numam-dpdk/examples/vhost_xen/main.c
Thomas Monjalon 3901ed99c2 eal: fix thread naming on FreeBSD
rte_thread_setname was a macro defined only for Linux.
The function rte_thread_setname() can now be used on FreeBSD
as well on Linux.
It is required to build librte_pdump.

The macro was 0 for old glibc. The function is now returning -1.
The related logs are decreased from error to debug level because
it is not an important failure, just a debug inconvenience.

Fixes: 278f945402 ("pdump: add new library for packet capture")

Signed-off-by: Thomas Monjalon <thomas.monjalon@6wind.com>
Acked-by: David Marchand <david.marchand@6wind.com>
2016-06-17 18:04:22 +02:00

1511 lines
43 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <arpa/inet.h>
#include <getopt.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <linux/virtio_net.h>
#include <linux/virtio_ring.h>
#include <signal.h>
#include <stdint.h>
#include <sys/eventfd.h>
#include <sys/param.h>
#include <unistd.h>
#include <rte_atomic.h>
#include <rte_cycles.h>
#include <rte_ethdev.h>
#include <rte_log.h>
#include <rte_string_fns.h>
#include "main.h"
#include "virtio-net.h"
#include "xen_vhost.h"
#define MAX_QUEUES 128
/* the maximum number of external ports supported */
#define MAX_SUP_PORTS 1
/*
* Calculate the number of buffers needed per port
*/
#define NUM_MBUFS_PER_PORT ((MAX_QUEUES*RTE_TEST_RX_DESC_DEFAULT) + \
(num_switching_cores*MAX_PKT_BURST) + \
(num_switching_cores*RTE_TEST_TX_DESC_DEFAULT) +\
(num_switching_cores*MBUF_CACHE_SIZE))
#define MBUF_CACHE_SIZE 64
/*
* RX and TX Prefetch, Host, and Write-back threshold values should be
* carefully set for optimal performance. Consult the network
* controller's datasheet and supporting DPDK documentation for guidance
* on how these parameters should be set.
*/
#define RX_PTHRESH 8 /* Default values of RX prefetch threshold reg. */
#define RX_HTHRESH 8 /* Default values of RX host threshold reg. */
#define RX_WTHRESH 4 /* Default values of RX write-back threshold reg. */
/*
* These default values are optimized for use with the Intel(R) 82599 10 GbE
* Controller and the DPDK ixgbe PMD. Consider using other values for other
* network controllers and/or network drivers.
*/
#define TX_PTHRESH 36 /* Default values of TX prefetch threshold reg. */
#define TX_HTHRESH 0 /* Default values of TX host threshold reg. */
#define TX_WTHRESH 0 /* Default values of TX write-back threshold reg. */
#define MAX_PKT_BURST 32 /* Max burst size for RX/TX */
#define MAX_MRG_PKT_BURST 16 /* Max burst for merge buffers. Set to 1 due to performance issue. */
#define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
/* State of virtio device. */
#define DEVICE_NOT_READY 0
#define DEVICE_READY 1
#define DEVICE_SAFE_REMOVE 2
/* Config_core_flag status definitions. */
#define REQUEST_DEV_REMOVAL 1
#define ACK_DEV_REMOVAL 0
/* Configurable number of RX/TX ring descriptors */
#define RTE_TEST_RX_DESC_DEFAULT 128
#define RTE_TEST_TX_DESC_DEFAULT 512
#define INVALID_PORT_ID 0xFF
/* Max number of devices. Limited by vmdq. */
#define MAX_DEVICES 64
/* Size of buffers used for snprintfs. */
#define MAX_PRINT_BUFF 6072
/* Maximum long option length for option parsing. */
#define MAX_LONG_OPT_SZ 64
/* Used to compare MAC addresses. */
#define MAC_ADDR_CMP 0xFFFFFFFFFFFF
/* mask of enabled ports */
static uint32_t enabled_port_mask = 0;
/*Number of switching cores enabled*/
static uint32_t num_switching_cores = 0;
/* number of devices/queues to support*/
static uint32_t num_queues = 0;
uint32_t num_devices = 0;
/* Enable VM2VM communications. If this is disabled then the MAC address compare is skipped. */
static uint32_t enable_vm2vm = 1;
/* Enable stats. */
static uint32_t enable_stats = 0;
/* empty vmdq configuration structure. Filled in programatically */
static const struct rte_eth_conf vmdq_conf_default = {
.rxmode = {
.mq_mode = ETH_MQ_RX_VMDQ_ONLY,
.split_hdr_size = 0,
.header_split = 0, /**< Header Split disabled */
.hw_ip_checksum = 0, /**< IP checksum offload disabled */
.hw_vlan_filter = 0, /**< VLAN filtering disabled */
/*
* It is necessary for 1G NIC such as I350,
* this fixes bug of ipv4 forwarding in guest can't
* forward pakets from one virtio dev to another virtio dev.
*/
.hw_vlan_strip = 1, /**< VLAN strip enabled. */
.jumbo_frame = 0, /**< Jumbo Frame Support disabled */
.hw_strip_crc = 0, /**< CRC stripped by hardware */
},
.txmode = {
.mq_mode = ETH_MQ_TX_NONE,
},
.rx_adv_conf = {
/*
* should be overridden separately in code with
* appropriate values
*/
.vmdq_rx_conf = {
.nb_queue_pools = ETH_8_POOLS,
.enable_default_pool = 0,
.default_pool = 0,
.nb_pool_maps = 0,
.pool_map = {{0, 0},},
},
},
};
static unsigned lcore_ids[RTE_MAX_LCORE];
static uint8_t ports[RTE_MAX_ETHPORTS];
static unsigned num_ports = 0; /**< The number of ports specified in command line */
const uint16_t vlan_tags[] = {
1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007,
1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015,
1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023,
1024, 1025, 1026, 1027, 1028, 1029, 1030, 1031,
1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039,
1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047,
1048, 1049, 1050, 1051, 1052, 1053, 1054, 1055,
1056, 1057, 1058, 1059, 1060, 1061, 1062, 1063,
};
/* ethernet addresses of ports */
static struct ether_addr vmdq_ports_eth_addr[RTE_MAX_ETHPORTS];
/* heads for the main used and free linked lists for the data path. */
static struct virtio_net_data_ll *ll_root_used = NULL;
static struct virtio_net_data_ll *ll_root_free = NULL;
/* Array of data core structures containing information on individual core linked lists. */
static struct lcore_info lcore_info[RTE_MAX_LCORE];
/* Used for queueing bursts of TX packets. */
struct mbuf_table {
unsigned len;
unsigned txq_id;
struct rte_mbuf *m_table[MAX_PKT_BURST];
};
/* TX queue for each data core. */
struct mbuf_table lcore_tx_queue[RTE_MAX_LCORE];
/* Vlan header struct used to insert vlan tags on TX. */
struct vlan_ethhdr {
unsigned char h_dest[ETH_ALEN];
unsigned char h_source[ETH_ALEN];
__be16 h_vlan_proto;
__be16 h_vlan_TCI;
__be16 h_vlan_encapsulated_proto;
};
/* Header lengths. */
#define VLAN_HLEN 4
#define VLAN_ETH_HLEN 18
/* Per-device statistics struct */
struct device_statistics {
uint64_t tx_total;
rte_atomic64_t rx_total;
uint64_t tx;
rte_atomic64_t rx;
} __rte_cache_aligned;
struct device_statistics dev_statistics[MAX_DEVICES];
/*
* Builds up the correct configuration for VMDQ VLAN pool map
* according to the pool & queue limits.
