numam-dpdk/drivers/event/octeontx2/otx2_evdev_selftest.c
Pavan Nikhilesh 62561532ac event/octeontx2: add SSO selftest
Add selftest to verify sanity of SSO.
Can be run by passing devargs to SSO PF as follows:

Example:
	--dev "0002:0e:00.0,selftest=1"

Signed-off-by: Pavan Nikhilesh <pbhagavatula@marvell.com>
Signed-off-by: Jerin Jacob <jerinj@marvell.com>
2019-07-03 06:56:29 +02:00

1512 lines
39 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(C) 2019 Marvell International Ltd.
*/
#include <rte_atomic.h>
#include <rte_common.h>
#include <rte_cycles.h>
#include <rte_debug.h>
#include <rte_eal.h>
#include <rte_ethdev.h>
#include <rte_eventdev.h>
#include <rte_hexdump.h>
#include <rte_launch.h>
#include <rte_lcore.h>
#include <rte_mbuf.h>
#include <rte_malloc.h>
#include <rte_memcpy.h>
#include <rte_per_lcore.h>
#include <rte_random.h>
#include <rte_test.h>
#include "otx2_evdev.h"
#define NUM_PACKETS (1024)
#define MAX_EVENTS (1024)
#define OCTEONTX2_TEST_RUN(setup, teardown, test) \
octeontx_test_run(setup, teardown, test, #test)
static int total;
static int passed;
static int failed;
static int unsupported;
static int evdev;
static struct rte_mempool *eventdev_test_mempool;
struct event_attr {
uint32_t flow_id;
uint8_t event_type;
uint8_t sub_event_type;
uint8_t sched_type;
uint8_t queue;
uint8_t port;
};
static uint32_t seqn_list_index;
static int seqn_list[NUM_PACKETS];
static inline void
seqn_list_init(void)
{
RTE_BUILD_BUG_ON(NUM_PACKETS < MAX_EVENTS);
memset(seqn_list, 0, sizeof(seqn_list));
seqn_list_index = 0;
}
static inline int
seqn_list_update(int val)
{
if (seqn_list_index >= NUM_PACKETS)
return -1;
seqn_list[seqn_list_index++] = val;
rte_smp_wmb();
return 0;
}
static inline int
seqn_list_check(int limit)
{
int i;
for (i = 0; i < limit; i++) {
if (seqn_list[i] != i) {
otx2_err("Seqn mismatch %d %d", seqn_list[i], i);
return -1;
}
}
return 0;
}
struct test_core_param {
rte_atomic32_t *total_events;
uint64_t dequeue_tmo_ticks;
uint8_t port;
uint8_t sched_type;
};
static int
testsuite_setup(void)
{
const char *eventdev_name = "event_octeontx2";
evdev = rte_event_dev_get_dev_id(eventdev_name);
if (evdev < 0) {
otx2_err("%d: Eventdev %s not found", __LINE__, eventdev_name);
return -1;
}
return 0;
}
static void
testsuite_teardown(void)
{
rte_event_dev_close(evdev);
}
static inline void
devconf_set_default_sane_values(struct rte_event_dev_config *dev_conf,
struct rte_event_dev_info *info)
{
memset(dev_conf, 0, sizeof(struct rte_event_dev_config));
dev_conf->dequeue_timeout_ns = info->min_dequeue_timeout_ns;
dev_conf->nb_event_ports = info->max_event_ports;
dev_conf->nb_event_queues = info->max_event_queues;
dev_conf->nb_event_queue_flows = info->max_event_queue_flows;
dev_conf->nb_event_port_dequeue_depth =
info->max_event_port_dequeue_depth;
dev_conf->nb_event_port_enqueue_depth =
info->max_event_port_enqueue_depth;
dev_conf->nb_event_port_enqueue_depth =
info->max_event_port_enqueue_depth;
dev_conf->nb_events_limit =
info->max_num_events;
}
enum {
TEST_EVENTDEV_SETUP_DEFAULT,
TEST_EVENTDEV_SETUP_PRIORITY,
TEST_EVENTDEV_SETUP_DEQUEUE_TIMEOUT,
};
static inline int
_eventdev_setup(int mode)
{
const char *pool_name = "evdev_octeontx_test_pool";
struct rte_event_dev_config dev_conf;
struct rte_event_dev_info info;
int i, ret;
/* Create and destrory pool for each test case to make it standalone */
eventdev_test_mempool = rte_pktmbuf_pool_create(pool_name, MAX_EVENTS,
0, 0, 512,
rte_socket_id());
if (!eventdev_test_mempool) {
otx2_err("ERROR creating mempool");
return -1;
}
ret = rte_event_dev_info_get(evdev, &info);
RTE_TEST_ASSERT_SUCCESS(ret, "Failed to get event dev info");
devconf_set_default_sane_values(&dev_conf, &info);
if (mode == TEST_EVENTDEV_SETUP_DEQUEUE_TIMEOUT)
dev_conf.event_dev_cfg |= RTE_EVENT_DEV_CFG_PER_DEQUEUE_TIMEOUT;
ret = rte_event_dev_configure(evdev, &dev_conf);
RTE_TEST_ASSERT_SUCCESS(ret, "Failed to configure eventdev");
uint32_t queue_count;
RTE_TEST_ASSERT_SUCCESS(rte_event_dev_attr_get(evdev,
RTE_EVENT_DEV_ATTR_QUEUE_COUNT, &queue_count),
"Queue count get failed");
if (mode == TEST_EVENTDEV_SETUP_PRIORITY) {
if (queue_count > 8)
queue_count = 8;
/* Configure event queues(0 to n) with
* RTE_EVENT_DEV_PRIORITY_HIGHEST to
* RTE_EVENT_DEV_PRIORITY_LOWEST
*/
uint8_t step = (RTE_EVENT_DEV_PRIORITY_LOWEST + 1) /
queue_count;
for (i = 0; i < (int)queue_count; i++) {
struct rte_event_queue_conf queue_conf;
ret = rte_event_queue_default_conf_get(evdev, i,
&queue_conf);
RTE_TEST_ASSERT_SUCCESS(ret, "Failed to get def_conf%d",
i);
queue_conf.priority = i * step;
ret = rte_event_queue_setup(evdev, i, &queue_conf);
RTE_TEST_ASSERT_SUCCESS(ret, "Failed to setup queue=%d",
i);
}
} else {
