numam-dpdk/drivers/net/hns3/hns3_rxtx.c
Min Hu (Connor) 8973d7c4ca net/hns3: support keeping CRC
CRC is the end of frame, which occupies 4 bytes. Keeping CRC is a
feature of MAC, which will not strip CRC field when receiving frames.
The feature can be enabled using DEV_RX_OFFLOAD_KEEP_CRC offload by
upper level application. And the feature is only supported for hns3 PF
PMD driver, not supported for hns3 VF PMD driver

Signed-off-by: Min Hu (Connor) <humin29@huawei.com>
Signed-off-by: Wei Hu (Xavier) <xavier.huwei@huawei.com>
2020-07-17 18:21:21 +02:00

2817 lines
72 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018-2019 Hisilicon Limited.
*/
#include <stdarg.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <unistd.h>
#include <inttypes.h>
#include <rte_bus_pci.h>
#include <rte_byteorder.h>
#include <rte_common.h>
#include <rte_cycles.h>
#include <rte_dev.h>
#include <rte_eal.h>
#include <rte_ether.h>
#include <rte_vxlan.h>
#include <rte_ethdev_driver.h>
#include <rte_io.h>
#include <rte_ip.h>
#include <rte_gre.h>
#include <rte_net.h>
#include <rte_malloc.h>
#include <rte_pci.h>
#include "hns3_ethdev.h"
#include "hns3_rxtx.h"
#include "hns3_regs.h"
#include "hns3_logs.h"
#define HNS3_CFG_DESC_NUM(num) ((num) / 8 - 1)
#define DEFAULT_RX_FREE_THRESH 32
static void
hns3_rx_queue_release_mbufs(struct hns3_rx_queue *rxq)
{
uint16_t i;
/* Note: Fake rx queue will not enter here */
if (rxq->sw_ring) {
for (i = 0; i < rxq->nb_rx_desc; i++) {
if (rxq->sw_ring[i].mbuf) {
rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
rxq->sw_ring[i].mbuf = NULL;
}
}
}
}
static void
hns3_tx_queue_release_mbufs(struct hns3_tx_queue *txq)
{
uint16_t i;
/* Note: Fake rx queue will not enter here */
if (txq->sw_ring) {
for (i = 0; i < txq->nb_tx_desc; i++) {
if (txq->sw_ring[i].mbuf) {
rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
txq->sw_ring[i].mbuf = NULL;
}
}
}
}
static void
hns3_rx_queue_release(void *queue)
{
struct hns3_rx_queue *rxq = queue;
if (rxq) {
hns3_rx_queue_release_mbufs(rxq);
if (rxq->mz)
rte_memzone_free(rxq->mz);
if (rxq->sw_ring)
rte_free(rxq->sw_ring);
rte_free(rxq);
}
}
static void
hns3_tx_queue_release(void *queue)
{
struct hns3_tx_queue *txq = queue;
if (txq) {
hns3_tx_queue_release_mbufs(txq);
if (txq->mz)
rte_memzone_free(txq->mz);
if (txq->sw_ring)
rte_free(txq->sw_ring);
rte_free(txq);
}
}
void
hns3_dev_rx_queue_release(void *queue)
{
struct hns3_rx_queue *rxq = queue;
struct hns3_adapter *hns;
if (rxq == NULL)
return;
hns = rxq->hns;
rte_spinlock_lock(&hns->hw.lock);
hns3_rx_queue_release(queue);
rte_spinlock_unlock(&hns->hw.lock);
}
void
hns3_dev_tx_queue_release(void *queue)
{
struct hns3_tx_queue *txq = queue;
struct hns3_adapter *hns;
if (txq == NULL)
return;
hns = txq->hns;
rte_spinlock_lock(&hns->hw.lock);
hns3_tx_queue_release(queue);
rte_spinlock_unlock(&hns->hw.lock);
}
static void
hns3_fake_rx_queue_release(struct hns3_rx_queue *queue)
{
struct hns3_rx_queue *rxq = queue;
struct hns3_adapter *hns;
struct hns3_hw *hw;
uint16_t idx;
if (rxq == NULL)
return;
hns = rxq->hns;
hw = &hns->hw;
idx = rxq->queue_id;
if (hw->fkq_data.rx_queues[idx]) {
hns3_rx_queue_release(hw->fkq_data.rx_queues[idx]);
hw->fkq_data.rx_queues[idx] = NULL;
}
/* free fake rx queue arrays */
if (idx == (hw->fkq_data.nb_fake_rx_queues - 1)) {
hw->fkq_data.nb_fake_rx_queues = 0;
rte_free(hw->fkq_data.rx_queues);
hw->fkq_data.rx_queues = NULL;
}
}
static void
hns3_fake_tx_queue_release(struct hns3_tx_queue *queue)
{
struct hns3_tx_queue *txq = queue;
struct hns3_adapter *hns;
struct hns3_hw *hw;
uint16_t idx;
if (txq == NULL)
return;
hns = txq->hns;
hw = &hns->hw;
idx = txq->queue_id;
if (hw->fkq_data.tx_queues[idx]) {
hns3_tx_queue_release(hw->fkq_data.tx_queues[idx]);
hw->fkq_data.tx_queues[idx] = NULL;
}
/* free fake tx queue arrays */
if (idx == (hw->fkq_data.nb_fake_tx_queues - 1)) {
hw->fkq_data.nb_fake_tx_queues = 0;
rte_free(hw->fkq_data.tx_queues);
hw->fkq_data.tx_queues = NULL;
}
}
static void
hns3_free_rx_queues(struct rte_eth_dev *dev)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_fake_queue_data *fkq_data;
struct hns3_hw *hw = &hns->hw;
uint16_t nb_rx_q;
uint16_t i;
nb_rx_q = hw->data->nb_rx_queues;
for (i = 0; i < nb_rx_q; i++) {
if (dev->data->rx_queues[i]) {
hns3_rx_queue_release(dev->data->rx_queues[i]);
dev->data->rx_queues[i] = NULL;
}
}
/* Free fake Rx queues */
fkq_data = &hw->fkq_data;
for (i = 0; i < fkq_data->nb_fake_rx_queues; i++) {
if (fkq_data->rx_queues[i])
hns3_fake_rx_queue_release(fkq_data->rx_queues[i]);
}
}
static void
hns3_free_tx_queues(struct rte_eth_dev *dev)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_fake_queue_data *fkq_data;
struct hns3_hw *hw = &hns->hw;
uint16_t nb_tx_q;
uint16_t i;
nb_tx_q = hw->data->nb_tx_queues;
for (i = 0; i < nb_tx_q; i++) {
if (dev->data->tx_queues[i]) {
hns3_tx_queue_release(dev->data->tx_queues[i]);
dev->data->tx_queues[i] = NULL;
}
}
/* Free fake Tx queues */
fkq_data = &hw->fkq_data;
for (i = 0; i < fkq_data->nb_fake_tx_queues; i++) {
if (fkq_data->tx_queues[i])
hns3_fake_tx_queue_release(fkq_data->tx_queues[i]);
}
}
void
hns3_free_all_queues(struct rte_eth_dev *dev)
{
hns3_free_rx_queues(dev);
hns3_free_tx_queues(dev);
}
static int
hns3_alloc_rx_queue_mbufs(struct hns3_hw *hw, struct hns3_rx_queue *rxq)
{
struct rte_mbuf *mbuf;
uint64_t dma_addr;
uint16_t i;
for (i = 0; i < rxq->nb_rx_desc; i++) {
mbuf = rte_mbuf_raw_alloc(rxq->mb_pool);
if (unlikely(mbuf == NULL)) {
hns3_err(hw, "Failed to allocate RXD[%d] for rx queue!",
i);
hns3_rx_queue_release_mbufs(rxq);
return -ENOMEM;
}
rte_mbuf_refcnt_set(mbuf, 1);
mbuf->next = NULL;
mbuf->data_off = RTE_PKTMBUF_HEADROOM;
mbuf->nb_segs = 1;
mbuf->port = rxq->port_id;
rxq->sw_ring[i].mbuf = mbuf;
dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
rxq->rx_ring[i].addr = dma_addr;
rxq->rx_ring[i].rx.bd_base_info = 0;
}
return 0;
}
static int
hns3_buf_size2type(uint32_t buf_size)
{
int bd_size_type;
switch (buf_size) {
case 512:
bd_size_type = HNS3_BD_SIZE_512_TYPE;
break;
case 1024:
bd_size_type = HNS3_BD_SIZE_1024_TYPE;
break;
case 4096:
bd_size_type = HNS3_BD_SIZE_4096_TYPE;
break;
default:
bd_size_type = HNS3_BD_SIZE_2048_TYPE;
}
return bd_size_type;
}
static void
hns3_init_rx_queue_hw(struct hns3_rx_queue *rxq)
{
uint32_t rx_buf_len = rxq->rx_buf_len;
uint64_t dma_addr = rxq->rx_ring_phys_addr;
hns3_write_dev(rxq, HNS3_RING_RX_BASEADDR_L_REG, (uint32_t)dma_addr);
hns3_write_dev(rxq, HNS3_RING_RX_BASEADDR_H_REG,
(uint32_t)((dma_addr >> 31) >> 1));
hns3_write_dev(rxq, HNS3_RING_RX_BD_LEN_REG,
hns3_buf_size2type(rx_buf_len));
hns3_write_dev(rxq, HNS3_RING_RX_BD_NUM_REG,
HNS3_CFG_DESC_NUM(rxq->nb_rx_desc));
}
static void
hns3_init_tx_queue_hw(struct hns3_tx_queue *txq)
{
uint64_t dma_addr = txq->tx_ring_phys_addr;
hns3_write_dev(txq, HNS3_RING_TX_BASEADDR_L_REG, (uint32_t)dma_addr);
hns3_write_dev(txq, HNS3_RING_TX_BASEADDR_H_REG,
(uint32_t)((dma_addr >> 31) >> 1));
hns3_write_dev(txq, HNS3_RING_TX_BD_NUM_REG,
HNS3_CFG_DESC_NUM(txq->nb_tx_desc));
}
void
hns3_update_all_queues_pvid_state(struct hns3_hw *hw)
{
uint16_t nb_rx_q = hw->data->nb_rx_queues;
uint16_t nb_tx_q = hw->data->nb_tx_queues;
struct hns3_rx_queue *rxq;
struct hns3_tx_queue *txq;
int pvid_state;
int i;
pvid_state = hw->port_base_vlan_cfg.state;
for (i = 0; i < hw->cfg_max_queues; i++) {
if (i < nb_rx_q) {
rxq = hw->data->rx_queues[i];
if (rxq != NULL)
rxq->pvid_state = pvid_state;
}
if (i < nb_tx_q) {
txq = hw->data->tx_queues[i];
if (txq != NULL)
txq->pvid_state = pvid_state;
}
}
}
void
hns3_enable_all_queues(struct hns3_hw *hw, bool en)
{
uint16_t nb_rx_q = hw->data->nb_rx_queues;
uint16_t nb_tx_q = hw->data->nb_tx_queues;
struct hns3_rx_queue *rxq;
struct hns3_tx_queue *txq;
uint32_t rcb_reg;
int i;
for (i = 0; i < hw->cfg_max_queues; i++) {
if (i < nb_rx_q)
rxq = hw->data->rx_queues[i];
else
rxq = hw->fkq_data.rx_queues[i - nb_rx_q];
if (i < nb_tx_q)
txq = hw->data->tx_queues[i];
else
txq = hw->fkq_data.tx_queues[i - nb_tx_q];
if (rxq == NULL || txq == NULL ||
(en && (rxq->rx_deferred_start || txq->tx_deferred_start)))
continue;
rcb_reg = hns3_read_dev(rxq, HNS3_RING_EN_REG);
if (en)
rcb_reg |= BIT(HNS3_RING_EN_B);
else
rcb_reg &= ~BIT(HNS3_RING_EN_B);
hns3_write_dev(rxq, HNS3_RING_EN_REG, rcb_reg);
}
}
static int
hns3_tqp_enable(struct hns3_hw *hw, uint16_t queue_id, bool enable)
{
struct hns3_cfg_com_tqp_queue_cmd *req;
struct hns3_cmd_desc desc;
int ret;
req = (struct hns3_cfg_com_tqp_queue_cmd *)desc.data;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_COM_TQP_QUEUE, false);
req->tqp_id = rte_cpu_to_le_16(queue_id & HNS3_RING_ID_MASK);
req->stream_id = 0;
hns3_set_bit(req->enable, HNS3_TQP_ENABLE_B, enable ? 1 : 0);
ret = hns3_cmd_send(hw, &desc, 1);
if (ret)
hns3_err(hw, "TQP enable fail, ret = %d", ret);
return ret;
}
static int
hns3_send_reset_tqp_cmd(struct hns3_hw *hw, uint16_t queue_id, bool enable)
{
struct hns3_reset_tqp_queue_cmd *req;
struct hns3_cmd_desc desc;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RESET_TQP_QUEUE, false);
req = (struct hns3_reset_tqp_queue_cmd *)desc.data;
req->tqp_id = rte_cpu_to_le_16(queue_id & HNS3_RING_ID_MASK);
hns3_set_bit(req->reset_req, HNS3_TQP_RESET_B, enable ? 1 : 0);
ret = hns3_cmd_send(hw, &desc, 1);
if (ret)
hns3_err(hw, "Send tqp reset cmd error, ret = %d", ret);
return ret;
}
static int
hns3_get_reset_status(struct hns3_hw *hw, uint16_t queue_id)
{
struct hns3_reset_tqp_queue_cmd *req;
struct hns3_cmd_desc desc;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RESET_TQP_QUEUE, true);
req = (struct hns3_reset_tqp_queue_cmd *)desc.data;
req->tqp_id = rte_cpu_to_le_16(queue_id & HNS3_RING_ID_MASK);
ret = hns3_cmd_send(hw, &desc, 1);
if (ret) {
hns3_err(hw, "Get reset status error, ret =%d", ret);
return ret;
}
return hns3_get_bit(req->ready_to_reset, HNS3_TQP_RESET_B);
}
static int
hns3_reset_tqp(struct hns3_hw *hw, uint16_t queue_id)
{
#define HNS3_TQP_RESET_TRY_MS 200
uint64_t end;
int reset_status;
int ret;
ret = hns3_tqp_enable(hw, queue_id, false);
if (ret)
return ret;
/*
* In current version VF is not supported when PF is driven by DPDK
* driver, all task queue pairs are mapped to PF function, so PF's queue
* id is equals to the global queue id in PF range.