*/
static inline int
get_eth_conf(struct rte_eth_conf *eth_conf, uint32_t num_devices)
{
struct rte_eth_vmdq_rx_conf conf;
unsigned i;
memset(&conf, 0, sizeof(conf));
conf.nb_queue_pools = (enum rte_eth_nb_pools)num_devices;
conf.nb_pool_maps = num_devices;
for (i = 0; i < conf.nb_pool_maps; i++) {
conf.pool_map[i].vlan_id = vlan_tags[ i ];
conf.pool_map[i].pools = (1UL << i);
}
(void)(rte_memcpy(eth_conf, &vmdq_conf_default, sizeof(*eth_conf)));
(void)(rte_memcpy(&eth_conf->rx_adv_conf.vmdq_rx_conf, &conf,
sizeof(eth_conf->rx_adv_conf.vmdq_rx_conf)));
return 0;
}
/*
* Validate the device number according to the max pool number gotten form dev_info
* If the device number is invalid, give the error message and return -1.
* Each device must have its own pool.
*/
static inline int
validate_num_devices(uint32_t max_nb_devices)
{
if (num_devices > max_nb_devices) {
RTE_LOG(ERR, VHOST_PORT, "invalid number of devices\n");
return -1;
}
return 0;
}
/*
* Initialises a given port using global settings and with the rx buffers
* coming from the mbuf_pool passed as parameter
*/
static inline int
port_init(uint8_t port, struct rte_mempool *mbuf_pool)
{
struct rte_eth_dev_info dev_info;
struct rte_eth_rxconf *rxconf;
struct rte_eth_conf port_conf;
uint16_t rx_rings, tx_rings = (uint16_t)rte_lcore_count();
const uint16_t rx_ring_size = RTE_TEST_RX_DESC_DEFAULT, tx_ring_size = RTE_TEST_TX_DESC_DEFAULT;
int retval;
uint16_t q;
/* The max pool number from dev_info will be used to validate the pool number specified in cmd line */
rte_eth_dev_info_get (port, &dev_info);
/*configure the number of supported virtio devices based on VMDQ limits */
num_devices = dev_info.max_vmdq_pools;
num_queues = dev_info.max_rx_queues;
retval = validate_num_devices(MAX_DEVICES);
if (retval < 0)
return retval;
/* Get port configuration. */
retval = get_eth_conf(&port_conf, num_devices);
if (retval < 0)
return retval;
if (port >= rte_eth_dev_count()) return -1;
rx_rings = (uint16_t)num_queues,
/* Configure ethernet device. */
retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
if (retval != 0)
return retval;
rte_eth_dev_info_get(port, &dev_info);
rxconf = &dev_info.default_rxconf;
rxconf->rx_drop_en = 1;
/* Setup the queues. */
for (q = 0; q < rx_rings; q ++) {
retval = rte_eth_rx_queue_setup(port, q, rx_ring_size,
rte_eth_dev_socket_id(port), rxconf,
mbuf_pool);
if (retval < 0)
return retval;
}
for (q = 0; q < tx_rings; q ++) {
retval = rte_eth_tx_queue_setup(port, q, tx_ring_size,
rte_eth_dev_socket_id(port),
NULL);
if (retval < 0)
return retval;
}
/* Start the device. */
retval = rte_eth_dev_start(port);
if (retval < 0)
return retval;
rte_eth_macaddr_get(port, &vmdq_ports_eth_addr[port]);
RTE_LOG(INFO, VHOST_PORT, "Max virtio devices supported: %u\n", num_devices);
RTE_LOG(INFO, VHOST_PORT, "Port %u MAC: %02"PRIx8" %02"PRIx8" %02"PRIx8
" %02"PRIx8" %02"PRIx8" %02"PRIx8"\n",
(unsigned)port,
vmdq_ports_eth_addr[port].addr_bytes[0],
vmdq_ports_eth_addr[port].addr_bytes[1],
vmdq_ports_eth_addr[port].addr_bytes[2],
vmdq_ports_eth_addr[port].addr_bytes[3],
vmdq_ports_eth_addr[port].addr_bytes[4],
vmdq_ports_eth_addr[port].addr_bytes[5]);
return 0;
}
/*
* Parse the portmask provided at run time.
*/
static int
parse_portmask(const char *portmask)
{
char *end = NULL;
unsigned long pm;
errno = 0;
/* parse hexadecimal string */
pm = strtoul(portmask, &end, 16);
if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0') || (errno != 0))
return -1;
if (pm == 0)
return -1;
return pm;
}
/*
* Parse num options at run time.
*/
static int
parse_num_opt(const char *q_arg, uint32_t max_valid_value)
{
char *end = NULL;
unsigned long num;
errno = 0;
/* parse unsigned int string */
num = strtoul(q_arg, &end, 10);
if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0') || (errno != 0))
return -1;
if (num > max_valid_value)
return -1;
return num;
}
/*
* Display usage
*/
static void
us_vhost_usage(const char *prgname)
{
RTE_LOG(INFO, VHOST_CONFIG, "%s [EAL options] -- -p PORTMASK --vm2vm [0|1] --stats [0-N] --nb-devices ND\n"
" -p PORTMASK: Set mask for ports to be used by application\n"
" --vm2vm [0|1]: disable/enable(default) vm2vm comms\n"
" --stats [0-N]: 0: Disable stats, N: Time in seconds to print stats\n",
prgname);
}
/*
* Parse the arguments given in the command line of the application.
