_UDP_TUNNEL_ADD_PORT,
SFC_UDP_TUNNEL_DEL_PORT,
};
static int
sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev,
struct rte_eth_udp_tunnel *tunnel_udp,
enum sfc_udp_tunnel_op_e op)
{
struct sfc_adapter *sa = dev->data->dev_private;
efx_tunnel_protocol_t tunnel_proto;
int rc;
sfc_log_init(sa, "%s udp_port=%u prot_type=%u",
(op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" :
(op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown",
tunnel_udp->udp_port, tunnel_udp->prot_type);
tunnel_proto =
sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type);
if (tunnel_proto >= EFX_TUNNEL_NPROTOS) {
rc = ENOTSUP;
goto fail_bad_proto;
}
sfc_adapter_lock(sa);
switch (op) {
case SFC_UDP_TUNNEL_ADD_PORT:
rc = efx_tunnel_config_udp_add(sa->nic,
tunnel_udp->udp_port,
tunnel_proto);
break;
case SFC_UDP_TUNNEL_DEL_PORT:
rc = efx_tunnel_config_udp_remove(sa->nic,
tunnel_udp->udp_port,
tunnel_proto);
break;
default:
rc = EINVAL;
goto fail_bad_op;
}
if (rc != 0)
goto fail_op;
if (sa->state == SFC_ADAPTER_STARTED) {
rc = efx_tunnel_reconfigure(sa->nic);
if (rc == EAGAIN) {
/*
* Configuration is accepted by FW and MC reboot
* is initiated to apply the changes. MC reboot
* will be handled in a usual way (MC reboot
* event on management event queue and adapter
* restart).
*/
rc = 0;
} else if (rc != 0) {
goto fail_reconfigure;
}
}
sfc_adapter_unlock(sa);
return 0;
fail_reconfigure:
/* Remove/restore entry since the change makes the trouble */
switch (op) {
case SFC_UDP_TUNNEL_ADD_PORT:
(void)efx_tunnel_config_udp_remove(sa->nic,
tunnel_udp->udp_port,
tunnel_proto);
break;
case SFC_UDP_TUNNEL_DEL_PORT:
(void)efx_tunnel_config_udp_add(sa->nic,
tunnel_udp->udp_port,
tunnel_proto);
break;
}
fail_op:
fail_bad_op:
sfc_adapter_unlock(sa);
fail_bad_proto:
SFC_ASSERT(rc > 0);
return -rc;
}
static int
sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev,
struct rte_eth_udp_tunnel *tunnel_udp)
{
return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT);
}
static int
sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev,
struct rte_eth_udp_tunnel *tunnel_udp)
{
return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT);
}
static int
sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
struct sfc_adapter *sa = dev->data->dev_private;
struct sfc_rss *rss = &sa->rss;
struct sfc_port *port = &sa->port;
if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || port->isolated)
return -ENOTSUP;
if (rss->channels == 0)
return -EINVAL;
sfc_adapter_lock(sa);
/*
* Mapping of hash configuration between RTE and EFX is not one-to-one,
* hence, conversion is done here to derive a correct set of ETH_RSS
* flags which corresponds to the active EFX configuration stored
* locally in 'sfc_adapter' and kept up-to-date
*/
rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(sa, rss->hash_types);
rss_conf->rss_key_len = EFX_RSS_KEY_SIZE;
if (rss_conf->rss_key != NULL)
rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE);
sfc_adapter_unlock(sa);
return 0;
}
static int
sfc_dev_rss_hash_update(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
struct sfc_adapter *sa = dev->data->dev_private;
struct sfc_rss *rss = &sa->rss;
struct sfc_port *port = &sa->port;
unsigned int efx_hash_types;
int rc = 0;
if (port->isolated)
return -ENOTSUP;
if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
sfc_err(sa, "RSS is not available");
return -ENOTSUP;
}
if (rss->channels == 0) {
sfc_err(sa, "RSS is not configured");
