2e449a26e7
In the ingress path, the cfa_code field in Rx completion identifies the
CFA action rule that was used for the incoming packet. It is possible
that the packet could hit the rule at index 0 in the table.
The mark action code was too restrictive by disallowing a cfa_code of
zero.
This code loosens the requirement and allows zero.
Fixes: b87abb2e55
("net/bnxt: support marking packet")
Cc: stable@dpdk.org
Signed-off-by: Mike Baucom <michael.baucom@broadcom.com>
Reviewed-by: Kishore Padmanabha <kishore.padmanabha@broadcom.com>
Reviewed-by: Ajit Khaparde <ajit.khaparde@broadcom.com>
1030 lines
27 KiB
C
1030 lines
27 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2014-2018 Broadcom
|
|
* All rights reserved.
|
|
*/
|
|
|
|
#include <inttypes.h>
|
|
#include <stdbool.h>
|
|
|
|
#include <rte_bitmap.h>
|
|
#include <rte_byteorder.h>
|
|
#include <rte_malloc.h>
|
|
#include <rte_memory.h>
|
|
|
|
#include "bnxt.h"
|
|
#include "bnxt_ring.h"
|
|
#include "bnxt_rxr.h"
|
|
#include "bnxt_rxq.h"
|
|
#include "hsi_struct_def_dpdk.h"
|
|
#ifdef RTE_LIBRTE_IEEE1588
|
|
#include "bnxt_hwrm.h"
|
|
#endif
|
|
|
|
#include <bnxt_tf_common.h>
|
|
#include <ulp_mark_mgr.h>
|
|
|
|
/*
|
|
* RX Ring handling
|
|
*/
|
|
|
|
static inline struct rte_mbuf *__bnxt_alloc_rx_data(struct rte_mempool *mb)
|
|
{
|
|
struct rte_mbuf *data;
|
|
|
|
data = rte_mbuf_raw_alloc(mb);
|
|
|
|
return data;
|
|
}
|
|
|
|
static inline int bnxt_alloc_rx_data(struct bnxt_rx_queue *rxq,
|
|
struct bnxt_rx_ring_info *rxr,
|
|
uint16_t prod)
|
|
{
|
|
struct rx_prod_pkt_bd *rxbd = &rxr->rx_desc_ring[prod];
|
|
struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
|
|
struct rte_mbuf *mbuf;
|
|
|
|
mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
|
|
if (!mbuf) {
|
|
rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
rx_buf->mbuf = mbuf;
|
|
mbuf->data_off = RTE_PKTMBUF_HEADROOM;
|
|
|
|
rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int bnxt_alloc_ag_data(struct bnxt_rx_queue *rxq,
|
|
struct bnxt_rx_ring_info *rxr,
|
|
uint16_t prod)
|
|
{
|
|
struct rx_prod_pkt_bd *rxbd = &rxr->ag_desc_ring[prod];
|
|
struct bnxt_sw_rx_bd *rx_buf = &rxr->ag_buf_ring[prod];
|
|
struct rte_mbuf *mbuf;
|
|
|
|
if (rxbd == NULL) {
|
|
PMD_DRV_LOG(ERR, "Jumbo Frame. rxbd is NULL\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (rx_buf == NULL) {
|
|
PMD_DRV_LOG(ERR, "Jumbo Frame. rx_buf is NULL\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
|
|
if (!mbuf) {
|
|
rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
rx_buf->mbuf = mbuf;
|
|
mbuf->data_off = RTE_PKTMBUF_HEADROOM;
|
|
|
|
rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void bnxt_reuse_rx_mbuf(struct bnxt_rx_ring_info *rxr,
|
|
struct rte_mbuf *mbuf)
|
|
{
|
|
uint16_t prod = RING_NEXT(rxr->rx_ring_struct, rxr->rx_prod);
|
|
struct bnxt_sw_rx_bd *prod_rx_buf;
|
|
struct rx_prod_pkt_bd *prod_bd;
|
|
|
|
prod_rx_buf = &rxr->rx_buf_ring[prod];
|
|
|
|
RTE_ASSERT(prod_rx_buf->mbuf == NULL);
|
|
RTE_ASSERT(mbuf != NULL);
|
|
|
|
prod_rx_buf->mbuf = mbuf;
|
|
|
|
prod_bd = &rxr->rx_desc_ring[prod];
|
|
|
|
prod_bd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
|
|
|
|
rxr->rx_prod = prod;
|
|
}
|
|
|
|
static inline
|
|
struct rte_mbuf *bnxt_consume_rx_buf(struct bnxt_rx_ring_info *rxr,
|
|
uint16_t cons)
|
|
{
|
|
struct bnxt_sw_rx_bd *cons_rx_buf;
|
|
struct rte_mbuf *mbuf;
|
|
|
|
cons_rx_buf = &rxr->rx_buf_ring[cons];
|
|
RTE_ASSERT(cons_rx_buf->mbuf != NULL);
|
|
mbuf = cons_rx_buf->mbuf;
|
|
cons_rx_buf->mbuf = NULL;
|
|
return mbuf;
|
|
}
|
|
|
|
static void bnxt_tpa_start(struct bnxt_rx_queue *rxq,
|
|
struct rx_tpa_start_cmpl *tpa_start,
|
|
struct rx_tpa_start_cmpl_hi *tpa_start1)
|
|
{
|
|
struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
|
|
uint16_t agg_id;
|
|
uint16_t data_cons;
|
|
struct bnxt_tpa_info *tpa_info;
|
|
struct rte_mbuf *mbuf;
|
|