*/
ret = hns3_send_reset_tqp_cmd(hw, queue_id, true);
if (ret) {
hns3_err(hw, "Send reset tqp cmd fail, ret = %d", ret);
return ret;
}
ret = -ETIMEDOUT;
end = get_timeofday_ms() + HNS3_TQP_RESET_TRY_MS;
do {
/* Wait for tqp hw reset */
rte_delay_ms(HNS3_POLL_RESPONE_MS);
reset_status = hns3_get_reset_status(hw, queue_id);
if (reset_status) {
ret = 0;
break;
}
} while (get_timeofday_ms() < end);
if (ret) {
hns3_err(hw, "Reset TQP fail, ret = %d", ret);
return ret;
}
ret = hns3_send_reset_tqp_cmd(hw, queue_id, false);
if (ret)
hns3_err(hw, "Deassert the soft reset fail, ret = %d", ret);
return ret;
}
static int
hns3vf_reset_tqp(struct hns3_hw *hw, uint16_t queue_id)
{
uint8_t msg_data[2];
int ret;
/* Disable VF's queue before send queue reset msg to PF */
ret = hns3_tqp_enable(hw, queue_id, false);
if (ret)
return ret;
memcpy(msg_data, &queue_id, sizeof(uint16_t));
return hns3_send_mbx_msg(hw, HNS3_MBX_QUEUE_RESET, 0, msg_data,
sizeof(msg_data), true, NULL, 0);
}
static int
hns3_reset_queue(struct hns3_adapter *hns, uint16_t queue_id)
{
struct hns3_hw *hw = &hns->hw;
if (hns->is_vf)
return hns3vf_reset_tqp(hw, queue_id);
else
return hns3_reset_tqp(hw, queue_id);
}
int
hns3_reset_all_queues(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
int ret, i;
for (i = 0; i < hw->cfg_max_queues; i++) {
ret = hns3_reset_queue(hns, i);
if (ret) {
hns3_err(hw, "Failed to reset No.%d queue: %d", i, ret);
return ret;
}
}
return 0;
}
void
hns3_set_queue_intr_gl(struct hns3_hw *hw, uint16_t queue_id,
uint8_t gl_idx, uint16_t gl_value)
{
uint32_t offset[] = {HNS3_TQP_INTR_GL0_REG,
HNS3_TQP_INTR_GL1_REG,
HNS3_TQP_INTR_GL2_REG};
uint32_t addr, value;
if (gl_idx >= RTE_DIM(offset) || gl_value > HNS3_TQP_INTR_GL_MAX)
return;
addr = offset[gl_idx] + queue_id * HNS3_TQP_INTR_REG_SIZE;
value = HNS3_GL_USEC_TO_REG(gl_value);
hns3_write_dev(hw, addr, value);
}
void
hns3_set_queue_intr_rl(struct hns3_hw *hw, uint16_t queue_id, uint16_t rl_value)
{
uint32_t addr, value;
if (rl_value > HNS3_TQP_INTR_RL_MAX)
return;
addr = HNS3_TQP_INTR_RL_REG + queue_id * HNS3_TQP_INTR_REG_SIZE;
value = HNS3_RL_USEC_TO_REG(rl_value);
if (value > 0)
value |= HNS3_TQP_INTR_RL_ENABLE_MASK;
hns3_write_dev(hw, addr, value);
}
static void
hns3_queue_intr_enable(struct hns3_hw *hw, uint16_t queue_id, bool en)
{
uint32_t addr, value;
addr = HNS3_TQP_INTR_CTRL_REG + queue_id * HNS3_TQP_INTR_REG_SIZE;
value = en ? 1 : 0;
hns3_write_dev(hw, addr, value);
}
/*
* Enable all rx queue interrupt when in interrupt rx mode.
* This api was called before enable queue rx&tx (in normal start or reset
* recover scenes), used to fix hardware rx queue interrupt enable was clear
* when FLR.
*/
void
hns3_dev_all_rx_queue_intr_enable(struct hns3_hw *hw, bool en)
{
struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
uint16_t nb_rx_q = hw->data->nb_rx_queues;
int i;
if (dev->data->dev_conf.intr_conf.rxq == 0)
return;
for (i = 0; i < nb_rx_q; i++)
hns3_queue_intr_enable(hw, i, en);
}
int
hns3_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
{
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if (dev->data->dev_conf.intr_conf.rxq == 0)
return -ENOTSUP;
hns3_queue_intr_enable(hw, queue_id, true);
return rte_intr_ack(intr_handle);
}
int
hns3_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if (dev->data->dev_conf.intr_conf.rxq == 0)
return -ENOTSUP;
hns3_queue_intr_enable(hw, queue_id, false);
return 0;
}
static int
hns3_dev_rx_queue_start(struct hns3_adapter *hns, uint16_t idx)
{
struct hns3_hw *hw = &hns->hw;
struct hns3_rx_queue *rxq;
int ret;
PMD_INIT_FUNC_TRACE();
rxq = (struct hns3_rx_queue *)hw->data->rx_queues[idx];
ret = hns3_alloc_rx_queue_mbufs(hw, rxq);
if (ret) {
hns3_err(hw, "Failed to alloc mbuf for No.%d rx queue: %d",
idx, ret);
return ret;
}
rxq->next_to_use = 0;
rxq->next_to_clean = 0;
rxq->nb_rx_hold = 0;
hns3_init_rx_queue_hw(rxq);
return 0;
}
static void
hns3_fake_rx_queue_start(struct hns3_adapter *hns, uint16_t idx)
{
struct hns3_hw *hw = &hns->hw;
struct hns3_rx_queue *rxq;
rxq = (struct hns3_rx_queue *)hw->fkq_data.rx_queues[idx];
rxq->next_to_use = 0;
rxq->next_to_clean = 0;
rxq->nb_rx_hold = 0;
hns3_init_rx_queue_hw(rxq);
}
static void
hns3_init_tx_queue(struct hns3_tx_queue *queue)
{
struct hns3_tx_queue *txq = queue;
struct hns3_desc *desc;
int i;
/* Clear tx bd */
desc = txq->tx_ring;
for (i = 0; i < txq->nb_tx_desc; i++) {
desc->tx.tp_fe_sc_vld_ra_ri = 0;
desc++;
}
txq->next_to_use = 0;
txq->next_to_clean = 0;
txq->tx_bd_ready = txq->nb_tx_desc - 1;
hns3_init_tx_queue_hw(txq);
}
static void
hns3_dev_tx_queue_start(struct hns3_adapter *hns, uint16_t idx)
{
struct hns3_hw *hw = &hns->hw;
struct hns3_tx_queue *txq;
txq = (struct hns3_tx_queue *)hw->data->tx_queues[idx];
hns3_init_tx_queue(txq);
}
static void
hns3_fake_tx_queue_start(struct hns3_adapter *hns, uint16_t idx)
{
struct hns3_hw *hw = &hns->hw;
struct hns3_tx_queue *txq;
txq = (struct hns3_tx_queue *)hw->fkq_data.tx_queues[idx];
hns3_init_tx_queue(txq);
}
static void
hns3_init_tx_ring_tc(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
struct hns3_tx_queue *txq;
int i, num;
for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
struct hns3_tc_queue_info *tc_queue = &hw->tc_queue[i];
int j;
if (!tc_queue->enable)
continue;
for (j = 0; j < tc_queue->tqp_count; j++) {
num = tc_queue->tqp_offset + j;
txq = (struct hns3_tx_queue *)hw->data->tx_queues[num];
if (txq == NULL)
continue;
hns3_write_dev(txq, HNS3_RING_TX_TC_REG, tc_queue->tc);
}
}
}
static int
hns3_start_rx_queues(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
struct hns3_rx_queue *rxq;
int i, j;
int ret;
/* Initialize RSS for queues */
ret = hns3_config_rss(hns);
if (ret) {
hns3_err(hw, "Failed to configure rss %d", ret);
return ret;
}
for (i = 0; i < hw->data->nb_rx_queues; i++) {
rxq = (struct hns3_rx_queue *)hw->data->rx_queues[i];
if (rxq == NULL || rxq->rx_deferred_start)
continue;
ret = hns3_dev_rx_queue_start(hns, i);
if (ret) {
hns3_err(hw, "Failed to start No.%d rx queue: %d", i,
ret);
goto out;
}
}
for (i = 0; i < hw->fkq_data.nb_fake_rx_queues; i++) {
rxq = (struct hns3_rx_queue *)hw->fkq_data.rx_queues[i];
if (rxq == NULL || rxq->rx_deferred_start)
continue;
hns3_fake_rx_queue_start(hns, i);
}
return 0;
out:
for (j = 0; j < i; j++) {
rxq = (struct hns3_rx_queue *)hw->data->rx_queues[j];
hns3_rx_queue_release_mbufs(rxq);
}
return ret;
}
static void
hns3_start_tx_queues(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
struct hns3_tx_queue *txq;
int i;
for (i = 0; i < hw->data->nb_tx_queues; i++) {
txq = (struct hns3_tx_queue *)hw->data->tx_queues[i];
if (txq == NULL || txq->tx_deferred_start)
continue;
hns3_dev_tx_queue_start(hns, i);
}
for (i = 0; i < hw->fkq_data.nb_fake_tx_queues; i++) {
txq = (struct hns3_tx_queue *)hw->fkq_data.tx_queues[i];
if (txq == NULL || txq->tx_deferred_start)
continue;
hns3_fake_tx_queue_start(hns, i);
}
hns3_init_tx_ring_tc(hns);
}
/*
* Start all queues.
* Note: just init and setup queues, and don't enable queue rx&tx.
