numam-dpdk/tools/dpdk_nic_bind.py
Ouyang Changchun 92ff8cf229 tools: fix binding to unsupported driver
The dpdk_nic_bind script will not allow ports to be bound or unbound if none of the
kernel modules supported by DPDK is loaded. This patch relaxes this restriction by
checking if a DPDK module is actually requested. The example below illustrates this
problem:

In virtio test, on the guest
1. Bind virtio port to igb_uio driver;
2. Remove igb_uio module;
3. Bind virtio port to virtio-pci driver, it fails and reports:
   "Error - no supported modules are loaded"

The script should check the to-be-bound driver flag, if it is dpdk driver(igb_uio, vfio etc),
and the corresponding module is not loaded, then exit, otherwise, just report a warning,
and continue to bind the non-dpdk driver(like virtio-pci) to dev.

Signed-off-by: Changchun Ouyang <changchun.ouyang@intel.com>
Tested-by: Qian Xu <qian.q.xu@intel.com>
Acked-by: Michael Qiu <michael.qiu@intel.com>
2015-03-05 21:33:53 +01:00

540 lines
20 KiB
Python
Executable File

#! /usr/bin/python
#
# BSD LICENSE
#
# Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
# * Neither the name of Intel Corporation nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
import sys, os, getopt, subprocess
from os.path import exists, abspath, dirname, basename
# The PCI device class for ETHERNET devices
ETHERNET_CLASS = "0200"
# global dict ethernet devices present. Dictionary indexed by PCI address.
# Each device within this is itself a dictionary of device properties
devices = {}
# list of supported DPDK drivers
dpdk_drivers = [ "igb_uio", "vfio-pci", "uio_pci_generic" ]
# command-line arg flags
b_flag = None
status_flag = False
force_flag = False
args = []
def usage():
'''Print usage information for the program'''
argv0 = basename(sys.argv[0])
print """
Usage:
------
%(argv0)s [options] DEVICE1 DEVICE2 ....
where DEVICE1, DEVICE2 etc, are specified via PCI "domain:bus:slot.func" syntax
or "bus:slot.func" syntax. For devices bound to Linux kernel drivers, they may
also be referred to by Linux interface name e.g. eth0, eth1, em0, em1, etc.
Options:
--help, --usage:
Display usage information and quit
--status:
Print the current status of all known network interfaces.
For each device, it displays the PCI domain, bus, slot and function,
along with a text description of the device. Depending upon whether the
device is being used by a kernel driver, the igb_uio driver, or no
driver, other relevant information will be displayed:
* the Linux interface name e.g. if=eth0
* the driver being used e.g. drv=igb_uio
* any suitable drivers not currently using that device
e.g. unused=igb_uio
NOTE: if this flag is passed along with a bind/unbind option, the status
display will always occur after the other operations have taken place.
-b driver, --bind=driver:
Select the driver to use or \"none\" to unbind the device
-u, --unbind:
Unbind a device (Equivalent to \"-b none\")
--force:
By default, devices which are used by Linux - as indicated by having
routes in the routing table - cannot be modified. Using the --force
flag overrides this behavior, allowing active links to be forcibly
unbound.
WARNING: This can lead to loss of network connection and should be used
with caution.
Examples:
---------
To display current device status:
%(argv0)s --status
To bind eth1 from the current driver and move to use igb_uio
%(argv0)s --bind=igb_uio eth1
To unbind 0000:01:00.0 from using any driver
%(argv0)s -u 0000:01:00.0
To bind 0000:02:00.0 and 0000:02:00.1 to the ixgbe kernel driver
%(argv0)s -b ixgbe 02:00.0 02:00.1
""" % locals() # replace items from local variables
# This is roughly compatible with check_output function in subprocess module
# which is only available in python 2.7.
def check_output(args, stderr=None):
'''Run a command and capture its output'''