/* Configure event queues with default priority */
for (i = 0; i < (int)queue_count; i++) {
ret = rte_event_queue_setup(evdev, i, NULL);
RTE_TEST_ASSERT_SUCCESS(ret, "Failed to setup queue=%d",
i);
}
}
/* Configure event ports */
uint32_t port_count;
RTE_TEST_ASSERT_SUCCESS(rte_event_dev_attr_get(evdev,
RTE_EVENT_DEV_ATTR_PORT_COUNT, &port_count),
"Port count get failed");
for (i = 0; i < (int)port_count; i++) {
ret = rte_event_port_setup(evdev, i, NULL);
RTE_TEST_ASSERT_SUCCESS(ret, "Failed to setup port=%d", i);
ret = rte_event_port_link(evdev, i, NULL, NULL, 0);
RTE_TEST_ASSERT(ret >= 0, "Failed to link all queues port=%d",
i);
}
ret = rte_event_dev_start(evdev);
RTE_TEST_ASSERT_SUCCESS(ret, "Failed to start device");
return 0;
}
static inline int
eventdev_setup(void)
{
return _eventdev_setup(TEST_EVENTDEV_SETUP_DEFAULT);
}
static inline int
eventdev_setup_priority(void)
{
return _eventdev_setup(TEST_EVENTDEV_SETUP_PRIORITY);
}
static inline int
eventdev_setup_dequeue_timeout(void)
{
return _eventdev_setup(TEST_EVENTDEV_SETUP_DEQUEUE_TIMEOUT);
}
static inline void
eventdev_teardown(void)
{
rte_event_dev_stop(evdev);
rte_mempool_free(eventdev_test_mempool);
}
static inline void
update_event_and_validation_attr(struct rte_mbuf *m, struct rte_event *ev,
uint32_t flow_id, uint8_t event_type,
uint8_t sub_event_type, uint8_t sched_type,
uint8_t queue, uint8_t port)
{
struct event_attr *attr;
/* Store the event attributes in mbuf for future reference */
attr = rte_pktmbuf_mtod(m, struct event_attr *);
attr->flow_id = flow_id;
attr->event_type = event_type;
attr->sub_event_type = sub_event_type;
attr->sched_type = sched_type;
attr->queue = queue;
attr->port = port;
ev->flow_id = flow_id;
ev->sub_event_type = sub_event_type;
ev->event_type = event_type;
/* Inject the new event */
ev->op = RTE_EVENT_OP_NEW;
ev->sched_type = sched_type;
ev->queue_id = queue;
ev->mbuf = m;
}
static inline int
inject_events(uint32_t flow_id, uint8_t event_type, uint8_t sub_event_type,
uint8_t sched_type, uint8_t queue, uint8_t port,
unsigned int events)
{
struct rte_mbuf *m;
unsigned int i;
for (i = 0; i < events; i++) {
struct rte_event ev = {.event = 0, .u64 = 0};
m = rte_pktmbuf_alloc(eventdev_test_mempool);
RTE_TEST_ASSERT_NOT_NULL(m, "mempool alloc failed");
m->seqn = i;
update_event_and_validation_attr(m, &ev, flow_id, event_type,
sub_event_type, sched_type,
queue, port);
rte_event_enqueue_burst(evdev, port, &ev, 1);
}
return 0;
}
static inline int
check_excess_events(uint8_t port)
{
uint16_t valid_event;
struct rte_event ev;
int i;
/* Check for excess events, try for a few times and exit */
for (i = 0; i < 32; i++) {
valid_event = rte_event_dequeue_burst(evdev, port, &ev, 1, 0);
RTE_TEST_ASSERT_SUCCESS(valid_event,
"Unexpected valid event=%d",
ev.mbuf->seqn);
}
return 0;
}
static inline int
generate_random_events(const unsigned int total_events)
{
struct rte_event_dev_info info;
uint32_t queue_count;
unsigned int i;
int ret;
RTE_TEST_ASSERT_SUCCESS(rte_event_dev_attr_get(evdev,
RTE_EVENT_DEV_ATTR_QUEUE_COUNT, &queue_count),
"Queue count get failed");
ret = rte_event_dev_info_get(evdev, &info);
RTE_TEST_ASSERT_SUCCESS(ret, "Failed to get event dev info");
for (i = 0; i < total_events; i++) {
ret = inject_events(
rte_rand() % info.max_event_queue_flows /*flow_id */,
RTE_EVENT_TYPE_CPU /* event_type */,
rte_rand() % 256 /* sub_event_type */,
rte_rand() % (RTE_SCHED_TYPE_PARALLEL + 1),
rte_rand() % queue_count /* queue */,
0 /* port */,
1 /* events */);
if (ret)
return -1;
}
return ret;
}
static inline int
validate_event(struct rte_event *ev)
{
struct event_attr *attr;
attr = rte_pktmbuf_mtod(ev->mbuf, struct event_attr *);
RTE_TEST_ASSERT_EQUAL(attr->flow_id, ev->flow_id,
"flow_id mismatch enq=%d deq =%d",
attr->flow_id, ev->flow_id);
RTE_TEST_ASSERT_EQUAL(attr->event_type, ev->event_type,
"event_type mismatch enq=%d deq =%d",
attr->event_type, ev->event_type);
RTE_TEST_ASSERT_EQUAL(attr->sub_event_type, ev->sub_event_type,
"sub_event_type mismatch enq=%d deq =%d",
attr->sub_event_type, ev->sub_event_type);
RTE_TEST_ASSERT_EQUAL(attr->sched_type, ev->sched_type,
"sched_type mismatch enq=%d deq =%d",
attr->sched_type, ev->sched_type);
RTE_TEST_ASSERT_EQUAL(attr->queue, ev->queue_id,
"queue mismatch enq=%d deq =%d",
attr->queue, ev->queue_id);
return 0;
}
typedef int (*validate_event_cb)(uint32_t index, uint8_t port,
struct rte_event *ev);
static inline int
consume_events(uint8_t port, const uint32_t total_events, validate_event_cb fn)
{
uint32_t events = 0, forward_progress_cnt = 0, index = 0;
uint16_t valid_event;
struct rte_event ev;
int ret;
while (1) {
if (++forward_progress_cnt > UINT16_MAX) {
otx2_err("Detected deadlock");
return -1;
}