*/
int
hns3_start_queues(struct hns3_adapter *hns, bool reset_queue)
{
struct hns3_hw *hw = &hns->hw;
int ret;
if (reset_queue) {
ret = hns3_reset_all_queues(hns);
if (ret) {
hns3_err(hw, "Failed to reset all queues %d", ret);
return ret;
}
}
ret = hns3_start_rx_queues(hns);
if (ret) {
hns3_err(hw, "Failed to start rx queues: %d", ret);
return ret;
}
hns3_start_tx_queues(hns);
return 0;
}
int
hns3_stop_queues(struct hns3_adapter *hns, bool reset_queue)
{
struct hns3_hw *hw = &hns->hw;
int ret;
hns3_enable_all_queues(hw, false);
if (reset_queue) {
ret = hns3_reset_all_queues(hns);
if (ret) {
hns3_err(hw, "Failed to reset all queues %d", ret);
return ret;
}
}
return 0;
}
static void*
hns3_alloc_rxq_and_dma_zone(struct rte_eth_dev *dev,
struct hns3_queue_info *q_info)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
const struct rte_memzone *rx_mz;
struct hns3_rx_queue *rxq;
unsigned int rx_desc;
rxq = rte_zmalloc_socket(q_info->type, sizeof(struct hns3_rx_queue),
RTE_CACHE_LINE_SIZE, q_info->socket_id);
if (rxq == NULL) {
hns3_err(hw, "Failed to allocate memory for No.%d rx ring!",
q_info->idx);
return NULL;
}
/* Allocate rx ring hardware descriptors. */
rxq->queue_id = q_info->idx;
rxq->nb_rx_desc = q_info->nb_desc;
rx_desc = rxq->nb_rx_desc * sizeof(struct hns3_desc);
rx_mz = rte_eth_dma_zone_reserve(dev, q_info->ring_name, q_info->idx,
rx_desc, HNS3_RING_BASE_ALIGN,
q_info->socket_id);
if (rx_mz == NULL) {
hns3_err(hw, "Failed to reserve DMA memory for No.%d rx ring!",
q_info->idx);
hns3_rx_queue_release(rxq);
return NULL;
}
rxq->mz = rx_mz;
rxq->rx_ring = (struct hns3_desc *)rx_mz->addr;
rxq->rx_ring_phys_addr = rx_mz->iova;
hns3_dbg(hw, "No.%d rx descriptors iova 0x%" PRIx64, q_info->idx,
rxq->rx_ring_phys_addr);
return rxq;
}
static int
hns3_fake_rx_queue_setup(struct rte_eth_dev *dev, uint16_t idx,
uint16_t nb_desc, unsigned int socket_id)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
struct hns3_queue_info q_info;
struct hns3_rx_queue *rxq;
uint16_t nb_rx_q;
if (hw->fkq_data.rx_queues[idx]) {
hns3_rx_queue_release(hw->fkq_data.rx_queues[idx]);
hw->fkq_data.rx_queues[idx] = NULL;
}
q_info.idx = idx;
q_info.socket_id = socket_id;
q_info.nb_desc = nb_desc;
q_info.type = "hns3 fake RX queue";
q_info.ring_name = "rx_fake_ring";
rxq = hns3_alloc_rxq_and_dma_zone(dev, &q_info);
if (rxq == NULL) {
hns3_err(hw, "Failed to setup No.%d fake rx ring.", idx);
return -ENOMEM;
}
/* Don't need alloc sw_ring, because upper applications don't use it */
rxq->sw_ring = NULL;
rxq->hns = hns;
rxq->rx_deferred_start = false;
rxq->port_id = dev->data->port_id;
rxq->configured = true;
nb_rx_q = dev->data->nb_rx_queues;
rxq->io_base = (void *)((char *)hw->io_base + HNS3_TQP_REG_OFFSET +
(nb_rx_q + idx) * HNS3_TQP_REG_SIZE);
rxq->rx_buf_len = HNS3_MIN_BD_BUF_SIZE;
rte_spinlock_lock(&hw->lock);
hw->fkq_data.rx_queues[idx] = rxq;
rte_spinlock_unlock(&hw->lock);
return 0;
}
static void*
hns3_alloc_txq_and_dma_zone(struct rte_eth_dev *dev,
struct hns3_queue_info *q_info)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
const struct rte_memzone *tx_mz;
struct hns3_tx_queue *txq;
struct hns3_desc *desc;
unsigned int tx_desc;
int i;
txq = rte_zmalloc_socket(q_info->type, sizeof(struct hns3_tx_queue),
RTE_CACHE_LINE_SIZE, q_info->socket_id);
if (txq == NULL) {
hns3_err(hw, "Failed to allocate memory for No.%d tx ring!",
q_info->idx);
return NULL;
}
/* Allocate tx ring hardware descriptors. */
txq->queue_id = q_info->idx;
txq->nb_tx_desc = q_info->nb_desc;
tx_desc = txq->nb_tx_desc * sizeof(struct hns3_desc);
tx_mz = rte_eth_dma_zone_reserve(dev, q_info->ring_name, q_info->idx,
tx_desc, HNS3_RING_BASE_ALIGN,
q_info->socket_id);
if (tx_mz == NULL) {
hns3_err(hw, "Failed to reserve DMA memory for No.%d tx ring!",
q_info->idx);
hns3_tx_queue_release(txq);
return NULL;
}
txq->mz = tx_mz;
txq->tx_ring = (struct hns3_desc *)tx_mz->addr;
txq->tx_ring_phys_addr = tx_mz->iova;
hns3_dbg(hw, "No.%d tx descriptors iova 0x%" PRIx64, q_info->idx,
txq->tx_ring_phys_addr);
/* Clear tx bd */
desc = txq->tx_ring;
for (i = 0; i < txq->nb_tx_desc; i++) {
desc->tx.tp_fe_sc_vld_ra_ri = 0;
desc++;
}
return txq;
}
static int
hns3_fake_tx_queue_setup(struct rte_eth_dev *dev, uint16_t idx,
uint16_t nb_desc, unsigned int socket_id)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
struct hns3_queue_info q_info;
struct hns3_tx_queue *txq;
uint16_t nb_tx_q;
if (hw->fkq_data.tx_queues[idx] != NULL) {
hns3_tx_queue_release(hw->fkq_data.tx_queues[idx]);
hw->fkq_data.tx_queues[idx] = NULL;
}
q_info.idx = idx;
q_info.socket_id = socket_id;
q_info.nb_desc = nb_desc;
q_info.type = "hns3 fake TX queue";
q_info.ring_name = "tx_fake_ring";
txq = hns3_alloc_txq_and_dma_zone(dev, &q_info);
if (txq == NULL) {
hns3_err(hw, "Failed to setup No.%d fake tx ring.", idx);
return -ENOMEM;
}
/* Don't need alloc sw_ring, because upper applications don't use it */
txq->sw_ring = NULL;
txq->hns = hns;
txq->tx_deferred_start = false;
txq->port_id = dev->data->port_id;
txq->configured = true;
nb_tx_q = dev->data->nb_tx_queues;
txq->io_base = (void *)((char *)hw->io_base + HNS3_TQP_REG_OFFSET +
(nb_tx_q + idx) * HNS3_TQP_REG_SIZE);
rte_spinlock_lock(&hw->lock);
hw->fkq_data.tx_queues[idx] = txq;
rte_spinlock_unlock(&hw->lock);
return 0;
}
static int
hns3_fake_rx_queue_config(struct hns3_hw *hw, uint16_t nb_queues)
{
uint16_t old_nb_queues = hw->fkq_data.nb_fake_rx_queues;
void **rxq;
uint8_t i;
if (hw->fkq_data.rx_queues == NULL && nb_queues != 0) {
/* first time configuration */
uint32_t size;
size = sizeof(hw->fkq_data.rx_queues[0]) * nb_queues;
hw->fkq_data.rx_queues = rte_zmalloc("fake_rx_queues", size,
RTE_CACHE_LINE_SIZE);
if (hw->fkq_data.rx_queues == NULL) {
hw->fkq_data.nb_fake_rx_queues = 0;
return -ENOMEM;
}
} else if (hw->fkq_data.rx_queues != NULL && nb_queues != 0) {
/* re-configure */
rxq = hw->fkq_data.rx_queues;
for (i = nb_queues; i < old_nb_queues; i++)
hns3_dev_rx_queue_release(rxq[i]);
rxq = rte_realloc(rxq, sizeof(rxq[0]) * nb_queues,
RTE_CACHE_LINE_SIZE);
if (rxq == NULL)
return -ENOMEM;
if (nb_queues > old_nb_queues) {
uint16_t new_qs = nb_queues - old_nb_queues;
memset(rxq + old_nb_queues, 0, sizeof(rxq[0]) * new_qs);
}
hw->fkq_data.rx_queues = rxq;
} else if (hw->fkq_data.rx_queues != NULL && nb_queues == 0) {
rxq = hw->fkq_data.rx_queues;
for (i = nb_queues; i < old_nb_queues; i++)
hns3_dev_rx_queue_release(rxq[i]);
rte_free(hw->fkq_data.rx_queues);
hw->fkq_data.rx_queues = NULL;
}
hw->fkq_data.nb_fake_rx_queues = nb_queues;
return 0;
}
static int
hns3_fake_tx_queue_config(struct hns3_hw *hw, uint16_t nb_queues)
{
uint16_t old_nb_queues = hw->fkq_data.nb_fake_tx_queues;
void **txq;
uint8_t i;
if (hw->fkq_data.tx_queues == NULL && nb_queues != 0) {
/* first time configuration */
uint32_t size;
size = sizeof(hw->fkq_data.tx_queues[0]) * nb_queues;
hw->fkq_data.tx_queues = rte_zmalloc("fake_tx_queues", size,
RTE_CACHE_LINE_SIZE);
if (hw->fkq_data.tx_queues == NULL) {
hw->fkq_data.nb_fake_tx_queues = 0;
return -ENOMEM;
}
} else if (hw->fkq_data.tx_queues != NULL && nb_queues != 0) {
/* re-configure */
txq = hw->fkq_data.tx_queues;
for (i = nb_queues; i < old_nb_queues; i++)
hns3_dev_tx_queue_release(txq[i]);
txq = rte_realloc(txq, sizeof(txq[0]) * nb_queues,
RTE_CACHE_LINE_SIZE);
if (txq == NULL)
return -ENOMEM;
if (nb_queues > old_nb_queues) {
uint16_t new_qs = nb_queues - old_nb_queues;
memset(txq + old_nb_queues, 0, sizeof(txq[0]) * new_qs);
}
hw->fkq_data.tx_queues = txq;
} else if (hw->fkq_data.tx_queues != NULL && nb_queues == 0) {
txq = hw->fkq_data.tx_queues;
for (i = nb_queues; i < old_nb_queues; i++)
hns3_dev_tx_queue_release(txq[i]);
rte_free(hw->fkq_data.tx_queues);
hw->fkq_data.tx_queues = NULL;
}
hw->fkq_data.nb_fake_tx_queues = nb_queues;
return 0;
}
int
hns3_set_fake_rx_or_tx_queues(struct rte_eth_dev *dev, uint16_t nb_rx_q,
uint16_t nb_tx_q)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint16_t rx_need_add_nb_q;
uint16_t tx_need_add_nb_q;
uint16_t port_id;
uint16_t q;
int ret;
/* Setup new number of fake RX/TX queues and reconfigure device. */
hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q);
rx_need_add_nb_q = hw->cfg_max_queues - nb_rx_q;
tx_need_add_nb_q = hw->cfg_max_queues - nb_tx_q;
ret = hns3_fake_rx_queue_config(hw, rx_need_add_nb_q);
if (ret) {
hns3_err(hw, "Fail to configure fake rx queues: %d", ret);
goto cfg_fake_rx_q_fail;
}
ret = hns3_fake_tx_queue_config(hw, tx_need_add_nb_q);
if (ret) {
hns3_err(hw, "Fail to configure fake rx queues: %d", ret);
goto cfg_fake_tx_q_fail;
}
/* Allocate and set up fake RX queue per Ethernet port. */
port_id = hw->data->port_id;
for (q = 0; q < rx_need_add_nb_q; q++) {
ret = hns3_fake_rx_queue_setup(dev, q, HNS3_MIN_RING_DESC,
rte_eth_dev_socket_id(port_id));
if (ret)
goto setup_fake_rx_q_fail;
}
/* Allocate and set up fake TX queue per Ethernet port. */
for (q = 0; q < tx_need_add_nb_q; q++) {
ret = hns3_fake_tx_queue_setup(dev, q, HNS3_MIN_RING_DESC,
rte_eth_dev_socket_id(port_id));
if (ret)
goto setup_fake_tx_q_fail;
}
return 0;
setup_fake_tx_q_fail:
setup_fake_rx_q_fail:
(void)hns3_fake_tx_queue_config(hw, 0);
cfg_fake_tx_q_fail:
(void)hns3_fake_rx_queue_config(hw, 0);
cfg_fake_rx_q_fail:
hw->cfg_max_queues = 0;
return ret;
}
void
hns3_dev_release_mbufs(struct hns3_adapter *hns)
{
struct rte_eth_dev_data *dev_data = hns->hw.data;
struct hns3_rx_queue *rxq;
struct hns3_tx_queue *txq;
int i;
if (dev_data->rx_queues)
for (i = 0; i < dev_data->nb_rx_queues; i++) {
rxq = dev_data->rx_queues[i];
