numam-dpdk/lib/librte_mbuf/rte_mbuf.h
Helin Zhang dc6c911c99 mbuf: use reserved space for double vlan
Use the reserved 16 bits in rte_mbuf structure for the outer vlan,
also add QinQ offloading flags for both RX and TX sides.

Signed-off-by: Helin Zhang <helin.zhang@intel.com>
Acked-by: Jingjing Wu <jingjing.wu@intel.com>
2015-07-07 16:39:32 +02:00

1296 lines
38 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* Copyright 2014 6WIND S.A.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _RTE_MBUF_H_
#define _RTE_MBUF_H_
/**
* @file
* RTE Mbuf
*
* The mbuf library provides the ability to create and destroy buffers
* that may be used by the RTE application to store message
* buffers. The message buffers are stored in a mempool, using the
* RTE mempool library.
*
* This library provide an API to allocate/free packet mbufs, which are
* used to carry network packets.
*
* To understand the concepts of packet buffers or mbufs, you
* should read "TCP/IP Illustrated, Volume 2: The Implementation,
* Addison-Wesley, 1995, ISBN 0-201-63354-X from Richard Stevens"
* http://www.kohala.com/start/tcpipiv2.html
*/
#include <stdint.h>
#include <rte_common.h>
#include <rte_mempool.h>
#include <rte_memory.h>
#include <rte_atomic.h>
#include <rte_prefetch.h>
#include <rte_branch_prediction.h>
#ifdef __cplusplus
extern "C" {
#endif
/* deprecated options */
#pragma GCC poison RTE_MBUF_SCATTER_GATHER
#pragma GCC poison RTE_MBUF_REFCNT
/*
* Packet Offload Features Flags. It also carry packet type information.
* Critical resources. Both rx/tx shared these bits. Be cautious on any change
*
* - RX flags start at bit position zero, and get added to the left of previous
* flags.
* - The most-significant 8 bits are reserved for generic mbuf flags
* - TX flags therefore start at bit position 55 (i.e. 63-8), and new flags get
* added to the right of the previously defined flags
*
* Keep these flags synchronized with rte_get_rx_ol_flag_name() and
* rte_get_tx_ol_flag_name().
*/
#define PKT_RX_VLAN_PKT (1ULL << 0) /**< RX packet is a 802.1q VLAN packet. */
#define PKT_RX_RSS_HASH (1ULL << 1) /**< RX packet with RSS hash result. */
#define PKT_RX_FDIR (1ULL << 2) /**< RX packet with FDIR match indicate. */
#define PKT_RX_L4_CKSUM_BAD (1ULL << 3) /**< L4 cksum of RX pkt. is not OK. */
#define PKT_RX_IP_CKSUM_BAD (1ULL << 4) /**< IP cksum of RX pkt. is not OK. */
#define PKT_RX_EIP_CKSUM_BAD (0ULL << 0) /**< External IP header checksum error. */
#define PKT_RX_OVERSIZE (0ULL << 0) /**< Num of desc of an RX pkt oversize. */
#define PKT_RX_HBUF_OVERFLOW (0ULL << 0) /**< Header buffer overflow. */
#define PKT_RX_RECIP_ERR (0ULL << 0) /**< Hardware processing error. */
#define PKT_RX_MAC_ERR (0ULL << 0) /**< MAC error. */
#define PKT_RX_IPV4_HDR (1ULL << 5) /**< RX packet with IPv4 header. */
#define PKT_RX_IPV4_HDR_EXT (1ULL << 6) /**< RX packet with extended IPv4 header. */
#define PKT_RX_IPV6_HDR (1ULL << 7) /**< RX packet with IPv6 header. */
#define PKT_RX_IPV6_HDR_EXT (1ULL << 8) /**< RX packet with extended IPv6 header. */
#define PKT_RX_IEEE1588_PTP (1ULL << 9) /**< RX IEEE1588 L2 Ethernet PT Packet. */
#define PKT_RX_IEEE1588_TMST (1ULL << 10) /**< RX IEEE1588 L2/L4 timestamped packet.*/
#define PKT_RX_TUNNEL_IPV4_HDR (1ULL << 11) /**< RX tunnel packet with IPv4 header.*/
#define PKT_RX_TUNNEL_IPV6_HDR (1ULL << 12) /**< RX tunnel packet with IPv6 header. */
#define PKT_RX_FDIR_ID (1ULL << 13) /**< FD id reported if FDIR match. */
#define PKT_RX_FDIR_FLX (1ULL << 14) /**< Flexible bytes reported if FDIR match. */
#define PKT_RX_QINQ_PKT (1ULL << 15) /**< RX packet with double VLAN stripped. */
/* add new RX flags here */
/* add new TX flags here */
/**
* Second VLAN insertion (QinQ) flag.
*/
#define PKT_TX_QINQ_PKT (1ULL << 49) /**< TX packet with double VLAN inserted. */
/**
* TCP segmentation offload. To enable this offload feature for a
* packet to be transmitted on hardware supporting TSO:
* - set the PKT_TX_TCP_SEG flag in mbuf->ol_flags (this flag implies
* PKT_TX_TCP_CKSUM)
* - set the flag PKT_TX_IPV4 or PKT_TX_IPV6
* - if it's IPv4, set the PKT_TX_IP_CKSUM flag and write the IP checksum
* to 0 in the packet
* - fill the mbuf offload information: l2_len, l3_len, l4_len, tso_segsz
* - calculate the pseudo header checksum without taking ip_len in account,
* and set it in the TCP header. Refer to rte_ipv4_phdr_cksum() and
* rte_ipv6_phdr_cksum() that can be used as helpers.