|
|
agg_id = bnxt_tpa_start_agg_id(rxq->bp, tpa_start);
|
|
|
|
data_cons = tpa_start->opaque;
|
|
tpa_info = &rxr->tpa_info[agg_id];
|
|
|
|
mbuf = bnxt_consume_rx_buf(rxr, data_cons);
|
|
|
|
bnxt_reuse_rx_mbuf(rxr, tpa_info->mbuf);
|
|
|
|
tpa_info->agg_count = 0;
|
|
tpa_info->mbuf = mbuf;
|
|
tpa_info->len = rte_le_to_cpu_32(tpa_start->len);
|
|
|
|
mbuf->nb_segs = 1;
|
|
mbuf->next = NULL;
|
|
mbuf->pkt_len = rte_le_to_cpu_32(tpa_start->len);
|
|
mbuf->data_len = mbuf->pkt_len;
|
|
mbuf->port = rxq->port_id;
|
|
mbuf->ol_flags = PKT_RX_LRO;
|
|
if (likely(tpa_start->flags_type &
|
|
rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS_RSS_VALID))) {
|
|
mbuf->hash.rss = rte_le_to_cpu_32(tpa_start->rss_hash);
|
|
mbuf->ol_flags |= PKT_RX_RSS_HASH;
|
|
} else {
|
|
mbuf->hash.fdir.id = rte_le_to_cpu_16(tpa_start1->cfa_code);
|
|
mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
|
|
}
|
|
if (tpa_start1->flags2 &
|
|
rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_META_FORMAT_VLAN)) {
|
|
mbuf->vlan_tci = rte_le_to_cpu_32(tpa_start1->metadata);
|
|
mbuf->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
|
|
}
|
|
if (likely(tpa_start1->flags2 &
|
|
rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_L4_CS_CALC)))
|
|
mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
|
|
|
|
/* recycle next mbuf */
|
|
data_cons = RING_NEXT(rxr->rx_ring_struct, data_cons);
|
|
bnxt_reuse_rx_mbuf(rxr, bnxt_consume_rx_buf(rxr, data_cons));
|
|
}
|
|
|
|
static int bnxt_agg_bufs_valid(struct bnxt_cp_ring_info *cpr,
|
|
uint8_t agg_bufs, uint32_t raw_cp_cons)
|
|
{
|
|
uint16_t last_cp_cons;
|
|
struct rx_pkt_cmpl *agg_cmpl;
|
|
|
|
raw_cp_cons = ADV_RAW_CMP(raw_cp_cons, agg_bufs);
|
|
last_cp_cons = RING_CMP(cpr->cp_ring_struct, raw_cp_cons);
|
|
agg_cmpl = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[last_cp_cons];
|
|
cpr->valid = FLIP_VALID(raw_cp_cons,
|
|
cpr->cp_ring_struct->ring_mask,
|
|
cpr->valid);
|
|
return CMP_VALID(agg_cmpl, raw_cp_cons, cpr->cp_ring_struct);
|
|
}
|
|
|
|
/* TPA consume agg buffer out of order, allocate connected data only */
|
|
static int bnxt_prod_ag_mbuf(struct bnxt_rx_queue *rxq)
|
|
{
|
|
struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
|
|
uint16_t next = RING_NEXT(rxr->ag_ring_struct, rxr->ag_prod);
|
|
|
|
/* TODO batch allocation for better performance */
|
|
while (rte_bitmap_get(rxr->ag_bitmap, next)) {
|
|
if (unlikely(bnxt_alloc_ag_data(rxq, rxr, next))) {
|
|
PMD_DRV_LOG(ERR,
|
|
"agg mbuf alloc failed: prod=0x%x\n", next);
|
|
break;
|
|
}
|
|
rte_bitmap_clear(rxr->ag_bitmap, next);
|
|
rxr->ag_prod = next;
|
|
next = RING_NEXT(rxr->ag_ring_struct, next);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bnxt_rx_pages(struct bnxt_rx_queue *rxq,
|
|
struct rte_mbuf *mbuf, uint32_t *tmp_raw_cons,
|
|
uint8_t agg_buf, struct bnxt_tpa_info *tpa_info)
|
|
{
|
|
struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
|
|
struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
|
|
int i;
|
|
uint16_t cp_cons, ag_cons;
|
|
struct rx_pkt_cmpl *rxcmp;
|
|
struct rte_mbuf *last = mbuf;
|
|
bool is_thor_tpa = tpa_info && BNXT_CHIP_THOR(rxq->bp);
|
|
|
|
for (i = 0; i < agg_buf; i++) {
|
|
struct bnxt_sw_rx_bd *ag_buf;
|
|
struct rte_mbuf *ag_mbuf;
|
|
|
|
if (is_thor_tpa) {
|
|
rxcmp = (void *)&tpa_info->agg_arr[i];
|
|
} else {
|
|
*tmp_raw_cons = NEXT_RAW_CMP(*tmp_raw_cons);
|
|
cp_cons = RING_CMP(cpr->cp_ring_struct, *tmp_raw_cons);
|
|
rxcmp = (struct rx_pkt_cmpl *)
|
|
&cpr->cp_desc_ring[cp_cons];
|
|
}
|
|
|
|
#ifdef BNXT_DEBUG
|
|
bnxt_dump_cmpl(cp_cons, rxcmp);
|
|
#endif
|
|
|
|
ag_cons = rxcmp->opaque;
|
|
RTE_ASSERT(ag_cons <= rxr->ag_ring_struct->ring_mask);
|
|
ag_buf = &rxr->ag_buf_ring[ag_cons];
|
|
ag_mbuf = ag_buf->mbuf;
|
|
RTE_ASSERT(ag_mbuf != NULL);
|
|
|
|
ag_mbuf->data_len = rte_le_to_cpu_16(rxcmp->len);
|
|
|
|
mbuf->nb_segs++;