*/
static int
us_vhost_parse_args(int argc, char **argv)
{
int opt, ret;
int option_index;
unsigned i;
const char *prgname = argv[0];
static struct option long_option[] = {
{"vm2vm", required_argument, NULL, 0},
{"stats", required_argument, NULL, 0},
{NULL, 0, 0, 0}
};
/* Parse command line */
while ((opt = getopt_long(argc, argv, "p:",long_option, &option_index)) != EOF) {
switch (opt) {
/* Portmask */
case 'p':
enabled_port_mask = parse_portmask(optarg);
if (enabled_port_mask == 0) {
RTE_LOG(INFO, VHOST_CONFIG, "Invalid portmask\n");
us_vhost_usage(prgname);
return -1;
}
break;
case 0:
/* Enable/disable vm2vm comms. */
if (!strncmp(long_option[option_index].name, "vm2vm", MAX_LONG_OPT_SZ)) {
ret = parse_num_opt(optarg, 1);
if (ret == -1) {
RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for vm2vm [0|1]\n");
us_vhost_usage(prgname);
return -1;
} else {
enable_vm2vm = ret;
}
}
/* Enable/disable stats. */
if (!strncmp(long_option[option_index].name, "stats", MAX_LONG_OPT_SZ)) {
ret = parse_num_opt(optarg, INT32_MAX);
if (ret == -1) {
RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for stats [0..N]\n");
us_vhost_usage(prgname);
return -1;
} else {
enable_stats = ret;
}
}
break;
/* Invalid option - print options. */
default:
us_vhost_usage(prgname);
return -1;
}
}
for (i = 0; i < RTE_MAX_ETHPORTS; i++) {
if (enabled_port_mask & (1 << i))
ports[num_ports++] = (uint8_t)i;
}
if ((num_ports == 0) || (num_ports > MAX_SUP_PORTS)) {
RTE_LOG(INFO, VHOST_PORT, "Current enabled port number is %u,"
"but only %u port can be enabled\n",num_ports, MAX_SUP_PORTS);
return -1;
}
return 0;
}
/*
* Update the global var NUM_PORTS and array PORTS according to system ports number
* and return valid ports number
*/
static unsigned check_ports_num(unsigned nb_ports)
{
unsigned valid_num_ports = num_ports;
unsigned portid;
if (num_ports > nb_ports) {
RTE_LOG(INFO, VHOST_PORT, "\nSpecified port number(%u) exceeds total system port number(%u)\n",
num_ports, nb_ports);
num_ports = nb_ports;
}
for (portid = 0; portid < num_ports; portid ++) {
if (ports[portid] >= nb_ports) {
RTE_LOG(INFO, VHOST_PORT, "\nSpecified port ID(%u) exceeds max system port ID(%u)\n",
ports[portid], (nb_ports - 1));
ports[portid] = INVALID_PORT_ID;
valid_num_ports--;
}
}
return valid_num_ports;
}
/*
* Function to convert guest physical addresses to vhost virtual addresses. This
* is used to convert virtio buffer addresses.
*/
static inline uint64_t __attribute__((always_inline))
gpa_to_vva(struct virtio_net *dev, uint64_t guest_pa)
{
struct virtio_memory_regions *region;
uint32_t regionidx;
uint64_t vhost_va = 0;
for (regionidx = 0; regionidx < dev->mem->nregions; regionidx++) {
region = &dev->mem->regions[regionidx];
if ((guest_pa >= region->guest_phys_address) &&
(guest_pa <= region->guest_phys_address_end)) {
vhost_va = region->address_offset + guest_pa;
break;
}
}
RTE_LOG(DEBUG, VHOST_DATA, "(%" PRIu64 ") GPA %p| VVA %p\n",
dev->device_fh, (void*)(uintptr_t)guest_pa, (void*)(uintptr_t)vhost_va);
return vhost_va;
}
/*
* This function adds buffers to the virtio devices RX virtqueue. Buffers can
* be received from the physical port or from another virtio device. A packet
* count is returned to indicate the number of packets that were succesfully
* added to the RX queue.
*/
static inline uint32_t __attribute__((always_inline))
virtio_dev_rx(struct virtio_net *dev, struct rte_mbuf **pkts, uint32_t count)
{
struct vhost_virtqueue *vq;
struct vring_desc *desc;
struct rte_mbuf *buff;
/* The virtio_hdr is initialised to 0. */
struct virtio_net_hdr_mrg_rxbuf virtio_hdr = {{0,0,0,0,0,0},0};
uint64_t buff_addr = 0;
uint64_t buff_hdr_addr = 0;
uint32_t head[MAX_PKT_BURST], packet_len = 0;
uint32_t head_idx, packet_success = 0;
uint16_t avail_idx, res_cur_idx;
uint16_t res_base_idx, res_end_idx;
uint16_t free_entries;
uint8_t success = 0;
void *userdata;
RTE_LOG(DEBUG, VHOST_DATA, "(%" PRIu64 ") virtio_dev_rx()\n", dev->device_fh);
vq = dev->virtqueue_rx;
count = (count > MAX_PKT_BURST) ? MAX_PKT_BURST : count;
/* As many data cores may want access to available buffers, they need to be reserved. */
do {
res_base_idx = vq->last_used_idx_res;
avail_idx = *((volatile uint16_t *)&vq->avail->idx);
free_entries = (avail_idx - res_base_idx);
/*check that we have enough buffers*/
if (unlikely(count > free_entries))
count = free_entries;
if (count == 0)
return 0;
res_end_idx = res_base_idx + count;
/* vq->last_used_idx_res is atomically updated. */
success = rte_atomic16_cmpset(&vq->last_used_idx_res, res_base_idx,
res_end_idx);
} while (unlikely(success == 0));
res_cur_idx = res_base_idx;
RTE_LOG(DEBUG, VHOST_DATA, "(%" PRIu64 ") Current Index %d| End Index %d\n",
dev->device_fh, res_cur_idx, res_end_idx);
/* Prefetch available ring to retrieve indexes. */
rte_prefetch0(&vq->avail->ring[res_cur_idx & (vq->size - 1)]);
/* Retrieve all of the head indexes first to avoid caching issues. */
for (head_idx = 0; head_idx < count; head_idx++)
head[head_idx] = vq->avail->ring[(res_cur_idx + head_idx) & (vq->size - 1)];
/*Prefetch descriptor index. */
rte_prefetch0(&vq->desc[head[packet_success]]);
while (res_cur_idx != res_end_idx) {
/* Get descriptor from available ring */
desc = &vq->desc[head[packet_success]];
/* Prefetch descriptor address. */
rte_prefetch0(desc);
buff = pkts[packet_success];
/* Convert from gpa to vva (guest physical addr -> vhost virtual addr) */
buff_addr = gpa_to_vva(dev, desc->addr);
/* Prefetch buffer address. */
rte_prefetch0((void*)(uintptr_t)buff_addr);
{
/* Copy virtio_hdr to packet and increment buffer address */
buff_hdr_addr = buff_addr;
packet_len = rte_pktmbuf_data_len(buff) + vq->vhost_hlen;
/*
* If the descriptors are chained the header and data are placed in
* separate buffers.
