Olivier Matz 35b2d13fd6 net: add rte prefix to ether defines
Add 'RTE_' prefix to defines:
- rename ETHER_ADDR_LEN as RTE_ETHER_ADDR_LEN.
- rename ETHER_TYPE_LEN as RTE_ETHER_TYPE_LEN.
- rename ETHER_CRC_LEN as RTE_ETHER_CRC_LEN.
- rename ETHER_HDR_LEN as RTE_ETHER_HDR_LEN.
- rename ETHER_MIN_LEN as RTE_ETHER_MIN_LEN.
- rename ETHER_MAX_LEN as RTE_ETHER_MAX_LEN.
- rename ETHER_MTU as RTE_ETHER_MTU.
- rename ETHER_MAX_VLAN_FRAME_LEN as RTE_ETHER_MAX_VLAN_FRAME_LEN.
- rename ETHER_MAX_VLAN_ID as RTE_ETHER_MAX_VLAN_ID.
- rename ETHER_MAX_JUMBO_FRAME_LEN as RTE_ETHER_MAX_JUMBO_FRAME_LEN.
- rename ETHER_MIN_MTU as RTE_ETHER_MIN_MTU.
- rename ETHER_LOCAL_ADMIN_ADDR as RTE_ETHER_LOCAL_ADMIN_ADDR.
- rename ETHER_GROUP_ADDR as RTE_ETHER_GROUP_ADDR.
- rename ETHER_TYPE_IPv4 as RTE_ETHER_TYPE_IPv4.
- rename ETHER_TYPE_IPv6 as RTE_ETHER_TYPE_IPv6.
- rename ETHER_TYPE_ARP as RTE_ETHER_TYPE_ARP.
- rename ETHER_TYPE_VLAN as RTE_ETHER_TYPE_VLAN.
- rename ETHER_TYPE_RARP as RTE_ETHER_TYPE_RARP.
- rename ETHER_TYPE_QINQ as RTE_ETHER_TYPE_QINQ.
- rename ETHER_TYPE_ETAG as RTE_ETHER_TYPE_ETAG.
- rename ETHER_TYPE_1588 as RTE_ETHER_TYPE_1588.
- rename ETHER_TYPE_SLOW as RTE_ETHER_TYPE_SLOW.
- rename ETHER_TYPE_TEB as RTE_ETHER_TYPE_TEB.
- rename ETHER_TYPE_LLDP as RTE_ETHER_TYPE_LLDP.
- rename ETHER_TYPE_MPLS as RTE_ETHER_TYPE_MPLS.
- rename ETHER_TYPE_MPLSM as RTE_ETHER_TYPE_MPLSM.
- rename ETHER_VXLAN_HLEN as RTE_ETHER_VXLAN_HLEN.
- rename ETHER_ADDR_FMT_SIZE as RTE_ETHER_ADDR_FMT_SIZE.
- rename VXLAN_GPE_TYPE_IPV4 as RTE_VXLAN_GPE_TYPE_IPV4.
- rename VXLAN_GPE_TYPE_IPV6 as RTE_VXLAN_GPE_TYPE_IPV6.
- rename VXLAN_GPE_TYPE_ETH as RTE_VXLAN_GPE_TYPE_ETH.
- rename VXLAN_GPE_TYPE_NSH as RTE_VXLAN_GPE_TYPE_NSH.
- rename VXLAN_GPE_TYPE_MPLS as RTE_VXLAN_GPE_TYPE_MPLS.
- rename VXLAN_GPE_TYPE_GBP as RTE_VXLAN_GPE_TYPE_GBP.
- rename VXLAN_GPE_TYPE_VBNG as RTE_VXLAN_GPE_TYPE_VBNG.
- rename ETHER_VXLAN_GPE_HLEN as RTE_ETHER_VXLAN_GPE_HLEN.

Do not update the command line library to avoid adding a dependency to
librte_net.