if (rxq == NULL || rxq->rx_deferred_start)
continue;
hns3_rx_queue_release_mbufs(rxq);
}
if (dev_data->tx_queues)
for (i = 0; i < dev_data->nb_tx_queues; i++) {
txq = dev_data->tx_queues[i];
if (txq == NULL || txq->tx_deferred_start)
continue;
hns3_tx_queue_release_mbufs(txq);
}
}
static int
hns3_rx_buf_len_calc(struct rte_mempool *mp, uint16_t *rx_buf_len)
{
uint16_t vld_buf_size;
uint16_t num_hw_specs;
uint16_t i;
/*
* hns3 network engine only support to set 4 typical specification, and
* different buffer size will affect the max packet_len and the max
* number of segmentation when hw gro is turned on in receive side. The
* relationship between them is as follows:
* rx_buf_size | max_gro_pkt_len | max_gro_nb_seg
* ---------------------|-------------------|----------------
* HNS3_4K_BD_BUF_SIZE | 60KB | 15
* HNS3_2K_BD_BUF_SIZE | 62KB | 31
* HNS3_1K_BD_BUF_SIZE | 63KB | 63
* HNS3_512_BD_BUF_SIZE | 31.5KB | 63
*/
static const uint16_t hw_rx_buf_size[] = {
HNS3_4K_BD_BUF_SIZE,
HNS3_2K_BD_BUF_SIZE,
HNS3_1K_BD_BUF_SIZE,
HNS3_512_BD_BUF_SIZE
};
vld_buf_size = (uint16_t)(rte_pktmbuf_data_room_size(mp) -
RTE_PKTMBUF_HEADROOM);
if (vld_buf_size < HNS3_MIN_BD_BUF_SIZE)
return -EINVAL;
num_hw_specs = RTE_DIM(hw_rx_buf_size);
for (i = 0; i < num_hw_specs; i++) {
if (vld_buf_size >= hw_rx_buf_size[i]) {
*rx_buf_len = hw_rx_buf_size[i];
break;
}
}
return 0;
}
int
hns3_rx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t nb_desc,
unsigned int socket_id, const struct rte_eth_rxconf *conf,
struct rte_mempool *mp)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
struct hns3_queue_info q_info;
struct hns3_rx_queue *rxq;
uint16_t rx_buf_size;
int rx_entry_len;
if (dev->data->dev_started) {
hns3_err(hw, "rx_queue_setup after dev_start no supported");
return -EINVAL;
}
if (nb_desc > HNS3_MAX_RING_DESC || nb_desc < HNS3_MIN_RING_DESC ||
nb_desc % HNS3_ALIGN_RING_DESC) {
hns3_err(hw, "Number (%u) of rx descriptors is invalid",
nb_desc);
return -EINVAL;
}
if (dev->data->rx_queues[idx]) {
hns3_rx_queue_release(dev->data->rx_queues[idx]);
dev->data->rx_queues[idx] = NULL;
}
q_info.idx = idx;
q_info.socket_id = socket_id;
q_info.nb_desc = nb_desc;
q_info.type = "hns3 RX queue";
q_info.ring_name = "rx_ring";
if (hns3_rx_buf_len_calc(mp, &rx_buf_size)) {
hns3_err(hw, "rxq mbufs' data room size:%u is not enough! "
"minimal data room size:%u.",
rte_pktmbuf_data_room_size(mp),
HNS3_MIN_BD_BUF_SIZE + RTE_PKTMBUF_HEADROOM);
return -EINVAL;
}
rxq = hns3_alloc_rxq_and_dma_zone(dev, &q_info);
if (rxq == NULL) {
hns3_err(hw,
"Failed to alloc mem and reserve DMA mem for rx ring!");
return -ENOMEM;
}
rxq->hns = hns;
rxq->mb_pool = mp;
if (conf->rx_free_thresh <= 0)
rxq->rx_free_thresh = DEFAULT_RX_FREE_THRESH;
else
rxq->rx_free_thresh = conf->rx_free_thresh;
rxq->rx_deferred_start = conf->rx_deferred_start;
rx_entry_len = sizeof(struct hns3_entry) * rxq->nb_rx_desc;
rxq->sw_ring = rte_zmalloc_socket("hns3 RX sw ring", rx_entry_len,
RTE_CACHE_LINE_SIZE, socket_id);
if (rxq->sw_ring == NULL) {
hns3_err(hw, "Failed to allocate memory for rx sw ring!");
hns3_rx_queue_release(rxq);
return -ENOMEM;
}
rxq->next_to_use = 0;
rxq->next_to_clean = 0;
rxq->nb_rx_hold = 0;
rxq->pkt_first_seg = NULL;
rxq->pkt_last_seg = NULL;
rxq->port_id = dev->data->port_id;
rxq->pvid_state = hw->port_base_vlan_cfg.state;
rxq->configured = true;
rxq->io_base = (void *)((char *)hw->io_base + HNS3_TQP_REG_OFFSET +
idx * HNS3_TQP_REG_SIZE);
rxq->rx_buf_len = rx_buf_size;
rxq->l2_errors = 0;
rxq->pkt_len_errors = 0;
rxq->l3_csum_erros = 0;
rxq->l4_csum_erros = 0;
rxq->ol3_csum_erros = 0;
rxq->ol4_csum_erros = 0;
/* CRC len set here is used for amending packet length */
if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
rxq->crc_len = RTE_ETHER_CRC_LEN;
else
rxq->crc_len = 0;
rte_spinlock_lock(&hw->lock);
dev->data->rx_queues[idx] = rxq;
rte_spinlock_unlock(&hw->lock);
return 0;
}
static inline uint32_t
rxd_pkt_info_to_pkt_type(uint32_t pkt_info, uint32_t ol_info)
{
#define HNS3_L2TBL_NUM 4
#define HNS3_L3TBL_NUM 16
#define HNS3_L4TBL_NUM 16
#define HNS3_OL3TBL_NUM 16
#define HNS3_OL4TBL_NUM 16
uint32_t pkt_type = 0;
uint32_t l2id, l3id, l4id;
uint32_t ol3id, ol4id;
static const uint32_t l2table[HNS3_L2TBL_NUM] = {
RTE_PTYPE_L2_ETHER,
RTE_PTYPE_L2_ETHER_QINQ,
RTE_PTYPE_L2_ETHER_VLAN,
RTE_PTYPE_L2_ETHER_VLAN
};
static const uint32_t l3table[HNS3_L3TBL_NUM] = {
RTE_PTYPE_L3_IPV4,
RTE_PTYPE_L3_IPV6,
RTE_PTYPE_L2_ETHER_ARP,
RTE_PTYPE_L2_ETHER,
RTE_PTYPE_L3_IPV4_EXT,
RTE_PTYPE_L3_IPV6_EXT,
RTE_PTYPE_L2_ETHER_LLDP,
0, 0, 0, 0, 0, 0, 0, 0, 0
};
static const uint32_t l4table[HNS3_L4TBL_NUM] = {
RTE_PTYPE_L4_UDP,
RTE_PTYPE_L4_TCP,
RTE_PTYPE_TUNNEL_GRE,
RTE_PTYPE_L4_SCTP,
RTE_PTYPE_L4_IGMP,
RTE_PTYPE_L4_ICMP,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
static const uint32_t inner_l2table[HNS3_L2TBL_NUM] = {
RTE_PTYPE_INNER_L2_ETHER,
RTE_PTYPE_INNER_L2_ETHER_VLAN,
RTE_PTYPE_INNER_L2_ETHER_QINQ,
0
};
static const uint32_t inner_l3table[HNS3_L3TBL_NUM] = {
RTE_PTYPE_INNER_L3_IPV4,
RTE_PTYPE_INNER_L3_IPV6,
0,
RTE_PTYPE_INNER_L2_ETHER,
RTE_PTYPE_INNER_L3_IPV4_EXT,
RTE_PTYPE_INNER_L3_IPV6_EXT,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
static const uint32_t inner_l4table[HNS3_L4TBL_NUM] = {
RTE_PTYPE_INNER_L4_UDP,
RTE_PTYPE_INNER_L4_TCP,
RTE_PTYPE_TUNNEL_GRE,
RTE_PTYPE_INNER_L4_SCTP,
RTE_PTYPE_L4_IGMP,
RTE_PTYPE_INNER_L4_ICMP,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
static const uint32_t ol3table[HNS3_OL3TBL_NUM] = {
RTE_PTYPE_L3_IPV4,
RTE_PTYPE_L3_IPV6,
0, 0,
RTE_PTYPE_L3_IPV4_EXT,
RTE_PTYPE_L3_IPV6_EXT,
0, 0, 0, 0, 0, 0, 0, 0, 0,
RTE_PTYPE_UNKNOWN
};
static const uint32_t ol4table[HNS3_OL4TBL_NUM] = {
0,
RTE_PTYPE_TUNNEL_VXLAN,
RTE_PTYPE_TUNNEL_NVGRE,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
l2id = hns3_get_field(pkt_info, HNS3_RXD_STRP_TAGP_M,
HNS3_RXD_STRP_TAGP_S);
l3id = hns3_get_field(pkt_info, HNS3_RXD_L3ID_M, HNS3_RXD_L3ID_S);
l4id = hns3_get_field(pkt_info, HNS3_RXD_L4ID_M, HNS3_RXD_L4ID_S);
ol3id = hns3_get_field(ol_info, HNS3_RXD_OL3ID_M, HNS3_RXD_OL3ID_S);
ol4id = hns3_get_field(ol_info, HNS3_RXD_OL4ID_M, HNS3_RXD_OL4ID_S);
if (ol4table[ol4id])
pkt_type |= (inner_l2table[l2id] | inner_l3table[l3id] |
inner_l4table[l4id] | ol3table[ol3id] |
ol4table[ol4id]);
else
pkt_type |= (l2table[l2id] | l3table[l3id] | l4table[l4id]);
return pkt_type;
}
const uint32_t *
hns3_dev_supported_ptypes_get(struct rte_eth_dev *dev)
{
static const uint32_t ptypes[] = {
RTE_PTYPE_L2_ETHER,
RTE_PTYPE_L2_ETHER_VLAN,
RTE_PTYPE_L2_ETHER_QINQ,
RTE_PTYPE_L2_ETHER_LLDP,
RTE_PTYPE_L2_ETHER_ARP,
RTE_PTYPE_L3_IPV4,
RTE_PTYPE_L3_IPV4_EXT,
RTE_PTYPE_L3_IPV6,
RTE_PTYPE_L3_IPV6_EXT,
RTE_PTYPE_L4_IGMP,
RTE_PTYPE_L4_ICMP,
RTE_PTYPE_L4_SCTP,
RTE_PTYPE_L4_TCP,
RTE_PTYPE_L4_UDP,
RTE_PTYPE_TUNNEL_GRE,
RTE_PTYPE_UNKNOWN
};
if (dev->rx_pkt_burst == hns3_recv_pkts)
return ptypes;
return NULL;
}
static void
hns3_clean_rx_buffers(struct hns3_rx_queue *rxq, int count)
{
rxq->next_to_use += count;
if (rxq->next_to_use >= rxq->nb_rx_desc)
rxq->next_to_use -= rxq->nb_rx_desc;
hns3_write_dev(rxq, HNS3_RING_RX_HEAD_REG, count);
}
static int
hns3_handle_bdinfo(struct hns3_rx_queue *rxq, struct rte_mbuf *rxm,
uint32_t bd_base_info, uint32_t l234_info,
uint32_t *cksum_err)
{
uint32_t tmp = 0;
if (unlikely(l234_info & BIT(HNS3_RXD_L2E_B))) {
rxq->l2_errors++;
return -EINVAL;
}
if (unlikely(rxm->pkt_len == 0 ||
(l234_info & BIT(HNS3_RXD_TRUNCAT_B)))) {
rxq->pkt_len_errors++;
return -EINVAL;
}
if (bd_base_info & BIT(HNS3_RXD_L3L4P_B)) {
if (unlikely(l234_info & BIT(HNS3_RXD_L3E_B))) {
rxm->ol_flags |= PKT_RX_IP_CKSUM_BAD;
rxq->l3_csum_erros++;
tmp |= HNS3_L3_CKSUM_ERR;
}
if (unlikely(l234_info & BIT(HNS3_RXD_L4E_B))) {
rxm->ol_flags |= PKT_RX_L4_CKSUM_BAD;
rxq->l4_csum_erros++;
tmp |= HNS3_L4_CKSUM_ERR;
}
if (unlikely(l234_info & BIT(HNS3_RXD_OL3E_B))) {
rxq->ol3_csum_erros++;
tmp |= HNS3_OUTER_L3_CKSUM_ERR;
}
if (unlikely(l234_info & BIT(HNS3_RXD_OL4E_B))) {
rxm->ol_flags |= PKT_RX_OUTER_L4_CKSUM_BAD;
rxq->ol4_csum_erros++;
tmp |= HNS3_OUTER_L4_CKSUM_ERR;
}
}
*cksum_err = tmp;
return 0;
}
static void
hns3_rx_set_cksum_flag(struct rte_mbuf *rxm, uint64_t packet_type,
const uint32_t cksum_err)
{
if (unlikely((packet_type & RTE_PTYPE_TUNNEL_MASK))) {
if (likely(packet_type & RTE_PTYPE_INNER_L3_MASK) &&
(cksum_err & HNS3_L3_CKSUM_ERR) == 0)
rxm->ol_flags |= PKT_RX_IP_CKSUM_GOOD;
if (likely(packet_type & RTE_PTYPE_INNER_L4_MASK) &&
(cksum_err & HNS3_L4_CKSUM_ERR) == 0)
rxm->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
if (likely(packet_type & RTE_PTYPE_L4_MASK) &&
(cksum_err & HNS3_OUTER_L4_CKSUM_ERR) == 0)
rxm->ol_flags |= PKT_RX_OUTER_L4_CKSUM_GOOD;
} else {
if (likely(packet_type & RTE_PTYPE_L3_MASK) &&
(cksum_err & HNS3_L3_CKSUM_ERR) == 0)
rxm->ol_flags |= PKT_RX_IP_CKSUM_GOOD;
if (likely(packet_type & RTE_PTYPE_L4_MASK) &&
(cksum_err & HNS3_L4_CKSUM_ERR) == 0)
rxm->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
}
}
static inline void
hns3_rxd_to_vlan_tci(struct hns3_rx_queue *rxq, struct rte_mbuf *mb,
uint32_t l234_info, const struct hns3_desc *rxd)
{
#define HNS3_STRP_STATUS_NUM 0x4
#define HNS3_NO_STRP_VLAN_VLD 0x0
#define HNS3_INNER_STRP_VLAN_VLD 0x1
#define HNS3_OUTER_STRP_VLAN_VLD 0x2
uint32_t strip_status;
uint32_t report_mode;
/*
* Since HW limitation, the vlan tag will always be inserted into RX
* descriptor when strip the tag from packet, driver needs to determine
* reporting which tag to mbuf according to the PVID configuration
* and vlan striped status.