|
|
mbuf->pkt_len += ag_mbuf->data_len;
|
|
|
|
last->next = ag_mbuf;
|
|
last = ag_mbuf;
|
|
|
|
ag_buf->mbuf = NULL;
|
|
|
|
/*
|
|
* As aggregation buffer consumed out of order in TPA module,
|
|
* use bitmap to track freed slots to be allocated and notified
|
|
* to NIC
|
|
*/
|
|
rte_bitmap_set(rxr->ag_bitmap, ag_cons);
|
|
}
|
|
bnxt_prod_ag_mbuf(rxq);
|
|
return 0;
|
|
}
|
|
|
|
static inline struct rte_mbuf *bnxt_tpa_end(
|
|
struct bnxt_rx_queue *rxq,
|
|
uint32_t *raw_cp_cons,
|
|
struct rx_tpa_end_cmpl *tpa_end,
|
|
struct rx_tpa_end_cmpl_hi *tpa_end1)
|
|
{
|
|
struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
|
|
struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
|
|
uint16_t agg_id;
|
|
struct rte_mbuf *mbuf;
|
|
uint8_t agg_bufs;
|
|
uint8_t payload_offset;
|
|
struct bnxt_tpa_info *tpa_info;
|
|
|
|
if (BNXT_CHIP_THOR(rxq->bp)) {
|
|
struct rx_tpa_v2_end_cmpl *th_tpa_end;
|
|
struct rx_tpa_v2_end_cmpl_hi *th_tpa_end1;
|
|
|
|
th_tpa_end = (void *)tpa_end;
|
|
th_tpa_end1 = (void *)tpa_end1;
|
|
agg_id = BNXT_TPA_END_AGG_ID_TH(th_tpa_end);
|
|
agg_bufs = BNXT_TPA_END_AGG_BUFS_TH(th_tpa_end1);
|
|
payload_offset = th_tpa_end1->payload_offset;
|
|
} else {
|
|
agg_id = BNXT_TPA_END_AGG_ID(tpa_end);
|
|
agg_bufs = BNXT_TPA_END_AGG_BUFS(tpa_end);
|
|
if (!bnxt_agg_bufs_valid(cpr, agg_bufs, *raw_cp_cons))
|
|
return NULL;
|
|
payload_offset = tpa_end->payload_offset;
|
|
}
|
|
|
|
tpa_info = &rxr->tpa_info[agg_id];
|
|
mbuf = tpa_info->mbuf;
|
|
RTE_ASSERT(mbuf != NULL);
|
|
|
|
rte_prefetch0(mbuf);
|
|
if (agg_bufs) {
|
|
bnxt_rx_pages(rxq, mbuf, raw_cp_cons, agg_bufs, tpa_info);
|
|
}
|
|
mbuf->l4_len = payload_offset;
|
|
|
|
struct rte_mbuf *new_data = __bnxt_alloc_rx_data(rxq->mb_pool);
|
|
RTE_ASSERT(new_data != NULL);
|
|
if (!new_data) {
|
|
rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
|
|
return NULL;
|
|
}
|
|
tpa_info->mbuf = new_data;
|
|
|
|
return mbuf;
|
|
}
|
|
|
|
static uint32_t
|
|
bnxt_parse_pkt_type(struct rx_pkt_cmpl *rxcmp, struct rx_pkt_cmpl_hi *rxcmp1)
|
|
{
|
|
uint32_t l3, pkt_type = 0;
|
|
uint32_t t_ipcs = 0, ip6 = 0, vlan = 0;
|
|
uint32_t flags_type;
|
|
|
|
vlan = !!(rxcmp1->flags2 &
|
|
rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN));
|
|
pkt_type |= vlan ? RTE_PTYPE_L2_ETHER_VLAN : RTE_PTYPE_L2_ETHER;
|
|
|
|
t_ipcs = !!(rxcmp1->flags2 &
|
|
rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC));
|
|
ip6 = !!(rxcmp1->flags2 &
|
|
rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS2_IP_TYPE));
|
|
|
|
flags_type = rxcmp->flags_type &
|
|
rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS_ITYPE_MASK);
|
|
|
|
if (!t_ipcs && !ip6)
|
|
l3 = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
|
|
else if (!t_ipcs && ip6)
|
|
l3 = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
|
|
else if (t_ipcs && !ip6)
|
|
l3 = RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
|
|
else
|
|
l3 = RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN;
|
|
|
|
switch (flags_type) {
|
|
case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_ICMP):
|
|
if (!t_ipcs)
|
|
pkt_type |= l3 | RTE_PTYPE_L4_ICMP;
|
|
else
|
|
pkt_type |= l3 | RTE_PTYPE_INNER_L4_ICMP;
|
|
break;
|
|
|
|
case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_TCP):
|
|
if (!t_ipcs)
|
|
pkt_type |= l3 | RTE_PTYPE_L4_TCP;
|
|
else
|
|
pkt_type |= l3 | RTE_PTYPE_INNER_L4_TCP;
|
|
break;
|
|
|
|
case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_UDP):
|
|
if (!t_ipcs)
|
|
pkt_type |= l3 | RTE_PTYPE_L4_UDP;
|
|
else
|
|
pkt_type |= l3 | RTE_PTYPE_INNER_L4_UDP;
|
|
break;
|
|
|
|
case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_IP):
|
|
pkt_type |= l3;
|
|
break;
|
|
}
|
|
|
|
return pkt_type;
|
|
}
|
|
|
|
#ifdef RTE_LIBRTE_IEEE1588
|
|
static void
|
|
bnxt_get_rx_ts_thor(struct bnxt *bp, uint32_t rx_ts_cmpl)
|
|
{
|
|
uint64_t systime_cycles = 0;
