ca04aaea80
In some cases we may want to tag a packet for a particular destination or output port, so rename the "in_port" field in the mbuf to just "port" so that it can be re-used for this purpose if an application needs it. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com> Acked-by: Pablo de Lara <pablo.de.lara.guarch@intel.com> Acked-by: Olivier Matz <olivier.matz@6wind.com>
668 lines
16 KiB
C
668 lines
16 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <stdint.h>
|
|
#include <inttypes.h>
|
|
#include <sys/types.h>
|
|
#include <string.h>
|
|
#include <sys/queue.h>
|
|
#include <stdarg.h>
|
|
#include <errno.h>
|
|
#include <getopt.h>
|
|
|
|
#include <rte_common.h>
|
|
#include <rte_byteorder.h>
|
|
#include <rte_log.h>
|
|
#include <rte_memory.h>
|
|
#include <rte_memcpy.h>
|
|
#include <rte_memzone.h>
|
|
#include <rte_tailq.h>
|
|
#include <rte_eal.h>
|
|
#include <rte_per_lcore.h>
|
|
#include <rte_launch.h>
|
|
#include <rte_atomic.h>
|
|
#include <rte_cycles.h>
|
|
#include <rte_prefetch.h>
|
|
#include <rte_lcore.h>
|
|
#include <rte_per_lcore.h>
|
|
#include <rte_branch_prediction.h>
|
|
#include <rte_interrupts.h>
|
|
#include <rte_pci.h>
|
|
#include <rte_random.h>
|
|
#include <rte_debug.h>
|
|
#include <rte_ether.h>
|
|
#include <rte_ethdev.h>
|
|
#include <rte_ring.h>
|
|
#include <rte_mempool.h>
|
|
#include <rte_mbuf.h>
|
|
#include <rte_ip.h>
|
|
#include <rte_tcp.h>
|
|
#include <rte_lpm.h>
|
|
|
|
#include "main.h"
|
|
|
|
#ifndef APP_LCORE_IO_FLUSH
|
|
#define APP_LCORE_IO_FLUSH 1000000
|
|
#endif
|
|
|
|
#ifndef APP_LCORE_WORKER_FLUSH
|
|
#define APP_LCORE_WORKER_FLUSH 1000000
|
|
#endif
|
|
|
|
#ifndef APP_STATS
|
|
#define APP_STATS 1000000
|
|
#endif
|
|
|
|
#define APP_IO_RX_DROP_ALL_PACKETS 0
|
|
#define APP_WORKER_DROP_ALL_PACKETS 0
|
|
#define APP_IO_TX_DROP_ALL_PACKETS 0
|
|
|
|
#ifndef APP_IO_RX_PREFETCH_ENABLE
|
|
#define APP_IO_RX_PREFETCH_ENABLE 1
|
|
#endif
|
|
|
|
#ifndef APP_WORKER_PREFETCH_ENABLE
|
|
#define APP_WORKER_PREFETCH_ENABLE 1
|
|
#endif
|
|
|
|
#ifndef APP_IO_TX_PREFETCH_ENABLE
|
|
#define APP_IO_TX_PREFETCH_ENABLE 1
|
|
#endif
|
|
|
|
#if APP_IO_RX_PREFETCH_ENABLE
|
|
#define APP_IO_RX_PREFETCH0(p) rte_prefetch0(p)
|
|
#define APP_IO_RX_PREFETCH1(p) rte_prefetch1(p)
|
|
#else
|
|
#define APP_IO_RX_PREFETCH0(p)
|
|
#define APP_IO_RX_PREFETCH1(p)
|
|
#endif
|
|
|
|
#if APP_WORKER_PREFETCH_ENABLE