*/
if (desc->flags & VRING_DESC_F_NEXT) {
desc->len = vq->vhost_hlen;
desc = &vq->desc[desc->next];
/* Buffer address translation. */
buff_addr = gpa_to_vva(dev, desc->addr);
desc->len = rte_pktmbuf_data_len(buff);
} else {
buff_addr += vq->vhost_hlen;
desc->len = packet_len;
}
}
/* Update used ring with desc information */
vq->used->ring[res_cur_idx & (vq->size - 1)].id = head[packet_success];
vq->used->ring[res_cur_idx & (vq->size - 1)].len = packet_len;
/* Copy mbuf data to buffer */
userdata = rte_pktmbuf_mtod(buff, void *);
rte_memcpy((void *)(uintptr_t)buff_addr, userdata, rte_pktmbuf_data_len(buff));
res_cur_idx++;
packet_success++;
/* mergeable is disabled then a header is required per buffer. */
rte_memcpy((void *)(uintptr_t)buff_hdr_addr, (const void *)&virtio_hdr, vq->vhost_hlen);
if (res_cur_idx < res_end_idx) {
/* Prefetch descriptor index. */
rte_prefetch0(&vq->desc[head[packet_success]]);
}
}
rte_compiler_barrier();
/* Wait until it's our turn to add our buffer to the used ring. */
while (unlikely(vq->last_used_idx != res_base_idx))
rte_pause();
*(volatile uint16_t *)&vq->used->idx += count;
vq->last_used_idx = res_end_idx;
return count;
}
/*
* Compares a packet destination MAC address to a device MAC address.
*/
static inline int __attribute__((always_inline))
ether_addr_cmp(struct ether_addr *ea, struct ether_addr *eb)
{
return ((*(uint64_t *)ea ^ *(uint64_t *)eb) & MAC_ADDR_CMP) == 0;
}
/*
* This function registers mac along with a
* vlan tag to a VMDQ.
*/
static int
link_vmdq(struct virtio_net *dev)
{
int ret;
struct virtio_net_data_ll *dev_ll;
dev_ll = ll_root_used;
while (dev_ll != NULL) {
if ((dev != dev_ll->dev) && ether_addr_cmp(&dev->mac_address, &dev_ll->dev->mac_address)) {
RTE_LOG(INFO, VHOST_DATA, "(%"PRIu64") WARNING: This device is using an existing MAC address and has not been registered.\n", dev->device_fh);
return -1;
}
dev_ll = dev_ll->next;
}
/* vlan_tag currently uses the device_id. */
dev->vlan_tag = vlan_tags[dev->device_fh];
dev->vmdq_rx_q = dev->device_fh * (num_queues/num_devices);
/* Print out VMDQ registration info. */
RTE_LOG(INFO, VHOST_DATA, "(%"PRIu64") MAC_ADDRESS %02x:%02x:%02x:%02x:%02x:%02x and VLAN_TAG %d registered\n",
dev->device_fh,
dev->mac_address.addr_bytes[0], dev->mac_address.addr_bytes[1],
dev->mac_address.addr_bytes[2], dev->mac_address.addr_bytes[3],
dev->mac_address.addr_bytes[4], dev->mac_address.addr_bytes[5],
dev->vlan_tag);
/* Register the MAC address. */
ret = rte_eth_dev_mac_addr_add(ports[0], &dev->mac_address, (uint32_t)dev->device_fh);
if (ret) {
RTE_LOG(ERR, VHOST_DATA, "(%"PRIu64") Failed to add device MAC address to VMDQ\n",
dev->device_fh);
return -1;
}
/* Enable stripping of the vlan tag as we handle routing. */
rte_eth_dev_set_vlan_strip_on_queue(ports[0], dev->vmdq_rx_q, 1);
rte_compiler_barrier();
/* Set device as ready for RX. */
dev->ready = DEVICE_READY;
return 0;
}
/*
* Removes MAC address and vlan tag from VMDQ. Ensures that nothing is adding buffers to the RX
* queue before disabling RX on the device.
*/
static inline void
unlink_vmdq(struct virtio_net *dev)
{
unsigned i = 0;
unsigned rx_count;
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
if (dev->ready == DEVICE_READY) {
/*clear MAC and VLAN settings*/
rte_eth_dev_mac_addr_remove(ports[0], &dev->mac_address);
for (i = 0; i < 6; i++)
dev->mac_address.addr_bytes[i] = 0;
dev->vlan_tag = 0;
/*Clear out the receive buffers*/
rx_count = rte_eth_rx_burst(ports[0],
(uint16_t)dev->vmdq_rx_q, pkts_burst, MAX_PKT_BURST);
while (rx_count) {
for (i = 0; i < rx_count; i++)
rte_pktmbuf_free(pkts_burst[i]);
rx_count = rte_eth_rx_burst(ports[0],
(uint16_t)dev->vmdq_rx_q, pkts_burst, MAX_PKT_BURST);
}
dev->ready = DEVICE_NOT_READY;
}
}
/*
* Check if the packet destination MAC address is for a local device. If so then put
* the packet on that devices RX queue. If not then return.