*/
#define PKT_TX_TCP_SEG (1ULL << 50)
#define PKT_TX_IEEE1588_TMST (1ULL << 51) /**< TX IEEE1588 packet to timestamp. */
/**
* Bits 52+53 used for L4 packet type with checksum enabled: 00: Reserved,
* 01: TCP checksum, 10: SCTP checksum, 11: UDP checksum. To use hardware
* L4 checksum offload, the user needs to:
* - fill l2_len and l3_len in mbuf
* - set the flags PKT_TX_TCP_CKSUM, PKT_TX_SCTP_CKSUM or PKT_TX_UDP_CKSUM
* - set the flag PKT_TX_IPV4 or PKT_TX_IPV6
* - calculate the pseudo header checksum and set it in the L4 header (only
* for TCP or UDP). See rte_ipv4_phdr_cksum() and rte_ipv6_phdr_cksum().
* For SCTP, set the crc field to 0.
*/
#define PKT_TX_L4_NO_CKSUM (0ULL << 52) /**< Disable L4 cksum of TX pkt. */
#define PKT_TX_TCP_CKSUM (1ULL << 52) /**< TCP cksum of TX pkt. computed by NIC. */
#define PKT_TX_SCTP_CKSUM (2ULL << 52) /**< SCTP cksum of TX pkt. computed by NIC. */
#define PKT_TX_UDP_CKSUM (3ULL << 52) /**< UDP cksum of TX pkt. computed by NIC. */
#define PKT_TX_L4_MASK (3ULL << 52) /**< Mask for L4 cksum offload request. */
/**
* Offload the IP checksum in the hardware. The flag PKT_TX_IPV4 should
* also be set by the application, although a PMD will only check
* PKT_TX_IP_CKSUM.
* - set the IP checksum field in the packet to 0
* - fill the mbuf offload information: l2_len, l3_len
*/
#define PKT_TX_IP_CKSUM (1ULL << 54)
/**
* Packet is IPv4. This flag must be set when using any offload feature
* (TSO, L3 or L4 checksum) to tell the NIC that the packet is an IPv4
* packet. If the packet is a tunneled packet, this flag is related to
* the inner headers.
*/
#define PKT_TX_IPV4 (1ULL << 55)
/**
* Packet is IPv6. This flag must be set when using an offload feature
* (TSO or L4 checksum) to tell the NIC that the packet is an IPv6
* packet. If the packet is a tunneled packet, this flag is related to
* the inner headers.
*/
#define PKT_TX_IPV6 (1ULL << 56)
#define PKT_TX_VLAN_PKT (1ULL << 57) /**< TX packet is a 802.1q VLAN packet. */
/**
* Offload the IP checksum of an external header in the hardware. The
* flag PKT_TX_OUTER_IPV4 should also be set by the application, alto ugh
* a PMD will only check PKT_TX_IP_CKSUM. The IP checksum field in the
* packet must be set to 0.
* - set the outer IP checksum field in the packet to 0
* - fill the mbuf offload information: outer_l2_len, outer_l3_len
*/
#define PKT_TX_OUTER_IP_CKSUM (1ULL << 58)
/**
* Packet outer header is IPv4. This flag must be set when using any
* outer offload feature (L3 or L4 checksum) to tell the NIC that the
* outer header of the tunneled packet is an IPv4 packet.
*/
#define PKT_TX_OUTER_IPV4 (1ULL << 59)
/**
* Packet outer header is IPv6. This flag must be set when using any
* outer offload feature (L4 checksum) to tell the NIC that the outer
* header of the tunneled packet is an IPv6 packet.
*/
#define PKT_TX_OUTER_IPV6 (1ULL << 60)
#define IND_ATTACHED_MBUF (1ULL << 62) /**< Indirect attached mbuf */
/* Use final bit of flags to indicate a control mbuf */
#define CTRL_MBUF_FLAG (1ULL << 63) /**< Mbuf contains control data */
/**
* Get the name of a RX offload flag
*
* @param mask
* The mask describing the flag.
* @return
* The name of this flag, or NULL if it's not a valid RX flag.
*/
const char *rte_get_rx_ol_flag_name(uint64_t mask);
/**
* Get the name of a TX offload flag
*
* @param mask
* The mask describing the flag. Usually only one bit must be set.
* Several bits can be given if they belong to the same mask.
* Ex: PKT_TX_L4_MASK.
* @return
* The name of this flag, or NULL if it's not a valid TX flag.
*/
const char *rte_get_tx_ol_flag_name(uint64_t mask);
/**
* Some NICs need at least 2KB buffer to RX standard Ethernet frame without
* splitting it into multiple segments.
* So, for mbufs that planned to be involved into RX/TX, the recommended
* minimal buffer length is 2KB + RTE_PKTMBUF_HEADROOM.