|
|
#define APP_WORKER_PREFETCH0(p) rte_prefetch0(p)
|
|
#define APP_WORKER_PREFETCH1(p) rte_prefetch1(p)
|
|
#else
|
|
#define APP_WORKER_PREFETCH0(p)
|
|
#define APP_WORKER_PREFETCH1(p)
|
|
#endif
|
|
|
|
#if APP_IO_TX_PREFETCH_ENABLE
|
|
#define APP_IO_TX_PREFETCH0(p) rte_prefetch0(p)
|
|
#define APP_IO_TX_PREFETCH1(p) rte_prefetch1(p)
|
|
#else
|
|
#define APP_IO_TX_PREFETCH0(p)
|
|
#define APP_IO_TX_PREFETCH1(p)
|
|
#endif
|
|
|
|
static inline void
|
|
app_lcore_io_rx_buffer_to_send (
|
|
struct app_lcore_params_io *lp,
|
|
uint32_t worker,
|
|
struct rte_mbuf *mbuf,
|
|
uint32_t bsz)
|
|
{
|
|
uint32_t pos;
|
|
int ret;
|
|
|
|
pos = lp->rx.mbuf_out[worker].n_mbufs;
|
|
lp->rx.mbuf_out[worker].array[pos ++] = mbuf;
|
|
if (likely(pos < bsz)) {
|
|
lp->rx.mbuf_out[worker].n_mbufs = pos;
|
|
return;
|
|
}
|
|
|
|
ret = rte_ring_sp_enqueue_bulk(
|
|
lp->rx.rings[worker],
|
|
(void **) lp->rx.mbuf_out[worker].array,
|
|
bsz);
|
|
|
|
if (unlikely(ret == -ENOBUFS)) {
|
|
uint32_t k;
|
|
for (k = 0; k < bsz; k ++) {
|
|
struct rte_mbuf *m = lp->rx.mbuf_out[worker].array[k];
|
|
rte_pktmbuf_free(m);
|
|
}
|
|
}
|
|
|
|
lp->rx.mbuf_out[worker].n_mbufs = 0;
|
|
lp->rx.mbuf_out_flush[worker] = 0;
|
|
|
|
#if APP_STATS
|
|
lp->rx.rings_iters[worker] ++;
|
|
if (likely(ret == 0)) {
|
|
lp->rx.rings_count[worker] ++;
|
|
}
|
|
if (unlikely(lp->rx.rings_iters[worker] == APP_STATS)) {
|
|
unsigned lcore = rte_lcore_id();
|
|
|
|
printf("\tI/O RX %u out (worker %u): enq success rate = %.2f\n",
|
|
lcore,
|
|
(unsigned)worker,
|
|
((double) lp->rx.rings_count[worker]) / ((double) lp->rx.rings_iters[worker]));
|
|
lp->rx.rings_iters[worker] = 0;
|
|
lp->rx.rings_count[worker] = 0;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static inline void
|
|
app_lcore_io_rx(
|
|
struct app_lcore_params_io *lp,
|
|
uint32_t n_workers,
|
|
uint32_t bsz_rd,
|
|
uint32_t bsz_wr,
|
|
uint8_t pos_lb)
|
|
{
|
|
struct rte_mbuf *mbuf_1_0, *mbuf_1_1, *mbuf_2_0, *mbuf_2_1;
|
|
uint8_t *data_1_0, *data_1_1 = NULL;
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < lp->rx.n_nic_queues; i ++) {
|
|
uint8_t port = lp->rx.nic_queues[i].port;
|
|
uint8_t queue = lp->rx.nic_queues[i].queue;
|
|
uint32_t n_mbufs, j;
|
|
|
|
n_mbufs = rte_eth_rx_burst(
|
|
port,
|
|
queue,
|
|
lp->rx.mbuf_in.array,
|
|
(uint16_t) bsz_rd);
|
|
|
|
if (unlikely(n_mbufs == 0)) {
|
|