return -EINVAL;
}
if ((rss_conf->rss_key != NULL) &&
(rss_conf->rss_key_len != sizeof(rss->key))) {
sfc_err(sa, "RSS key size is wrong (should be %lu)",
sizeof(rss->key));
return -EINVAL;
}
sfc_adapter_lock(sa);
rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types);
if (rc != 0)
goto fail_rx_hf_rte_to_efx;
rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
rss->hash_alg, efx_hash_types, B_TRUE);
if (rc != 0)
goto fail_scale_mode_set;
if (rss_conf->rss_key != NULL) {
if (sa->state == SFC_ADAPTER_STARTED) {
rc = efx_rx_scale_key_set(sa->nic,
EFX_RSS_CONTEXT_DEFAULT,
rss_conf->rss_key,
sizeof(rss->key));
if (rc != 0)
goto fail_scale_key_set;
}
rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key));
}
rss->hash_types = efx_hash_types;
sfc_adapter_unlock(sa);
return 0;
fail_scale_key_set:
if (efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
EFX_RX_HASHALG_TOEPLITZ,
rss->hash_types, B_TRUE) != 0)
sfc_err(sa, "failed to restore RSS mode");
fail_scale_mode_set:
fail_rx_hf_rte_to_efx:
sfc_adapter_unlock(sa);
return -rc;
}
static int
sfc_dev_rss_reta_query(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
struct sfc_adapter *sa = dev->data->dev_private;
struct sfc_rss *rss = &sa->rss;
struct sfc_port *port = &sa->port;
int entry;
if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || port->isolated)
return -ENOTSUP;
if (rss->channels == 0)
return -EINVAL;
if (reta_size != EFX_RSS_TBL_SIZE)
return -EINVAL;
sfc_adapter_lock(sa);
for (entry = 0; entry < reta_size; entry++) {
int grp = entry / RTE_RETA_GROUP_SIZE;
int grp_idx = entry % RTE_RETA_GROUP_SIZE;
if ((reta_conf[grp].mask >> grp_idx) & 1)
reta_conf[grp].reta[grp_idx] = rss->tbl[entry];
}
sfc_adapter_unlock(sa);
return 0;
}
static int
sfc_dev_rss_reta_update(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
struct sfc_adapter *sa = dev->data->dev_private;
struct sfc_rss *rss = &sa->rss;
struct sfc_port *port = &sa->port;
unsigned int *rss_tbl_new;
uint16_t entry;
int rc = 0;
if (port->isolated)
return -ENOTSUP;
if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
sfc_err(sa, "RSS is not available");
return -ENOTSUP;
}
if (rss->channels == 0) {
sfc_err(sa, "RSS is not configured");
return -EINVAL;
}
if (reta_size != EFX_RSS_TBL_SIZE) {
sfc_err(sa, "RETA size is wrong (should be %u)",
EFX_RSS_TBL_SIZE);
return -EINVAL;
}
rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0);
if (rss_tbl_new == NULL)
return -ENOMEM;
sfc_adapter_lock(sa);
rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl));
for (entry = 0; entry < reta_size; entry++) {
int grp_idx = entry % RTE_RETA_GROUP_SIZE;
struct rte_eth_rss_reta_entry64 *grp;
grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE];
if (grp->mask & (1ull << grp_idx)) {
if (grp->reta[grp_idx] >= rss->channels) {
rc = EINVAL;
goto bad_reta_entry;
}
rss_tbl_new[entry] = grp->reta[grp_idx];
}
}
if (sa->state == SFC_ADAPTER_STARTED) {
rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
rss_tbl_new, EFX_RSS_TBL_SIZE);
if (rc != 0)
goto fail_scale_tbl_set;
}
rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl));
fail_scale_tbl_set:
bad_reta_entry:
sfc_adapter_unlock(sa);
rte_free(rss_tbl_new);
SFC_ASSERT(rc >= 0);
return -rc;
}
static int
sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type,
enum rte_filter_op filter_op,
void *arg)
{
struct sfc_adapter *sa = dev->data->dev_private;
int rc = ENOTSUP;
sfc_log_init(sa, "entry");