Signed-off-by: Olivier Matz <olivier.matz@6wind.com>
Reviewed-by: Stephen Hemminger <stephen@networkplumber.org>
Reviewed-by: Maxime Coquelin <maxime.coquelin@redhat.com>
Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>
2019-05-24 13:34:45 +02:00

907 lines
21 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <signal.h>
#include <errno.h>
#include <string.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/epoll.h>
#include <sys/queue.h>
#include <sys/time.h>
#include <sys/socket.h>
#include <sys/select.h>
#ifdef USE_JANSSON
#include <jansson.h>
#else
#pragma message "Jansson dev libs unavailable, not including JSON parsing"
#endif
#include <rte_string_fns.h>
#include <rte_log.h>
#include <rte_memory.h>
#include <rte_malloc.h>
#include <rte_atomic.h>
#include <rte_cycles.h>
#include <rte_ethdev.h>
#include <rte_pmd_i40e.h>
#include <libvirt/libvirt.h>
#include "channel_monitor.h"
#include "channel_commands.h"
#include "channel_manager.h"
#include "power_manager.h"
#include "oob_monitor.h"
#define RTE_LOGTYPE_CHANNEL_MONITOR RTE_LOGTYPE_USER1
#define MAX_EVENTS 256
uint64_t vsi_pkt_count_prev[384];
uint64_t rdtsc_prev[384];
#define MAX_JSON_STRING_LEN 1024
char json_data[MAX_JSON_STRING_LEN];
double time_period_ms = 1;
static volatile unsigned run_loop = 1;
static int global_event_fd;
static unsigned int policy_is_set;
static struct epoll_event *global_events_list;
static struct policy policies[MAX_CLIENTS];
#ifdef USE_JANSSON
union PFID {
struct rte_ether_addr addr;
uint64_t pfid;
};
static int
str_to_ether_addr(const char *a, struct rte_ether_addr *ether_addr)
{
int i;
char *end;
unsigned long o[RTE_ETHER_ADDR_LEN];
i = 0;
do {
errno = 0;
o[i] = strtoul(a, &end, 16);
if (errno != 0 || end == a || (end[0] != ':' && end[0] != 0))
return -1;
a = end + 1;
} while (++i != RTE_DIM(o) / sizeof(o[0]) && end[0] != 0);
/* Junk at the end of line */
if (end[0] != 0)
return -1;
/* Support the format XX:XX:XX:XX:XX:XX */
if (i == RTE_ETHER_ADDR_LEN) {
while (i-- != 0) {
if (o[i] > UINT8_MAX)
return -1;
ether_addr->addr_bytes[i] = (uint8_t)o[i];
}
/* Support the format XXXX:XXXX:XXXX */
} else if (i == RTE_ETHER_ADDR_LEN / 2) {
while (i-- != 0) {
if (o[i] > UINT16_MAX)
return -1;
ether_addr->addr_bytes[i * 2] =
(uint8_t)(o[i] >> 8);
ether_addr->addr_bytes[i * 2 + 1] =
(uint8_t)(o[i] & 0xff);
}
/* unknown format */
} else
return -1;
return 0;
}
static int
set_policy_mac(struct channel_packet *pkt, int idx, char *mac)
{
union PFID pfid;
int ret;
/* Use port MAC address as the vfid */
ret = str_to_ether_addr(mac, &pfid.addr);
if (ret != 0) {
RTE_LOG(ERR, CHANNEL_MONITOR,
"Invalid mac address received in JSON\n");
pkt->vfid[idx] = 0;
return -1;
}
printf("Received MAC Address: %02" PRIx8 ":%02" PRIx8 ":%02" PRIx8 ":"
"%02" PRIx8 ":%02" PRIx8 ":%02" PRIx8 "\n",
pfid.addr.addr_bytes[0], pfid.addr.addr_bytes[1],
pfid.addr.addr_bytes[2], pfid.addr.addr_bytes[3],
pfid.addr.addr_bytes[4], pfid.addr.addr_bytes[5]);