valid_event = rte_event_dequeue_burst(evdev, port, &ev, 1, 0);
if (!valid_event)
continue;
forward_progress_cnt = 0;
ret = validate_event(&ev);
if (ret)
return -1;
if (fn != NULL) {
ret = fn(index, port, &ev);
RTE_TEST_ASSERT_SUCCESS(ret,
"Failed to validate test specific event");
}
++index;
rte_pktmbuf_free(ev.mbuf);
if (++events >= total_events)
break;
}
return check_excess_events(port);
}
static int
validate_simple_enqdeq(uint32_t index, uint8_t port, struct rte_event *ev)
{
RTE_SET_USED(port);
RTE_TEST_ASSERT_EQUAL(index, ev->mbuf->seqn, "index=%d != seqn=%d",
index, ev->mbuf->seqn);
return 0;
}
static inline int
test_simple_enqdeq(uint8_t sched_type)
{
int ret;
ret = inject_events(0 /*flow_id */,
RTE_EVENT_TYPE_CPU /* event_type */,
0 /* sub_event_type */,
sched_type,
0 /* queue */,
0 /* port */,
MAX_EVENTS);
if (ret)
return -1;
return consume_events(0 /* port */, MAX_EVENTS, validate_simple_enqdeq);
}
static int
test_simple_enqdeq_ordered(void)
{
return test_simple_enqdeq(RTE_SCHED_TYPE_ORDERED);
}
static int
test_simple_enqdeq_atomic(void)
{
return test_simple_enqdeq(RTE_SCHED_TYPE_ATOMIC);
}
static int
test_simple_enqdeq_parallel(void)
{
return test_simple_enqdeq(RTE_SCHED_TYPE_PARALLEL);
}
/*
* Generate a prescribed number of events and spread them across available
* queues. On dequeue, using single event port(port 0) verify the enqueued
* event attributes
*/
static int
test_multi_queue_enq_single_port_deq(void)
{
int ret;
ret = generate_random_events(MAX_EVENTS);
if (ret)
return -1;
return consume_events(0 /* port */, MAX_EVENTS, NULL);
}
/*
* Inject 0..MAX_EVENTS events over 0..queue_count with modulus
* operation
*
* For example, Inject 32 events over 0..7 queues
* enqueue events 0, 8, 16, 24 in queue 0
* enqueue events 1, 9, 17, 25 in queue 1
* ..
* ..
* enqueue events 7, 15, 23, 31 in queue 7
*
* On dequeue, Validate the events comes in 0,8,16,24,1,9,17,25..,7,15,23,31
* order from queue0(highest priority) to queue7(lowest_priority)
*/
static int
validate_queue_priority(uint32_t index, uint8_t port, struct rte_event *ev)
{
uint32_t queue_count;
RTE_TEST_ASSERT_SUCCESS(rte_event_dev_attr_get(evdev,
RTE_EVENT_DEV_ATTR_QUEUE_COUNT, &queue_count),
"Queue count get failed");
if (queue_count > 8)
queue_count = 8;
uint32_t range = MAX_EVENTS / queue_count;
uint32_t expected_val = (index % range) * queue_count;
expected_val += ev->queue_id;
RTE_SET_USED(port);
RTE_TEST_ASSERT_EQUAL(ev->mbuf->seqn, expected_val,
"seqn=%d index=%d expected=%d range=%d nb_queues=%d max_event=%d",
ev->mbuf->seqn, index, expected_val, range,
queue_count, MAX_EVENTS);
return 0;
}
static int
test_multi_queue_priority(void)
{
int i, max_evts_roundoff;
/* See validate_queue_priority() comments for priority validate logic */
uint32_t queue_count;
struct rte_mbuf *m;
uint8_t queue;
RTE_TEST_ASSERT_SUCCESS(rte_event_dev_attr_get(evdev,
RTE_EVENT_DEV_ATTR_QUEUE_COUNT, &queue_count),
"Queue count get failed");
if (queue_count > 8)
queue_count = 8;
max_evts_roundoff = MAX_EVENTS / queue_count;
max_evts_roundoff *= queue_count;
for (i = 0; i < max_evts_roundoff; i++) {
struct rte_event ev = {.event = 0, .u64 = 0};
m = rte_pktmbuf_alloc(eventdev_test_mempool);
RTE_TEST_ASSERT_NOT_NULL(m, "mempool alloc failed");
m->seqn = i;
queue = i % queue_count;
update_event_and_validation_attr(m, &ev, 0, RTE_EVENT_TYPE_CPU,
0, RTE_SCHED_TYPE_PARALLEL,
queue, 0);
rte_event_enqueue_burst(evdev, 0, &ev, 1);
}
return consume_events(0, max_evts_roundoff, validate_queue_priority);
}
static int
worker_multi_port_fn(void *arg)
{
struct test_core_param *param = arg;
rte_atomic32_t *total_events = param->total_events;
uint8_t port = param->port;
uint16_t valid_event;
struct rte_event ev;
int ret;
while (rte_atomic32_read(total_events) > 0) {
valid_event = rte_event_dequeue_burst(evdev, port, &ev, 1, 0);
if (!valid_event)
continue;
ret = validate_event(&ev);
RTE_TEST_ASSERT_SUCCESS(ret, "Failed to validate event");
rte_pktmbuf_free(ev.mbuf);
rte_atomic32_sub(total_events, 1);
}
return 0;
}
static inline int
wait_workers_to_join(const rte_atomic32_t *count)
{
uint64_t cycles, print_cycles;
cycles = rte_get_timer_cycles();
print_cycles = cycles;
while (rte_atomic32_read(count)) {
uint64_t new_cycles = rte_get_timer_cycles();
if (new_cycles - print_cycles > rte_get_timer_hz()) {
otx2_err("Events %d", rte_atomic32_read(count));
print_cycles = new_cycles;
}
if (new_cycles - cycles > rte_get_timer_hz() * 10000000000) {
otx2_err("No schedules for seconds, deadlock (%d)",
rte_atomic32_read(count));
rte_event_dev_dump(evdev, stdout);
cycles = new_cycles;
return -1;
}
}
rte_eal_mp_wait_lcore();
return 0;
}
static inline int
launch_workers_and_wait(int (*master_worker)(void *),