continue;
|
|
}
|
|
|
|
#if APP_STATS
|
|
lp->rx.nic_queues_iters[i] ++;
|
|
lp->rx.nic_queues_count[i] += n_mbufs;
|
|
if (unlikely(lp->rx.nic_queues_iters[i] == APP_STATS)) {
|
|
struct rte_eth_stats stats;
|
|
unsigned lcore = rte_lcore_id();
|
|
|
|
rte_eth_stats_get(port, &stats);
|
|
|
|
printf("I/O RX %u in (NIC port %u): NIC drop ratio = %.2f avg burst size = %.2f\n",
|
|
lcore,
|
|
(unsigned) port,
|
|
(double) stats.imissed / (double) (stats.imissed + stats.ipackets),
|
|
((double) lp->rx.nic_queues_count[i]) / ((double) lp->rx.nic_queues_iters[i]));
|
|
lp->rx.nic_queues_iters[i] = 0;
|
|
lp->rx.nic_queues_count[i] = 0;
|
|
}
|
|
#endif
|
|
|
|
#if APP_IO_RX_DROP_ALL_PACKETS
|
|
for (j = 0; j < n_mbufs; j ++) {
|
|
struct rte_mbuf *pkt = lp->rx.mbuf_in.array[j];
|
|
rte_pktmbuf_free(pkt);
|
|
}
|
|
|
|
continue;
|
|
#endif
|
|
|
|
mbuf_1_0 = lp->rx.mbuf_in.array[0];
|
|
mbuf_1_1 = lp->rx.mbuf_in.array[1];
|
|
data_1_0 = rte_pktmbuf_mtod(mbuf_1_0, uint8_t *);
|
|
if (likely(n_mbufs > 1)) {
|
|
data_1_1 = rte_pktmbuf_mtod(mbuf_1_1, uint8_t *);
|
|
}
|
|
|
|
mbuf_2_0 = lp->rx.mbuf_in.array[2];
|
|
mbuf_2_1 = lp->rx.mbuf_in.array[3];
|
|
APP_IO_RX_PREFETCH0(mbuf_2_0);
|
|
APP_IO_RX_PREFETCH0(mbuf_2_1);
|
|
|
|
for (j = 0; j + 3 < n_mbufs; j += 2) {
|
|
struct rte_mbuf *mbuf_0_0, *mbuf_0_1;
|
|
uint8_t *data_0_0, *data_0_1;
|
|
uint32_t worker_0, worker_1;
|
|
|
|
mbuf_0_0 = mbuf_1_0;
|
|
mbuf_0_1 = mbuf_1_1;
|
|
data_0_0 = data_1_0;
|
|
data_0_1 = data_1_1;
|
|
|
|
mbuf_1_0 = mbuf_2_0;
|
|
mbuf_1_1 = mbuf_2_1;
|
|
data_1_0 = rte_pktmbuf_mtod(mbuf_2_0, uint8_t *);
|
|
data_1_1 = rte_pktmbuf_mtod(mbuf_2_1, uint8_t *);
|
|
APP_IO_RX_PREFETCH0(data_1_0);
|
|
APP_IO_RX_PREFETCH0(data_1_1);
|
|
|
|
mbuf_2_0 = lp->rx.mbuf_in.array[j+4];
|
|
mbuf_2_1 = lp->rx.mbuf_in.array[j+5];
|
|
APP_IO_RX_PREFETCH0(mbuf_2_0);
|
|
APP_IO_RX_PREFETCH0(mbuf_2_1);
|
|
|
|
worker_0 = data_0_0[pos_lb] & (n_workers - 1);
|
|
worker_1 = data_0_1[pos_lb] & (n_workers - 1);
|
|
|
|
app_lcore_io_rx_buffer_to_send(lp, worker_0, mbuf_0_0, bsz_wr);
|
|
app_lcore_io_rx_buffer_to_send(lp, worker_1, mbuf_0_1, bsz_wr);
|
|
}
|
|
|
|
/* Handle the last 1, 2 (when n_mbufs is even) or 3 (when n_mbufs is odd) packets */
|
|
for ( ; j < n_mbufs; j += 1) {
|
|
struct rte_mbuf *mbuf;
|
|
uint8_t *data;
|
|
uint32_t worker;
|
|
|
|
mbuf = mbuf_1_0;
|
|
mbuf_1_0 = mbuf_1_1;
|
|
mbuf_1_1 = mbuf_2_0;