pkt->vfid[idx] = pfid.pfid;
return 0;
}
static int
parse_json_to_pkt(json_t *element, struct channel_packet *pkt)
{
const char *key;
json_t *value;
int ret;
memset(pkt, 0, sizeof(struct channel_packet));
pkt->nb_mac_to_monitor = 0;
pkt->t_boost_status.tbEnabled = false;
pkt->workload = LOW;
pkt->policy_to_use = TIME;
pkt->command = PKT_POLICY;
pkt->core_type = CORE_TYPE_PHYSICAL;
json_object_foreach(element, key, value) {
if (!strcmp(key, "policy")) {
/* Recurse in to get the contents of profile */
ret = parse_json_to_pkt(value, pkt);
if (ret)
return ret;
} else if (!strcmp(key, "instruction")) {
/* Recurse in to get the contents of instruction */
ret = parse_json_to_pkt(value, pkt);
if (ret)
return ret;
} else if (!strcmp(key, "name")) {
strlcpy(pkt->vm_name, json_string_value(value),
sizeof(pkt->vm_name));
} else if (!strcmp(key, "command")) {
char command[32];
strlcpy(command, json_string_value(value), 32);
if (!strcmp(command, "power")) {
pkt->command = CPU_POWER;
} else if (!strcmp(command, "create")) {
pkt->command = PKT_POLICY;
} else if (!strcmp(command, "destroy")) {
pkt->command = PKT_POLICY_REMOVE;
} else {
RTE_LOG(ERR, CHANNEL_MONITOR,
"Invalid command received in JSON\n");
return -1;
}
} else if (!strcmp(key, "policy_type")) {
char command[32];
strlcpy(command, json_string_value(value), 32);
if (!strcmp(command, "TIME")) {
pkt->policy_to_use = TIME;
} else if (!strcmp(command, "TRAFFIC")) {
pkt->policy_to_use = TRAFFIC;
} else if (!strcmp(command, "WORKLOAD")) {
pkt->policy_to_use = WORKLOAD;
} else if (!strcmp(command, "BRANCH_RATIO")) {
pkt->policy_to_use = BRANCH_RATIO;
} else {
RTE_LOG(ERR, CHANNEL_MONITOR,
"Wrong policy_type received in JSON\n");
return -1;
}
} else if (!strcmp(key, "workload")) {
char command[32];
strlcpy(command, json_string_value(value), 32);
if (!strcmp(command, "HIGH")) {
pkt->workload = HIGH;
} else if (!strcmp(command, "MEDIUM")) {
pkt->workload = MEDIUM;
} else if (!strcmp(command, "LOW")) {
pkt->workload = LOW;
} else {
RTE_LOG(ERR, CHANNEL_MONITOR,
"Wrong workload received in JSON\n");
return -1;
}
} else if (!strcmp(key, "busy_hours")) {
unsigned int i;
size_t size = json_array_size(value);
for (i = 0; i < size; i++) {
int hour = (int)json_integer_value(
json_array_get(value, i));
pkt->timer_policy.busy_hours[i] = hour;
}
} else if (!strcmp(key, "quiet_hours")) {
unsigned int i;
size_t size = json_array_size(value);
for (i = 0; i < size; i++) {
int hour = (int)json_integer_value(
json_array_get(value, i));
pkt->timer_policy.quiet_hours[i] = hour;
}
} else if (!strcmp(key, "core_list")) {
unsigned int i;
size_t size = json_array_size(value);
for (i = 0; i < size; i++) {
int core = (int)json_integer_value(
json_array_get(value, i));
pkt->vcpu_to_control[i] = core;
}
pkt->num_vcpu = size;
} else if (!strcmp(key, "mac_list")) {
unsigned int i;
size_t size = json_array_size(value);
for (i = 0; i < size; i++) {
char mac[32];
strlcpy(mac,
json_string_value(json_array_get(value, i)),