switch (filter_type) {
case RTE_ETH_FILTER_NONE:
sfc_err(sa, "Global filters configuration not supported");
break;
case RTE_ETH_FILTER_MACVLAN:
sfc_err(sa, "MACVLAN filters not supported");
break;
case RTE_ETH_FILTER_ETHERTYPE:
sfc_err(sa, "EtherType filters not supported");
break;
case RTE_ETH_FILTER_FLEXIBLE:
sfc_err(sa, "Flexible filters not supported");
break;
case RTE_ETH_FILTER_SYN:
sfc_err(sa, "SYN filters not supported");
break;
case RTE_ETH_FILTER_NTUPLE:
sfc_err(sa, "NTUPLE filters not supported");
break;
case RTE_ETH_FILTER_TUNNEL:
sfc_err(sa, "Tunnel filters not supported");
break;
case RTE_ETH_FILTER_FDIR:
sfc_err(sa, "Flow Director filters not supported");
break;
case RTE_ETH_FILTER_HASH:
sfc_err(sa, "Hash filters not supported");
break;
case RTE_ETH_FILTER_GENERIC:
if (filter_op != RTE_ETH_FILTER_GET) {
rc = EINVAL;
} else {
*(const void **)arg = &sfc_flow_ops;
rc = 0;
}
break;
default:
sfc_err(sa, "Unknown filter type %u", filter_type);
break;
}
sfc_log_init(sa, "exit: %d", -rc);
SFC_ASSERT(rc >= 0);
return -rc;
}
static int
sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool)
{
struct sfc_adapter *sa = dev->data->dev_private;
/*
* If Rx datapath does not provide callback to check mempool,
* all pools are supported.
*/
if (sa->dp_rx->pool_ops_supported == NULL)
return 1;
return sa->dp_rx->pool_ops_supported(pool);
}
static const struct eth_dev_ops sfc_eth_dev_ops = {
.dev_configure = sfc_dev_configure,
.dev_start = sfc_dev_start,
.dev_stop = sfc_dev_stop,
.dev_set_link_up = sfc_dev_set_link_up,
.dev_set_link_down = sfc_dev_set_link_down,
.dev_close = sfc_dev_close,
.promiscuous_enable = sfc_dev_promisc_enable,
.promiscuous_disable = sfc_dev_promisc_disable,
.allmulticast_enable = sfc_dev_allmulti_enable,
.allmulticast_disable = sfc_dev_allmulti_disable,
.link_update = sfc_dev_link_update,
.stats_get = sfc_stats_get,
.stats_reset = sfc_stats_reset,
.xstats_get = sfc_xstats_get,
.xstats_reset = sfc_stats_reset,
.xstats_get_names = sfc_xstats_get_names,
.dev_infos_get = sfc_dev_infos_get,
.dev_supported_ptypes_get = sfc_dev_supported_ptypes_get,
.mtu_set = sfc_dev_set_mtu,
.rx_queue_start = sfc_rx_queue_start,
.rx_queue_stop = sfc_rx_queue_stop,
.tx_queue_start = sfc_tx_queue_start,
.tx_queue_stop = sfc_tx_queue_stop,
.rx_queue_setup = sfc_rx_queue_setup,
.rx_queue_release = sfc_rx_queue_release,
.rx_queue_count = sfc_rx_queue_count,
.rx_descriptor_done = sfc_rx_descriptor_done,
.rx_descriptor_status = sfc_rx_descriptor_status,
.tx_descriptor_status = sfc_tx_descriptor_status,
.tx_queue_setup = sfc_tx_queue_setup,
.tx_queue_release = sfc_tx_queue_release,
.flow_ctrl_get = sfc_flow_ctrl_get,
.flow_ctrl_set = sfc_flow_ctrl_set,
.mac_addr_set = sfc_mac_addr_set,
.udp_tunnel_port_add = sfc_dev_udp_tunnel_port_add,
.udp_tunnel_port_del = sfc_dev_udp_tunnel_port_del,
.reta_update = sfc_dev_rss_reta_update,
.reta_query = sfc_dev_rss_reta_query,
.rss_hash_update = sfc_dev_rss_hash_update,
.rss_hash_conf_get = sfc_dev_rss_hash_conf_get,
.filter_ctrl = sfc_dev_filter_ctrl,
.set_mc_addr_list = sfc_set_mc_addr_list,
.rxq_info_get = sfc_rx_queue_info_get,
.txq_info_get = sfc_tx_queue_info_get,
.fw_version_get = sfc_fw_version_get,
.xstats_get_by_id = sfc_xstats_get_by_id,
.xstats_get_names_by_id = sfc_xstats_get_names_by_id,
.pool_ops_supported = sfc_pool_ops_supported,
};
/**
* Duplicate a string in potentially shared memory required for
* multi-process support.