int (*slave_workers)(void *), uint32_t total_events,
uint8_t nb_workers, uint8_t sched_type)
{
rte_atomic32_t atomic_total_events;
struct test_core_param *param;
uint64_t dequeue_tmo_ticks;
uint8_t port = 0;
int w_lcore;
int ret;
if (!nb_workers)
return 0;
rte_atomic32_set(&atomic_total_events, total_events);
seqn_list_init();
param = malloc(sizeof(struct test_core_param) * nb_workers);
if (!param)
return -1;
ret = rte_event_dequeue_timeout_ticks(evdev,
rte_rand() % 10000000/* 10ms */,
&dequeue_tmo_ticks);
if (ret) {
free(param);
return -1;
}
param[0].total_events = &atomic_total_events;
param[0].sched_type = sched_type;
param[0].port = 0;
param[0].dequeue_tmo_ticks = dequeue_tmo_ticks;
rte_wmb();
w_lcore = rte_get_next_lcore(
/* start core */ -1,
/* skip master */ 1,
/* wrap */ 0);
rte_eal_remote_launch(master_worker, &param[0], w_lcore);
for (port = 1; port < nb_workers; port++) {
param[port].total_events = &atomic_total_events;
param[port].sched_type = sched_type;
param[port].port = port;
param[port].dequeue_tmo_ticks = dequeue_tmo_ticks;
rte_smp_wmb();
w_lcore = rte_get_next_lcore(w_lcore, 1, 0);
rte_eal_remote_launch(slave_workers, &param[port], w_lcore);
}
rte_smp_wmb();
ret = wait_workers_to_join(&atomic_total_events);
free(param);
return ret;
}
/*
* Generate a prescribed number of events and spread them across available
* queues. Dequeue the events through multiple ports and verify the enqueued
* event attributes
*/
static int
test_multi_queue_enq_multi_port_deq(void)
{
const unsigned int total_events = MAX_EVENTS;
uint32_t nr_ports;
int ret;
ret = generate_random_events(total_events);
if (ret)
return -1;
RTE_TEST_ASSERT_SUCCESS(rte_event_dev_attr_get(evdev,
RTE_EVENT_DEV_ATTR_PORT_COUNT, &nr_ports),
"Port count get failed");
nr_ports = RTE_MIN(nr_ports, rte_lcore_count() - 1);
if (!nr_ports) {
otx2_err("Not enough ports=%d or workers=%d", nr_ports,
rte_lcore_count() - 1);
return 0;
}
return launch_workers_and_wait(worker_multi_port_fn,
worker_multi_port_fn, total_events,
nr_ports, 0xff /* invalid */);
}
static
void flush(uint8_t dev_id, struct rte_event event, void *arg)
{
unsigned int *count = arg;
RTE_SET_USED(dev_id);
if (event.event_type == RTE_EVENT_TYPE_CPU)
*count = *count + 1;
}
static int
test_dev_stop_flush(void)
{
unsigned int total_events = MAX_EVENTS, count = 0;
int ret;
ret = generate_random_events(total_events);
if (ret)
return -1;
ret = rte_event_dev_stop_flush_callback_register(evdev, flush, &count);
if (ret)
return -2;
rte_event_dev_stop(evdev);
ret = rte_event_dev_stop_flush_callback_register(evdev, NULL, NULL);
if (ret)
return -3;
RTE_TEST_ASSERT_EQUAL(total_events, count,
"count mismatch total_events=%d count=%d",
total_events, count);
return 0;
}
static int
validate_queue_to_port_single_link(uint32_t index, uint8_t port,
struct rte_event *ev)
{
RTE_SET_USED(index);
RTE_TEST_ASSERT_EQUAL(port, ev->queue_id,
"queue mismatch enq=%d deq =%d",
port, ev->queue_id);
return 0;
}
/*
* Link queue x to port x and check correctness of link by checking
* queue_id == x on dequeue on the specific port x
*/
static int
test_queue_to_port_single_link(void)
{
int i, nr_links, ret;
uint32_t queue_count;
uint32_t port_count;
RTE_TEST_ASSERT_SUCCESS(rte_event_dev_attr_get(evdev,
RTE_EVENT_DEV_ATTR_PORT_COUNT, &port_count),
"Port count get failed");
/* Unlink all connections that created in eventdev_setup */
for (i = 0; i < (int)port_count; i++) {
ret = rte_event_port_unlink(evdev, i, NULL, 0);
RTE_TEST_ASSERT(ret >= 0,
"Failed to unlink all queues port=%d", i);
}
RTE_TEST_ASSERT_SUCCESS(rte_event_dev_attr_get(evdev,
RTE_EVENT_DEV_ATTR_QUEUE_COUNT, &queue_count),
"Queue count get failed");
nr_links = RTE_MIN(port_count, queue_count);
const unsigned int total_events = MAX_EVENTS / nr_links;
/* Link queue x to port x and inject events to queue x through port x */
for (i = 0; i < nr_links; i++) {
uint8_t queue = (uint8_t)i;
ret = rte_event_port_link(evdev, i, &queue, NULL, 1);
RTE_TEST_ASSERT(ret == 1, "Failed to link queue to port %d", i);
ret = inject_events(0x100 /*flow_id */,
RTE_EVENT_TYPE_CPU /* event_type */,
rte_rand() % 256 /* sub_event_type */,
rte_rand() % (RTE_SCHED_TYPE_PARALLEL + 1),
queue /* queue */, i /* port */,
total_events /* events */);
if (ret)
return -1;
}
/* Verify the events generated from correct queue */
for (i = 0; i < nr_links; i++) {
ret = consume_events(i /* port */, total_events,
validate_queue_to_port_single_link);
if (ret)
return -1;
}
return 0;
}
static int
validate_queue_to_port_multi_link(uint32_t index, uint8_t port,
struct rte_event *ev)
{
RTE_SET_USED(index);
RTE_TEST_ASSERT_EQUAL(port, (ev->queue_id & 0x1),
"queue mismatch enq=%d deq =%d",
port, ev->queue_id);
return 0;