32);
set_policy_mac(pkt, i, mac);
}
pkt->nb_mac_to_monitor = size;
} else if (!strcmp(key, "avg_packet_thresh")) {
pkt->traffic_policy.avg_max_packet_thresh =
(uint32_t)json_integer_value(value);
} else if (!strcmp(key, "max_packet_thresh")) {
pkt->traffic_policy.max_max_packet_thresh =
(uint32_t)json_integer_value(value);
} else if (!strcmp(key, "unit")) {
char unit[32];
strlcpy(unit, json_string_value(value), 32);
if (!strcmp(unit, "SCALE_UP")) {
pkt->unit = CPU_POWER_SCALE_UP;
} else if (!strcmp(unit, "SCALE_DOWN")) {
pkt->unit = CPU_POWER_SCALE_DOWN;
} else if (!strcmp(unit, "SCALE_MAX")) {
pkt->unit = CPU_POWER_SCALE_MAX;
} else if (!strcmp(unit, "SCALE_MIN")) {
pkt->unit = CPU_POWER_SCALE_MIN;
} else if (!strcmp(unit, "ENABLE_TURBO")) {
pkt->unit = CPU_POWER_ENABLE_TURBO;
} else if (!strcmp(unit, "DISABLE_TURBO")) {
pkt->unit = CPU_POWER_DISABLE_TURBO;
} else {
RTE_LOG(ERR, CHANNEL_MONITOR,
"Invalid command received in JSON\n");
return -1;
}
} else if (!strcmp(key, "resource_id")) {
pkt->resource_id = (uint32_t)json_integer_value(value);
} else {
RTE_LOG(ERR, CHANNEL_MONITOR,
"Unknown key received in JSON string: %s\n",
key);
}
}
return 0;
}
#endif
void channel_monitor_exit(void)
{
run_loop = 0;
rte_free(global_events_list);
}
static void
core_share(int pNo, int z, int x, int t)
{
if (policies[pNo].core_share[z].pcpu == lvm_info[x].pcpus[t]) {
if (strcmp(policies[pNo].pkt.vm_name,
lvm_info[x].vm_name) != 0) {
policies[pNo].core_share[z].status = 1;
power_manager_scale_core_max(
policies[pNo].core_share[z].pcpu);
}
}
}
static void
core_share_status(int pNo)
{
int noVms = 0, noVcpus = 0, z, x, t;
get_all_vm(&noVms, &noVcpus);
/* Reset Core Share Status. */
for (z = 0; z < noVcpus; z++)
policies[pNo].core_share[z].status = 0;
/* Foreach vcpu in a policy. */
for (z = 0; z < policies[pNo].pkt.num_vcpu; z++) {
/* Foreach VM on the platform. */
for (x = 0; x < noVms; x++) {
/* Foreach vcpu of VMs on platform. */
for (t = 0; t < lvm_info[x].num_cpus; t++)
core_share(pNo, z, x, t);
}
}
}
static int
pcpu_monitor(struct policy *pol, struct core_info *ci, int pcpu, int count)
{
int ret = 0;
if (pol->pkt.policy_to_use == BRANCH_RATIO) {
ci->cd[pcpu].oob_enabled = 1;
ret = add_core_to_monitor(pcpu);
if (ret == 0)
RTE_LOG(INFO, CHANNEL_MONITOR,
"Monitoring pcpu %d OOB for %s\n",
pcpu, pol->pkt.vm_name);
else
RTE_LOG(ERR, CHANNEL_MONITOR,
"Error monitoring pcpu %d OOB for %s\n",
pcpu, pol->pkt.vm_name);
} else {
pol->core_share[count].pcpu = pcpu;
RTE_LOG(INFO, CHANNEL_MONITOR,
"Monitoring pcpu %d for %s\n",
pcpu, pol->pkt.vm_name);
}
return ret;
}
static void
get_pcpu_to_control(struct policy *pol)
{
/* Convert vcpu to pcpu. */
struct vm_info info;
int pcpu, count;
struct core_info *ci;
ci = get_core_info();
RTE_LOG(DEBUG, CHANNEL_MONITOR,
"Looking for pcpu for %s\n", pol->pkt.vm_name);
/*
* So now that we're handling virtual and physical cores, we need to
* differenciate between them when adding them to the branch monitor.