*/
static inline unsigned __attribute__((always_inline))
virtio_tx_local(struct virtio_net *dev, struct rte_mbuf *m)
{
struct virtio_net_data_ll *dev_ll;
struct ether_hdr *pkt_hdr;
uint64_t ret = 0;
pkt_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
/*get the used devices list*/
dev_ll = ll_root_used;
while (dev_ll != NULL) {
if (likely(dev_ll->dev->ready == DEVICE_READY) && ether_addr_cmp(&(pkt_hdr->d_addr),
&dev_ll->dev->mac_address)) {
/* Drop the packet if the TX packet is destined for the TX device. */
if (dev_ll->dev->device_fh == dev->device_fh) {
RTE_LOG(DEBUG, VHOST_DATA, "(%" PRIu64 ") TX: "
"Source and destination MAC addresses are the same. "
"Dropping packet.\n",
dev_ll->dev->device_fh);
return 0;
}
RTE_LOG(DEBUG, VHOST_DATA, "(%" PRIu64 ") TX: "
"MAC address is local\n", dev_ll->dev->device_fh);
if (dev_ll->dev->remove) {
/*drop the packet if the device is marked for removal*/
RTE_LOG(DEBUG, VHOST_DATA, "(%" PRIu64 ") "
"Device is marked for removal\n",
dev_ll->dev->device_fh);
} else {
/*send the packet to the local virtio device*/
ret = virtio_dev_rx(dev_ll->dev, &m, 1);
if (enable_stats) {
rte_atomic64_add(&dev_statistics[dev_ll->dev->device_fh].rx_total, 1);
rte_atomic64_add(&dev_statistics[dev_ll->dev->device_fh].rx, ret);
dev_statistics[dev->device_fh].tx_total++;
dev_statistics[dev->device_fh].tx += ret;
}
}
return 0;
}
dev_ll = dev_ll->next;
}
return -1;
}
/*
* This function routes the TX packet to the correct interface. This may be a local device
* or the physical port.
*/
static inline void __attribute__((always_inline))
virtio_tx_route(struct virtio_net* dev, struct rte_mbuf *m, struct rte_mempool *mbuf_pool, uint16_t vlan_tag)
{
struct mbuf_table *tx_q;
struct vlan_ethhdr *vlan_hdr;
struct rte_mbuf **m_table;
struct rte_mbuf *mbuf;
unsigned len, ret;
const uint16_t lcore_id = rte_lcore_id();
/*check if destination is local VM*/
if (enable_vm2vm && (virtio_tx_local(dev, m) == 0)) {
return;
}
RTE_LOG(DEBUG, VHOST_DATA, "(%" PRIu64 ") TX: "
"MAC address is external\n", dev->device_fh);
/*Add packet to the port tx queue*/
tx_q = &lcore_tx_queue[lcore_id];
len = tx_q->len;
/* Allocate an mbuf and populate the structure. */
mbuf = rte_pktmbuf_alloc(mbuf_pool);
if(!mbuf)
return;
mbuf->data_len = m->data_len + VLAN_HLEN;
mbuf->pkt_len = mbuf->data_len;
/* Copy ethernet header to mbuf. */
rte_memcpy(rte_pktmbuf_mtod(mbuf, void*),
rte_pktmbuf_mtod(m, const void*), ETH_HLEN);
/* Setup vlan header. Bytes need to be re-ordered for network with htons()*/
vlan_hdr = rte_pktmbuf_mtod(mbuf, struct vlan_ethhdr *);
vlan_hdr->h_vlan_encapsulated_proto = vlan_hdr->h_vlan_proto;
vlan_hdr->h_vlan_proto = htons(ETH_P_8021Q);
vlan_hdr->h_vlan_TCI = htons(vlan_tag);
/* Copy the remaining packet contents to the mbuf. */
rte_memcpy(rte_pktmbuf_mtod_offset(mbuf, void *, VLAN_ETH_HLEN),
rte_pktmbuf_mtod_offset(m, const void *, ETH_HLEN),
(m->data_len - ETH_HLEN));
tx_q->m_table[len] = mbuf;
len++;
if (enable_stats) {
dev_statistics[dev->device_fh].tx_total++;
dev_statistics[dev->device_fh].tx++;
}
if (unlikely(len == MAX_PKT_BURST)) {
m_table = (struct rte_mbuf **)tx_q->m_table;
ret = rte_eth_tx_burst(ports[0], (uint16_t)tx_q->txq_id, m_table, (uint16_t) len);
/* Free any buffers not handled by TX and update the port stats. */
if (unlikely(ret < len)) {
do {
rte_pktmbuf_free(m_table[ret]);
} while (++ret < len);
}
len = 0;
}
tx_q->len = len;
return;
}
static inline void __attribute__((always_inline))
virtio_dev_tx(struct virtio_net* dev, struct rte_mempool *mbuf_pool)
{
struct rte_mbuf m;
struct vhost_virtqueue *vq;
struct vring_desc *desc;
uint64_t buff_addr = 0;
uint32_t head[MAX_PKT_BURST];
uint32_t used_idx;
uint32_t i;
uint16_t free_entries, packet_success = 0;
uint16_t avail_idx;
vq = dev->virtqueue_tx;
avail_idx = *((volatile uint16_t *)&vq->avail->idx);
/* If there are no available buffers then return. */
if (vq->last_used_idx == avail_idx)
return;
RTE_LOG(DEBUG, VHOST_DATA, "(%" PRIu64 ") virtio_dev_tx()\n",
dev->device_fh);
/* Prefetch available ring to retrieve head indexes. */
rte_prefetch0(&vq->avail->ring[vq->last_used_idx & (vq->size - 1)]);
/*get the number of free entries in the ring*/
free_entries = avail_idx - vq->last_used_idx;
free_entries = unlikely(free_entries < MAX_PKT_BURST) ? free_entries : MAX_PKT_BURST;
RTE_LOG(DEBUG, VHOST_DATA, "(%" PRIu64 ") Buffers available %d\n",
dev->device_fh, free_entries);
/* Retrieve all of the head indexes first to avoid caching issues. */
for (i = 0; i < free_entries; i++)
head[i] = vq->avail->ring[(vq->last_used_idx + i) & (vq->size - 1)];
/* Prefetch descriptor index. */
rte_prefetch0(&vq->desc[head[packet_success]]);
while (packet_success < free_entries) {
desc = &vq->desc[head[packet_success]];
/* Prefetch descriptor address. */
rte_prefetch0(desc);
if (packet_success < (free_entries - 1)) {
/* Prefetch descriptor index. */
rte_prefetch0(&vq->desc[head[packet_success+1]]);
}
/* Update used index buffer information. */
used_idx = vq->last_used_idx & (vq->size - 1);
vq->used->ring[used_idx].id = head[packet_success];
vq->used->ring[used_idx].len = 0;
/* Discard first buffer as it is the virtio header */
desc = &vq->desc[desc->next];
/* Buffer address translation. */
buff_addr = gpa_to_vva(dev, desc->addr);
/* Prefetch buffer address. */
rte_prefetch0((void*)(uintptr_t)buff_addr);
/* Setup dummy mbuf. This is copied to a real mbuf if transmitted out the physical port. */
m.data_len = desc->len;
m.data_off = 0;
m.nb_segs = 1;
virtio_tx_route(dev, &m, mbuf_pool, 0);
vq->last_used_idx++;
packet_success++;
}
rte_compiler_barrier();
vq->used->idx += packet_success;
/* Kick guest if required. */
}
/*
* This function is called by each data core. It handles all RX/TX registered with the
* core. For TX the specific lcore linked list is used. For RX, MAC addresses are compared
* with all devices in the main linked list.