*
* strdup() allocates from process-local heap/memory.
*/
static char *
sfc_strdup(const char *str)
{
size_t size;
char *copy;
if (str == NULL)
return NULL;
size = strlen(str) + 1;
copy = rte_malloc(__func__, size, 0);
if (copy != NULL)
rte_memcpy(copy, str, size);
return copy;
}
static int
sfc_eth_dev_set_ops(struct rte_eth_dev *dev)
{
struct sfc_adapter *sa = dev->data->dev_private;
const efx_nic_cfg_t *encp;
unsigned int avail_caps = 0;
const char *rx_name = NULL;
const char *tx_name = NULL;
int rc;
switch (sa->family) {
case EFX_FAMILY_HUNTINGTON:
case EFX_FAMILY_MEDFORD:
case EFX_FAMILY_MEDFORD2:
avail_caps |= SFC_DP_HW_FW_CAP_EF10;
break;
default:
break;
}
encp = efx_nic_cfg_get(sa->nic);
if (encp->enc_rx_es_super_buffer_supported)
avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER;
rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH,
sfc_kvarg_string_handler, &rx_name);
if (rc != 0)
goto fail_kvarg_rx_datapath;
if (rx_name != NULL) {
sa->dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name);
if (sa->dp_rx == NULL) {
sfc_err(sa, "Rx datapath %s not found", rx_name);
rc = ENOENT;
goto fail_dp_rx;
}
if (!sfc_dp_match_hw_fw_caps(&sa->dp_rx->dp, avail_caps)) {
sfc_err(sa,
"Insufficient Hw/FW capabilities to use Rx datapath %s",
rx_name);
rc = EINVAL;
goto fail_dp_rx_caps;
}
} else {
sa->dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps);
if (sa->dp_rx == NULL) {
sfc_err(sa, "Rx datapath by caps %#x not found",
avail_caps);
rc = ENOENT;
goto fail_dp_rx;
}
}
sa->dp_rx_name = sfc_strdup(sa->dp_rx->dp.name);
if (sa->dp_rx_name == NULL) {
rc = ENOMEM;
goto fail_dp_rx_name;
}
sfc_notice(sa, "use %s Rx datapath", sa->dp_rx_name);
dev->rx_pkt_burst = sa->dp_rx->pkt_burst;
rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH,
sfc_kvarg_string_handler, &tx_name);
if (rc != 0)
goto fail_kvarg_tx_datapath;
if (tx_name != NULL) {
sa->dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name);
if (sa->dp_tx == NULL) {
sfc_err(sa, "Tx datapath %s not found", tx_name);
rc = ENOENT;
goto fail_dp_tx;
}
if (!sfc_dp_match_hw_fw_caps(&sa->dp_tx->dp, avail_caps)) {
sfc_err(sa,
"Insufficient Hw/FW capabilities to use Tx datapath %s",
tx_name);
rc = EINVAL;
goto fail_dp_tx_caps;
}
} else {
sa->dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps);
if (sa->dp_tx == NULL) {
sfc_err(sa, "Tx datapath by caps %#x not found",
avail_caps);
rc = ENOENT;
goto fail_dp_tx;
}
}
sa->dp_tx_name = sfc_strdup(sa->dp_tx->dp.name);
if (sa->dp_tx_name == NULL) {
rc = ENOMEM;
goto fail_dp_tx_name;
}
sfc_notice(sa, "use %s Tx datapath", sa->dp_tx_name);
dev->tx_pkt_burst = sa->dp_tx->pkt_burst;
dev->dev_ops = &sfc_eth_dev_ops;
return 0;
fail_dp_tx_name:
fail_dp_tx_caps:
sa->dp_tx = NULL;
fail_dp_tx:
fail_kvarg_tx_datapath:
rte_free(sa->dp_rx_name);
sa->dp_rx_name = NULL;
fail_dp_rx_name:
fail_dp_rx_caps:
sa->dp_rx = NULL;
fail_dp_rx:
fail_kvarg_rx_datapath:
return rc;
}
static void
sfc_eth_dev_clear_ops(struct rte_eth_dev *dev)
{
struct sfc_adapter *sa = dev->data->dev_private;
dev->dev_ops = NULL;
dev->rx_pkt_burst = NULL;
dev->tx_pkt_burst = NULL;
rte_free(sa->dp_tx_name);
sa->dp_tx_name = NULL;