*/
#define RTE_MBUF_DEFAULT_DATAROOM 2048
#define RTE_MBUF_DEFAULT_BUF_SIZE \
(RTE_MBUF_DEFAULT_DATAROOM + RTE_PKTMBUF_HEADROOM)
/* define a set of marker types that can be used to refer to set points in the
* mbuf */
typedef void *MARKER[0]; /**< generic marker for a point in a structure */
typedef uint8_t MARKER8[0]; /**< generic marker with 1B alignment */
typedef uint64_t MARKER64[0]; /**< marker that allows us to overwrite 8 bytes
* with a single assignment */
/**
* The generic rte_mbuf, containing a packet mbuf.
*/
struct rte_mbuf {
MARKER cacheline0;
void *buf_addr; /**< Virtual address of segment buffer. */
phys_addr_t buf_physaddr; /**< Physical address of segment buffer. */
uint16_t buf_len; /**< Length of segment buffer. */
/* next 6 bytes are initialised on RX descriptor rearm */
MARKER8 rearm_data;
uint16_t data_off;
/**
* 16-bit Reference counter.
* It should only be accessed using the following functions:
* rte_mbuf_refcnt_update(), rte_mbuf_refcnt_read(), and
* rte_mbuf_refcnt_set(). The functionality of these functions (atomic,
* or non-atomic) is controlled by the CONFIG_RTE_MBUF_REFCNT_ATOMIC
* config option.
*/
union {
rte_atomic16_t refcnt_atomic; /**< Atomically accessed refcnt */
uint16_t refcnt; /**< Non-atomically accessed refcnt */
};
uint8_t nb_segs; /**< Number of segments. */
uint8_t port; /**< Input port. */
uint64_t ol_flags; /**< Offload features. */
/* remaining bytes are set on RX when pulling packet from descriptor */
MARKER rx_descriptor_fields1;
/**
* The packet type, which is used to indicate ordinary packet and also
* tunneled packet format, i.e. each number is represented a type of
* packet.
*/
uint16_t packet_type;
uint16_t data_len; /**< Amount of data in segment buffer. */
uint32_t pkt_len; /**< Total pkt len: sum of all segments. */
uint16_t vlan_tci; /**< VLAN Tag Control Identifier (CPU order) */
uint16_t vlan_tci_outer; /**< Outer VLAN Tag Control Identifier (CPU order) */
union {
uint32_t rss; /**< RSS hash result if RSS enabled */
struct {
union {
struct {
uint16_t hash;
uint16_t id;
};
uint32_t lo;
/**< Second 4 flexible bytes */
};
uint32_t hi;
/**< First 4 flexible bytes or FD ID, dependent on
PKT_RX_FDIR_* flag in ol_flags. */
} fdir; /**< Filter identifier if FDIR enabled */
uint32_t sched; /**< Hierarchical scheduler */
uint32_t usr; /**< User defined tags. See rte_distributor_process() */
} hash; /**< hash information */
uint32_t seqn; /**< Sequence number. See also rte_reorder_insert() */
/* second cache line - fields only used in slow path or on TX */
MARKER cacheline1 __rte_cache_aligned;
union {
void *userdata; /**< Can be used for external metadata */
uint64_t udata64; /**< Allow 8-byte userdata on 32-bit */
};
struct rte_mempool *pool; /**< Pool from which mbuf was allocated. */
struct rte_mbuf *next; /**< Next segment of scattered packet. */
/* fields to support TX offloads */
union {
uint64_t tx_offload; /**< combined for easy fetch */
struct {
uint64_t l2_len:7; /**< L2 (MAC) Header Length. */
uint64_t l3_len:9; /**< L3 (IP) Header Length. */
uint64_t l4_len:8; /**< L4 (TCP/UDP) Header Length. */
uint64_t tso_segsz:16; /**< TCP TSO segment size */
/* fields for TX offloading of tunnels */
uint64_t outer_l3_len:9; /**< Outer L3 (IP) Hdr Length. */
uint64_t outer_l2_len:7; /**< Outer L2 (MAC) Hdr Length. */
/* uint64_t unused:8; */
};
};
/** Size of the application private data. In case of an indirect
* mbuf, it stores the direct mbuf private data size. */
uint16_t priv_size;
} __rte_cache_aligned;
static inline uint16_t rte_pktmbuf_priv_size(struct rte_mempool *mp);
/**
* Return the mbuf owning the data buffer address of an indirect mbuf.
*
* @param mi
* The pointer to the indirect mbuf.
* @return
* The address of the direct mbuf corresponding to buffer_addr.
*/
static inline struct rte_mbuf *
rte_mbuf_from_indirect(struct rte_mbuf *mi)
{
return RTE_PTR_SUB(mi->buf_addr, sizeof(*mi) + mi->priv_size);
}
/**
* Return the buffer address embedded in the given mbuf.
*
* @param md
* The pointer to the mbuf.
* @return
* The address of the data buffer owned by the mbuf.
*/
static inline char *
rte_mbuf_to_baddr(struct rte_mbuf *md)
{
char *buffer_addr;
buffer_addr = (char *)md + sizeof(*md) + rte_pktmbuf_priv_size(md->pool);
return buffer_addr;
}
/**
* Returns TRUE if given mbuf is indirect, or FALSE otherwise.
*/
#define RTE_MBUF_INDIRECT(mb) ((mb)->ol_flags & IND_ATTACHED_MBUF)
/**
* Returns TRUE if given mbuf is direct, or FALSE otherwise.
*/
#define RTE_MBUF_DIRECT(mb) (!RTE_MBUF_INDIRECT(mb))
/**
* Private data in case of pktmbuf pool.