|
|
|
|
if (!BNXT_CHIP_THOR(bp))
|
|
return;
|
|
|
|
/* On Thor, Rx timestamps are provided directly in the
|
|
* Rx completion records to the driver. Only 32 bits of
|
|
* the timestamp is present in the completion. Driver needs
|
|
* to read the current 48 bit free running timer using the
|
|
* HWRM_PORT_TS_QUERY command and combine the upper 16 bits
|
|
* from the HWRM response with the lower 32 bits in the
|
|
* Rx completion to produce the 48 bit timestamp for the Rx packet
|
|
*/
|
|
bnxt_hwrm_port_ts_query(bp, BNXT_PTP_FLAGS_CURRENT_TIME,
|
|
&systime_cycles);
|
|
bp->ptp_cfg->rx_timestamp = (systime_cycles & 0xFFFF00000000);
|
|
bp->ptp_cfg->rx_timestamp |= rx_ts_cmpl;
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
bnxt_ulp_set_mark_in_mbuf(struct bnxt *bp, struct rx_pkt_cmpl_hi *rxcmp1,
|
|
struct rte_mbuf *mbuf)
|
|
{
|
|
uint32_t cfa_code;
|
|
uint32_t meta_fmt;
|
|
uint32_t meta;
|
|
bool gfid = false;
|
|
uint32_t mark_id;
|
|
uint32_t flags2;
|
|
int rc;
|
|
|
|
cfa_code = rte_le_to_cpu_16(rxcmp1->cfa_code);
|
|
flags2 = rte_le_to_cpu_32(rxcmp1->flags2);
|
|
meta = rte_le_to_cpu_32(rxcmp1->metadata);
|
|
|
|
/*
|
|
* The flags field holds extra bits of info from [6:4]
|
|
* which indicate if the flow is in TCAM or EM or EEM
|
|
*/
|
|
meta_fmt = (flags2 & BNXT_CFA_META_FMT_MASK) >>
|
|
BNXT_CFA_META_FMT_SHFT;
|
|
|
|
switch (meta_fmt) {
|
|
case 0:
|
|
/* Not an LFID or GFID, a flush cmd. */
|
|
goto skip_mark;
|
|
case 4:
|
|
case 5:
|
|
/*
|
|
* EM/TCAM case
|
|
* Assume that EM doesn't support Mark due to GFID
|
|
* collisions with EEM. Simply return without setting the mark
|
|
* in the mbuf.
|
|
*/
|
|
if (BNXT_CFA_META_EM_TEST(meta))
|
|
goto skip_mark;
|
|
/*
|
|
* It is a TCAM entry, so it is an LFID. The TCAM IDX and Mode
|
|
* can also be determined by decoding the meta_data. We are not
|
|
* using these for now.
|
|
*/
|
|
break;
|
|
case 6:
|
|
case 7:
|
|
/* EEM Case, only using gfid in EEM for now. */
|
|
gfid = true;
|
|
|
|
/*
|
|
* For EEM flows, The first part of cfa_code is 16 bits.
|
|
* The second part is embedded in the
|
|
* metadata field from bit 19 onwards. The driver needs to
|
|
* ignore the first 19 bits of metadata and use the next 12
|
|
* bits as higher 12 bits of cfa_code.
|
|
*/
|
|
meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
|
|
cfa_code |= meta << BNXT_CFA_CODE_META_SHIFT;
|
|
break;
|
|
default:
|
|
/* For other values, the cfa_code is assumed to be an LFID. */
|
|
break;
|
|
}
|
|
|
|
rc = ulp_mark_db_mark_get(bp->ulp_ctx, gfid,
|
|
cfa_code, &mark_id);
|
|
if (!rc) {
|
|
/* Got the mark, write it to the mbuf and return */
|
|
mbuf->hash.fdir.hi = mark_id;
|
|
mbuf->udata64 = (cfa_code & 0xffffffffull) << 32;
|
|
mbuf->hash.fdir.id = rxcmp1->cfa_code;
|
|
mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
|
|
return;
|
|
}
|
|
|
|
skip_mark:
|
|
mbuf->hash.fdir.hi = 0;
|
|
mbuf->hash.fdir.id = 0;
|
|
}
|
|
|
|
void bnxt_set_mark_in_mbuf(struct bnxt *bp,
|
|
struct rx_pkt_cmpl_hi *rxcmp1,
|
|
struct rte_mbuf *mbuf)
|
|
{
|
|
uint32_t cfa_code = 0;
|
|
uint8_t meta_fmt = 0;
|
|
uint16_t flags2 = 0;
|
|
uint32_t meta = 0;
|
|
|
|
cfa_code = rte_le_to_cpu_16(rxcmp1->cfa_code);
|
|
if (!cfa_code)
|
|
return;
|
|
|
|
if (cfa_code && !bp->mark_table[cfa_code].valid)
|
|
return;
|
|
|
|
flags2 = rte_le_to_cpu_16(rxcmp1->flags2);
|
|
meta = rte_le_to_cpu_32(rxcmp1->metadata);
|
|
if (meta) {
|
|
meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
|
|
|
|
/* The flags field holds extra bits of info from [6:4]
|
|
* which indicate if the flow is in TCAM or EM or EEM
|
|
*/
|
|
meta_fmt = (flags2 & BNXT_CFA_META_FMT_MASK) >>
|
|
BNXT_CFA_META_FMT_SHFT;
|
|
|
|
/* meta_fmt == 4 => 'b100 => 'b10x => EM.
|
|
* meta_fmt == 5 => 'b101 => 'b10x => EM + VLAN
|
|
* meta_fmt == 6 => 'b110 => 'b11x => EEM
|
|
* meta_fmt == 7 => 'b111 => 'b11x => EEM + VLAN.