|
|
mbuf_2_0 = mbuf_2_1;
|
|
|
|
data = rte_pktmbuf_mtod(mbuf, uint8_t *);
|
|
|
|
APP_IO_RX_PREFETCH0(mbuf_1_0);
|
|
|
|
worker = data[pos_lb] & (n_workers - 1);
|
|
|
|
app_lcore_io_rx_buffer_to_send(lp, worker, mbuf, bsz_wr);
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
app_lcore_io_rx_flush(struct app_lcore_params_io *lp, uint32_t n_workers)
|
|
{
|
|
uint32_t worker;
|
|
|
|
for (worker = 0; worker < n_workers; worker ++) {
|
|
int ret;
|
|
|
|
if (likely((lp->rx.mbuf_out_flush[worker] == 0) ||
|
|
(lp->rx.mbuf_out[worker].n_mbufs == 0))) {
|
|
lp->rx.mbuf_out_flush[worker] = 1;
|
|
continue;
|
|
}
|
|
|
|
ret = rte_ring_sp_enqueue_bulk(
|
|
lp->rx.rings[worker],
|
|
(void **) lp->rx.mbuf_out[worker].array,
|
|
lp->rx.mbuf_out[worker].n_mbufs);
|
|
|
|
if (unlikely(ret < 0)) {
|
|
uint32_t k;
|
|
for (k = 0; k < lp->rx.mbuf_out[worker].n_mbufs; k ++) {
|
|
struct rte_mbuf *pkt_to_free = lp->rx.mbuf_out[worker].array[k];
|
|
rte_pktmbuf_free(pkt_to_free);
|
|
}
|
|
}
|
|
|
|
lp->rx.mbuf_out[worker].n_mbufs = 0;
|
|
lp->rx.mbuf_out_flush[worker] = 1;
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
app_lcore_io_tx(
|
|
struct app_lcore_params_io *lp,
|
|
uint32_t n_workers,
|
|
uint32_t bsz_rd,
|
|
uint32_t bsz_wr)
|
|
{
|
|
uint32_t worker;
|
|
|
|
for (worker = 0; worker < n_workers; worker ++) {
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < lp->tx.n_nic_ports; i ++) {
|
|
uint8_t port = lp->tx.nic_ports[i];
|
|
struct rte_ring *ring = lp->tx.rings[port][worker];
|
|
uint32_t n_mbufs, n_pkts;
|
|
int ret;
|
|
|
|
n_mbufs = lp->tx.mbuf_out[port].n_mbufs;
|
|
ret = rte_ring_sc_dequeue_bulk(
|
|
ring,
|
|
(void **) &lp->tx.mbuf_out[port].array[n_mbufs],
|
|
bsz_rd);
|
|
|
|
if (unlikely(ret == -ENOENT)) {
|
|
continue;
|
|
}
|
|
|
|
n_mbufs += bsz_rd;
|
|
|
|
#if APP_IO_TX_DROP_ALL_PACKETS
|
|
{
|
|
uint32_t j;
|
|
APP_IO_TX_PREFETCH0(lp->tx.mbuf_out[port].array[0]);
|
|
APP_IO_TX_PREFETCH0(lp->tx.mbuf_out[port].array[1]);
|
|
|
|
for (j = 0; j < n_mbufs; j ++) {
|
|
if (likely(j < n_mbufs - 2)) {
|
|
APP_IO_TX_PREFETCH0(lp->tx.mbuf_out[port].array[j + 2]);
|
|
}
|
|
|
|
rte_pktmbuf_free(lp->tx.mbuf_out[port].array[j]);
|
|
}
|
|
|
|
lp->tx.mbuf_out[port].n_mbufs = 0;
|
|
|
|
continue;
|
|
}
|
|
#endif
|
|
|
|
if (unlikely(n_mbufs < bsz_wr)) {
|
|
lp->tx.mbuf_out[port].n_mbufs = n_mbufs;
|
|
continue;
|
|
}
|
|