* Virtual cores need to be converted to physical cores.
*/
if (pol->pkt.core_type == CORE_TYPE_VIRTUAL) {
/*
* If the cores in the policy are virtual, we need to map them
* to physical core. We look up the vm info and use that for
* the mapping.
*/
get_info_vm(pol->pkt.vm_name, &info);
for (count = 0; count < pol->pkt.num_vcpu; count++) {
pcpu = info.pcpu_map[pol->pkt.vcpu_to_control[count]];
pcpu_monitor(pol, ci, pcpu, count);
}
} else {
/*
* If the cores in the policy are physical, we just use
* those core id's directly.
*/
for (count = 0; count < pol->pkt.num_vcpu; count++) {
pcpu = pol->pkt.vcpu_to_control[count];
pcpu_monitor(pol, ci, pcpu, count);
}
}
}
static int
get_pfid(struct policy *pol)
{
int i, x, ret = 0;
for (i = 0; i < pol->pkt.nb_mac_to_monitor; i++) {
RTE_ETH_FOREACH_DEV(x) {
ret = rte_pmd_i40e_query_vfid_by_mac(x,
(struct rte_ether_addr *)&(pol->pkt.vfid[i]));
if (ret != -EINVAL) {
pol->port[i] = x;
break;
}
}
if (ret == -EINVAL || ret == -ENOTSUP || ret == ENODEV) {
RTE_LOG(INFO, CHANNEL_MONITOR,
"Error with Policy. MAC not found on "
"attached ports ");
pol->enabled = 0;
return ret;
}
pol->pfid[i] = ret;
}
return 1;
}
static int
update_policy(struct channel_packet *pkt)
{
unsigned int updated = 0;
int i;
RTE_LOG(INFO, CHANNEL_MONITOR,
"Applying policy for %s\n", pkt->vm_name);
for (i = 0; i < MAX_CLIENTS; i++) {
if (strcmp(policies[i].pkt.vm_name, pkt->vm_name) == 0) {
/* Copy the contents of *pkt into the policy.pkt */
policies[i].pkt = *pkt;
get_pcpu_to_control(&policies[i]);
/* Check Eth dev only for Traffic policy */
if (policies[i].pkt.policy_to_use == TRAFFIC) {
if (get_pfid(&policies[i]) < 0) {
updated = 1;
break;
}
}
core_share_status(i);
policies[i].enabled = 1;
updated = 1;
}
}
if (!updated) {
for (i = 0; i < MAX_CLIENTS; i++) {
if (policies[i].enabled == 0) {
policies[i].pkt = *pkt;
get_pcpu_to_control(&policies[i]);
/* Check Eth dev only for Traffic policy */
if (policies[i].pkt.policy_to_use == TRAFFIC) {
if (get_pfid(&policies[i]) < 0) {
updated = 1;
break;
}
}
core_share_status(i);
policies[i].enabled = 1;
break;
}
}
}
return 0;
}
static int
remove_policy(struct channel_packet *pkt __rte_unused)
{
int i;
/*
* Disabling the policy is simply a case of setting
* enabled to 0
*/
for (i = 0; i < MAX_CLIENTS; i++) {
if (strcmp(policies[i].pkt.vm_name, pkt->vm_name) == 0) {
policies[i].enabled = 0;
return 0;
}
}
return -1;
}
static uint64_t
get_pkt_diff(struct policy *pol)
{
uint64_t vsi_pkt_count,
vsi_pkt_total = 0,
vsi_pkt_count_prev_total = 0;
double rdtsc_curr, rdtsc_diff, diff;
int x;
struct rte_eth_stats vf_stats;
for (x = 0; x < pol->pkt.nb_mac_to_monitor; x++) {
/*Read vsi stats*/
if (rte_pmd_i40e_get_vf_stats(x, pol->pfid[x], &vf_stats) == 0)
vsi_pkt_count = vf_stats.ipackets;
else
vsi_pkt_count = -1;
vsi_pkt_total += vsi_pkt_count;