*
* A structure that contains some pktmbuf_pool-specific data that are
* appended after the mempool structure (in private data).
*/
struct rte_pktmbuf_pool_private {
uint16_t mbuf_data_room_size; /**< Size of data space in each mbuf. */
uint16_t mbuf_priv_size; /**< Size of private area in each mbuf. */
};
#ifdef RTE_LIBRTE_MBUF_DEBUG
/** check mbuf type in debug mode */
#define __rte_mbuf_sanity_check(m, is_h) rte_mbuf_sanity_check(m, is_h)
/** check mbuf type in debug mode if mbuf pointer is not null */
#define __rte_mbuf_sanity_check_raw(m, is_h) do { \
if ((m) != NULL) \
rte_mbuf_sanity_check(m, is_h); \
} while (0)
/** MBUF asserts in debug mode */
#define RTE_MBUF_ASSERT(exp) \
if (!(exp)) { \
rte_panic("line%d\tassert \"" #exp "\" failed\n", __LINE__); \
}
#else /* RTE_LIBRTE_MBUF_DEBUG */
/** check mbuf type in debug mode */
#define __rte_mbuf_sanity_check(m, is_h) do { } while (0)
/** check mbuf type in debug mode if mbuf pointer is not null */
#define __rte_mbuf_sanity_check_raw(m, is_h) do { } while (0)
/** MBUF asserts in debug mode */
#define RTE_MBUF_ASSERT(exp) do { } while (0)
#endif /* RTE_LIBRTE_MBUF_DEBUG */
#ifdef RTE_MBUF_REFCNT_ATOMIC
/**
* Reads the value of an mbuf's refcnt.
* @param m
* Mbuf to read
* @return
* Reference count number.
*/
static inline uint16_t
rte_mbuf_refcnt_read(const struct rte_mbuf *m)
{
return (uint16_t)(rte_atomic16_read(&m->refcnt_atomic));
}
/**
* Sets an mbuf's refcnt to a defined value.
* @param m
* Mbuf to update
* @param new_value
* Value set
*/
static inline void
rte_mbuf_refcnt_set(struct rte_mbuf *m, uint16_t new_value)
{
rte_atomic16_set(&m->refcnt_atomic, new_value);
}
/**
* Adds given value to an mbuf's refcnt and returns its new value.
* @param m
* Mbuf to update
* @param value
* Value to add/subtract
* @return
* Updated value
*/
static inline uint16_t
rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value)
{
/*
* The atomic_add is an expensive operation, so we don't want to
* call it in the case where we know we are the uniq holder of
* this mbuf (i.e. ref_cnt == 1). Otherwise, an atomic
* operation has to be used because concurrent accesses on the
* reference counter can occur.
*/
if (likely(rte_mbuf_refcnt_read(m) == 1)) {
rte_mbuf_refcnt_set(m, 1 + value);
return 1 + value;
}
return (uint16_t)(rte_atomic16_add_return(&m->refcnt_atomic, value));
}
#else /* ! RTE_MBUF_REFCNT_ATOMIC */
/**
* Adds given value to an mbuf's refcnt and returns its new value.
*/
static inline uint16_t
rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value)
{
m->refcnt = (uint16_t)(m->refcnt + value);
return m->refcnt;
}
/**
* Reads the value of an mbuf's refcnt.
*/
static inline uint16_t
rte_mbuf_refcnt_read(const struct rte_mbuf *m)
{
return m->refcnt;
}
/**
* Sets an mbuf's refcnt to the defined value.
*/
static inline void
rte_mbuf_refcnt_set(struct rte_mbuf *m, uint16_t new_value)
{
m->refcnt = new_value;
}
#endif /* RTE_MBUF_REFCNT_ATOMIC */
/** Mbuf prefetch */
#define RTE_MBUF_PREFETCH_TO_FREE(m) do { \
if ((m) != NULL) \
rte_prefetch0(m); \
} while (0)
/**
* Sanity checks on an mbuf.
*
* Check the consistency of the given mbuf. The function will cause a
* panic if corruption is detected.
*
* @param m
* The mbuf to be checked.
* @param is_header
* True if the mbuf is a packet header, false if it is a sub-segment
* of a packet (in this case, some fields like nb_segs are not checked)
*/
void
rte_mbuf_sanity_check(const struct rte_mbuf *m, int is_header);
/**
* @internal Allocate a new mbuf from mempool *mp*.
* The use of that function is reserved for RTE internal needs.
* Please use rte_pktmbuf_alloc().
*
* @param mp
* The mempool from which mbuf is allocated.
* @return
* - The pointer to the new mbuf on success.
* - NULL if allocation failed.
*/
static inline struct rte_mbuf *__rte_mbuf_raw_alloc(struct rte_mempool *mp)
{
struct rte_mbuf *m;
void *mb = NULL;
if (rte_mempool_get(mp, &mb) < 0)
return NULL;
m = (struct rte_mbuf *)mb;
RTE_MBUF_ASSERT(rte_mbuf_refcnt_read(m) == 0);
rte_mbuf_refcnt_set(m, 1);
return m;
}
/**
* @internal Put mbuf back into its original mempool.
* The use of that function is reserved for RTE internal needs.
* Please use rte_pktmbuf_free().
*
* @param m
* The mbuf to be freed.