|
|
n_pkts = rte_eth_tx_burst(
|
|
port,
|
|
0,
|
|
lp->tx.mbuf_out[port].array,
|
|
(uint16_t) n_mbufs);
|
|
|
|
#if APP_STATS
|
|
lp->tx.nic_ports_iters[port] ++;
|
|
lp->tx.nic_ports_count[port] += n_pkts;
|
|
if (unlikely(lp->tx.nic_ports_iters[port] == APP_STATS)) {
|
|
unsigned lcore = rte_lcore_id();
|
|
|
|
printf("\t\t\tI/O TX %u out (port %u): avg burst size = %.2f\n",
|
|
lcore,
|
|
(unsigned) port,
|
|
((double) lp->tx.nic_ports_count[port]) / ((double) lp->tx.nic_ports_iters[port]));
|
|
lp->tx.nic_ports_iters[port] = 0;
|
|
lp->tx.nic_ports_count[port] = 0;
|
|
}
|
|
#endif
|
|
|
|
if (unlikely(n_pkts < n_mbufs)) {
|
|
uint32_t k;
|
|
for (k = n_pkts; k < n_mbufs; k ++) {
|
|
struct rte_mbuf *pkt_to_free = lp->tx.mbuf_out[port].array[k];
|
|
rte_pktmbuf_free(pkt_to_free);
|
|
}
|
|
}
|
|
lp->tx.mbuf_out[port].n_mbufs = 0;
|
|
lp->tx.mbuf_out_flush[port] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
app_lcore_io_tx_flush(struct app_lcore_params_io *lp)
|
|
{
|
|
uint8_t port;
|
|
|
|
for (port = 0; port < lp->tx.n_nic_ports; port ++) {
|
|
uint32_t n_pkts;
|
|
|
|
if (likely((lp->tx.mbuf_out_flush[port] == 0) ||
|
|
(lp->tx.mbuf_out[port].n_mbufs == 0))) {
|
|
lp->tx.mbuf_out_flush[port] = 1;
|
|
continue;
|
|
}
|
|
|
|
n_pkts = rte_eth_tx_burst(
|
|
port,
|
|
0,
|
|
lp->tx.mbuf_out[port].array,
|
|
(uint16_t) lp->tx.mbuf_out[port].n_mbufs);
|
|
|
|
if (unlikely(n_pkts < lp->tx.mbuf_out[port].n_mbufs)) {
|
|
uint32_t k;
|
|
for (k = n_pkts; k < lp->tx.mbuf_out[port].n_mbufs; k ++) {
|
|
struct rte_mbuf *pkt_to_free = lp->tx.mbuf_out[port].array[k];
|
|
rte_pktmbuf_free(pkt_to_free);
|
|
}
|
|
}
|
|
|
|
lp->tx.mbuf_out[port].n_mbufs = 0;
|
|
lp->tx.mbuf_out_flush[port] = 1;
|
|
}
|
|
}
|
|
|
|
static void
|
|
app_lcore_main_loop_io(void)
|
|
{
|
|
uint32_t lcore = rte_lcore_id();
|
|
struct app_lcore_params_io *lp = &app.lcore_params[lcore].io;
|
|
uint32_t n_workers = app_get_lcores_worker();
|
|
uint64_t i = 0;
|
|
|
|
uint32_t bsz_rx_rd = app.burst_size_io_rx_read;
|
|
uint32_t bsz_rx_wr = app.burst_size_io_rx_write;
|
|
uint32_t bsz_tx_rd = app.burst_size_io_tx_read;
|
|
uint32_t bsz_tx_wr = app.burst_size_io_tx_write;
|
|
|
|
uint8_t pos_lb = app.pos_lb;
|
|
|
|
for ( ; ; ) {
|
|
if (APP_LCORE_IO_FLUSH && (unlikely(i == APP_LCORE_IO_FLUSH))) {
|
|
if (likely(lp->rx.n_nic_queues > 0)) {
|
|
app_lcore_io_rx_flush(lp, n_workers);