vsi_pkt_count_prev_total += vsi_pkt_count_prev[pol->pfid[x]];
vsi_pkt_count_prev[pol->pfid[x]] = vsi_pkt_count;
}
rdtsc_curr = rte_rdtsc_precise();
rdtsc_diff = rdtsc_curr - rdtsc_prev[pol->pfid[x-1]];
rdtsc_prev[pol->pfid[x-1]] = rdtsc_curr;
diff = (vsi_pkt_total - vsi_pkt_count_prev_total) *
((double)rte_get_tsc_hz() / rdtsc_diff);
return diff;
}
static void
apply_traffic_profile(struct policy *pol)
{
int count;
uint64_t diff = 0;
diff = get_pkt_diff(pol);
if (diff >= (pol->pkt.traffic_policy.max_max_packet_thresh)) {
for (count = 0; count < pol->pkt.num_vcpu; count++) {
if (pol->core_share[count].status != 1)
power_manager_scale_core_max(
pol->core_share[count].pcpu);
}
} else if (diff >= (pol->pkt.traffic_policy.avg_max_packet_thresh)) {
for (count = 0; count < pol->pkt.num_vcpu; count++) {
if (pol->core_share[count].status != 1)
power_manager_scale_core_med(
pol->core_share[count].pcpu);
}
} else if (diff < (pol->pkt.traffic_policy.avg_max_packet_thresh)) {
for (count = 0; count < pol->pkt.num_vcpu; count++) {
if (pol->core_share[count].status != 1)
power_manager_scale_core_min(
pol->core_share[count].pcpu);
}
}
}
static void
apply_time_profile(struct policy *pol)
{
int count, x;
struct timeval tv;
struct tm *ptm;
char time_string[40];
/* Obtain the time of day, and convert it to a tm struct. */
gettimeofday(&tv, NULL);
ptm = localtime(&tv.tv_sec);
/* Format the date and time, down to a single second. */
strftime(time_string, sizeof(time_string), "%Y-%m-%d %H:%M:%S", ptm);
for (x = 0; x < HOURS; x++) {
if (ptm->tm_hour == pol->pkt.timer_policy.busy_hours[x]) {
for (count = 0; count < pol->pkt.num_vcpu; count++) {
if (pol->core_share[count].status != 1) {
power_manager_scale_core_max(
pol->core_share[count].pcpu);
}
}
break;
} else if (ptm->tm_hour ==
pol->pkt.timer_policy.quiet_hours[x]) {
for (count = 0; count < pol->pkt.num_vcpu; count++) {
if (pol->core_share[count].status != 1) {
power_manager_scale_core_min(
pol->core_share[count].pcpu);
}
}
break;
} else if (ptm->tm_hour ==
pol->pkt.timer_policy.hours_to_use_traffic_profile[x]) {
apply_traffic_profile(pol);
break;
}
}
}
static void
apply_workload_profile(struct policy *pol)
{
int count;
if (pol->pkt.workload == HIGH) {
for (count = 0; count < pol->pkt.num_vcpu; count++) {
if (pol->core_share[count].status != 1)
power_manager_scale_core_max(
pol->core_share[count].pcpu);
}
} else if (pol->pkt.workload == MEDIUM) {
for (count = 0; count < pol->pkt.num_vcpu; count++) {
if (pol->core_share[count].status != 1)
power_manager_scale_core_med(
pol->core_share[count].pcpu);
}
} else if (pol->pkt.workload == LOW) {
for (count = 0; count < pol->pkt.num_vcpu; count++) {
if (pol->core_share[count].status != 1)
power_manager_scale_core_min(
pol->core_share[count].pcpu);
}
}
}
static void
apply_policy(struct policy *pol)
{
struct channel_packet *pkt = &pol->pkt;