|
|
*/
|
|
meta_fmt >>= BNXT_CFA_META_FMT_EM_EEM_SHFT;
|
|
}
|
|
|
|
mbuf->hash.fdir.hi = bp->mark_table[cfa_code].mark_id;
|
|
mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
|
|
}
|
|
|
|
static int bnxt_rx_pkt(struct rte_mbuf **rx_pkt,
|
|
struct bnxt_rx_queue *rxq, uint32_t *raw_cons)
|
|
{
|
|
struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
|
|
struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
|
|
struct rx_pkt_cmpl *rxcmp;
|
|
struct rx_pkt_cmpl_hi *rxcmp1;
|
|
uint32_t tmp_raw_cons = *raw_cons;
|
|
uint16_t cons, prod, cp_cons =
|
|
RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
|
|
struct rte_mbuf *mbuf;
|
|
int rc = 0;
|
|
uint8_t agg_buf = 0;
|
|
uint16_t cmp_type;
|
|
uint32_t flags2_f = 0;
|
|
uint16_t flags_type;
|
|
struct bnxt *bp = rxq->bp;
|
|
|
|
rxcmp = (struct rx_pkt_cmpl *)
|
|
&cpr->cp_desc_ring[cp_cons];
|
|
|
|
cmp_type = CMP_TYPE(rxcmp);
|
|
|
|
if (cmp_type == RX_TPA_V2_ABUF_CMPL_TYPE_RX_TPA_AGG) {
|
|
struct rx_tpa_v2_abuf_cmpl *rx_agg = (void *)rxcmp;
|
|
uint16_t agg_id = rte_cpu_to_le_16(rx_agg->agg_id);
|
|
struct bnxt_tpa_info *tpa_info;
|
|
|
|
tpa_info = &rxr->tpa_info[agg_id];
|
|
RTE_ASSERT(tpa_info->agg_count < 16);
|
|
tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
|
|
rc = -EINVAL; /* Continue w/o new mbuf */
|
|
goto next_rx;
|
|
}
|
|
|
|
tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
|
|
cp_cons = RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
|
|
rxcmp1 = (struct rx_pkt_cmpl_hi *)&cpr->cp_desc_ring[cp_cons];
|
|
|
|
if (!CMP_VALID(rxcmp1, tmp_raw_cons, cpr->cp_ring_struct))
|
|
return -EBUSY;
|
|
|
|
cpr->valid = FLIP_VALID(cp_cons,
|
|
cpr->cp_ring_struct->ring_mask,
|
|
cpr->valid);
|
|
|
|
if (cmp_type == RX_TPA_START_CMPL_TYPE_RX_TPA_START) {
|
|
bnxt_tpa_start(rxq, (struct rx_tpa_start_cmpl *)rxcmp,
|
|
(struct rx_tpa_start_cmpl_hi *)rxcmp1);
|
|
rc = -EINVAL; /* Continue w/o new mbuf */
|
|
goto next_rx;
|
|
} else if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) {
|
|
mbuf = bnxt_tpa_end(rxq, &tmp_raw_cons,
|
|
(struct rx_tpa_end_cmpl *)rxcmp,
|
|
(struct rx_tpa_end_cmpl_hi *)rxcmp1);
|
|
if (unlikely(!mbuf))
|
|
return -EBUSY;
|
|
*rx_pkt = mbuf;
|
|
goto next_rx;
|
|
} else if (cmp_type != 0x11) {
|
|
rc = -EINVAL;
|
|
goto next_rx;
|
|
}
|
|
|
|
agg_buf = (rxcmp->agg_bufs_v1 & RX_PKT_CMPL_AGG_BUFS_MASK)
|
|
>> RX_PKT_CMPL_AGG_BUFS_SFT;
|
|
if (agg_buf && !bnxt_agg_bufs_valid(cpr, agg_buf, tmp_raw_cons))
|
|
return -EBUSY;
|
|
|
|
prod = rxr->rx_prod;
|
|
|
|
cons = rxcmp->opaque;
|
|
mbuf = bnxt_consume_rx_buf(rxr, cons);
|
|
if (mbuf == NULL)
|
|
return -EBUSY;
|
|
|
|
rte_prefetch0(mbuf);
|
|
|
|
mbuf->data_off = RTE_PKTMBUF_HEADROOM;
|
|
mbuf->nb_segs = 1;
|
|
mbuf->next = NULL;
|
|
mbuf->pkt_len = rxcmp->len;
|
|
mbuf->data_len = mbuf->pkt_len;
|
|
mbuf->port = rxq->port_id;
|
|
mbuf->ol_flags = 0;
|
|
|
|
flags_type = rte_le_to_cpu_16(rxcmp->flags_type);
|
|
if (flags_type & RX_PKT_CMPL_FLAGS_RSS_VALID) {
|
|
mbuf->hash.rss = rxcmp->rss_hash;
|
|
mbuf->ol_flags |= PKT_RX_RSS_HASH;
|
|
}
|
|
|
|
if (BNXT_TRUFLOW_EN(bp))
|
|
bnxt_ulp_set_mark_in_mbuf(rxq->bp, rxcmp1, mbuf);
|
|
else
|
|
bnxt_set_mark_in_mbuf(rxq->bp, rxcmp1, mbuf);
|
|
|
|
#ifdef RTE_LIBRTE_IEEE1588
|
|
if (unlikely((flags_type & RX_PKT_CMPL_FLAGS_MASK) ==
|
|
RX_PKT_CMPL_FLAGS_ITYPE_PTP_W_TIMESTAMP)) {
|
|
mbuf->ol_flags |= PKT_RX_IEEE1588_PTP | PKT_RX_IEEE1588_TMST;
|
|
bnxt_get_rx_ts_thor(rxq->bp, rxcmp1->reorder);
|
|
}
|
|
#endif
|
|
if (agg_buf)
|
|
bnxt_rx_pages(rxq, mbuf, &tmp_raw_cons, agg_buf, NULL);
|
|
|
|
if (rxcmp1->flags2 & RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN) {
|
|
mbuf->vlan_tci = rxcmp1->metadata &
|
|
(RX_PKT_CMPL_METADATA_VID_MASK |
|
|
RX_PKT_CMPL_METADATA_DE |
|
|
RX_PKT_CMPL_METADATA_PRI_MASK);
|
|
mbuf->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
|
|
}
|
|
|