}
/*
* Link all even number of queues to port 0 and all odd number of queues to
* port 1 and verify the link connection on dequeue
*/
static int
test_queue_to_port_multi_link(void)
{
int ret, port0_events = 0, port1_events = 0;
uint32_t nr_queues = 0;
uint32_t nr_ports = 0;
uint8_t queue, port;
RTE_TEST_ASSERT_SUCCESS(rte_event_dev_attr_get(evdev,
RTE_EVENT_DEV_ATTR_QUEUE_COUNT, &nr_queues),
"Queue count get failed");
RTE_TEST_ASSERT_SUCCESS(rte_event_dev_attr_get(evdev,
RTE_EVENT_DEV_ATTR_QUEUE_COUNT, &nr_queues),
"Queue count get failed");
RTE_TEST_ASSERT_SUCCESS(rte_event_dev_attr_get(evdev,
RTE_EVENT_DEV_ATTR_PORT_COUNT, &nr_ports),
"Port count get failed");
if (nr_ports < 2) {
otx2_err("Not enough ports to test ports=%d", nr_ports);
return 0;
}
/* Unlink all connections that created in eventdev_setup */
for (port = 0; port < nr_ports; port++) {
ret = rte_event_port_unlink(evdev, port, NULL, 0);
RTE_TEST_ASSERT(ret >= 0, "Failed to unlink all queues port=%d",
port);
}
const unsigned int total_events = MAX_EVENTS / nr_queues;
/* Link all even number of queues to port0 and odd numbers to port 1*/
for (queue = 0; queue < nr_queues; queue++) {
port = queue & 0x1;
ret = rte_event_port_link(evdev, port, &queue, NULL, 1);
RTE_TEST_ASSERT(ret == 1, "Failed to link queue=%d to port=%d",
queue, port);
ret = inject_events(0x100 /*flow_id */,
RTE_EVENT_TYPE_CPU /* event_type */,
rte_rand() % 256 /* sub_event_type */,
rte_rand() % (RTE_SCHED_TYPE_PARALLEL + 1),
queue /* queue */, port /* port */,
total_events /* events */);
if (ret)
return -1;
if (port == 0)
port0_events += total_events;
else
port1_events += total_events;
}
ret = consume_events(0 /* port */, port0_events,
validate_queue_to_port_multi_link);
if (ret)
return -1;
ret = consume_events(1 /* port */, port1_events,
validate_queue_to_port_multi_link);
if (ret)
return -1;
return 0;
}
static int
worker_flow_based_pipeline(void *arg)
{
struct test_core_param *param = arg;
uint64_t dequeue_tmo_ticks = param->dequeue_tmo_ticks;
rte_atomic32_t *total_events = param->total_events;
uint8_t new_sched_type = param->sched_type;
uint8_t port = param->port;
uint16_t valid_event;
struct rte_event ev;
while (rte_atomic32_read(total_events) > 0) {
valid_event = rte_event_dequeue_burst(evdev, port, &ev, 1,
dequeue_tmo_ticks);
if (!valid_event)
continue;
/* Events from stage 0 */
if (ev.sub_event_type == 0) {
/* Move to atomic flow to maintain the ordering */
ev.flow_id = 0x2;
ev.event_type = RTE_EVENT_TYPE_CPU;
ev.sub_event_type = 1; /* stage 1 */
ev.sched_type = new_sched_type;
ev.op = RTE_EVENT_OP_FORWARD;
rte_event_enqueue_burst(evdev, port, &ev, 1);
} else if (ev.sub_event_type == 1) { /* Events from stage 1*/
if (seqn_list_update(ev.mbuf->seqn) == 0) {
rte_pktmbuf_free(ev.mbuf);
rte_atomic32_sub(total_events, 1);
} else {
otx2_err("Failed to update seqn_list");
return -1;
}
} else {
otx2_err("Invalid ev.sub_event_type = %d",
ev.sub_event_type);
return -1;
}
}
return 0;
}
static int
test_multiport_flow_sched_type_test(uint8_t in_sched_type,
uint8_t out_sched_type)
{
const unsigned int total_events = MAX_EVENTS;
uint32_t nr_ports;
int ret;
RTE_TEST_ASSERT_SUCCESS(rte_event_dev_attr_get(evdev,
RTE_EVENT_DEV_ATTR_PORT_COUNT, &nr_ports),
"Port count get failed");
nr_ports = RTE_MIN(nr_ports, rte_lcore_count() - 1);
if (!nr_ports) {
otx2_err("Not enough ports=%d or workers=%d", nr_ports,
rte_lcore_count() - 1);
return 0;
}
/* Injects events with m->seqn=0 to total_events */
ret = inject_events(0x1 /*flow_id */,
RTE_EVENT_TYPE_CPU /* event_type */,
0 /* sub_event_type (stage 0) */,
in_sched_type,
0 /* queue */,
0 /* port */,
total_events /* events */);
if (ret)
return -1;
rte_mb();
ret = launch_workers_and_wait(worker_flow_based_pipeline,
worker_flow_based_pipeline, total_events,
nr_ports, out_sched_type);
if (ret)
return -1;
if (in_sched_type != RTE_SCHED_TYPE_PARALLEL &&
out_sched_type == RTE_SCHED_TYPE_ATOMIC) {
/* Check the events order maintained or not */
return seqn_list_check(total_events);
}
return 0;
}
/* Multi port ordered to atomic transaction */
static int
test_multi_port_flow_ordered_to_atomic(void)
{
/* Ingress event order test */
return test_multiport_flow_sched_type_test(RTE_SCHED_TYPE_ORDERED,
RTE_SCHED_TYPE_ATOMIC);
}
static int
test_multi_port_flow_ordered_to_ordered(void)
{
return test_multiport_flow_sched_type_test(RTE_SCHED_TYPE_ORDERED,
RTE_SCHED_TYPE_ORDERED);
}
static int
test_multi_port_flow_ordered_to_parallel(void)
{
return test_multiport_flow_sched_type_test(RTE_SCHED_TYPE_ORDERED,
RTE_SCHED_TYPE_PARALLEL);
}
static int
test_multi_port_flow_atomic_to_atomic(void)
{
/* Ingress event order test */
return test_multiport_flow_sched_type_test(RTE_SCHED_TYPE_ATOMIC,