*/
static inline void __attribute__((always_inline))
__rte_mbuf_raw_free(struct rte_mbuf *m)
{
RTE_MBUF_ASSERT(rte_mbuf_refcnt_read(m) == 0);
rte_mempool_put(m->pool, m);
}
/* Operations on ctrl mbuf */
/**
* The control mbuf constructor.
*
* This function initializes some fields in an mbuf structure that are
* not modified by the user once created (mbuf type, origin pool, buffer
* start address, and so on). This function is given as a callback function
* to rte_mempool_create() at pool creation time.
*
* @param mp
* The mempool from which the mbuf is allocated.
* @param opaque_arg
* A pointer that can be used by the user to retrieve useful information
* for mbuf initialization. This pointer comes from the ``init_arg``
* parameter of rte_mempool_create().
* @param m
* The mbuf to initialize.
* @param i
* The index of the mbuf in the pool table.
*/
void rte_ctrlmbuf_init(struct rte_mempool *mp, void *opaque_arg,
void *m, unsigned i);
/**
* Allocate a new mbuf (type is ctrl) from mempool *mp*.
*
* This new mbuf is initialized with data pointing to the beginning of
* buffer, and with a length of zero.
*
* @param mp
* The mempool from which the mbuf is allocated.
* @return
* - The pointer to the new mbuf on success.
* - NULL if allocation failed.
*/
#define rte_ctrlmbuf_alloc(mp) rte_pktmbuf_alloc(mp)
/**
* Free a control mbuf back into its original mempool.
*
* @param m
* The control mbuf to be freed.
*/
#define rte_ctrlmbuf_free(m) rte_pktmbuf_free(m)
/**
* A macro that returns the pointer to the carried data.
*
* The value that can be read or assigned.
*
* @param m
* The control mbuf.
*/
#define rte_ctrlmbuf_data(m) ((char *)((m)->buf_addr) + (m)->data_off)
/**
* A macro that returns the length of the carried data.
*
* The value that can be read or assigned.
*
* @param m
* The control mbuf.
*/
#define rte_ctrlmbuf_len(m) rte_pktmbuf_data_len(m)
/**
* Tests if an mbuf is a control mbuf
*
* @param m
* The mbuf to be tested
* @return
* - True (1) if the mbuf is a control mbuf
* - False(0) otherwise
*/
static inline int
rte_is_ctrlmbuf(struct rte_mbuf *m)
{
return !!(m->ol_flags & CTRL_MBUF_FLAG);
}
/* Operations on pkt mbuf */
/**
* The packet mbuf constructor.
*
* This function initializes some fields in the mbuf structure that are
* not modified by the user once created (origin pool, buffer start
* address, and so on). This function is given as a callback function to
* rte_mempool_create() at pool creation time.
*
* @param mp
* The mempool from which mbufs originate.
* @param opaque_arg
* A pointer that can be used by the user to retrieve useful information
* for mbuf initialization. This pointer comes from the ``init_arg``
* parameter of rte_mempool_create().
* @param m
* The mbuf to initialize.
* @param i
* The index of the mbuf in the pool table.
*/
void rte_pktmbuf_init(struct rte_mempool *mp, void *opaque_arg,
void *m, unsigned i);
/**
* A packet mbuf pool constructor.
*
* This function initializes the mempool private data in the case of a
* pktmbuf pool. This private data is needed by the driver. The
* function is given as a callback function to rte_mempool_create() at
* pool creation. It can be extended by the user, for example, to
* provide another packet size.
*
* @param mp
* The mempool from which mbufs originate.
* @param opaque_arg
* A pointer that can be used by the user to retrieve useful information
* for mbuf initialization. This pointer comes from the ``init_arg``
* parameter of rte_mempool_create().
*/
void rte_pktmbuf_pool_init(struct rte_mempool *mp, void *opaque_arg);
/**
* Create a mbuf pool.
*
* This function creates and initializes a packet mbuf pool. It is
* a wrapper to rte_mempool_create() with the proper packet constructor
* and mempool constructor.
*
* @param name
* The name of the mbuf pool.
* @param n
* The number of elements in the mbuf pool. The optimum size (in terms
* of memory usage) for a mempool is when n is a power of two minus one:
* n = (2^q - 1).
* @param cache_size
* Size of the per-core object cache. See rte_mempool_create() for
* details.
* @param priv_size
* Size of application private are between the rte_mbuf structure
* and the data buffer.
* @param data_room_size
* Size of data buffer in each mbuf, including RTE_PKTMBUF_HEADROOM.
* @param socket_id
* The socket identifier where the memory should be allocated. The
* value can be *SOCKET_ID_ANY* if there is no NUMA constraint for the
* reserved zone.
* @return
* The pointer to the new allocated mempool, on success. NULL on error
* with rte_errno set appropriately. Possible rte_errno values include:
* - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure
* - E_RTE_SECONDARY - function was called from a secondary process instance
* - EINVAL - cache size provided is too large
* - ENOSPC - the maximum number of memzones has already been allocated
* - EEXIST - a memzone with the same name already exists
* - ENOMEM - no appropriate memory area found in which to create memzone
*/
struct rte_mempool *
rte_pktmbuf_pool_create(const char *name, unsigned n,
unsigned cache_size, uint16_t priv_size, uint16_t data_room_size,
int socket_id);
/**
* Get the data room size of mbufs stored in a pktmbuf_pool
*
* The data room size is the amount of data that can be stored in a
* mbuf including the headroom (RTE_PKTMBUF_HEADROOM).