sa->dp_tx = NULL;
rte_free(sa->dp_rx_name);
sa->dp_rx_name = NULL;
sa->dp_rx = NULL;
}
static const struct eth_dev_ops sfc_eth_dev_secondary_ops = {
.rxq_info_get = sfc_rx_queue_info_get,
.txq_info_get = sfc_tx_queue_info_get,
};
static int
sfc_eth_dev_secondary_set_ops(struct rte_eth_dev *dev)
{
/*
* Device private data has really many process-local pointers.
* Below code should be extremely careful to use data located
* in shared memory only.
*/
struct sfc_adapter *sa = dev->data->dev_private;
const struct sfc_dp_rx *dp_rx;
const struct sfc_dp_tx *dp_tx;
int rc;
dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sa->dp_rx_name);
if (dp_rx == NULL) {
sfc_err(sa, "cannot find %s Rx datapath", sa->dp_tx_name);
rc = ENOENT;
goto fail_dp_rx;
}
if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) {
sfc_err(sa, "%s Rx datapath does not support multi-process",
sa->dp_tx_name);
rc = EINVAL;
goto fail_dp_rx_multi_process;
}
dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sa->dp_tx_name);
if (dp_tx == NULL) {
sfc_err(sa, "cannot find %s Tx datapath", sa->dp_tx_name);
rc = ENOENT;
goto fail_dp_tx;
}
if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) {
sfc_err(sa, "%s Tx datapath does not support multi-process",
sa->dp_tx_name);
rc = EINVAL;
goto fail_dp_tx_multi_process;
}
dev->rx_pkt_burst = dp_rx->pkt_burst;
dev->tx_pkt_burst = dp_tx->pkt_burst;
dev->dev_ops = &sfc_eth_dev_secondary_ops;
return 0;
fail_dp_tx_multi_process:
fail_dp_tx:
fail_dp_rx_multi_process:
fail_dp_rx:
return rc;
}
static void
sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev)
{
dev->dev_ops = NULL;
dev->tx_pkt_burst = NULL;
dev->rx_pkt_burst = NULL;
}
static void
sfc_register_dp(void)
{
/* Register once */
if (TAILQ_EMPTY(&sfc_dp_head)) {
/* Prefer EF10 datapath */
sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp);
sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp);
sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp);
sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp);
sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp);
sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp);
}
}
static int
sfc_eth_dev_init(struct rte_eth_dev *dev)
{
struct sfc_adapter *sa = dev->data->dev_private;
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
int rc;
const efx_nic_cfg_t *encp;
const struct ether_addr *from;
sfc_register_dp();
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return -sfc_eth_dev_secondary_set_ops(dev);
/* Required for logging */
sa->pci_addr = pci_dev->addr;
sa->port_id = dev->data->port_id;
sa->eth_dev = dev;
/* Copy PCI device info to the dev->data */
rte_eth_copy_pci_info(dev, pci_dev);
sa->logtype_main = sfc_register_logtype(sa, SFC_LOGTYPE_MAIN_STR,
RTE_LOG_NOTICE);
rc = sfc_kvargs_parse(sa);
if (rc != 0)
goto fail_kvargs_parse;
sfc_log_init(sa, "entry");
dev->data->mac_addrs = rte_zmalloc("sfc", ETHER_ADDR_LEN, 0);
if (dev->data->mac_addrs == NULL) {
rc = ENOMEM;
goto fail_mac_addrs;
}
sfc_adapter_lock_init(sa);
sfc_adapter_lock(sa);
sfc_log_init(sa, "probing");
rc = sfc_probe(sa);
if (rc != 0)
goto fail_probe;
sfc_log_init(sa, "set device ops");