RTE_SCHED_TYPE_ATOMIC);
}
static int
test_multi_port_flow_atomic_to_ordered(void)
{
return test_multiport_flow_sched_type_test(RTE_SCHED_TYPE_ATOMIC,
RTE_SCHED_TYPE_ORDERED);
}
static int
test_multi_port_flow_atomic_to_parallel(void)
{
return test_multiport_flow_sched_type_test(RTE_SCHED_TYPE_ATOMIC,
RTE_SCHED_TYPE_PARALLEL);
}
static int
test_multi_port_flow_parallel_to_atomic(void)
{
return test_multiport_flow_sched_type_test(RTE_SCHED_TYPE_PARALLEL,
RTE_SCHED_TYPE_ATOMIC);
}
static int
test_multi_port_flow_parallel_to_ordered(void)
{
return test_multiport_flow_sched_type_test(RTE_SCHED_TYPE_PARALLEL,
RTE_SCHED_TYPE_ORDERED);
}
static int
test_multi_port_flow_parallel_to_parallel(void)
{
return test_multiport_flow_sched_type_test(RTE_SCHED_TYPE_PARALLEL,
RTE_SCHED_TYPE_PARALLEL);
}
static int
worker_group_based_pipeline(void *arg)
{
struct test_core_param *param = arg;
uint64_t dequeue_tmo_ticks = param->dequeue_tmo_ticks;
rte_atomic32_t *total_events = param->total_events;
uint8_t new_sched_type = param->sched_type;
uint8_t port = param->port;
uint16_t valid_event;
struct rte_event ev;
while (rte_atomic32_read(total_events) > 0) {
valid_event = rte_event_dequeue_burst(evdev, port, &ev, 1,
dequeue_tmo_ticks);
if (!valid_event)
continue;
/* Events from stage 0(group 0) */
if (ev.queue_id == 0) {
/* Move to atomic flow to maintain the ordering */
ev.flow_id = 0x2;
ev.event_type = RTE_EVENT_TYPE_CPU;
ev.sched_type = new_sched_type;
ev.queue_id = 1; /* Stage 1*/
ev.op = RTE_EVENT_OP_FORWARD;
rte_event_enqueue_burst(evdev, port, &ev, 1);
} else if (ev.queue_id == 1) { /* Events from stage 1(group 1)*/
if (seqn_list_update(ev.mbuf->seqn) == 0) {
rte_pktmbuf_free(ev.mbuf);
rte_atomic32_sub(total_events, 1);
} else {
otx2_err("Failed to update seqn_list");
return -1;
}
} else {
otx2_err("Invalid ev.queue_id = %d", ev.queue_id);
return -1;
}
}
return 0;
}
static int
test_multiport_queue_sched_type_test(uint8_t in_sched_type,
uint8_t out_sched_type)
{
const unsigned int total_events = MAX_EVENTS;
uint32_t queue_count;
uint32_t nr_ports;
int ret;
RTE_TEST_ASSERT_SUCCESS(rte_event_dev_attr_get(evdev,
RTE_EVENT_DEV_ATTR_PORT_COUNT, &nr_ports),
"Port count get failed");
nr_ports = RTE_MIN(nr_ports, rte_lcore_count() - 1);
RTE_TEST_ASSERT_SUCCESS(rte_event_dev_attr_get(evdev,
RTE_EVENT_DEV_ATTR_QUEUE_COUNT, &queue_count),
"Queue count get failed");
if (queue_count < 2 || !nr_ports) {
otx2_err("Not enough queues=%d ports=%d or workers=%d",
queue_count, nr_ports,
rte_lcore_count() - 1);
return 0;
}
/* Injects events with m->seqn=0 to total_events */
ret = inject_events(0x1 /*flow_id */,
RTE_EVENT_TYPE_CPU /* event_type */,
0 /* sub_event_type (stage 0) */,
in_sched_type,
0 /* queue */,
0 /* port */,
total_events /* events */);
if (ret)
return -1;
ret = launch_workers_and_wait(worker_group_based_pipeline,
worker_group_based_pipeline, total_events,
nr_ports, out_sched_type);
if (ret)
return -1;
if (in_sched_type != RTE_SCHED_TYPE_PARALLEL &&
out_sched_type == RTE_SCHED_TYPE_ATOMIC) {
/* Check the events order maintained or not */
return seqn_list_check(total_events);
}
return 0;
}
static int
test_multi_port_queue_ordered_to_atomic(void)
{
/* Ingress event order test */
return test_multiport_queue_sched_type_test(RTE_SCHED_TYPE_ORDERED,
RTE_SCHED_TYPE_ATOMIC);
}
static int
test_multi_port_queue_ordered_to_ordered(void)
{
return test_multiport_queue_sched_type_test(RTE_SCHED_TYPE_ORDERED,
RTE_SCHED_TYPE_ORDERED);
}
static int
test_multi_port_queue_ordered_to_parallel(void)
{
return test_multiport_queue_sched_type_test(RTE_SCHED_TYPE_ORDERED,
RTE_SCHED_TYPE_PARALLEL);
}
static int
test_multi_port_queue_atomic_to_atomic(void)
{
/* Ingress event order test */
return test_multiport_queue_sched_type_test(RTE_SCHED_TYPE_ATOMIC,
RTE_SCHED_TYPE_ATOMIC);
}
static int
test_multi_port_queue_atomic_to_ordered(void)
{
return test_multiport_queue_sched_type_test(RTE_SCHED_TYPE_ATOMIC,
RTE_SCHED_TYPE_ORDERED);
}
static int
test_multi_port_queue_atomic_to_parallel(void)
{
return test_multiport_queue_sched_type_test(RTE_SCHED_TYPE_ATOMIC,
RTE_SCHED_TYPE_PARALLEL);
}
static int
test_multi_port_queue_parallel_to_atomic(void)
{
return test_multiport_queue_sched_type_test(RTE_SCHED_TYPE_PARALLEL,
RTE_SCHED_TYPE_ATOMIC);
}
static int
test_multi_port_queue_parallel_to_ordered(void)
{
return test_multiport_queue_sched_type_test(RTE_SCHED_TYPE_PARALLEL,
RTE_SCHED_TYPE_ORDERED);
}
static int
test_multi_port_queue_parallel_to_parallel(void)
{
return test_multiport_queue_sched_type_test(RTE_SCHED_TYPE_PARALLEL,
RTE_SCHED_TYPE_PARALLEL);
}
static int
worker_flow_based_pipeline_max_stages_rand_sched_type(void *arg)
{
struct test_core_param *param = arg;