*/
static const uint32_t report_type[][HNS3_STRP_STATUS_NUM] = {
{
HNS3_NO_STRP_VLAN_VLD,
HNS3_OUTER_STRP_VLAN_VLD,
HNS3_INNER_STRP_VLAN_VLD,
HNS3_OUTER_STRP_VLAN_VLD
},
{
HNS3_NO_STRP_VLAN_VLD,
HNS3_NO_STRP_VLAN_VLD,
HNS3_NO_STRP_VLAN_VLD,
HNS3_INNER_STRP_VLAN_VLD
}
};
strip_status = hns3_get_field(l234_info, HNS3_RXD_STRP_TAGP_M,
HNS3_RXD_STRP_TAGP_S);
report_mode = report_type[rxq->pvid_state][strip_status];
switch (report_mode) {
case HNS3_NO_STRP_VLAN_VLD:
mb->vlan_tci = 0;
return;
case HNS3_INNER_STRP_VLAN_VLD:
mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
mb->vlan_tci = rte_le_to_cpu_16(rxd->rx.vlan_tag);
return;
case HNS3_OUTER_STRP_VLAN_VLD:
mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
mb->vlan_tci = rte_le_to_cpu_16(rxd->rx.ot_vlan_tag);
return;
}
}
static inline void
recalculate_data_len(struct rte_mbuf *first_seg, struct rte_mbuf *last_seg,
struct rte_mbuf *rxm, struct hns3_rx_queue *rxq,
uint16_t data_len)
{
uint8_t crc_len = rxq->crc_len;
if (data_len <= crc_len) {
rte_pktmbuf_free_seg(rxm);
first_seg->nb_segs--;
last_seg->data_len = (uint16_t)(last_seg->data_len -
(crc_len - data_len));
last_seg->next = NULL;
} else
rxm->data_len = (uint16_t)(data_len - crc_len);
}
uint16_t
hns3_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
volatile struct hns3_desc *rx_ring; /* RX ring (desc) */
volatile struct hns3_desc *rxdp; /* pointer of the current desc */
struct hns3_rx_queue *rxq; /* RX queue */
struct hns3_entry *sw_ring;
struct hns3_entry *rxe;
struct rte_mbuf *first_seg;
struct rte_mbuf *last_seg;
struct hns3_desc rxd;
struct rte_mbuf *nmb; /* pointer of the new mbuf */
struct rte_mbuf *rxm;
struct rte_eth_dev *dev;
uint32_t bd_base_info;
uint32_t cksum_err;
uint32_t l234_info;
uint32_t gro_size;
uint32_t ol_info;
uint64_t dma_addr;
uint16_t data_len;
uint16_t nb_rx_bd;
uint16_t pkt_len;
uint16_t nb_rx;
uint16_t rx_id;
int ret;
nb_rx = 0;
nb_rx_bd = 0;
rxq = rx_queue;
rx_id = rxq->next_to_clean;
rx_ring = rxq->rx_ring;
first_seg = rxq->pkt_first_seg;
last_seg = rxq->pkt_last_seg;
sw_ring = rxq->sw_ring;
while (nb_rx < nb_pkts) {
rxdp = &rx_ring[rx_id];
bd_base_info = rte_le_to_cpu_32(rxdp->rx.bd_base_info);
if (unlikely(!hns3_get_bit(bd_base_info, HNS3_RXD_VLD_B)))
break;
/*
* The interactive process between software and hardware of
* receiving a new packet in hns3 network engine:
* 1. Hardware network engine firstly writes the packet content
* to the memory pointed by the 'addr' field of the Rx Buffer
* Descriptor, secondly fills the result of parsing the
* packet include the valid field into the Rx Buffer
* Descriptor in one write operation.
* 2. Driver reads the Rx BD's valid field in the loop to check
* whether it's valid, if valid then assign a new address to
* the addr field, clear the valid field, get the other
* information of the packet by parsing Rx BD's other fields,
* finally write back the number of Rx BDs processed by the
* driver to the HNS3_RING_RX_HEAD_REG register to inform
* hardware.
* In the above process, the ordering is very important. We must
* make sure that CPU read Rx BD's other fields only after the
* Rx BD is valid.
*
* There are two type of re-ordering: compiler re-ordering and
* CPU re-ordering under the ARMv8 architecture.
* 1. we use volatile to deal with compiler re-ordering, so you
* can see that rx_ring/rxdp defined with volatile.
* 2. we commonly use memory barrier to deal with CPU
* re-ordering, but the cost is high.
*
* In order to solve the high cost of using memory barrier, we
* use the data dependency order under the ARMv8 architecture,
* for example:
* instr01: load A
* instr02: load B <- A
* the instr02 will always execute after instr01.
*
* To construct the data dependency ordering, we use the
* following assignment:
* rxd = rxdp[(bd_base_info & (1u << HNS3_RXD_VLD_B)) -
* (1u<<HNS3_RXD_VLD_B)]
* Using gcc compiler under the ARMv8 architecture, the related
* assembly code example as follows:
* note: (1u << HNS3_RXD_VLD_B) equal 0x10
* instr01: ldr w26, [x22, #28] --read bd_base_info
* instr02: and w0, w26, #0x10 --calc bd_base_info & 0x10
* instr03: sub w0, w0, #0x10 --calc (bd_base_info &
* 0x10) - 0x10
* instr04: add x0, x22, x0, lsl #5 --calc copy source addr
* instr05: ldp x2, x3, [x0]
* instr06: stp x2, x3, [x29, #256] --copy BD's [0 ~ 15]B
* instr07: ldp x4, x5, [x0, #16]
* instr08: stp x4, x5, [x29, #272] --copy BD's [16 ~ 31]B
* the instr05~08 depend on x0's value, x0 depent on w26's
* value, the w26 is the bd_base_info, this form the data
* dependency ordering.
* note: if BD is valid, (bd_base_info & (1u<<HNS3_RXD_VLD_B)) -
* (1u<<HNS3_RXD_VLD_B) will always zero, so the
* assignment is correct.
*
* So we use the data dependency ordering instead of memory
* barrier to improve receive performance.
*/
rxd = rxdp[(bd_base_info & (1u << HNS3_RXD_VLD_B)) -
(1u << HNS3_RXD_VLD_B)];
nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
if (unlikely(nmb == NULL)) {
dev = &rte_eth_devices[rxq->port_id];
dev->data->rx_mbuf_alloc_failed++;
break;
}
nb_rx_bd++;
rxe = &sw_ring[rx_id];
rx_id++;
if (unlikely(rx_id == rxq->nb_rx_desc))
rx_id = 0;
rte_prefetch0(sw_ring[rx_id].mbuf);
if ((rx_id & 0x3) == 0) {
rte_prefetch0(&rx_ring[rx_id]);
rte_prefetch0(&sw_ring[rx_id]);
}
rxm = rxe->mbuf;
rxe->mbuf = nmb;
dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
rxdp->rx.bd_base_info = 0;
rxdp->addr = dma_addr;
/*
* Load remained descriptor data and extract necessary fields.
* Data size from buffer description may contains CRC len,
* packet len should subtract it.
*/
data_len = (uint16_t)(rte_le_to_cpu_16(rxd.rx.size));
l234_info = rte_le_to_cpu_32(rxd.rx.l234_info);
ol_info = rte_le_to_cpu_32(rxd.rx.ol_info);
if (first_seg == NULL) {
first_seg = rxm;
first_seg->nb_segs = 1;
} else {
first_seg->nb_segs++;
last_seg->next = rxm;
}
rxm->data_off = RTE_PKTMBUF_HEADROOM;
rxm->data_len = data_len;
if (!hns3_get_bit(bd_base_info, HNS3_RXD_FE_B)) {
last_seg = rxm;
continue;
}
/*
* The last buffer of the received packet. packet len from
* buffer description may contains CRC len, packet len should
* subtract it, same as data len.
*/
pkt_len = (uint16_t)(rte_le_to_cpu_16(rxd.rx.pkt_len));
first_seg->pkt_len = pkt_len;
/*
* This is the last buffer of the received packet. If the CRC
* is not stripped by the hardware:
* - Subtract the CRC length from the total packet length.
* - If the last buffer only contains the whole CRC or a part
* of it, free the mbuf associated to the last buffer. If part
* of the CRC is also contained in the previous mbuf, subtract
* the length of that CRC part from the data length of the
* previous mbuf.