*
* @param mp
* The packet mbuf pool.
* @return
* The data room size of mbufs stored in this mempool.
*/
static inline uint16_t
rte_pktmbuf_data_room_size(struct rte_mempool *mp)
{
struct rte_pktmbuf_pool_private *mbp_priv;
mbp_priv = (struct rte_pktmbuf_pool_private *)rte_mempool_get_priv(mp);
return mbp_priv->mbuf_data_room_size;
}
/**
* Get the application private size of mbufs stored in a pktmbuf_pool
*
* The private size of mbuf is a zone located between the rte_mbuf
* structure and the data buffer where an application can store data
* associated to a packet.
*
* @param mp
* The packet mbuf pool.
* @return
* The private size of mbufs stored in this mempool.
*/
static inline uint16_t
rte_pktmbuf_priv_size(struct rte_mempool *mp)
{
struct rte_pktmbuf_pool_private *mbp_priv;
mbp_priv = (struct rte_pktmbuf_pool_private *)rte_mempool_get_priv(mp);
return mbp_priv->mbuf_priv_size;
}
/**
* Reset the fields of a packet mbuf to their default values.
*
* The given mbuf must have only one segment.
*
* @param m
* The packet mbuf to be resetted.
*/
static inline void rte_pktmbuf_reset(struct rte_mbuf *m)
{
m->next = NULL;
m->pkt_len = 0;
m->tx_offload = 0;
m->vlan_tci = 0;
m->vlan_tci_outer = 0;
m->nb_segs = 1;
m->port = 0xff;
m->ol_flags = 0;
m->packet_type = 0;
m->data_off = (RTE_PKTMBUF_HEADROOM <= m->buf_len) ?
RTE_PKTMBUF_HEADROOM : m->buf_len;
m->data_len = 0;
__rte_mbuf_sanity_check(m, 1);
}
/**
* Allocate a new mbuf from a mempool.
*
* This new mbuf contains one segment, which has a length of 0. The pointer
* to data is initialized to have some bytes of headroom in the buffer
* (if buffer size allows).
*
* @param mp
* The mempool from which the mbuf is allocated.
* @return
* - The pointer to the new mbuf on success.
* - NULL if allocation failed.
*/
static inline struct rte_mbuf *rte_pktmbuf_alloc(struct rte_mempool *mp)
{
struct rte_mbuf *m;
if ((m = __rte_mbuf_raw_alloc(mp)) != NULL)
rte_pktmbuf_reset(m);
return m;
}
/**
* Attach packet mbuf to another packet mbuf.
*
* After attachment we refer the mbuf we attached as 'indirect',
* while mbuf we attached to as 'direct'.
* Right now, not supported:
* - attachment for already indirect mbuf (e.g. - mi has to be direct).
* - mbuf we trying to attach (mi) is used by someone else
* e.g. it's reference counter is greater then 1.
*
* @param mi
* The indirect packet mbuf.
* @param m
* The packet mbuf we're attaching to.
*/
static inline void rte_pktmbuf_attach(struct rte_mbuf *mi, struct rte_mbuf *m)
{
struct rte_mbuf *md;
RTE_MBUF_ASSERT(RTE_MBUF_DIRECT(mi) &&
rte_mbuf_refcnt_read(mi) == 1);
/* if m is not direct, get the mbuf that embeds the data */
if (RTE_MBUF_DIRECT(m))
md = m;
else
md = rte_mbuf_from_indirect(m);
rte_mbuf_refcnt_update(md, 1);
mi->priv_size = m->priv_size;
mi->buf_physaddr = m->buf_physaddr;
mi->buf_addr = m->buf_addr;
mi->buf_len = m->buf_len;
mi->next = m->next;
mi->data_off = m->data_off;
mi->data_len = m->data_len;
mi->port = m->port;
mi->vlan_tci = m->vlan_tci;
mi->vlan_tci_outer = m->vlan_tci_outer;
mi->tx_offload = m->tx_offload;
mi->hash = m->hash;
mi->next = NULL;
mi->pkt_len = mi->data_len;
mi->nb_segs = 1;
mi->ol_flags = m->ol_flags | IND_ATTACHED_MBUF;
mi->packet_type = m->packet_type;
__rte_mbuf_sanity_check(mi, 1);
__rte_mbuf_sanity_check(m, 0);
}
/**
* Detach an indirect packet mbuf.
*
* - restore original mbuf address and length values.
* - reset pktmbuf data and data_len to their default values.
* All other fields of the given packet mbuf will be left intact.
*
* @param m
* The indirect attached packet mbuf.