|
|
}
|
|
|
|
if (likely(lp->tx.n_nic_ports > 0)) {
|
|
app_lcore_io_tx_flush(lp);
|
|
}
|
|
|
|
i = 0;
|
|
}
|
|
|
|
if (likely(lp->rx.n_nic_queues > 0)) {
|
|
app_lcore_io_rx(lp, n_workers, bsz_rx_rd, bsz_rx_wr, pos_lb);
|
|
}
|
|
|
|
if (likely(lp->tx.n_nic_ports > 0)) {
|
|
app_lcore_io_tx(lp, n_workers, bsz_tx_rd, bsz_tx_wr);
|
|
}
|
|
|
|
i ++;
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
app_lcore_worker(
|
|
struct app_lcore_params_worker *lp,
|
|
uint32_t bsz_rd,
|
|
uint32_t bsz_wr)
|
|
{
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < lp->n_rings_in; i ++) {
|
|
struct rte_ring *ring_in = lp->rings_in[i];
|
|
uint32_t j;
|
|
int ret;
|
|
|
|
ret = rte_ring_sc_dequeue_bulk(
|
|
ring_in,
|
|
(void **) lp->mbuf_in.array,
|
|
bsz_rd);
|
|
|
|
if (unlikely(ret == -ENOENT)) {
|
|
continue;
|
|
}
|
|
|
|
#if APP_WORKER_DROP_ALL_PACKETS
|
|
for (j = 0; j < bsz_rd; j ++) {
|
|
struct rte_mbuf *pkt = lp->mbuf_in.array[j];
|
|
rte_pktmbuf_free(pkt);
|
|
}
|
|
|
|
continue;
|
|
#endif
|
|
|
|
APP_WORKER_PREFETCH1(rte_pktmbuf_mtod(lp->mbuf_in.array[0], unsigned char *));
|
|
APP_WORKER_PREFETCH0(lp->mbuf_in.array[1]);
|
|
|
|
for (j = 0; j < bsz_rd; j ++) {
|
|
struct rte_mbuf *pkt;
|
|
struct ipv4_hdr *ipv4_hdr;
|
|
uint32_t ipv4_dst, pos;
|
|
uint8_t port;
|
|
|
|
if (likely(j < bsz_rd - 1)) {
|
|
APP_WORKER_PREFETCH1(rte_pktmbuf_mtod(lp->mbuf_in.array[j+1], unsigned char *));
|
|
}
|
|
if (likely(j < bsz_rd - 2)) {
|
|
APP_WORKER_PREFETCH0(lp->mbuf_in.array[j+2]);
|
|
}
|
|
|
|
pkt = lp->mbuf_in.array[j];
|
|
ipv4_hdr = (struct ipv4_hdr *)(rte_pktmbuf_mtod(pkt, unsigned char *) + sizeof(struct ether_hdr));
|
|
ipv4_dst = rte_be_to_cpu_32(ipv4_hdr->dst_addr);
|
|
|
|
if (unlikely(rte_lpm_lookup(lp->lpm_table, ipv4_dst, &port) != 0)) {
|
|
port = pkt->port;
|
|
}
|
|
|
|
pos = lp->mbuf_out[port].n_mbufs;
|
|
|
|
lp->mbuf_out[port].array[pos ++] = pkt;
|
|
if (likely(pos < bsz_wr)) {
|
|
lp->mbuf_out[port].n_mbufs = pos;
|
|
continue;
|
|
}
|
|
|
|
ret = rte_ring_sp_enqueue_bulk(
|
|
lp->rings_out[port],
|
|
(void **) lp->mbuf_out[port].array,
|
|
bsz_wr);
|
|
|
|
#if APP_STATS
|
|
lp->rings_out_iters[port] ++;
|
|
if (ret == 0) {
|
|
lp->rings_out_count[port] += 1;
|
|
}
|
|
if (lp->rings_out_iters[port] == APP_STATS){
|
|
printf("\t\tWorker %u out (NIC port %u): enq success rate = %.2f\n",
|
|
(unsigned) lp->worker_id,
|
|