*/
rxm->next = NULL;
if (unlikely(rxq->crc_len > 0)) {
first_seg->pkt_len -= rxq->crc_len;
recalculate_data_len(first_seg, last_seg, rxm, rxq,
data_len);
}
first_seg->port = rxq->port_id;
first_seg->hash.rss = rte_le_to_cpu_32(rxd.rx.rss_hash);
first_seg->ol_flags = PKT_RX_RSS_HASH;
if (unlikely(hns3_get_bit(bd_base_info, HNS3_RXD_LUM_B))) {
first_seg->hash.fdir.hi =
rte_le_to_cpu_32(rxd.rx.fd_id);
first_seg->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
}
gro_size = hns3_get_field(bd_base_info, HNS3_RXD_GRO_SIZE_M,
HNS3_RXD_GRO_SIZE_S);
if (gro_size != 0) {
first_seg->ol_flags |= PKT_RX_LRO;
first_seg->tso_segsz = gro_size;
}
ret = hns3_handle_bdinfo(rxq, first_seg, bd_base_info,
l234_info, &cksum_err);
if (unlikely(ret))
goto pkt_err;
first_seg->packet_type = rxd_pkt_info_to_pkt_type(l234_info,
ol_info);
if (bd_base_info & BIT(HNS3_RXD_L3L4P_B))
hns3_rx_set_cksum_flag(first_seg,
first_seg->packet_type,
cksum_err);
hns3_rxd_to_vlan_tci(rxq, first_seg, l234_info, &rxd);
rx_pkts[nb_rx++] = first_seg;
first_seg = NULL;
continue;
pkt_err:
rte_pktmbuf_free(first_seg);
first_seg = NULL;
}
rxq->next_to_clean = rx_id;
rxq->pkt_first_seg = first_seg;
rxq->pkt_last_seg = last_seg;
nb_rx_bd = nb_rx_bd + rxq->nb_rx_hold;
if (nb_rx_bd > rxq->rx_free_thresh) {
hns3_clean_rx_buffers(rxq, nb_rx_bd);
nb_rx_bd = 0;
}
rxq->nb_rx_hold = nb_rx_bd;
return nb_rx;
}
int
hns3_tx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t nb_desc,
unsigned int socket_id, const struct rte_eth_txconf *conf)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
struct hns3_queue_info q_info;
struct hns3_tx_queue *txq;
int tx_entry_len;
if (dev->data->dev_started) {
hns3_err(hw, "tx_queue_setup after dev_start no supported");
return -EINVAL;
}
if (nb_desc > HNS3_MAX_RING_DESC || nb_desc < HNS3_MIN_RING_DESC ||
nb_desc % HNS3_ALIGN_RING_DESC) {
hns3_err(hw, "Number (%u) of tx descriptors is invalid",
nb_desc);
return -EINVAL;
}
if (dev->data->tx_queues[idx] != NULL) {
hns3_tx_queue_release(dev->data->tx_queues[idx]);
dev->data->tx_queues[idx] = NULL;
}
q_info.idx = idx;
q_info.socket_id = socket_id;
q_info.nb_desc = nb_desc;
q_info.type = "hns3 TX queue";
q_info.ring_name = "tx_ring";
txq = hns3_alloc_txq_and_dma_zone(dev, &q_info);
if (txq == NULL) {
hns3_err(hw,
"Failed to alloc mem and reserve DMA mem for tx ring!");
return -ENOMEM;
}
txq->tx_deferred_start = conf->tx_deferred_start;
tx_entry_len = sizeof(struct hns3_entry) * txq->nb_tx_desc;
txq->sw_ring = rte_zmalloc_socket("hns3 TX sw ring", tx_entry_len,
RTE_CACHE_LINE_SIZE, socket_id);
if (txq->sw_ring == NULL) {
hns3_err(hw, "Failed to allocate memory for tx sw ring!");
hns3_tx_queue_release(txq);
return -ENOMEM;
}
txq->hns = hns;
txq->next_to_use = 0;
txq->next_to_clean = 0;
txq->tx_bd_ready = txq->nb_tx_desc - 1;
txq->port_id = dev->data->port_id;
txq->pvid_state = hw->port_base_vlan_cfg.state;
txq->configured = true;
txq->io_base = (void *)((char *)hw->io_base + HNS3_TQP_REG_OFFSET +
idx * HNS3_TQP_REG_SIZE);
txq->over_length_pkt_cnt = 0;
txq->exceed_limit_bd_pkt_cnt = 0;
txq->exceed_limit_bd_reassem_fail = 0;
txq->unsupported_tunnel_pkt_cnt = 0;
txq->queue_full_cnt = 0;
txq->pkt_padding_fail_cnt = 0;
rte_spinlock_lock(&hw->lock);
dev->data->tx_queues[idx] = txq;
rte_spinlock_unlock(&hw->lock);
return 0;
}
static inline void
hns3_queue_xmit(struct hns3_tx_queue *txq, uint32_t buf_num)
{
hns3_write_dev(txq, HNS3_RING_TX_TAIL_REG, buf_num);
}
static void
hns3_tx_free_useless_buffer(struct hns3_tx_queue *txq)
{
uint16_t tx_next_clean = txq->next_to_clean;
uint16_t tx_next_use = txq->next_to_use;
uint16_t tx_bd_ready = txq->tx_bd_ready;
uint16_t tx_bd_max = txq->nb_tx_desc;
struct hns3_entry *tx_bak_pkt = &txq->sw_ring[tx_next_clean];
struct hns3_desc *desc = &txq->tx_ring[tx_next_clean];
struct rte_mbuf *mbuf;
while ((!hns3_get_bit(desc->tx.tp_fe_sc_vld_ra_ri, HNS3_TXD_VLD_B)) &&
tx_next_use != tx_next_clean) {
mbuf = tx_bak_pkt->mbuf;
if (mbuf) {
rte_pktmbuf_free_seg(mbuf);
tx_bak_pkt->mbuf = NULL;
}
desc++;
tx_bak_pkt++;
tx_next_clean++;
tx_bd_ready++;
if (tx_next_clean >= tx_bd_max) {
tx_next_clean = 0;
desc = txq->tx_ring;
tx_bak_pkt = txq->sw_ring;
}
}
txq->next_to_clean = tx_next_clean;
txq->tx_bd_ready = tx_bd_ready;
}
static int
hns3_tso_proc_tunnel(struct hns3_desc *desc, uint64_t ol_flags,
struct rte_mbuf *rxm, uint8_t *l2_len)
{
uint64_t tun_flags;
uint8_t ol4_len;
uint32_t otmp;
tun_flags = ol_flags & PKT_TX_TUNNEL_MASK;
if (tun_flags == 0)
return 0;
otmp = rte_le_to_cpu_32(desc->tx.ol_type_vlan_len_msec);
switch (tun_flags) {
case PKT_TX_TUNNEL_GENEVE:
case PKT_TX_TUNNEL_VXLAN:
*l2_len = rxm->l2_len - RTE_ETHER_VXLAN_HLEN;
break;
case PKT_TX_TUNNEL_GRE:
/*
* OL4 header size, defined in 4 Bytes, it contains outer
* L4(GRE) length and tunneling length.
*/
ol4_len = hns3_get_field(otmp, HNS3_TXD_L4LEN_M,
HNS3_TXD_L4LEN_S);
*l2_len = rxm->l2_len - (ol4_len << HNS3_L4_LEN_UNIT);
break;
default:
/* For non UDP / GRE tunneling, drop the tunnel packet */
return -EINVAL;
}
hns3_set_field(otmp, HNS3_TXD_L2LEN_M, HNS3_TXD_L2LEN_S,
rxm->outer_l2_len >> HNS3_L2_LEN_UNIT);
desc->tx.ol_type_vlan_len_msec = rte_cpu_to_le_32(otmp);
return 0;
}
int
hns3_config_gro(struct hns3_hw *hw, bool en)
{
struct hns3_cfg_gro_status_cmd *req;
struct hns3_cmd_desc desc;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GRO_GENERIC_CONFIG, false);
req = (struct hns3_cfg_gro_status_cmd *)desc.data;
req->gro_en = rte_cpu_to_le_16(en ? 1 : 0);
ret = hns3_cmd_send(hw, &desc, 1);
if (ret)
hns3_err(hw, "%s hardware GRO failed, ret = %d",
en ? "enable" : "disable", ret);
return ret;
}
int
hns3_restore_gro_conf(struct hns3_hw *hw)
{
uint64_t offloads;
bool gro_en;
int ret;
offloads = hw->data->dev_conf.rxmode.offloads;
gro_en = offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
ret = hns3_config_gro(hw, gro_en);
if (ret)
hns3_err(hw, "restore hardware GRO to %s failed, ret = %d",
gro_en ? "enabled" : "disabled", ret);
return ret;
}
static inline bool
hns3_pkt_is_tso(struct rte_mbuf *m)
{
return (m->tso_segsz != 0 && m->ol_flags & PKT_TX_TCP_SEG);
}
static void
hns3_set_tso(struct hns3_desc *desc, uint64_t ol_flags,
uint32_t paylen, struct rte_mbuf *rxm)
{
uint8_t l2_len = rxm->l2_len;
uint32_t tmp;
if (!hns3_pkt_is_tso(rxm))
return;
if (hns3_tso_proc_tunnel(desc, ol_flags, rxm, &l2_len))
return;
if (paylen <= rxm->tso_segsz)
return;
tmp = rte_le_to_cpu_32(desc->tx.type_cs_vlan_tso_len);
hns3_set_bit(tmp, HNS3_TXD_TSO_B, 1);
hns3_set_bit(tmp, HNS3_TXD_L3CS_B, 1);
hns3_set_field(tmp, HNS3_TXD_L4T_M, HNS3_TXD_L4T_S, HNS3_L4T_TCP);
hns3_set_bit(tmp, HNS3_TXD_L4CS_B, 1);
hns3_set_field(tmp, HNS3_TXD_L4LEN_M, HNS3_TXD_L4LEN_S,
sizeof(struct rte_tcp_hdr) >> HNS3_L4_LEN_UNIT);
hns3_set_field(tmp, HNS3_TXD_L2LEN_M, HNS3_TXD_L2LEN_S,
l2_len >> HNS3_L2_LEN_UNIT);
desc->tx.type_cs_vlan_tso_len = rte_cpu_to_le_32(tmp);
desc->tx.mss = rte_cpu_to_le_16(rxm->tso_segsz);
}
static inline void
hns3_fill_per_desc(struct hns3_desc *desc, struct rte_mbuf *rxm)
{
desc->addr = rte_mbuf_data_iova(rxm);
desc->tx.send_size = rte_cpu_to_le_16(rte_pktmbuf_data_len(rxm));
desc->tx.tp_fe_sc_vld_ra_ri = rte_cpu_to_le_16(BIT(HNS3_TXD_VLD_B));
}
static void
hns3_fill_first_desc(struct hns3_tx_queue *txq, struct hns3_desc *desc,
struct rte_mbuf *rxm)
{
uint64_t ol_flags = rxm->ol_flags;
uint32_t hdr_len;
uint32_t paylen;
hdr_len = rxm->l2_len + rxm->l3_len + rxm->l4_len;
hdr_len += (ol_flags & PKT_TX_TUNNEL_MASK) ?
rxm->outer_l2_len + rxm->outer_l3_len : 0;
paylen = rxm->pkt_len - hdr_len;
desc->tx.paylen = rte_cpu_to_le_32(paylen);
hns3_set_tso(desc, ol_flags, paylen, rxm);
/*
* Currently, hardware doesn't support more than two layers VLAN offload
* in Tx direction based on hns3 network engine. So when the number of
* VLANs in the packets represented by rxm plus the number of VLAN
* offload by hardware such as PVID etc, exceeds two, the packets will
* be discarded or the original VLAN of the packets will be overwitted
* by hardware. When the PF PVID is enabled by calling the API function
* named rte_eth_dev_set_vlan_pvid or the VF PVID is enabled by the hns3
* PF kernel ether driver, the outer VLAN tag will always be the PVID.
* To avoid the VLAN of Tx descriptor is overwritten by PVID, it should
* be added to the position close to the IP header when PVID is enabled.