/*Check policy to use*/
if (pkt->policy_to_use == TRAFFIC)
apply_traffic_profile(pol);
else if (pkt->policy_to_use == TIME)
apply_time_profile(pol);
else if (pkt->policy_to_use == WORKLOAD)
apply_workload_profile(pol);
}
static int
process_request(struct channel_packet *pkt, struct channel_info *chan_info)
{
int ret;
if (chan_info == NULL)
return -1;
if (rte_atomic32_cmpset(&(chan_info->status), CHANNEL_MGR_CHANNEL_CONNECTED,
CHANNEL_MGR_CHANNEL_PROCESSING) == 0)
return -1;
if (pkt->command == CPU_POWER) {
unsigned int core_num;
if (pkt->core_type == CORE_TYPE_VIRTUAL)
core_num = get_pcpu(chan_info, pkt->resource_id);
else
core_num = pkt->resource_id;
RTE_LOG(DEBUG, CHANNEL_MONITOR, "Processing requested cmd for cpu:%d\n",
core_num);
switch (pkt->unit) {
case(CPU_POWER_SCALE_MIN):
power_manager_scale_core_min(core_num);
break;
case(CPU_POWER_SCALE_MAX):
power_manager_scale_core_max(core_num);
break;
case(CPU_POWER_SCALE_DOWN):
power_manager_scale_core_down(core_num);
break;
case(CPU_POWER_SCALE_UP):
power_manager_scale_core_up(core_num);
break;
case(CPU_POWER_ENABLE_TURBO):
power_manager_enable_turbo_core(core_num);
break;
case(CPU_POWER_DISABLE_TURBO):
power_manager_disable_turbo_core(core_num);
break;
default:
break;
}
}
if (pkt->command == PKT_POLICY) {
RTE_LOG(INFO, CHANNEL_MONITOR, "Processing policy request %s\n",
pkt->vm_name);
update_policy(pkt);
policy_is_set = 1;
}
if (pkt->command == PKT_POLICY_REMOVE) {
ret = remove_policy(pkt);
if (ret == 0)
RTE_LOG(INFO, CHANNEL_MONITOR,
"Removed policy %s\n", pkt->vm_name);
else
RTE_LOG(INFO, CHANNEL_MONITOR,
"Policy %s does not exist\n", pkt->vm_name);
}
/*
* Return is not checked as channel status may have been set to DISABLED
* from management thread
*/
rte_atomic32_cmpset(&(chan_info->status), CHANNEL_MGR_CHANNEL_PROCESSING,
CHANNEL_MGR_CHANNEL_CONNECTED);
return 0;
}
int
add_channel_to_monitor(struct channel_info **chan_info)
{
struct channel_info *info = *chan_info;
struct epoll_event event;
event.events = EPOLLIN;
event.data.ptr = info;
if (epoll_ctl(global_event_fd, EPOLL_CTL_ADD, info->fd, &event) < 0) {
RTE_LOG(ERR, CHANNEL_MONITOR, "Unable to add channel '%s' "
"to epoll\n", info->channel_path);
return -1;
}
RTE_LOG(ERR, CHANNEL_MONITOR, "Added channel '%s' "
"to monitor\n", info->channel_path);
return 0;
}
int
remove_channel_from_monitor(struct channel_info *chan_info)
{
if (epoll_ctl(global_event_fd, EPOLL_CTL_DEL,
chan_info->fd, NULL) < 0) {
RTE_LOG(ERR, CHANNEL_MONITOR, "Unable to remove channel '%s' "
"from epoll\n", chan_info->channel_path);
return -1;
}
return 0;
}
int
channel_monitor_init(void)
{
global_event_fd = epoll_create1(0);
if (global_event_fd == 0) {
RTE_LOG(ERR, CHANNEL_MONITOR,
"Error creating epoll context with error %s\n",
strerror(errno));
return -1;
}
global_events_list = rte_malloc("epoll_events",