*/
static int
switch_worker(__attribute__((unused)) void *arg)
{
struct rte_mempool *mbuf_pool = arg;
struct virtio_net *dev = NULL;
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
struct virtio_net_data_ll *dev_ll;
struct mbuf_table *tx_q;
volatile struct lcore_ll_info *lcore_ll;
const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
uint64_t prev_tsc, diff_tsc, cur_tsc, ret_count = 0;
unsigned ret, i;
const uint16_t lcore_id = rte_lcore_id();
const uint16_t num_cores = (uint16_t)rte_lcore_count();
uint16_t rx_count = 0;
RTE_LOG(INFO, VHOST_DATA, "Procesing on Core %u started \n", lcore_id);
lcore_ll = lcore_info[lcore_id].lcore_ll;
prev_tsc = 0;
tx_q = &lcore_tx_queue[lcore_id];
for (i = 0; i < num_cores; i ++) {
if (lcore_ids[i] == lcore_id) {
tx_q->txq_id = i;
break;
}
}
while(1) {
cur_tsc = rte_rdtsc();
/*
* TX burst queue drain
*/
diff_tsc = cur_tsc - prev_tsc;
if (unlikely(diff_tsc > drain_tsc)) {
if (tx_q->len) {
RTE_LOG(DEBUG, VHOST_DATA,
"TX queue drained after timeout with burst size %u\n",
tx_q->len);
/*Tx any packets in the queue*/
ret = rte_eth_tx_burst(ports[0], (uint16_t)tx_q->txq_id,
(struct rte_mbuf **)tx_q->m_table,
(uint16_t)tx_q->len);
if (unlikely(ret < tx_q->len)) {
do {
rte_pktmbuf_free(tx_q->m_table[ret]);
} while (++ret < tx_q->len);
}
tx_q->len = 0;
}
prev_tsc = cur_tsc;
}
/*
* Inform the configuration core that we have exited the linked list and that no devices are
* in use if requested.
*/
if (lcore_ll->dev_removal_flag == REQUEST_DEV_REMOVAL)
lcore_ll->dev_removal_flag = ACK_DEV_REMOVAL;
/*
* Process devices
*/
dev_ll = lcore_ll->ll_root_used;
while (dev_ll != NULL) {
/*get virtio device ID*/
dev = dev_ll->dev;
if (unlikely(dev->remove)) {
dev_ll = dev_ll->next;
unlink_vmdq(dev);
dev->ready = DEVICE_SAFE_REMOVE;
continue;
}
if (likely(dev->ready == DEVICE_READY)) {
/*Handle guest RX*/
rx_count = rte_eth_rx_burst(ports[0],
(uint16_t)dev->vmdq_rx_q, pkts_burst, MAX_PKT_BURST);
if (rx_count) {
ret_count = virtio_dev_rx(dev, pkts_burst, rx_count);
if (enable_stats) {
rte_atomic64_add(&dev_statistics[dev_ll->dev->device_fh].rx_total, rx_count);
rte_atomic64_add(&dev_statistics[dev_ll->dev->device_fh].rx, ret_count);
}
while (likely(rx_count)) {
rx_count--;
rte_pktmbuf_free_seg(pkts_burst[rx_count]);
}
}
}
if (likely(!dev->remove))
/*Handle guest TX*/
virtio_dev_tx(dev, mbuf_pool);
/*move to the next device in the list*/
dev_ll = dev_ll->next;
}
}
return 0;
}
/*
* Add an entry to a used linked list. A free entry must first be found in the free linked list
* using get_data_ll_free_entry();
*/
static void
add_data_ll_entry(struct virtio_net_data_ll **ll_root_addr, struct virtio_net_data_ll *ll_dev)
{
struct virtio_net_data_ll *ll = *ll_root_addr;
/* Set next as NULL and use a compiler barrier to avoid reordering. */
ll_dev->next = NULL;
rte_compiler_barrier();
/* If ll == NULL then this is the first device. */
if (ll) {
/* Increment to the tail of the linked list. */
while ((ll->next != NULL) )
ll = ll->next;
ll->next = ll_dev;
} else {
*ll_root_addr = ll_dev;
}
}
/*
* Remove an entry from a used linked list. The entry must then be added to the free linked list
* using put_data_ll_free_entry().
*/
static void
rm_data_ll_entry(struct virtio_net_data_ll **ll_root_addr, struct virtio_net_data_ll *ll_dev, struct virtio_net_data_ll *ll_dev_last)
{
struct virtio_net_data_ll *ll = *ll_root_addr;
if (ll_dev == ll)
*ll_root_addr = ll_dev->next;
else
ll_dev_last->next = ll_dev->next;
}
/*
* Find and return an entry from the free linked list.
*/
static struct virtio_net_data_ll *
get_data_ll_free_entry(struct virtio_net_data_ll **ll_root_addr)
{
struct virtio_net_data_ll *ll_free = *ll_root_addr;
struct virtio_net_data_ll *ll_dev;
if (ll_free == NULL)
return NULL;
ll_dev = ll_free;
*ll_root_addr = ll_free->next;
return ll_dev;
}
/*
* Place an entry back on to the free linked list.
