numam-dpdk/lib/librte_net/rte_net_crc.c
Mairtin o Loingsigh ef94569cf9 net: add CRC implementation runtime selection
This patch adds support for run-time selection of the optimal
architecture-specific CRC path, based on the supported instruction set(s)
of the CPU.

The compiler option checks have been moved from the C files to the meson
script. The rte_cpu_get_flag_enabled function is called automatically by
the library at process initialization time to determine which
instructions the CPU supports, with the most optimal supported CRC path
ultimately selected.

Signed-off-by: Mairtin o Loingsigh <mairtin.oloingsigh@intel.com>
Signed-off-by: David Coyle <david.coyle@intel.com>
Acked-by: Konstantin Ananyev <konstantin.ananyev@intel.com>
Reviewed-by: Jasvinder Singh <jasvinder.singh@intel.com>
Reviewed-by: Pablo de Lara <pablo.de.lara.guarch@intel.com>
Reviewed-by: Ruifeng Wang <ruifeng.wang@arm.com>
Acked-by: Bruce Richardson <bruce.richardson@intel.com>
2020-10-13 19:26:03 +02:00

243 lines
4.6 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2017-2020 Intel Corporation
*/
#include <stddef.h>
#include <string.h>
#include <stdint.h>
#include <rte_cpuflags.h>
#include <rte_common.h>
#include <rte_net_crc.h>
#include "net_crc.h"
/** CRC polynomials */
#define CRC32_ETH_POLYNOMIAL 0x04c11db7UL
#define CRC16_CCITT_POLYNOMIAL 0x1021U
#define CRC_LUT_SIZE 256
/* crc tables */
static uint32_t crc32_eth_lut[CRC_LUT_SIZE];
static uint32_t crc16_ccitt_lut[CRC_LUT_SIZE];
static uint32_t
rte_crc16_ccitt_handler(const uint8_t *data, uint32_t data_len);
static uint32_t
rte_crc32_eth_handler(const uint8_t *data, uint32_t data_len);
typedef uint32_t
(*rte_net_crc_handler)(const uint8_t *data, uint32_t data_len);
static const rte_net_crc_handler *handlers;
static const rte_net_crc_handler handlers_scalar[] = {
[RTE_NET_CRC16_CCITT] = rte_crc16_ccitt_handler,
[RTE_NET_CRC32_ETH] = rte_crc32_eth_handler,
};
#ifdef CC_X86_64_SSE42_PCLMULQDQ_SUPPORT
static const rte_net_crc_handler handlers_sse42[] = {
[RTE_NET_CRC16_CCITT] = rte_crc16_ccitt_sse42_handler,
[RTE_NET_CRC32_ETH] = rte_crc32_eth_sse42_handler,
};
#endif
#ifdef CC_ARM64_NEON_PMULL_SUPPORT
static const rte_net_crc_handler handlers_neon[] = {
[RTE_NET_CRC16_CCITT] = rte_crc16_ccitt_neon_handler,
[RTE_NET_CRC32_ETH] = rte_crc32_eth_neon_handler,
};
#endif
/* Scalar handling */
/**
* Reflect the bits about the middle
*
* @param val
* value to be reflected
*
* @return
* reflected value
*/
static uint32_t
reflect_32bits(uint32_t val)
{
uint32_t i, res = 0;
for (i = 0; i < 32; i++)
if ((val & (1U << i)) != 0)
res |= (uint32_t)(1U << (31 - i));
return res;
}
static void
crc32_eth_init_lut(uint32_t poly,
uint32_t *lut)
{
uint32_t i, j;
for (i = 0; i < CRC_LUT_SIZE; i++) {
uint32_t crc = reflect_32bits(i);