sizeof(*global_events_list)
* MAX_EVENTS, RTE_CACHE_LINE_SIZE);
if (global_events_list == NULL) {
RTE_LOG(ERR, CHANNEL_MONITOR, "Unable to rte_malloc for "
"epoll events\n");
return -1;
}
return 0;
}
static void
read_binary_packet(struct channel_info *chan_info)
{
struct channel_packet pkt;
void *buffer = &pkt;
int buffer_len = sizeof(pkt);
int n_bytes, err = 0;
while (buffer_len > 0) {
n_bytes = read(chan_info->fd,
buffer, buffer_len);
if (n_bytes == buffer_len)
break;
if (n_bytes < 0) {
err = errno;
RTE_LOG(DEBUG, CHANNEL_MONITOR,
"Received error on "
"channel '%s' read: %s\n",
chan_info->channel_path,
strerror(err));
remove_channel(&chan_info);
break;
}
buffer = (char *)buffer + n_bytes;
buffer_len -= n_bytes;
}
if (!err)
process_request(&pkt, chan_info);
}
#ifdef USE_JANSSON
static void
read_json_packet(struct channel_info *chan_info)
{
struct channel_packet pkt;
int n_bytes, ret;
json_t *root;
json_error_t error;
/* read opening brace to closing brace */
do {
int idx = 0;
int indent = 0;
do {
n_bytes = read(chan_info->fd, &json_data[idx], 1);
if (n_bytes == 0)
break;
if (json_data[idx] == '{')
indent++;
if (json_data[idx] == '}')
indent--;
if ((indent > 0) || (idx > 0))
idx++;
if (indent <= 0)
json_data[idx] = 0;
if (idx >= MAX_JSON_STRING_LEN-1)
break;
} while (indent > 0);
json_data[idx] = '\0';
if (strlen(json_data) == 0)
continue;
printf("got [%s]\n", json_data);
root = json_loads(json_data, 0, &error);
if (root) {
/*
* Because our data is now in the json
* object, we can overwrite the pkt
* with a channel_packet struct, using
* parse_json_to_pkt()
*/
ret = parse_json_to_pkt(root, &pkt);
json_decref(root);
if (ret) {
RTE_LOG(ERR, CHANNEL_MONITOR,
"Error validating JSON profile data\n");
break;
}
process_request(&pkt, chan_info);
} else {
RTE_LOG(ERR, CHANNEL_MONITOR,
"JSON error on line %d: %s\n",
error.line, error.text);
}
} while (n_bytes > 0);
}
#endif
void
run_channel_monitor(void)
{
while (run_loop) {
int n_events, i;
n_events = epoll_wait(global_event_fd, global_events_list,
MAX_EVENTS, 1);
if (!run_loop)
break;
for (i = 0; i < n_events; i++) {
struct channel_info *chan_info = (struct channel_info *)
global_events_list[i].data.ptr;
if ((global_events_list[i].events & EPOLLERR) ||
(global_events_list[i].events & EPOLLHUP)) {
RTE_LOG(INFO, CHANNEL_MONITOR,
"Remote closed connection for "
"channel '%s'\n",
chan_info->channel_path);
remove_channel(&chan_info);
continue;
}
if (global_events_list[i].events & EPOLLIN) {
switch (chan_info->type) {
case CHANNEL_TYPE_BINARY:
read_binary_packet(chan_info);
break;
#ifdef USE_JANSSON
case CHANNEL_TYPE_JSON:
read_json_packet(chan_info);
break;
#endif
default:
break;
}
}
}
rte_delay_us(time_period_ms*1000);
if (policy_is_set) {
int j;
for (j = 0; j < MAX_CLIENTS; j++) {
if (policies[j].enabled == 1)
apply_policy(&policies[j]);
}
}
}
}