*/
static void
put_data_ll_free_entry(struct virtio_net_data_ll **ll_root_addr, struct virtio_net_data_ll *ll_dev)
{
struct virtio_net_data_ll *ll_free = *ll_root_addr;
ll_dev->next = ll_free;
*ll_root_addr = ll_dev;
}
/*
* Creates a linked list of a given size.
*/
static struct virtio_net_data_ll *
alloc_data_ll(uint32_t size)
{
struct virtio_net_data_ll *ll_new;
uint32_t i;
/* Malloc and then chain the linked list. */
ll_new = malloc(size * sizeof(struct virtio_net_data_ll));
if (ll_new == NULL) {
RTE_LOG(ERR, VHOST_CONFIG, "Failed to allocate memory for ll_new.\n");
return NULL;
}
for (i = 0; i < size - 1; i++) {
ll_new[i].dev = NULL;
ll_new[i].next = &ll_new[i+1];
}
ll_new[i].next = NULL;
return ll_new;
}
/*
* Create the main linked list along with each individual cores linked list. A used and a free list
* are created to manage entries.
*/
static int
init_data_ll (void)
{
int lcore;
RTE_LCORE_FOREACH_SLAVE(lcore) {
lcore_info[lcore].lcore_ll = malloc(sizeof(struct lcore_ll_info));
if (lcore_info[lcore].lcore_ll == NULL) {
RTE_LOG(ERR, VHOST_CONFIG, "Failed to allocate memory for lcore_ll.\n");
return -1;
}
lcore_info[lcore].lcore_ll->device_num = 0;
lcore_info[lcore].lcore_ll->dev_removal_flag = ACK_DEV_REMOVAL;
lcore_info[lcore].lcore_ll->ll_root_used = NULL;
if (num_devices % num_switching_cores)
lcore_info[lcore].lcore_ll->ll_root_free = alloc_data_ll((num_devices / num_switching_cores) + 1);
else
lcore_info[lcore].lcore_ll->ll_root_free = alloc_data_ll(num_devices / num_switching_cores);
}
/* Allocate devices up to a maximum of MAX_DEVICES. */
ll_root_free = alloc_data_ll(MIN((num_devices), MAX_DEVICES));
return 0;
}
/*
* Remove a device from the specific data core linked list and from the main linked list. The
* rx/tx thread must be set the flag to indicate that it is safe to remove the device.
* used.
*/
static void
destroy_device (volatile struct virtio_net *dev)
{
struct virtio_net_data_ll *ll_lcore_dev_cur;
struct virtio_net_data_ll *ll_main_dev_cur;
struct virtio_net_data_ll *ll_lcore_dev_last = NULL;
struct virtio_net_data_ll *ll_main_dev_last = NULL;
int lcore;
dev->flags &= ~VIRTIO_DEV_RUNNING;
/*set the remove flag. */
dev->remove = 1;
while(dev->ready != DEVICE_SAFE_REMOVE) {
rte_pause();
}
/* Search for entry to be removed from lcore ll */
ll_lcore_dev_cur = lcore_info[dev->coreid].lcore_ll->ll_root_used;
while (ll_lcore_dev_cur != NULL) {
if (ll_lcore_dev_cur->dev == dev) {
break;
} else {
ll_lcore_dev_last = ll_lcore_dev_cur;
ll_lcore_dev_cur = ll_lcore_dev_cur->next;
}
}
/* Search for entry to be removed from main ll */
ll_main_dev_cur = ll_root_used;
ll_main_dev_last = NULL;
while (ll_main_dev_cur != NULL) {
if (ll_main_dev_cur->dev == dev) {
break;
} else {
ll_main_dev_last = ll_main_dev_cur;
ll_main_dev_cur = ll_main_dev_cur->next;
}
}
if (ll_lcore_dev_cur == NULL || ll_main_dev_cur == NULL) {
RTE_LOG(ERR, XENHOST, "%s: could find device in per_cpu list or main_list\n", __func__);
return;
}
/* Remove entries from the lcore and main ll. */
rm_data_ll_entry(&lcore_info[ll_lcore_dev_cur->dev->coreid].lcore_ll->ll_root_used, ll_lcore_dev_cur, ll_lcore_dev_last);
rm_data_ll_entry(&ll_root_used, ll_main_dev_cur, ll_main_dev_last);
/* Set the dev_removal_flag on each lcore. */
RTE_LCORE_FOREACH_SLAVE(lcore) {
lcore_info[lcore].lcore_ll->dev_removal_flag = REQUEST_DEV_REMOVAL;
}
/*
* Once each core has set the dev_removal_flag to ACK_DEV_REMOVAL we can be sure that
* they can no longer access the device removed from the linked lists and that the devices
* are no longer in use.
*/
RTE_LCORE_FOREACH_SLAVE(lcore) {
while (lcore_info[lcore].lcore_ll->dev_removal_flag != ACK_DEV_REMOVAL) {
rte_pause();
}
}
/* Add the entries back to the lcore and main free ll.*/
put_data_ll_free_entry(&lcore_info[ll_lcore_dev_cur->dev->coreid].lcore_ll->ll_root_free, ll_lcore_dev_cur);
put_data_ll_free_entry(&ll_root_free, ll_main_dev_cur);
/* Decrement number of device on the lcore. */
lcore_info[ll_lcore_dev_cur->dev->coreid].lcore_ll->device_num--;
RTE_LOG(INFO, VHOST_DATA, " #####(%"PRIu64") Device has been removed from data core\n", dev->device_fh);
}
/*
* A new device is added to a data core. First the device is added to the main linked list
* and the allocated to a specific data core.