for (j = 0; j < 8; j++) {
if (crc & 0x80000000L)
crc = (crc << 1) ^ poly;
else
crc <<= 1;
}
lut[i] = reflect_32bits(crc);
}
}
static __rte_always_inline uint32_t
crc32_eth_calc_lut(const uint8_t *data,
uint32_t data_len,
uint32_t crc,
const uint32_t *lut)
{
while (data_len--)
crc = lut[(crc ^ *data++) & 0xffL] ^ (crc >> 8);
return crc;
}
static void
rte_net_crc_scalar_init(void)
{
/* 32-bit crc init */
crc32_eth_init_lut(CRC32_ETH_POLYNOMIAL, crc32_eth_lut);
/* 16-bit CRC init */
crc32_eth_init_lut(CRC16_CCITT_POLYNOMIAL << 16, crc16_ccitt_lut);
}
static inline uint32_t
rte_crc16_ccitt_handler(const uint8_t *data, uint32_t data_len)
{
/* return 16-bit CRC value */
return (uint16_t)~crc32_eth_calc_lut(data,
data_len,
0xffff,
crc16_ccitt_lut);
}
static inline uint32_t
rte_crc32_eth_handler(const uint8_t *data, uint32_t data_len)
{
/* return 32-bit CRC value */
return ~crc32_eth_calc_lut(data,
data_len,
0xffffffffUL,
crc32_eth_lut);
}
/* SSE4.2/PCLMULQDQ handling */
#define SSE42_PCLMULQDQ_CPU_SUPPORTED \
rte_cpu_get_flag_enabled(RTE_CPUFLAG_PCLMULQDQ)
static const rte_net_crc_handler *
sse42_pclmulqdq_get_handlers(void)
{
#ifdef CC_X86_64_SSE42_PCLMULQDQ_SUPPORT
if (SSE42_PCLMULQDQ_CPU_SUPPORTED)
return handlers_sse42;
#endif
return NULL;
}
static uint8_t
sse42_pclmulqdq_init(void)
{
#ifdef CC_X86_64_SSE42_PCLMULQDQ_SUPPORT
if (SSE42_PCLMULQDQ_CPU_SUPPORTED) {
rte_net_crc_sse42_init();
return 1;
}
#endif
return 0;
}
/* NEON/PMULL handling */
#define NEON_PMULL_CPU_SUPPORTED \
rte_cpu_get_flag_enabled(RTE_CPUFLAG_PMULL)
static const rte_net_crc_handler *
neon_pmull_get_handlers(void)
{
#ifdef CC_ARM64_NEON_PMULL_SUPPORT
if (NEON_PMULL_CPU_SUPPORTED)
return handlers_neon;
#endif
return NULL;
}
static uint8_t
neon_pmull_init(void)
{
#ifdef CC_ARM64_NEON_PMULL_SUPPORT
if (NEON_PMULL_CPU_SUPPORTED) {
rte_net_crc_neon_init();
return 1;
}
#endif
return 0;
}
/* Public API */
void
rte_net_crc_set_alg(enum rte_net_crc_alg alg)
{
handlers = NULL;
switch (alg) {
case RTE_NET_CRC_SSE42:
handlers = sse42_pclmulqdq_get_handlers();
break; /* for x86, always break here */
case RTE_NET_CRC_NEON:
handlers = neon_pmull_get_handlers();
/* fall-through */
case RTE_NET_CRC_SCALAR:
/* fall-through */
default:
break;
}
if (handlers == NULL)
handlers = handlers_scalar;
}
uint32_t
rte_net_crc_calc(const void *data,
uint32_t data_len,
enum rte_net_crc_type type)
{
uint32_t ret;
rte_net_crc_handler f_handle;
f_handle = handlers[type];
ret = f_handle(data, data_len);
return ret;
}
/* Select highest available crc algorithm as default one */
RTE_INIT(rte_net_crc_init)
{
enum rte_net_crc_alg alg = RTE_NET_CRC_SCALAR;
rte_net_crc_scalar_init();
if (sse42_pclmulqdq_init())
alg = RTE_NET_CRC_SSE42;
if (neon_pmull_init())
alg = RTE_NET_CRC_NEON;
rte_net_crc_set_alg(alg);
}