*/
if (!txq->pvid_state && ol_flags & (PKT_TX_VLAN_PKT |
PKT_TX_QINQ_PKT)) {
desc->tx.ol_type_vlan_len_msec |=
rte_cpu_to_le_32(BIT(HNS3_TXD_OVLAN_B));
if (ol_flags & PKT_TX_QINQ_PKT)
desc->tx.outer_vlan_tag =
rte_cpu_to_le_16(rxm->vlan_tci_outer);
else
desc->tx.outer_vlan_tag =
rte_cpu_to_le_16(rxm->vlan_tci);
}
if (ol_flags & PKT_TX_QINQ_PKT ||
((ol_flags & PKT_TX_VLAN_PKT) && txq->pvid_state)) {
desc->tx.type_cs_vlan_tso_len |=
rte_cpu_to_le_32(BIT(HNS3_TXD_VLAN_B));
desc->tx.vlan_tag = rte_cpu_to_le_16(rxm->vlan_tci);
}
}
static int
hns3_tx_alloc_mbufs(struct hns3_tx_queue *txq, struct rte_mempool *mb_pool,
uint16_t nb_new_buf, struct rte_mbuf **alloc_mbuf)
{
struct rte_mbuf *new_mbuf = NULL;
struct rte_eth_dev *dev;
struct rte_mbuf *temp;
struct hns3_hw *hw;
uint16_t i;
/* Allocate enough mbufs */
for (i = 0; i < nb_new_buf; i++) {
temp = rte_pktmbuf_alloc(mb_pool);
if (unlikely(temp == NULL)) {
dev = &rte_eth_devices[txq->port_id];
hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
hns3_err(hw, "Failed to alloc TX mbuf port_id=%d,"
"queue_id=%d in reassemble tx pkts.",
txq->port_id, txq->queue_id);
rte_pktmbuf_free(new_mbuf);
return -ENOMEM;
}
temp->next = new_mbuf;
new_mbuf = temp;
}
if (new_mbuf == NULL)
return -ENOMEM;
new_mbuf->nb_segs = nb_new_buf;
*alloc_mbuf = new_mbuf;
return 0;
}
static inline void
hns3_pktmbuf_copy_hdr(struct rte_mbuf *new_pkt, struct rte_mbuf *old_pkt)
{
new_pkt->ol_flags = old_pkt->ol_flags;
new_pkt->pkt_len = rte_pktmbuf_pkt_len(old_pkt);
new_pkt->outer_l2_len = old_pkt->outer_l2_len;
new_pkt->outer_l3_len = old_pkt->outer_l3_len;
new_pkt->l2_len = old_pkt->l2_len;
new_pkt->l3_len = old_pkt->l3_len;
new_pkt->l4_len = old_pkt->l4_len;
new_pkt->vlan_tci_outer = old_pkt->vlan_tci_outer;
new_pkt->vlan_tci = old_pkt->vlan_tci;
}
static int
hns3_reassemble_tx_pkts(void *tx_queue, struct rte_mbuf *tx_pkt,
struct rte_mbuf **new_pkt)
{
struct hns3_tx_queue *txq = tx_queue;
struct rte_mempool *mb_pool;
struct rte_mbuf *new_mbuf;
struct rte_mbuf *temp_new;
struct rte_mbuf *temp;
uint16_t last_buf_len;
uint16_t nb_new_buf;
uint16_t buf_size;
uint16_t buf_len;
uint16_t len_s;
uint16_t len_d;
uint16_t len;
uint16_t i;
int ret;
char *s;
char *d;
mb_pool = tx_pkt->pool;
buf_size = tx_pkt->buf_len - RTE_PKTMBUF_HEADROOM;
nb_new_buf = (rte_pktmbuf_pkt_len(tx_pkt) - 1) / buf_size + 1;
if (nb_new_buf > HNS3_MAX_NON_TSO_BD_PER_PKT)
return -EINVAL;
last_buf_len = rte_pktmbuf_pkt_len(tx_pkt) % buf_size;
if (last_buf_len == 0)
last_buf_len = buf_size;
/* Allocate enough mbufs */
ret = hns3_tx_alloc_mbufs(txq, mb_pool, nb_new_buf, &new_mbuf);
if (ret)
return ret;
/* Copy the original packet content to the new mbufs */
temp = tx_pkt;
s = rte_pktmbuf_mtod(temp, char *);
len_s = rte_pktmbuf_data_len(temp);
temp_new = new_mbuf;
for (i = 0; i < nb_new_buf; i++) {
d = rte_pktmbuf_mtod(temp_new, char *);
if (i < nb_new_buf - 1)
buf_len = buf_size;
else
buf_len = last_buf_len;
len_d = buf_len;
while (len_d) {
len = RTE_MIN(len_s, len_d);
memcpy(d, s, len);
s = s + len;
d = d + len;
len_d = len_d - len;
len_s = len_s - len;
if (len_s == 0) {
temp = temp->next;
if (temp == NULL)
break;
s = rte_pktmbuf_mtod(temp, char *);
len_s = rte_pktmbuf_data_len(temp);
}
}
temp_new->data_len = buf_len;
temp_new = temp_new->next;
}
hns3_pktmbuf_copy_hdr(new_mbuf, tx_pkt);
/* free original mbufs */
rte_pktmbuf_free(tx_pkt);
*new_pkt = new_mbuf;
return 0;
}
static void
hns3_parse_outer_params(uint64_t ol_flags, uint32_t *ol_type_vlan_len_msec)
{
uint32_t tmp = *ol_type_vlan_len_msec;
/* (outer) IP header type */
if (ol_flags & PKT_TX_OUTER_IPV4) {
/* OL3 header size, defined in 4 bytes */
hns3_set_field(tmp, HNS3_TXD_L3LEN_M, HNS3_TXD_L3LEN_S,
sizeof(struct rte_ipv4_hdr) >> HNS3_L3_LEN_UNIT);
if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
hns3_set_field(tmp, HNS3_TXD_OL3T_M,
HNS3_TXD_OL3T_S, HNS3_OL3T_IPV4_CSUM);
else
hns3_set_field(tmp, HNS3_TXD_OL3T_M, HNS3_TXD_OL3T_S,
HNS3_OL3T_IPV4_NO_CSUM);
} else if (ol_flags & PKT_TX_OUTER_IPV6) {
hns3_set_field(tmp, HNS3_TXD_OL3T_M, HNS3_TXD_OL3T_S,
HNS3_OL3T_IPV6);
/* OL3 header size, defined in 4 bytes */
hns3_set_field(tmp, HNS3_TXD_L3LEN_M, HNS3_TXD_L3LEN_S,
sizeof(struct rte_ipv6_hdr) >> HNS3_L3_LEN_UNIT);
}
*ol_type_vlan_len_msec = tmp;
}
static int
hns3_parse_inner_params(uint64_t ol_flags, uint32_t *ol_type_vlan_len_msec,
struct rte_net_hdr_lens *hdr_lens)
{
uint32_t tmp = *ol_type_vlan_len_msec;
uint8_t l4_len;
/* OL2 header size, defined in 2 bytes */
hns3_set_field(tmp, HNS3_TXD_L2LEN_M, HNS3_TXD_L2LEN_S,
sizeof(struct rte_ether_hdr) >> HNS3_L2_LEN_UNIT);
/* L4TUNT: L4 Tunneling Type */
switch (ol_flags & PKT_TX_TUNNEL_MASK) {
case PKT_TX_TUNNEL_GENEVE:
case PKT_TX_TUNNEL_VXLAN:
/* MAC in UDP tunnelling packet, include VxLAN */
hns3_set_field(tmp, HNS3_TXD_TUNTYPE_M, HNS3_TXD_TUNTYPE_S,
HNS3_TUN_MAC_IN_UDP);
/*
* OL4 header size, defined in 4 Bytes, it contains outer
* L4(UDP) length and tunneling length.
*/
hns3_set_field(tmp, HNS3_TXD_L4LEN_M, HNS3_TXD_L4LEN_S,
(uint8_t)RTE_ETHER_VXLAN_HLEN >>
HNS3_L4_LEN_UNIT);
break;
case PKT_TX_TUNNEL_GRE:
hns3_set_field(tmp, HNS3_TXD_TUNTYPE_M, HNS3_TXD_TUNTYPE_S,
HNS3_TUN_NVGRE);
/*
* OL4 header size, defined in 4 Bytes, it contains outer
* L4(GRE) length and tunneling length.
*/
l4_len = hdr_lens->l4_len + hdr_lens->tunnel_len;
hns3_set_field(tmp, HNS3_TXD_L4LEN_M, HNS3_TXD_L4LEN_S,
l4_len >> HNS3_L4_LEN_UNIT);
break;
default:
/* For non UDP / GRE tunneling, drop the tunnel packet */
return -EINVAL;
}
*ol_type_vlan_len_msec = tmp;
return 0;
}
static int
hns3_parse_tunneling_params(struct hns3_tx_queue *txq, uint16_t tx_desc_id,
uint64_t ol_flags,
struct rte_net_hdr_lens *hdr_lens)
{
struct hns3_desc *tx_ring = txq->tx_ring;
struct hns3_desc *desc = &tx_ring[tx_desc_id];
uint32_t value = 0;
int ret;
hns3_parse_outer_params(ol_flags, &value);
ret = hns3_parse_inner_params(ol_flags, &value, hdr_lens);
if (ret)
return -EINVAL;
desc->tx.ol_type_vlan_len_msec |= rte_cpu_to_le_32(value);
return 0;
}
static void
hns3_parse_l3_cksum_params(uint64_t ol_flags, uint32_t *type_cs_vlan_tso_len)
{
uint32_t tmp;
/* Enable L3 checksum offloads */
if (ol_flags & PKT_TX_IPV4) {
tmp = *type_cs_vlan_tso_len;
hns3_set_field(tmp, HNS3_TXD_L3T_M, HNS3_TXD_L3T_S,
HNS3_L3T_IPV4);
/* inner(/normal) L3 header size, defined in 4 bytes */
hns3_set_field(tmp, HNS3_TXD_L3LEN_M, HNS3_TXD_L3LEN_S,
sizeof(struct rte_ipv4_hdr) >> HNS3_L3_LEN_UNIT);
if (ol_flags & PKT_TX_IP_CKSUM)
hns3_set_bit(tmp, HNS3_TXD_L3CS_B, 1);
*type_cs_vlan_tso_len = tmp;
} else if (ol_flags & PKT_TX_IPV6) {
tmp = *type_cs_vlan_tso_len;
/* L3T, IPv6 don't do checksum */
hns3_set_field(tmp, HNS3_TXD_L3T_M, HNS3_TXD_L3T_S,
HNS3_L3T_IPV6);
/* inner(/normal) L3 header size, defined in 4 bytes */
hns3_set_field(tmp, HNS3_TXD_L3LEN_M, HNS3_TXD_L3LEN_S,
sizeof(struct rte_ipv6_hdr) >> HNS3_L3_LEN_UNIT);
*type_cs_vlan_tso_len = tmp;
}
}
static void
hns3_parse_l4_cksum_params(uint64_t ol_flags, uint32_t *type_cs_vlan_tso_len)
{
uint32_t tmp;
/* Enable L4 checksum offloads */
switch (ol_flags & PKT_TX_L4_MASK) {
case PKT_TX_TCP_CKSUM:
tmp = *type_cs_vlan_tso_len;
hns3_set_field(tmp, HNS3_TXD_L4T_M, HNS3_TXD_L4T_S,
HNS3_L4T_TCP);
hns3_set_bit(tmp, HNS3_TXD_L4CS_B, 1);
hns3_set_field(tmp, HNS3_TXD_L4LEN_M, HNS3_TXD_L4LEN_S,
sizeof(struct rte_tcp_hdr) >> HNS3_L4_LEN_UNIT);
*type_cs_vlan_tso_len = tmp;
break;
case PKT_TX_UDP_CKSUM:
tmp = *type_cs_vlan_tso_len;
hns3_set_field(tmp, HNS3_TXD_L4T_M, HNS3_TXD_L4T_S,
HNS3_L4T_UDP);
hns3_set_bit(tmp, HNS3_TXD_L4CS_B, 1);
hns3_set_field(tmp, HNS3_TXD_L4LEN_M, HNS3_TXD_L4LEN_S,
sizeof(struct rte_udp_hdr) >> HNS3_L4_LEN_UNIT);
*type_cs_vlan_tso_len = tmp;
break;
case PKT_TX_SCTP_CKSUM:
tmp = *type_cs_vlan_tso_len;
hns3_set_field(tmp, HNS3_TXD_L4T_M, HNS3_TXD_L4T_S,
HNS3_L4T_SCTP);
hns3_set_bit(tmp, HNS3_TXD_L4CS_B, 1);
hns3_set_field(tmp, HNS3_TXD_L4LEN_M, HNS3_TXD_L4LEN_S,
sizeof(struct rte_sctp_hdr) >> HNS3_L4_LEN_UNIT);
*type_cs_vlan_tso_len = tmp;
break;
default:
break;
}
}
static void
hns3_txd_enable_checksum(struct hns3_tx_queue *txq, uint16_t tx_desc_id,
uint64_t ol_flags)
{
struct hns3_desc *tx_ring = txq->tx_ring;
struct hns3_desc *desc = &tx_ring[tx_desc_id];
uint32_t value = 0;
/* inner(/normal) L2 header size, defined in 2 bytes */
hns3_set_field(value, HNS3_TXD_L2LEN_M, HNS3_TXD_L2LEN_S,
sizeof(struct rte_ether_hdr) >> HNS3_L2_LEN_UNIT);
hns3_parse_l3_cksum_params(ol_flags, &value);
hns3_parse_l4_cksum_params(ol_flags, &value);
desc->tx.type_cs_vlan_tso_len |= rte_cpu_to_le_32(value);
}
static bool
hns3_pkt_need_linearized(struct rte_mbuf *tx_pkts, uint32_t bd_num)
{
struct rte_mbuf *m_first = tx_pkts;
struct rte_mbuf *m_last = tx_pkts;
uint32_t tot_len = 0;
uint32_t hdr_len;
uint32_t i;
/*
* Hardware requires that the sum of the data length of every 8
* consecutive buffers is greater than MSS in hns3 network engine.