*/
static int
new_device (struct virtio_net *dev)
{
struct virtio_net_data_ll *ll_dev;
int lcore, core_add = 0;
uint32_t device_num_min = num_devices;
/* Add device to main ll */
ll_dev = get_data_ll_free_entry(&ll_root_free);
if (ll_dev == NULL) {
RTE_LOG(INFO, VHOST_DATA, "(%"PRIu64") No free entry found in linked list. Device limit "
"of %d devices per core has been reached\n",
dev->device_fh, num_devices);
return -1;
}
ll_dev->dev = dev;
add_data_ll_entry(&ll_root_used, ll_dev);
/*reset ready flag*/
dev->ready = DEVICE_NOT_READY;
dev->remove = 0;
/* Find a suitable lcore to add the device. */
RTE_LCORE_FOREACH_SLAVE(lcore) {
if (lcore_info[lcore].lcore_ll->device_num < device_num_min) {
device_num_min = lcore_info[lcore].lcore_ll->device_num;
core_add = lcore;
}
}
/* Add device to lcore ll */
ll_dev->dev->coreid = core_add;
ll_dev = get_data_ll_free_entry(&lcore_info[ll_dev->dev->coreid].lcore_ll->ll_root_free);
if (ll_dev == NULL) {
RTE_LOG(INFO, VHOST_DATA, "(%"PRIu64") Failed to add device to data core\n", dev->device_fh);
destroy_device(dev);
return -1;
}
ll_dev->dev = dev;
add_data_ll_entry(&lcore_info[ll_dev->dev->coreid].lcore_ll->ll_root_used, ll_dev);
/* Initialize device stats */
memset(&dev_statistics[dev->device_fh], 0, sizeof(struct device_statistics));
lcore_info[ll_dev->dev->coreid].lcore_ll->device_num++;
dev->flags |= VIRTIO_DEV_RUNNING;
RTE_LOG(INFO, VHOST_DATA, "(%"PRIu64") Device has been added to data core %d\n", dev->device_fh, dev->coreid);
link_vmdq(dev);
return 0;
}
/*
* These callback allow devices to be added to the data core when configuration
* has been fully complete.
*/
static const struct virtio_net_device_ops virtio_net_device_ops =
{
.new_device = new_device,
.destroy_device = destroy_device,
};
/*
* This is a thread will wake up after a period to print stats if the user has
* enabled them.
*/
static void
print_stats(void)
{
struct virtio_net_data_ll *dev_ll;
uint64_t tx_dropped, rx_dropped;
uint64_t tx, tx_total, rx, rx_total;
uint32_t device_fh;
const char clr[] = { 27, '[', '2', 'J', '\0' };
const char top_left[] = { 27, '[', '1', ';', '1', 'H','\0' };
while(1) {
sleep(enable_stats);
/* Clear screen and move to top left */
printf("%s%s", clr, top_left);
printf("\nDevice statistics ====================================");
dev_ll = ll_root_used;
while (dev_ll != NULL) {
device_fh = (uint32_t)dev_ll->dev->device_fh;
tx_total = dev_statistics[device_fh].tx_total;
tx = dev_statistics[device_fh].tx;
tx_dropped = tx_total - tx;
rx_total = rte_atomic64_read(&dev_statistics[device_fh].rx_total);
rx = rte_atomic64_read(&dev_statistics[device_fh].rx);
rx_dropped = rx_total - rx;
printf("\nStatistics for device %"PRIu32" ------------------------------"
"\nTX total: %"PRIu64""
"\nTX dropped: %"PRIu64""
"\nTX successful: %"PRIu64""
"\nRX total: %"PRIu64""
"\nRX dropped: %"PRIu64""
"\nRX successful: %"PRIu64"",
device_fh,
tx_total,
tx_dropped,
tx,
rx_total,
rx_dropped,
rx);
dev_ll = dev_ll->next;
}
printf("\n======================================================\n");
}
}
int init_virtio_net(struct virtio_net_device_ops const * const ops);
/*
* Main function, does initialisation and calls the per-lcore functions. The CUSE
* device is also registered here to handle the IOCTLs.
*/
int
main(int argc, char *argv[])
{
struct rte_mempool *mbuf_pool;
unsigned lcore_id, core_id = 0;
unsigned nb_ports, valid_num_ports;
int ret;
uint8_t portid;
static pthread_t tid;
char thread_name[RTE_MAX_THREAD_NAME_LEN];
/* init EAL */
ret = rte_eal_init(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");
argc -= ret;
argv += ret;
/* parse app arguments */
ret = us_vhost_parse_args(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Invalid argument\n");
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id ++)
if (rte_lcore_is_enabled(lcore_id))
lcore_ids[core_id ++] = lcore_id;
if (rte_lcore_count() > RTE_MAX_LCORE)
rte_exit(EXIT_FAILURE,"Not enough cores\n");
/*set the number of swithcing cores available*/
num_switching_cores = rte_lcore_count()-1;
/* Get the number of physical ports. */
nb_ports = rte_eth_dev_count();
/*
* Update the global var NUM_PORTS and global array PORTS
* and get value of var VALID_NUM_PORTS according to system ports number
*/
valid_num_ports = check_ports_num(nb_ports);
if ((valid_num_ports == 0) || (valid_num_ports > MAX_SUP_PORTS)) {
RTE_LOG(INFO, VHOST_PORT, "Current enabled port number is %u,"
"but only %u port can be enabled\n",num_ports, MAX_SUP_PORTS);
return -1;
}
/* Create the mbuf pool. */
mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL",
NUM_MBUFS_PER_PORT * valid_num_ports, MBUF_CACHE_SIZE, 0,
RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
if (mbuf_pool == NULL)
rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n");
/* initialize all ports */
for (portid = 0; portid < nb_ports; portid++) {
/* skip ports that are not enabled */
if ((enabled_port_mask & (1 << portid)) == 0) {
RTE_LOG(INFO, VHOST_PORT, "Skipping disabled port %d\n", portid);
continue;
}
if (port_init(portid, mbuf_pool) != 0)
rte_exit(EXIT_FAILURE, "Cannot initialize network ports\n");
}
/* Initialise all linked lists. */
if (init_data_ll() == -1)
rte_exit(EXIT_FAILURE, "Failed to initialize linked list\n");
/* Initialize device stats */
memset(&dev_statistics, 0, sizeof(dev_statistics));
/* Enable stats if the user option is set. */
if (enable_stats) {
ret = pthread_create(&tid, NULL, (void *)print_stats, NULL);
if (ret != 0)
rte_exit(EXIT_FAILURE,
"Cannot create print-stats thread\n");
/* Set thread_name for aid in debugging. */
snprintf(thread_name, RTE_MAX_THREAD_NAME_LEN, "print-xen-stats");
ret = rte_thread_setname(tid, thread_name);
if (ret != 0)
RTE_LOG(DEBUG, VHOST_CONFIG,
"Cannot set print-stats name\n");
}
/* Launch all data cores. */
RTE_LCORE_FOREACH_SLAVE(lcore_id) {
rte_eal_remote_launch(switch_worker, mbuf_pool, lcore_id);
}
init_virtio_xen(&virtio_net_device_ops);
virtio_monitor_loop();
return 0;
}