rte_atomic32_t *total_events = param->total_events;
uint8_t port = param->port;
uint16_t valid_event;
struct rte_event ev;
while (rte_atomic32_read(total_events) > 0) {
valid_event = rte_event_dequeue_burst(evdev, port, &ev, 1, 0);
if (!valid_event)
continue;
if (ev.sub_event_type == 255) { /* last stage */
rte_pktmbuf_free(ev.mbuf);
rte_atomic32_sub(total_events, 1);
} else {
ev.event_type = RTE_EVENT_TYPE_CPU;
ev.sub_event_type++;
ev.sched_type =
rte_rand() % (RTE_SCHED_TYPE_PARALLEL + 1);
ev.op = RTE_EVENT_OP_FORWARD;
rte_event_enqueue_burst(evdev, port, &ev, 1);
}
}
return 0;
}
static int
launch_multi_port_max_stages_random_sched_type(int (*fn)(void *))
{
uint32_t nr_ports;
int ret;
RTE_TEST_ASSERT_SUCCESS(rte_event_dev_attr_get(evdev,
RTE_EVENT_DEV_ATTR_PORT_COUNT, &nr_ports),
"Port count get failed");
nr_ports = RTE_MIN(nr_ports, rte_lcore_count() - 1);
if (!nr_ports) {
otx2_err("Not enough ports=%d or workers=%d",
nr_ports, rte_lcore_count() - 1);
return 0;
}
/* Injects events with m->seqn=0 to total_events */
ret = inject_events(0x1 /*flow_id */,
RTE_EVENT_TYPE_CPU /* event_type */,
0 /* sub_event_type (stage 0) */,
rte_rand() %
(RTE_SCHED_TYPE_PARALLEL + 1) /* sched_type */,
0 /* queue */,
0 /* port */,
MAX_EVENTS /* events */);
if (ret)
return -1;
return launch_workers_and_wait(fn, fn, MAX_EVENTS, nr_ports,
0xff /* invalid */);
}
/* Flow based pipeline with maximum stages with random sched type */
static int
test_multi_port_flow_max_stages_random_sched_type(void)
{
return launch_multi_port_max_stages_random_sched_type(
worker_flow_based_pipeline_max_stages_rand_sched_type);
}
static int
worker_queue_based_pipeline_max_stages_rand_sched_type(void *arg)
{
struct test_core_param *param = arg;
uint8_t port = param->port;
uint32_t queue_count;
uint16_t valid_event;
struct rte_event ev;
RTE_TEST_ASSERT_SUCCESS(rte_event_dev_attr_get(evdev,
RTE_EVENT_DEV_ATTR_QUEUE_COUNT, &queue_count),
"Queue count get failed");
uint8_t nr_queues = queue_count;
rte_atomic32_t *total_events = param->total_events;
while (rte_atomic32_read(total_events) > 0) {
valid_event = rte_event_dequeue_burst(evdev, port, &ev, 1, 0);
if (!valid_event)
continue;
if (ev.queue_id == nr_queues - 1) { /* last stage */
rte_pktmbuf_free(ev.mbuf);
rte_atomic32_sub(total_events, 1);
} else {
ev.event_type = RTE_EVENT_TYPE_CPU;
ev.queue_id++;
ev.sched_type =
rte_rand() % (RTE_SCHED_TYPE_PARALLEL + 1);
ev.op = RTE_EVENT_OP_FORWARD;
rte_event_enqueue_burst(evdev, port, &ev, 1);
}
}
return 0;
}
/* Queue based pipeline with maximum stages with random sched type */
static int
test_multi_port_queue_max_stages_random_sched_type(void)
{
return launch_multi_port_max_stages_random_sched_type(
worker_queue_based_pipeline_max_stages_rand_sched_type);
}
static int
worker_mixed_pipeline_max_stages_rand_sched_type(void *arg)
{
struct test_core_param *param = arg;
uint8_t port = param->port;
uint32_t queue_count;
uint16_t valid_event;
struct rte_event ev;
RTE_TEST_ASSERT_SUCCESS(rte_event_dev_attr_get(evdev,
RTE_EVENT_DEV_ATTR_QUEUE_COUNT, &queue_count),
"Queue count get failed");
uint8_t nr_queues = queue_count;
rte_atomic32_t *total_events = param->total_events;
while (rte_atomic32_read(total_events) > 0) {
valid_event = rte_event_dequeue_burst(evdev, port, &ev, 1, 0);
if (!valid_event)
continue;
if (ev.queue_id == nr_queues - 1) { /* Last stage */
rte_pktmbuf_free(ev.mbuf);
rte_atomic32_sub(total_events, 1);
} else {
ev.event_type = RTE_EVENT_TYPE_CPU;
ev.queue_id++;
ev.sub_event_type = rte_rand() % 256;
ev.sched_type =
rte_rand() % (RTE_SCHED_TYPE_PARALLEL + 1);
ev.op = RTE_EVENT_OP_FORWARD;
rte_event_enqueue_burst(evdev, port, &ev, 1);
}
}
return 0;
}
/* Queue and flow based pipeline with maximum stages with random sched type */
static int
test_multi_port_mixed_max_stages_random_sched_type(void)
{
return launch_multi_port_max_stages_random_sched_type(
worker_mixed_pipeline_max_stages_rand_sched_type);
}
static int
worker_ordered_flow_producer(void *arg)
{
struct test_core_param *param = arg;
uint8_t port = param->port;
struct rte_mbuf *m;
int counter = 0;
while (counter < NUM_PACKETS) {
m = rte_pktmbuf_alloc(eventdev_test_mempool);
if (m == NULL)
continue;
m->seqn = counter++;
struct rte_event ev = {.event = 0, .u64 = 0};
ev.flow_id = 0x1; /* Generate a fat flow */
ev.sub_event_type = 0;
/* Inject the new event */
ev.op = RTE_EVENT_OP_NEW;
ev.event_type = RTE_EVENT_TYPE_CPU;
ev.sched_type = RTE_SCHED_TYPE_ORDERED;
ev.queue_id = 0;
ev.mbuf = m;
rte_event_enqueue_burst(evdev, port, &ev, 1);
}
return 0;
}
static inline int
test_producer_consumer_ingress_order_test(int (*fn)(void *))
{
uint32_t nr_ports;
RTE_TEST_ASSERT_SUCCESS(rte_event_dev_attr_get(evdev,