|
flags2_f = flags2_0xf(rxcmp1);
|
|
/* IP Checksum */
|
|
if (likely(IS_IP_NONTUNNEL_PKT(flags2_f))) {
|
|
if (unlikely(RX_CMP_IP_CS_ERROR(rxcmp1)))
|
|
mbuf->ol_flags |= PKT_RX_IP_CKSUM_BAD;
|
|
else if (unlikely(RX_CMP_IP_CS_UNKNOWN(rxcmp1)))
|
|
mbuf->ol_flags |= PKT_RX_IP_CKSUM_UNKNOWN;
|
|
else
|
|
mbuf->ol_flags |= PKT_RX_IP_CKSUM_GOOD;
|
|
} else if (IS_IP_TUNNEL_PKT(flags2_f)) {
|
|
if (unlikely(RX_CMP_IP_OUTER_CS_ERROR(rxcmp1) ||
|
|
RX_CMP_IP_CS_ERROR(rxcmp1)))
|
|
mbuf->ol_flags |= PKT_RX_IP_CKSUM_BAD;
|
|
else if (unlikely(RX_CMP_IP_CS_UNKNOWN(rxcmp1)))
|
|
mbuf->ol_flags |= PKT_RX_IP_CKSUM_UNKNOWN;
|
|
else
|
|
mbuf->ol_flags |= PKT_RX_IP_CKSUM_GOOD;
|
|
}
|
|
|
|
/* L4 Checksum */
|
|
if (likely(IS_L4_NONTUNNEL_PKT(flags2_f))) {
|
|
if (unlikely(RX_CMP_L4_INNER_CS_ERR2(rxcmp1)))
|
|
mbuf->ol_flags |= PKT_RX_L4_CKSUM_BAD;
|
|
else
|
|
mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
|
|
} else if (IS_L4_TUNNEL_PKT(flags2_f)) {
|
|
if (unlikely(RX_CMP_L4_INNER_CS_ERR2(rxcmp1)))
|
|
mbuf->ol_flags |= PKT_RX_L4_CKSUM_BAD;
|
|
else
|
|
mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
|
|
if (unlikely(RX_CMP_L4_OUTER_CS_ERR2(rxcmp1))) {
|
|
mbuf->ol_flags |= PKT_RX_OUTER_L4_CKSUM_BAD;
|
|
} else if (unlikely(IS_L4_TUNNEL_PKT_ONLY_INNER_L4_CS
|
|
(flags2_f))) {
|
|
mbuf->ol_flags |= PKT_RX_OUTER_L4_CKSUM_UNKNOWN;
|
|
} else {
|
|
mbuf->ol_flags |= PKT_RX_OUTER_L4_CKSUM_GOOD;
|
|
}
|
|
} else if (unlikely(RX_CMP_L4_CS_UNKNOWN(rxcmp1))) {
|
|
mbuf->ol_flags |= PKT_RX_L4_CKSUM_UNKNOWN;
|
|
}
|
|
|
|
mbuf->packet_type = bnxt_parse_pkt_type(rxcmp, rxcmp1);
|
|
|
|
#ifdef BNXT_DEBUG
|
|
if (rxcmp1->errors_v2 & RX_CMP_L2_ERRORS) {
|
|
/* Re-install the mbuf back to the rx ring */
|
|
bnxt_reuse_rx_mbuf(rxr, cons, mbuf);
|
|
|
|
rc = -EIO;
|
|
goto next_rx;
|
|
}
|
|
#endif
|
|
/*
|
|
* TODO: Redesign this....
|
|
* If the allocation fails, the packet does not get received.
|
|
* Simply returning this will result in slowly falling behind
|
|
* on the producer ring buffers.
|
|
* Instead, "filling up" the producer just before ringing the
|
|
* doorbell could be a better solution since it will let the
|
|
* producer ring starve until memory is available again pushing
|
|
* the drops into hardware and getting them out of the driver
|
|
* allowing recovery to a full producer ring.
|
|
*
|
|
* This could also help with cache usage by preventing per-packet
|
|
* calls in favour of a tight loop with the same function being called
|
|
* in it.
|
|
*/
|
|
prod = RING_NEXT(rxr->rx_ring_struct, prod);
|
|
if (bnxt_alloc_rx_data(rxq, rxr, prod)) {
|
|
PMD_DRV_LOG(ERR, "mbuf alloc failed with prod=0x%x\n", prod);
|
|
rc = -ENOMEM;
|
|
goto rx;
|
|
}
|
|
rxr->rx_prod = prod;
|
|
/*
|
|
* All MBUFs are allocated with the same size under DPDK,
|
|
* no optimization for rx_copy_thresh
|
|
*/
|
|
rx:
|
|
*rx_pkt = mbuf;
|
|
|
|
next_rx:
|
|
|
|
*raw_cons = tmp_raw_cons;
|
|
|
|
return rc;
|
|
}
|
|
|
|
uint16_t bnxt_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
struct bnxt_rx_queue *rxq = rx_queue;
|
|
struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
|
|
struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
|
|
uint32_t raw_cons = cpr->cp_raw_cons;
|
|
uint32_t cons;
|
|
int nb_rx_pkts = 0;
|
|
struct rx_pkt_cmpl *rxcmp;
|
|
uint16_t prod = rxr->rx_prod;
|
|
uint16_t ag_prod = rxr->ag_prod;
|
|
int rc = 0;
|
|
bool evt = false;
|
|
|
|
if (unlikely(is_bnxt_in_error(rxq->bp)))
|
|
return 0;
|
|
|
|
/* If Rx Q was stopped return */
|
|
if (unlikely(!rxq->rx_started ||
|
|
!rte_spinlock_trylock(&rxq->lock)))
|
|
return 0;
|
|
|
|
/* Handle RX burst request */
|
|
while (1) {
|
|
cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
|
|
rte_prefetch0(&cpr->cp_desc_ring[cons]);
|
|
rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
|
|
|
|
if (!CMP_VALID(rxcmp, raw_cons, cpr->cp_ring_struct))