* We simplify it by ensuring pkt_headlen + the first 8 consecutive
* frags greater than gso header len + mss, and the remaining 7
* consecutive frags greater than MSS except the last 7 frags.
*/
if (bd_num <= HNS3_MAX_NON_TSO_BD_PER_PKT)
return false;
for (i = 0; m_last && i < HNS3_MAX_NON_TSO_BD_PER_PKT - 1;
i++, m_last = m_last->next)
tot_len += m_last->data_len;
if (!m_last)
return true;
/* ensure the first 8 frags is greater than mss + header */
hdr_len = tx_pkts->l2_len + tx_pkts->l3_len + tx_pkts->l4_len;
hdr_len += (tx_pkts->ol_flags & PKT_TX_TUNNEL_MASK) ?
tx_pkts->outer_l2_len + tx_pkts->outer_l3_len : 0;
if (tot_len + m_last->data_len < tx_pkts->tso_segsz + hdr_len)
return true;
/*
* ensure the sum of the data length of every 7 consecutive buffer
* is greater than mss except the last one.
*/
for (i = 0; m_last && i < bd_num - HNS3_MAX_NON_TSO_BD_PER_PKT; i++) {
tot_len -= m_first->data_len;
tot_len += m_last->data_len;
if (tot_len < tx_pkts->tso_segsz)
return true;
m_first = m_first->next;
m_last = m_last->next;
}
return false;
}
static void
hns3_outer_header_cksum_prepare(struct rte_mbuf *m)
{
uint64_t ol_flags = m->ol_flags;
struct rte_ipv4_hdr *ipv4_hdr;
struct rte_udp_hdr *udp_hdr;
uint32_t paylen, hdr_len;
if (!(ol_flags & (PKT_TX_OUTER_IPV4 | PKT_TX_OUTER_IPV6)))
return;
if (ol_flags & PKT_TX_IPV4) {
ipv4_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
m->outer_l2_len);
if (ol_flags & PKT_TX_IP_CKSUM)
ipv4_hdr->hdr_checksum = 0;
}
if ((ol_flags & PKT_TX_L4_MASK) == PKT_TX_UDP_CKSUM &&
ol_flags & PKT_TX_TCP_SEG) {
hdr_len = m->l2_len + m->l3_len + m->l4_len;
hdr_len += (ol_flags & PKT_TX_TUNNEL_MASK) ?
m->outer_l2_len + m->outer_l3_len : 0;
paylen = m->pkt_len - hdr_len;
if (paylen <= m->tso_segsz)
return;
udp_hdr = rte_pktmbuf_mtod_offset(m, struct rte_udp_hdr *,
m->outer_l2_len +
m->outer_l3_len);
udp_hdr->dgram_cksum = 0;
}
}
static int
hns3_check_tso_pkt_valid(struct rte_mbuf *m)
{
uint32_t tmp_data_len_sum = 0;
uint16_t nb_buf = m->nb_segs;
uint32_t paylen, hdr_len;
struct rte_mbuf *m_seg;
int i;
if (nb_buf > HNS3_MAX_TSO_BD_PER_PKT)
return -EINVAL;
hdr_len = m->l2_len + m->l3_len + m->l4_len;
hdr_len += (m->ol_flags & PKT_TX_TUNNEL_MASK) ?
m->outer_l2_len + m->outer_l3_len : 0;
if (hdr_len > HNS3_MAX_TSO_HDR_SIZE)
return -EINVAL;
paylen = m->pkt_len - hdr_len;
if (paylen > HNS3_MAX_BD_PAYLEN)
return -EINVAL;
/*
* The TSO header (include outer and inner L2, L3 and L4 header)
* should be provided by three descriptors in maximum in hns3 network
* engine.
*/
m_seg = m;
for (i = 0; m_seg != NULL && i < HNS3_MAX_TSO_HDR_BD_NUM && i < nb_buf;
i++, m_seg = m_seg->next) {
tmp_data_len_sum += m_seg->data_len;
}
if (hdr_len > tmp_data_len_sum)
return -EINVAL;
return 0;
}
#ifdef RTE_LIBRTE_ETHDEV_DEBUG
static inline int
hns3_vld_vlan_chk(struct hns3_tx_queue *txq, struct rte_mbuf *m)
{
struct rte_ether_hdr *eh;
struct rte_vlan_hdr *vh;
if (!txq->pvid_state)
return 0;
/*
* Due to hardware limitations, we only support two-layer VLAN hardware
* offload in Tx direction based on hns3 network engine, so when PVID is
* enabled, QinQ insert is no longer supported.
* And when PVID is enabled, in the following two cases:
* i) packets with more than two VLAN tags.
* ii) packets with one VLAN tag while the hardware VLAN insert is
* enabled.
* The packets will be regarded as abnormal packets and discarded by
* hardware in Tx direction. For debugging purposes, a validation check
* for these types of packets is added to the '.tx_pkt_prepare' ops
* implementation function named hns3_prep_pkts to inform users that
* these packets will be discarded.
*/
if (m->ol_flags & PKT_TX_QINQ_PKT)
return -EINVAL;
eh = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
if (eh->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN)) {
if (m->ol_flags & PKT_TX_VLAN_PKT)
return -EINVAL;
/* Ensure the incoming packet is not a QinQ packet */
vh = (struct rte_vlan_hdr *)(eh + 1);
if (vh->eth_proto == rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN))
return -EINVAL;
}
return 0;
}
#endif
uint16_t
hns3_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct rte_mbuf *m;
uint16_t i;
int ret;
for (i = 0; i < nb_pkts; i++) {
m = tx_pkts[i];
if (hns3_pkt_is_tso(m) &&
(hns3_pkt_need_linearized(m, m->nb_segs) ||
hns3_check_tso_pkt_valid(m))) {
rte_errno = EINVAL;
return i;
}
#ifdef RTE_LIBRTE_ETHDEV_DEBUG
ret = rte_validate_tx_offload(m);
if (ret != 0) {
rte_errno = -ret;
return i;
}
if (hns3_vld_vlan_chk(tx_queue, m)) {
rte_errno = EINVAL;
return i;
}
#endif
ret = rte_net_intel_cksum_prepare(m);
if (ret != 0) {
rte_errno = -ret;
return i;
}
hns3_outer_header_cksum_prepare(m);
}
return i;
}
static int
hns3_parse_cksum(struct hns3_tx_queue *txq, uint16_t tx_desc_id,
const struct rte_mbuf *m, struct rte_net_hdr_lens *hdr_lens)
{
/* Fill in tunneling parameters if necessary */
if (m->ol_flags & PKT_TX_TUNNEL_MASK) {
(void)rte_net_get_ptype(m, hdr_lens, RTE_PTYPE_ALL_MASK);
if (hns3_parse_tunneling_params(txq, tx_desc_id, m->ol_flags,
hdr_lens)) {
txq->unsupported_tunnel_pkt_cnt++;
return -EINVAL;
}
}
/* Enable checksum offloading */
if (m->ol_flags & HNS3_TX_CKSUM_OFFLOAD_MASK)
hns3_txd_enable_checksum(txq, tx_desc_id, m->ol_flags);
return 0;
}
static int
hns3_check_non_tso_pkt(uint16_t nb_buf, struct rte_mbuf **m_seg,
struct rte_mbuf *tx_pkt, struct hns3_tx_queue *txq)
{
struct rte_mbuf *new_pkt;
int ret;
if (hns3_pkt_is_tso(*m_seg))
return 0;
/*
* If packet length is greater than HNS3_MAX_FRAME_LEN
* driver support, the packet will be ignored.
*/
if (unlikely(rte_pktmbuf_pkt_len(tx_pkt) > HNS3_MAX_FRAME_LEN)) {
txq->over_length_pkt_cnt++;
return -EINVAL;
}
if (unlikely(nb_buf > HNS3_MAX_NON_TSO_BD_PER_PKT)) {
txq->exceed_limit_bd_pkt_cnt++;
ret = hns3_reassemble_tx_pkts(txq, tx_pkt, &new_pkt);
if (ret) {
txq->exceed_limit_bd_reassem_fail++;
return ret;
}
*m_seg = new_pkt;
}
return 0;
}
uint16_t
hns3_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
struct rte_net_hdr_lens hdr_lens = {0};
struct hns3_tx_queue *txq = tx_queue;
struct hns3_entry *tx_bak_pkt;
struct hns3_desc *tx_ring;
struct rte_mbuf *tx_pkt;
struct rte_mbuf *m_seg;
struct hns3_desc *desc;
uint32_t nb_hold = 0;
uint16_t tx_next_use;
uint16_t tx_pkt_num;
uint16_t tx_bd_max;
uint16_t nb_buf;
uint16_t nb_tx;
uint16_t i;
/* free useless buffer */
hns3_tx_free_useless_buffer(txq);
tx_next_use = txq->next_to_use;
tx_bd_max = txq->nb_tx_desc;
tx_pkt_num = nb_pkts;
tx_ring = txq->tx_ring;
/* send packets */
tx_bak_pkt = &txq->sw_ring[tx_next_use];
for (nb_tx = 0; nb_tx < tx_pkt_num; nb_tx++) {
tx_pkt = *tx_pkts++;
nb_buf = tx_pkt->nb_segs;
if (nb_buf > txq->tx_bd_ready) {
txq->queue_full_cnt++;
if (nb_tx == 0)
return 0;
goto end_of_tx;
}
/*
* If packet length is less than minimum packet size, driver
* need to pad it.
*/
if (unlikely(rte_pktmbuf_pkt_len(tx_pkt) < HNS3_MIN_PKT_SIZE)) {
uint16_t add_len;
char *appended;
add_len = HNS3_MIN_PKT_SIZE -
rte_pktmbuf_pkt_len(tx_pkt);
appended = rte_pktmbuf_append(tx_pkt, add_len);
if (appended == NULL) {
txq->pkt_padding_fail_cnt++;
break;
}
memset(appended, 0, add_len);
}
m_seg = tx_pkt;
if (hns3_check_non_tso_pkt(nb_buf, &m_seg, tx_pkt, txq))
goto end_of_tx;
if (hns3_parse_cksum(txq, tx_next_use, m_seg, &hdr_lens))
goto end_of_tx;
i = 0;
desc = &tx_ring[tx_next_use];
/*
* If the packet is divided into multiple Tx Buffer Descriptors,
* only need to fill vlan, paylen and tso into the first Tx
* Buffer Descriptor.
*/
hns3_fill_first_desc(txq, desc, m_seg);
do {
desc = &tx_ring[tx_next_use];
/*
* Fill valid bits, DMA address and data length for each
* Tx Buffer Descriptor.
*/
hns3_fill_per_desc(desc, m_seg);
tx_bak_pkt->mbuf = m_seg;
m_seg = m_seg->next;
tx_next_use++;
tx_bak_pkt++;
if (tx_next_use >= tx_bd_max) {
tx_next_use = 0;
tx_bak_pkt = txq->sw_ring;
}
i++;
} while (m_seg != NULL);
/* Add end flag for the last Tx Buffer Descriptor */
desc->tx.tp_fe_sc_vld_ra_ri |=
rte_cpu_to_le_16(BIT(HNS3_TXD_FE_B));
nb_hold += i;
txq->next_to_use = tx_next_use;
txq->tx_bd_ready -= i;
}
end_of_tx:
if (likely(nb_tx))
hns3_queue_xmit(txq, nb_hold);
return nb_tx;
}
static uint16_t
hns3_dummy_rxtx_burst(void *dpdk_txq __rte_unused,
struct rte_mbuf **pkts __rte_unused,
uint16_t pkts_n __rte_unused)
{
return 0;
}
void hns3_set_rxtx_function(struct rte_eth_dev *eth_dev)
{
struct hns3_adapter *hns = eth_dev->data->dev_private;
if (hns->hw.adapter_state == HNS3_NIC_STARTED &&
rte_atomic16_read(&hns->hw.reset.resetting) == 0) {
eth_dev->rx_pkt_burst = hns3_recv_pkts;
eth_dev->tx_pkt_burst = hns3_xmit_pkts;
eth_dev->tx_pkt_prepare = hns3_prep_pkts;
} else {
eth_dev->rx_pkt_burst = hns3_dummy_rxtx_burst;
eth_dev->tx_pkt_burst = hns3_dummy_rxtx_burst;
eth_dev->tx_pkt_prepare = hns3_dummy_rxtx_burst;
}
}