RTE_EVENT_DEV_ATTR_PORT_COUNT, &nr_ports),
"Port count get failed");
nr_ports = RTE_MIN(nr_ports, rte_lcore_count() - 1);
if (rte_lcore_count() < 3 || nr_ports < 2) {
otx2_err("### Not enough cores for test.");
return 0;
}
launch_workers_and_wait(worker_ordered_flow_producer, fn,
NUM_PACKETS, nr_ports, RTE_SCHED_TYPE_ATOMIC);
/* Check the events order maintained or not */
return seqn_list_check(NUM_PACKETS);
}
/* Flow based producer consumer ingress order test */
static int
test_flow_producer_consumer_ingress_order_test(void)
{
return test_producer_consumer_ingress_order_test(
worker_flow_based_pipeline);
}
/* Queue based producer consumer ingress order test */
static int
test_queue_producer_consumer_ingress_order_test(void)
{
return test_producer_consumer_ingress_order_test(
worker_group_based_pipeline);
}
static void octeontx_test_run(int (*setup)(void), void (*tdown)(void),
int (*test)(void), const char *name)
{
if (setup() < 0) {
printf("Error setting up test %s", name);
unsupported++;
} else {
if (test() < 0) {
failed++;
printf("+ TestCase [%2d] : %s failed\n", total, name);
} else {
passed++;
printf("+ TestCase [%2d] : %s succeeded\n", total,
name);
}
}
total++;
tdown();
}
int
otx2_sso_selftest(void)
{
testsuite_setup();
OCTEONTX2_TEST_RUN(eventdev_setup, eventdev_teardown,
test_simple_enqdeq_ordered);
OCTEONTX2_TEST_RUN(eventdev_setup, eventdev_teardown,
test_simple_enqdeq_atomic);
OCTEONTX2_TEST_RUN(eventdev_setup, eventdev_teardown,
test_simple_enqdeq_parallel);
OCTEONTX2_TEST_RUN(eventdev_setup, eventdev_teardown,
test_multi_queue_enq_single_port_deq);
OCTEONTX2_TEST_RUN(eventdev_setup, eventdev_teardown,
test_dev_stop_flush);
OCTEONTX2_TEST_RUN(eventdev_setup, eventdev_teardown,
test_multi_queue_enq_multi_port_deq);
OCTEONTX2_TEST_RUN(eventdev_setup, eventdev_teardown,
test_queue_to_port_single_link);
OCTEONTX2_TEST_RUN(eventdev_setup, eventdev_teardown,
test_queue_to_port_multi_link);
OCTEONTX2_TEST_RUN(eventdev_setup, eventdev_teardown,
test_multi_port_flow_ordered_to_atomic);
OCTEONTX2_TEST_RUN(eventdev_setup, eventdev_teardown,
test_multi_port_flow_ordered_to_ordered);
OCTEONTX2_TEST_RUN(eventdev_setup, eventdev_teardown,
test_multi_port_flow_ordered_to_parallel);
OCTEONTX2_TEST_RUN(eventdev_setup, eventdev_teardown,
test_multi_port_flow_atomic_to_atomic);
OCTEONTX2_TEST_RUN(eventdev_setup, eventdev_teardown,
test_multi_port_flow_atomic_to_ordered);
OCTEONTX2_TEST_RUN(eventdev_setup, eventdev_teardown,
test_multi_port_flow_atomic_to_parallel);
OCTEONTX2_TEST_RUN(eventdev_setup, eventdev_teardown,
test_multi_port_flow_parallel_to_atomic);
OCTEONTX2_TEST_RUN(eventdev_setup, eventdev_teardown,
test_multi_port_flow_parallel_to_ordered);
OCTEONTX2_TEST_RUN(eventdev_setup, eventdev_teardown,
test_multi_port_flow_parallel_to_parallel);
OCTEONTX2_TEST_RUN(eventdev_setup, eventdev_teardown,
test_multi_port_queue_ordered_to_atomic);
OCTEONTX2_TEST_RUN(eventdev_setup, eventdev_teardown,
test_multi_port_queue_ordered_to_ordered);
OCTEONTX2_TEST_RUN(eventdev_setup, eventdev_teardown,
test_multi_port_queue_ordered_to_parallel);
OCTEONTX2_TEST_RUN(eventdev_setup, eventdev_teardown,
test_multi_port_queue_atomic_to_atomic);
OCTEONTX2_TEST_RUN(eventdev_setup, eventdev_teardown,
test_multi_port_queue_atomic_to_ordered);
OCTEONTX2_TEST_RUN(eventdev_setup, eventdev_teardown,
test_multi_port_queue_atomic_to_parallel);
OCTEONTX2_TEST_RUN(eventdev_setup, eventdev_teardown,
test_multi_port_queue_parallel_to_atomic);
OCTEONTX2_TEST_RUN(eventdev_setup, eventdev_teardown,
test_multi_port_queue_parallel_to_ordered);
OCTEONTX2_TEST_RUN(eventdev_setup, eventdev_teardown,
test_multi_port_queue_parallel_to_parallel);
OCTEONTX2_TEST_RUN(eventdev_setup, eventdev_teardown,
test_multi_port_flow_max_stages_random_sched_type);
OCTEONTX2_TEST_RUN(eventdev_setup, eventdev_teardown,
test_multi_port_queue_max_stages_random_sched_type);
OCTEONTX2_TEST_RUN(eventdev_setup, eventdev_teardown,
test_multi_port_mixed_max_stages_random_sched_type);
OCTEONTX2_TEST_RUN(eventdev_setup, eventdev_teardown,
test_flow_producer_consumer_ingress_order_test);
OCTEONTX2_TEST_RUN(eventdev_setup, eventdev_teardown,
test_queue_producer_consumer_ingress_order_test);
OCTEONTX2_TEST_RUN(eventdev_setup_priority, eventdev_teardown,
test_multi_queue_priority);
OCTEONTX2_TEST_RUN(eventdev_setup_dequeue_timeout, eventdev_teardown,
test_multi_port_flow_ordered_to_atomic);
OCTEONTX2_TEST_RUN(eventdev_setup_dequeue_timeout, eventdev_teardown,
test_multi_port_queue_ordered_to_atomic);
printf("Total tests : %d\n", total);
printf("Passed : %d\n", passed);
printf("Failed : %d\n", failed);
printf("Not supported : %d\n", unsupported);
testsuite_teardown();
if (failed)
return -1;
return 0;
}