|
|
break;
|
|
cpr->valid = FLIP_VALID(cons,
|
|
cpr->cp_ring_struct->ring_mask,
|
|
cpr->valid);
|
|
|
|
/* TODO: Avoid magic numbers... */
|
|
if ((CMP_TYPE(rxcmp) & 0x30) == 0x10) {
|
|
rc = bnxt_rx_pkt(&rx_pkts[nb_rx_pkts], rxq, &raw_cons);
|
|
if (likely(!rc) || rc == -ENOMEM)
|
|
nb_rx_pkts++;
|
|
if (rc == -EBUSY) /* partial completion */
|
|
break;
|
|
} else if (!BNXT_NUM_ASYNC_CPR(rxq->bp)) {
|
|
evt =
|
|
bnxt_event_hwrm_resp_handler(rxq->bp,
|
|
(struct cmpl_base *)rxcmp);
|
|
/* If the async event is Fatal error, return */
|
|
if (unlikely(is_bnxt_in_error(rxq->bp)))
|
|
goto done;
|
|
}
|
|
|
|
raw_cons = NEXT_RAW_CMP(raw_cons);
|
|
if (nb_rx_pkts == nb_pkts || evt)
|
|
break;
|
|
/* Post some Rx buf early in case of larger burst processing */
|
|
if (nb_rx_pkts == BNXT_RX_POST_THRESH)
|
|
bnxt_db_write(&rxr->rx_db, rxr->rx_prod);
|
|
}
|
|
|
|
cpr->cp_raw_cons = raw_cons;
|
|
if (!nb_rx_pkts && !evt) {
|
|
/*
|
|
* For PMD, there is no need to keep on pushing to REARM
|
|
* the doorbell if there are no new completions
|
|
*/
|
|
goto done;
|
|
}
|
|
|
|
if (prod != rxr->rx_prod)
|
|
bnxt_db_write(&rxr->rx_db, rxr->rx_prod);
|
|
|
|
/* Ring the AGG ring DB */
|
|
if (ag_prod != rxr->ag_prod)
|
|
bnxt_db_write(&rxr->ag_db, rxr->ag_prod);
|
|
|
|
bnxt_db_cq(cpr);
|
|
|
|
/* Attempt to alloc Rx buf in case of a previous allocation failure. */
|
|
if (rc == -ENOMEM) {
|
|
int i = RING_NEXT(rxr->rx_ring_struct, prod);
|
|
int cnt = nb_rx_pkts;
|
|
|
|
for (; cnt;
|
|
i = RING_NEXT(rxr->rx_ring_struct, i), cnt--) {
|
|
struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i];
|
|
|
|
/* Buffer already allocated for this index. */
|
|
if (rx_buf->mbuf != NULL)
|
|
continue;
|
|
|
|
/* This slot is empty. Alloc buffer for Rx */
|
|
if (!bnxt_alloc_rx_data(rxq, rxr, i)) {
|
|
rxr->rx_prod = i;
|
|
bnxt_db_write(&rxr->rx_db, rxr->rx_prod);
|
|
} else {
|
|
PMD_DRV_LOG(ERR, "Alloc mbuf failed\n");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
done:
|
|
rte_spinlock_unlock(&rxq->lock);
|
|
|
|
return nb_rx_pkts;
|
|
}
|
|
|
|
/*
|
|
* Dummy DPDK callback for RX.
|
|
*
|
|
* This function is used to temporarily replace the real callback during
|
|
* unsafe control operations on the queue, or in case of error.
|
|
*/
|
|
uint16_t
|
|
bnxt_dummy_recv_pkts(void *rx_queue __rte_unused,
|
|
struct rte_mbuf **rx_pkts __rte_unused,
|
|
uint16_t nb_pkts __rte_unused)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
void bnxt_free_rx_rings(struct bnxt *bp)
|
|
{
|
|
int i;
|
|
struct bnxt_rx_queue *rxq;
|
|
|
|
if (!bp->rx_queues)
|
|
return;
|
|
|
|
for (i = 0; i < (int)bp->rx_nr_rings; i++) {
|
|
rxq = bp->rx_queues[i];
|
|
if (!rxq)
|
|
continue;
|
|
|
|
bnxt_free_ring(rxq->rx_ring->rx_ring_struct);
|
|
rte_free(rxq->rx_ring->rx_ring_struct);
|
|
|
|
/* Free the Aggregator ring */
|
|
bnxt_free_ring(rxq->rx_ring->ag_ring_struct);
|
|
rte_free(rxq->rx_ring->ag_ring_struct);
|
|
rxq->rx_ring->ag_ring_struct = NULL;
|
|
|
|
rte_free(rxq->rx_ring);
|
|
|
|
bnxt_free_ring(rxq->cp_ring->cp_ring_struct);
|
|
rte_free(rxq->cp_ring->cp_ring_struct);
|
|
rte_free(rxq->cp_ring);
|
|
|
|
rte_free(rxq);
|
|
bp->rx_queues[i] = NULL;
|
|
}
|
|
}
|
|
|
|
int bnxt_init_rx_ring_struct(struct bnxt_rx_queue *rxq, unsigned int socket_id)
|
|
{
|
|
struct bnxt_cp_ring_info *cpr;
|
|
struct bnxt_rx_ring_info *rxr;
|
|
struct bnxt_ring *ring;
|
|
|
|
rxq->rx_buf_size = BNXT_MAX_PKT_LEN + sizeof(struct rte_mbuf);
|
|
|
|
rxr = rte_zmalloc_socket("bnxt_rx_ring",
|
|
sizeof(struct bnxt_rx_ring_info),
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
if (rxr == NULL)
|
|
return -ENOMEM;
|
|
rxq->rx_ring = rxr;
|
|
|
|
ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
|
|
sizeof(struct bnxt_ring),
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
if (ring == NULL)
|
|
return -ENOMEM;
|
|