*/
static inline void rte_pktmbuf_detach(struct rte_mbuf *m)
{
struct rte_mempool *mp = m->pool;
uint32_t mbuf_size, buf_len, priv_size;
priv_size = rte_pktmbuf_priv_size(mp);
mbuf_size = sizeof(struct rte_mbuf) + priv_size;
buf_len = rte_pktmbuf_data_room_size(mp);
m->priv_size = priv_size;
m->buf_addr = (char *)m + mbuf_size;
m->buf_physaddr = rte_mempool_virt2phy(mp, m) + mbuf_size;
m->buf_len = (uint16_t)buf_len;
m->data_off = RTE_MIN(RTE_PKTMBUF_HEADROOM, (uint16_t)m->buf_len);
m->data_len = 0;
m->ol_flags = 0;
}
static inline struct rte_mbuf* __attribute__((always_inline))
__rte_pktmbuf_prefree_seg(struct rte_mbuf *m)
{
__rte_mbuf_sanity_check(m, 0);
if (likely(rte_mbuf_refcnt_update(m, -1) == 0)) {
/* if this is an indirect mbuf, then
* - detach mbuf
* - free attached mbuf segment
*/
if (RTE_MBUF_INDIRECT(m)) {
struct rte_mbuf *md = rte_mbuf_from_indirect(m);
rte_pktmbuf_detach(m);
if (rte_mbuf_refcnt_update(md, -1) == 0)
__rte_mbuf_raw_free(md);
}
return m;
}
return NULL;
}
/**
* Free a segment of a packet mbuf into its original mempool.
*
* Free an mbuf, without parsing other segments in case of chained
* buffers.
*
* @param m
* The packet mbuf segment to be freed.
*/
static inline void __attribute__((always_inline))
rte_pktmbuf_free_seg(struct rte_mbuf *m)
{
if (likely(NULL != (m = __rte_pktmbuf_prefree_seg(m)))) {
m->next = NULL;
__rte_mbuf_raw_free(m);
}
}
/**
* Free a packet mbuf back into its original mempool.
*
* Free an mbuf, and all its segments in case of chained buffers. Each
* segment is added back into its original mempool.
*
* @param m
* The packet mbuf to be freed.
*/
static inline void rte_pktmbuf_free(struct rte_mbuf *m)
{
struct rte_mbuf *m_next;
__rte_mbuf_sanity_check(m, 1);
while (m != NULL) {
m_next = m->next;
rte_pktmbuf_free_seg(m);
m = m_next;
}
}
/**
* Creates a "clone" of the given packet mbuf.
*
* Walks through all segments of the given packet mbuf, and for each of them:
* - Creates a new packet mbuf from the given pool.
* - Attaches newly created mbuf to the segment.
* Then updates pkt_len and nb_segs of the "clone" packet mbuf to match values
* from the original packet mbuf.
*
* @param md
* The packet mbuf to be cloned.
* @param mp
* The mempool from which the "clone" mbufs are allocated.
* @return
* - The pointer to the new "clone" mbuf on success.
* - NULL if allocation fails.
*/
static inline struct rte_mbuf *rte_pktmbuf_clone(struct rte_mbuf *md,
struct rte_mempool *mp)
{
struct rte_mbuf *mc, *mi, **prev;
uint32_t pktlen;
uint8_t nseg;
if (unlikely ((mc = rte_pktmbuf_alloc(mp)) == NULL))
return NULL;
mi = mc;
prev = &mi->next;
pktlen = md->pkt_len;
nseg = 0;
do {
nseg++;
rte_pktmbuf_attach(mi, md);
*prev = mi;
prev = &mi->next;
} while ((md = md->next) != NULL &&
(mi = rte_pktmbuf_alloc(mp)) != NULL);
*prev = NULL;
mc->nb_segs = nseg;
mc->pkt_len = pktlen;
/* Allocation of new indirect segment failed */
if (unlikely (mi == NULL)) {
rte_pktmbuf_free(mc);
return NULL;
}
__rte_mbuf_sanity_check(mc, 1);
return mc;
}
/**
* Adds given value to the refcnt of all packet mbuf segments.
*
* Walks through all segments of given packet mbuf and for each of them
* invokes rte_mbuf_refcnt_update().
*
* @param m
* The packet mbuf whose refcnt to be updated.
* @param v
* The value to add to the mbuf's segments refcnt.
*/
static inline void rte_pktmbuf_refcnt_update(struct rte_mbuf *m, int16_t v)
{
__rte_mbuf_sanity_check(m, 1);
do {
rte_mbuf_refcnt_update(m, v);
} while ((m = m->next) != NULL);
}
/**
* Get the headroom in a packet mbuf.
*
* @param m
* The packet mbuf.
* @return
* The length of the headroom.
*/
static inline uint16_t rte_pktmbuf_headroom(const struct rte_mbuf *m)
{
__rte_mbuf_sanity_check(m, 1);
return m->data_off;
}
/**
* Get the tailroom of a packet mbuf.
*
* @param m
* The packet mbuf.
* @return
* The length of the tailroom.
*/
static inline uint16_t rte_pktmbuf_tailroom(const struct rte_mbuf *m)
{
__rte_mbuf_sanity_check(m, 1);
return (uint16_t)(m->buf_len - rte_pktmbuf_headroom(m) -
m->data_len);
}
/**
* Get the last segment of the packet.
*
* @param m
* The packet mbuf.
* @return
* The last segment of the given mbuf.
*/
static inline struct rte_mbuf *rte_pktmbuf_lastseg(struct rte_mbuf *m)
{
struct rte_mbuf *m2 = (struct rte_mbuf *)m;
__rte_mbuf_sanity_check(m, 1);
while (m2->next != NULL)
m2 = m2->next;
return m2;
}
/**
* A macro that points to an offset into the data in the mbuf.
*
* The returned pointer is cast to type t. Before using this
* function, the user must ensure that the first segment is large
* enough to accommodate its data.
