numam-dpdk/lib/librte_acl/acl_run_scalar.c
Konstantin Ananyev ec51901a0b acl: introduce DFA nodes compression (group64) for identical entries
Introduced division of whole 256 child transition enties
into 4 sub-groups (64 kids per group).
So 2 groups within the same node with identical children,
can use one set of transition entries.
That allows to compact some DFA nodes and get space savings in the RT table,
without any negative performance impact.
>From what I've seen an average space savings: ~20%.

Signed-off-by: Konstantin Ananyev <konstantin.ananyev@intel.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
2015-01-28 17:11:25 +01:00

194 lines
6.0 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "acl_run.h"
/*
* Resolve priority for multiple results (scalar version).
* This consists comparing the priority of the current traversal with the
* running set of results for the packet.
* For each result, keep a running array of the result (rule number) and
* its priority for each category.
*/
static inline void
resolve_priority_scalar(uint64_t transition, int n,
const struct rte_acl_ctx *ctx, struct parms *parms,
const struct rte_acl_match_results *p, uint32_t categories)
{
uint32_t i;
int32_t *saved_priority;
uint32_t *saved_results;
const int32_t *priority;
const uint32_t *results;
saved_results = parms[n].cmplt->results;
saved_priority = parms[n].cmplt->priority;
/* results and priorities for completed trie */
results = p[transition].results;
priority = p[transition].priority;
/* if this is not the first completed trie */
if (parms[n].cmplt->count != ctx->num_tries) {
for (i = 0; i < categories; i += RTE_ACL_RESULTS_MULTIPLIER) {
if (saved_priority[i] <= priority[i]) {
saved_priority[i] = priority[i];
saved_results[i] = results[i];
}
if (saved_priority[i + 1] <= priority[i + 1]) {
saved_priority[i + 1] = priority[i + 1];
saved_results[i + 1] = results[i + 1];
}
if (saved_priority[i + 2] <= priority[i + 2]) {
saved_priority[i + 2] = priority[i + 2];
saved_results[i + 2] = results[i + 2];
}
if (saved_priority[i + 3] <= priority[i + 3]) {
saved_priority[i + 3] = priority[i + 3];
saved_results[i + 3] = results[i + 3];
}
}
} else {
for (i = 0; i < categories; i += RTE_ACL_RESULTS_MULTIPLIER) {
saved_priority[i] = priority[i];
saved_priority[i + 1] = priority[i + 1];
saved_priority[i + 2] = priority[i + 2];
saved_priority[i + 3] = priority[i + 3];
saved_results[i] = results[i];
saved_results[i + 1] = results[i + 1];
saved_results[i + 2] = results[i + 2];
saved_results[i + 3] = results[i + 3];
}
}
}
static inline uint32_t
scan_forward(uint32_t input, uint32_t max)
{
return (input == 0) ? max : rte_bsf32(input);
}
static inline uint64_t
scalar_transition(const uint64_t *trans_table, uint64_t transition,
uint8_t input)
{
uint32_t addr, index, ranges, x, a, b, c;
/* break transition into component parts */
ranges = transition >> (sizeof(index) * CHAR_BIT);
index = transition & ~RTE_ACL_NODE_INDEX;
addr = transition ^ index;
if (index != RTE_ACL_NODE_DFA) {
/* calc address for a QRANGE/SINGLE node */
c = (uint32_t)input * SCALAR_QRANGE_MULT;
a = ranges | SCALAR_QRANGE_MIN;
a -= (c & SCALAR_QRANGE_MASK);
b = c & SCALAR_QRANGE_MIN;
a &= SCALAR_QRANGE_MIN;
a ^= (ranges ^ b) & (a ^ b);
x = scan_forward(a, 32) >> 3;
} else {
/* calc address for a DFA node */
x = ranges >> (input /
RTE_ACL_DFA_GR64_SIZE * RTE_ACL_DFA_GR64_BIT);
x &= UINT8_MAX;
x = input - x;
}
addr += x;
/* pickup next transition */
transition = *(trans_table + addr);
return transition;
}
int
rte_acl_classify_scalar(const struct rte_acl_ctx *ctx, const uint8_t **data,
uint32_t *results, uint32_t num, uint32_t categories)
{
int n;
uint64_t transition0, transition1;
uint32_t input0, input1;
struct acl_flow_data flows;
uint64_t index_array[MAX_SEARCHES_SCALAR];
struct completion cmplt[MAX_SEARCHES_SCALAR];
struct parms parms[MAX_SEARCHES_SCALAR];
if (categories != 1 &&
((RTE_ACL_RESULTS_MULTIPLIER - 1) & categories) != 0)
return -EINVAL;
acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results, num,
categories, ctx->trans_table);
for (n = 0; n < MAX_SEARCHES_SCALAR; n++) {
cmplt[n].count = 0;
index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
}
transition0 = index_array[0];
transition1 = index_array[1];
while (flows.started > 0) {
input0 = GET_NEXT_4BYTES(parms, 0);
input1 = GET_NEXT_4BYTES(parms, 1);
for (n = 0; n < 4; n++) {
if (likely((transition0 & RTE_ACL_NODE_MATCH) == 0))
transition0 = scalar_transition(flows.trans,
transition0, (uint8_t)input0);
input0 >>= CHAR_BIT;
if (likely((transition1 & RTE_ACL_NODE_MATCH) == 0))
transition1 = scalar_transition(flows.trans,
transition1, (uint8_t)input1);
input1 >>= CHAR_BIT;
}
if ((transition0 | transition1) & RTE_ACL_NODE_MATCH) {
transition0 = acl_match_check(transition0,
0, ctx, parms, &flows, resolve_priority_scalar);
transition1 = acl_match_check(transition1,
1, ctx, parms, &flows, resolve_priority_scalar);
}
}
return 0;
}