(unsigned) port,
|
|
((double) lp->rings_out_count[port]) / ((double) lp->rings_out_iters[port]));
|
|
lp->rings_out_iters[port] = 0;
|
|
lp->rings_out_count[port] = 0;
|
|
}
|
|
#endif
|
|
|
|
if (unlikely(ret == -ENOBUFS)) {
|
|
uint32_t k;
|
|
for (k = 0; k < bsz_wr; k ++) {
|
|
struct rte_mbuf *pkt_to_free = lp->mbuf_out[port].array[k];
|
|
rte_pktmbuf_free(pkt_to_free);
|
|
}
|
|
}
|
|
|
|
lp->mbuf_out[port].n_mbufs = 0;
|
|
lp->mbuf_out_flush[port] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
app_lcore_worker_flush(struct app_lcore_params_worker *lp)
|
|
{
|
|
uint32_t port;
|
|
|
|
for (port = 0; port < APP_MAX_NIC_PORTS; port ++) {
|
|
int ret;
|
|
|
|
if (unlikely(lp->rings_out[port] == NULL)) {
|
|
continue;
|
|
}
|
|
|
|
if (likely((lp->mbuf_out_flush[port] == 0) ||
|
|
(lp->mbuf_out[port].n_mbufs == 0))) {
|
|
lp->mbuf_out_flush[port] = 1;
|
|
continue;
|
|
}
|
|
|
|
ret = rte_ring_sp_enqueue_bulk(
|
|
lp->rings_out[port],
|
|
(void **) lp->mbuf_out[port].array,
|
|
lp->mbuf_out[port].n_mbufs);
|
|
|
|
if (unlikely(ret < 0)) {
|
|
uint32_t k;
|
|
for (k = 0; k < lp->mbuf_out[port].n_mbufs; k ++) {
|
|
struct rte_mbuf *pkt_to_free = lp->mbuf_out[port].array[k];
|
|
rte_pktmbuf_free(pkt_to_free);
|
|
}
|
|
}
|
|
|
|
lp->mbuf_out[port].n_mbufs = 0;
|
|
lp->mbuf_out_flush[port] = 1;
|
|
}
|
|
}
|
|
|
|
static void
|
|
app_lcore_main_loop_worker(void) {
|
|
uint32_t lcore = rte_lcore_id();
|
|
struct app_lcore_params_worker *lp = &app.lcore_params[lcore].worker;
|
|
uint64_t i = 0;
|
|
|
|
uint32_t bsz_rd = app.burst_size_worker_read;
|
|
uint32_t bsz_wr = app.burst_size_worker_write;
|
|
|
|
for ( ; ; ) {
|
|
if (APP_LCORE_WORKER_FLUSH && (unlikely(i == APP_LCORE_WORKER_FLUSH))) {
|
|
app_lcore_worker_flush(lp);
|
|
i = 0;
|
|
}
|
|
|
|
app_lcore_worker(lp, bsz_rd, bsz_wr);
|
|
|
|
i ++;
|
|
}
|
|
}
|
|
|
|
int
|
|
app_lcore_main_loop(__attribute__((unused)) void *arg)
|
|
{
|
|
struct app_lcore_params *lp;
|
|
unsigned lcore;
|
|
|
|
lcore = rte_lcore_id();
|
|
lp = &app.lcore_params[lcore];
|
|
|
|
if (lp->type == e_APP_LCORE_IO) {
|
|
printf("Logical core %u (I/O) main loop.\n", lcore);
|
|
app_lcore_main_loop_io();
|
|
}
|
|
|
|
if (lp->type == e_APP_LCORE_WORKER) {
|
|
printf("Logical core %u (worker %u) main loop.\n",
|
|
lcore,
|
|
(unsigned) lp->worker.worker_id);
|
|
app_lcore_main_loop_worker();
|
|
}
|
|
|
|
return 0;
|
|
}
|