*
* @param m
* The packet mbuf.
* @param o
* The offset into the mbuf data.
* @param t
* The type to cast the result into.
*/
#define rte_pktmbuf_mtod_offset(m, t, o) \
((t)((char *)(m)->buf_addr + (m)->data_off + (o)))
/**
* A macro that points to the start of the data in the mbuf.
*
* The returned pointer is cast to type t. Before using this
* function, the user must ensure that the first segment is large
* enough to accommodate its data.
*
* @param m
* The packet mbuf.
* @param t
* The type to cast the result into.
*/
#define rte_pktmbuf_mtod(m, t) rte_pktmbuf_mtod_offset(m, t, 0)
/**
* A macro that returns the length of the packet.
*
* The value can be read or assigned.
*
* @param m
* The packet mbuf.
*/
#define rte_pktmbuf_pkt_len(m) ((m)->pkt_len)
/**
* A macro that returns the length of the segment.
*
* The value can be read or assigned.
*
* @param m
* The packet mbuf.
*/
#define rte_pktmbuf_data_len(m) ((m)->data_len)
/**
* Prepend len bytes to an mbuf data area.
*
* Returns a pointer to the new
* data start address. If there is not enough headroom in the first
* segment, the function will return NULL, without modifying the mbuf.
*
* @param m
* The pkt mbuf.
* @param len
* The amount of data to prepend (in bytes).
* @return
* A pointer to the start of the newly prepended data, or
* NULL if there is not enough headroom space in the first segment
*/
static inline char *rte_pktmbuf_prepend(struct rte_mbuf *m,
uint16_t len)
{
__rte_mbuf_sanity_check(m, 1);
if (unlikely(len > rte_pktmbuf_headroom(m)))
return NULL;
m->data_off -= len;
m->data_len = (uint16_t)(m->data_len + len);
m->pkt_len = (m->pkt_len + len);
return (char *)m->buf_addr + m->data_off;
}
/**
* Append len bytes to an mbuf.
*
* Append len bytes to an mbuf and return a pointer to the start address
* of the added data. If there is not enough tailroom in the last
* segment, the function will return NULL, without modifying the mbuf.
*
* @param m
* The packet mbuf.
* @param len
* The amount of data to append (in bytes).
* @return
* A pointer to the start of the newly appended data, or
* NULL if there is not enough tailroom space in the last segment
*/
static inline char *rte_pktmbuf_append(struct rte_mbuf *m, uint16_t len)
{
void *tail;
struct rte_mbuf *m_last;
__rte_mbuf_sanity_check(m, 1);
m_last = rte_pktmbuf_lastseg(m);
if (unlikely(len > rte_pktmbuf_tailroom(m_last)))
return NULL;
tail = (char *)m_last->buf_addr + m_last->data_off + m_last->data_len;
m_last->data_len = (uint16_t)(m_last->data_len + len);
m->pkt_len = (m->pkt_len + len);
return (char*) tail;
}
/**
* Remove len bytes at the beginning of an mbuf.
*
* Returns a pointer to the start address of the new data area. If the
* length is greater than the length of the first segment, then the
* function will fail and return NULL, without modifying the mbuf.
*
* @param m
* The packet mbuf.
* @param len
* The amount of data to remove (in bytes).
* @return
* A pointer to the new start of the data.
*/
static inline char *rte_pktmbuf_adj(struct rte_mbuf *m, uint16_t len)
{
__rte_mbuf_sanity_check(m, 1);
if (unlikely(len > m->data_len))
return NULL;
m->data_len = (uint16_t)(m->data_len - len);
m->data_off += len;
m->pkt_len = (m->pkt_len - len);
return (char *)m->buf_addr + m->data_off;
}
/**
* Remove len bytes of data at the end of the mbuf.
*
* If the length is greater than the length of the last segment, the
* function will fail and return -1 without modifying the mbuf.
*
* @param m
* The packet mbuf.
* @param len
* The amount of data to remove (in bytes).
* @return
* - 0: On success.
* - -1: On error.
*/
static inline int rte_pktmbuf_trim(struct rte_mbuf *m, uint16_t len)
{
struct rte_mbuf *m_last;
__rte_mbuf_sanity_check(m, 1);
m_last = rte_pktmbuf_lastseg(m);
if (unlikely(len > m_last->data_len))
return -1;
m_last->data_len = (uint16_t)(m_last->data_len - len);
m->pkt_len = (m->pkt_len - len);
return 0;
}
/**
* Test if mbuf data is contiguous.
*
* @param m
* The packet mbuf.
* @return
* - 1, if all data is contiguous (one segment).
* - 0, if there is several segments.
*/
static inline int rte_pktmbuf_is_contiguous(const struct rte_mbuf *m)
{
__rte_mbuf_sanity_check(m, 1);
return !!(m->nb_segs == 1);
}
/**
* Dump an mbuf structure to the console.
*
* Dump all fields for the given packet mbuf and all its associated
* segments (in the case of a chained buffer).
*
* @param f
* A pointer to a file for output
* @param m
* The packet mbuf.
* @param dump_len
* If dump_len != 0, also dump the "dump_len" first data bytes of
* the packet.
*/
void rte_pktmbuf_dump(FILE *f, const struct rte_mbuf *m, unsigned dump_len);
#ifdef __cplusplus
}
#endif
#endif /* _RTE_MBUF_H_ */