rc = sfc_eth_dev_set_ops(dev);
if (rc != 0)
goto fail_set_ops;
sfc_log_init(sa, "attaching");
rc = sfc_attach(sa);
if (rc != 0)
goto fail_attach;
encp = efx_nic_cfg_get(sa->nic);
/*
* The arguments are really reverse order in comparison to
* Linux kernel. Copy from NIC config to Ethernet device data.
*/
from = (const struct ether_addr *)(encp->enc_mac_addr);
ether_addr_copy(from, &dev->data->mac_addrs[0]);
sfc_adapter_unlock(sa);
sfc_log_init(sa, "done");
return 0;
fail_attach:
sfc_eth_dev_clear_ops(dev);
fail_set_ops:
sfc_unprobe(sa);
fail_probe:
sfc_adapter_unlock(sa);
sfc_adapter_lock_fini(sa);
rte_free(dev->data->mac_addrs);
dev->data->mac_addrs = NULL;
fail_mac_addrs:
sfc_kvargs_cleanup(sa);
fail_kvargs_parse:
sfc_log_init(sa, "failed %d", rc);
SFC_ASSERT(rc > 0);
return -rc;
}
static int
sfc_eth_dev_uninit(struct rte_eth_dev *dev)
{
struct sfc_adapter *sa;
if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
sfc_eth_dev_secondary_clear_ops(dev);
return 0;
}
sa = dev->data->dev_private;
sfc_log_init(sa, "entry");
sfc_adapter_lock(sa);
sfc_eth_dev_clear_ops(dev);
sfc_detach(sa);
sfc_unprobe(sa);
rte_free(dev->data->mac_addrs);
dev->data->mac_addrs = NULL;
sfc_kvargs_cleanup(sa);
sfc_adapter_unlock(sa);
sfc_adapter_lock_fini(sa);
sfc_log_init(sa, "done");
/* Required for logging, so cleanup last */
sa->eth_dev = NULL;
return 0;
}
static const struct rte_pci_id pci_id_sfc_efx_map[] = {
{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) },
{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) },
{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) },
{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) },
{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) },
{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) },
{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) },
{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) },
{ .vendor_id = 0 /* sentinel */ }
};
static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_probe(pci_dev,
sizeof(struct sfc_adapter), sfc_eth_dev_init);
}
static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit);
}
static struct rte_pci_driver sfc_efx_pmd = {
.id_table = pci_id_sfc_efx_map,
.drv_flags =
RTE_PCI_DRV_INTR_LSC |
RTE_PCI_DRV_NEED_MAPPING,
.probe = sfc_eth_dev_pci_probe,
.remove = sfc_eth_dev_pci_remove,
};
RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd);
RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map);
RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci");
RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx,
SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " "
SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " "
SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " "
SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " "
SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> "
SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>");
RTE_INIT(sfc_driver_register_logtype);
static void
sfc_driver_register_logtype(void)
{
int ret;
ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver",
RTE_LOG_NOTICE);
sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret;
}