rxr->rx_ring_struct = ring;
|
|
ring->ring_size = rte_align32pow2(rxq->nb_rx_desc);
|
|
ring->ring_mask = ring->ring_size - 1;
|
|
ring->bd = (void *)rxr->rx_desc_ring;
|
|
ring->bd_dma = rxr->rx_desc_mapping;
|
|
ring->vmem_size = ring->ring_size * sizeof(struct bnxt_sw_rx_bd);
|
|
ring->vmem = (void **)&rxr->rx_buf_ring;
|
|
|
|
cpr = rte_zmalloc_socket("bnxt_rx_ring",
|
|
sizeof(struct bnxt_cp_ring_info),
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
if (cpr == NULL)
|
|
return -ENOMEM;
|
|
rxq->cp_ring = cpr;
|
|
|
|
ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
|
|
sizeof(struct bnxt_ring),
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
if (ring == NULL)
|
|
return -ENOMEM;
|
|
cpr->cp_ring_struct = ring;
|
|
ring->ring_size = rte_align32pow2(rxr->rx_ring_struct->ring_size *
|
|
(2 + AGG_RING_SIZE_FACTOR));
|
|
ring->ring_mask = ring->ring_size - 1;
|
|
ring->bd = (void *)cpr->cp_desc_ring;
|
|
ring->bd_dma = cpr->cp_desc_mapping;
|
|
ring->vmem_size = 0;
|
|
ring->vmem = NULL;
|
|
|
|
/* Allocate Aggregator rings */
|
|
ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
|
|
sizeof(struct bnxt_ring),
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
if (ring == NULL)
|
|
return -ENOMEM;
|
|
rxr->ag_ring_struct = ring;
|
|
ring->ring_size = rte_align32pow2(rxq->nb_rx_desc *
|
|
AGG_RING_SIZE_FACTOR);
|
|
ring->ring_mask = ring->ring_size - 1;
|
|
ring->bd = (void *)rxr->ag_desc_ring;
|
|
ring->bd_dma = rxr->ag_desc_mapping;
|
|
ring->vmem_size = ring->ring_size * sizeof(struct bnxt_sw_rx_bd);
|
|
ring->vmem = (void **)&rxr->ag_buf_ring;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bnxt_init_rxbds(struct bnxt_ring *ring, uint32_t type,
|
|
uint16_t len)
|
|
{
|
|
uint32_t j;
|
|
struct rx_prod_pkt_bd *rx_bd_ring = (struct rx_prod_pkt_bd *)ring->bd;
|
|
|
|
if (!rx_bd_ring)
|
|
return;
|
|
for (j = 0; j < ring->ring_size; j++) {
|
|
rx_bd_ring[j].flags_type = rte_cpu_to_le_16(type);
|
|
rx_bd_ring[j].len = rte_cpu_to_le_16(len);
|
|
rx_bd_ring[j].opaque = j;
|
|
}
|
|
}
|
|
|
|
int bnxt_init_one_rx_ring(struct bnxt_rx_queue *rxq)
|
|
{
|
|
struct bnxt_rx_ring_info *rxr;
|
|
struct bnxt_ring *ring;
|
|
uint32_t prod, type;
|
|
unsigned int i;
|
|
uint16_t size;
|
|
|
|
size = rte_pktmbuf_data_room_size(rxq->mb_pool) - RTE_PKTMBUF_HEADROOM;
|
|
size = RTE_MIN(BNXT_MAX_PKT_LEN, size);
|
|
|
|
type = RX_PROD_PKT_BD_TYPE_RX_PROD_PKT | RX_PROD_PKT_BD_FLAGS_EOP_PAD;
|
|
|
|
rxr = rxq->rx_ring;
|
|
ring = rxr->rx_ring_struct;
|
|
bnxt_init_rxbds(ring, type, size);
|
|
|
|
prod = rxr->rx_prod;
|
|
for (i = 0; i < ring->ring_size; i++) {
|
|
if (unlikely(!rxr->rx_buf_ring[i].mbuf)) {
|
|
if (bnxt_alloc_rx_data(rxq, rxr, prod) != 0) {
|
|
PMD_DRV_LOG(WARNING,
|
|
"init'ed rx ring %d with %d/%d mbufs only\n",
|
|
rxq->queue_id, i, ring->ring_size);
|
|
break;
|
|
}
|
|
}
|
|
rxr->rx_prod = prod;
|
|
prod = RING_NEXT(rxr->rx_ring_struct, prod);
|
|
}
|
|
|
|
ring = rxr->ag_ring_struct;
|
|
type = RX_PROD_AGG_BD_TYPE_RX_PROD_AGG;
|
|
bnxt_init_rxbds(ring, type, size);
|
|
prod = rxr->ag_prod;
|
|
|
|
for (i = 0; i < ring->ring_size; i++) {
|
|
if (unlikely(!rxr->ag_buf_ring[i].mbuf)) {
|
|
if (bnxt_alloc_ag_data(rxq, rxr, prod) != 0) {
|
|
PMD_DRV_LOG(WARNING,
|
|
"init'ed AG ring %d with %d/%d mbufs only\n",
|
|
rxq->queue_id, i, ring->ring_size);
|
|
break;
|
|
}
|
|
}
|
|
rxr->ag_prod = prod;
|
|
prod = RING_NEXT(rxr->ag_ring_struct, prod);
|
|
}
|
|
PMD_DRV_LOG(DEBUG, "AGG Done!\n");
|
|
|
|
if (rxr->tpa_info) {
|
|
unsigned int max_aggs = BNXT_TPA_MAX_AGGS(rxq->bp);
|
|
|
|
for (i = 0; i < max_aggs; i++) {
|
|
if (unlikely(!rxr->tpa_info[i].mbuf)) {
|
|
rxr->tpa_info[i].mbuf =
|
|
__bnxt_alloc_rx_data(rxq->mb_pool);
|
|
if (!rxr->tpa_info[i].mbuf) {
|
|
rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
PMD_DRV_LOG(DEBUG, "TPA alloc Done!\n");
|
|
|
|
return 0;
|
|
}
|