return subprocess.Popen(args, stdout=subprocess.PIPE,
stderr=stderr).communicate()[0]
def find_module(mod):
'''find the .ko file for kernel module named mod.
Searches the $RTE_SDK/$RTE_TARGET directory, the kernel
modules directory and finally under the parent directory of
the script '''
# check $RTE_SDK/$RTE_TARGET directory
if 'RTE_SDK' in os.environ and 'RTE_TARGET' in os.environ:
path = "%s/%s/kmod/%s.ko" % (os.environ['RTE_SDK'],\
os.environ['RTE_TARGET'], mod)
if exists(path):
return path
# check using depmod
try:
depmod_out = check_output(["modinfo", "-n", mod], \
stderr=subprocess.STDOUT).lower()
if "error" not in depmod_out:
path = depmod_out.strip()
if exists(path):
return path
except: # if modinfo can't find module, it fails, so continue
pass
# check for a copy based off current path
tools_dir = dirname(abspath(sys.argv[0]))
if (tools_dir.endswith("tools")):
base_dir = dirname(tools_dir)
find_out = check_output(["find", base_dir, "-name", mod + ".ko"])
if len(find_out) > 0: #something matched
path = find_out.splitlines()[0]
if exists(path):
return path
def check_modules():
'''Checks that igb_uio is loaded'''
global dpdk_drivers
fd = file("/proc/modules")
loaded_mods = fd.readlines()
fd.close()
# list of supported modules
mods = [{"Name" : driver, "Found" : False} for driver in dpdk_drivers]
# first check if module is loaded
for line in loaded_mods:
for mod in mods:
if line.startswith(mod["Name"]):
mod["Found"] = True
# special case for vfio_pci (module is named vfio-pci,
# but its .ko is named vfio_pci)
elif line.replace("_", "-").startswith(mod["Name"]):
mod["Found"] = True
# check if we have at least one loaded module
if True not in [mod["Found"] for mod in mods] and b_flag is not None:
if b_flag in dpdk_drivers:
print "Error - no supported modules(DPDK driver) are loaded"
sys.exit(1)
else:
print "Warning - no supported modules(DPDK driver) are loaded"
# change DPDK driver list to only contain drivers that are loaded
dpdk_drivers = [mod["Name"] for mod in mods if mod["Found"]]
def has_driver(dev_id):
'''return true if a device is assigned to a driver. False otherwise'''
return "Driver_str" in devices[dev_id]
def get_pci_device_details(dev_id):
'''This function gets additional details for a PCI device'''
device = {}
extra_info = check_output(["lspci", "-vmmks", dev_id]).splitlines()
# parse lspci details
for line in extra_info:
if len(line) == 0:
continue
name, value = line.split("\t", 1)
name = name.strip(":") + "_str"
device[name] = value
# check for a unix interface name
sys_path = "/sys/bus/pci/devices/%s/net/" % dev_id
if exists(sys_path):
device["Interface"] = ",".join(os.listdir(sys_path))
else:
device["Interface"] = ""
# check if a port is used for ssh connection
device["Ssh_if"] = False
device["Active"] = ""
return device
def get_nic_details():
'''This function populates the "devices" dictionary. The keys used are
the pci addresses (domain:bus:slot.func). The values are themselves
dictionaries - one for each NIC.'''
global devices
global dpdk_drivers
# clear any old data
devices = {}
# first loop through and read details for all devices
# request machine readable format, with numeric IDs
dev = {};
dev_lines = check_output(["lspci", "-Dvmmn"]).splitlines()
for dev_line in dev_lines:
if (len(dev_line) == 0):
if dev["Class"] == ETHERNET_CLASS:
#convert device and vendor ids to numbers, then add to global
dev["Vendor"] = int(dev["Vendor"],16)
dev["Device"] = int(dev["Device"],16)
devices[dev["Slot"]] = dict(dev) # use dict to make copy of dev
else:
name, value = dev_line.split("\t", 1)
dev[name.rstrip(":")] = value
# check what is the interface if any for an ssh connection if
# any to this host, so we can mark it later.
ssh_if = []
route = check_output(["ip", "-o", "route"])
# filter out all lines for 169.254 routes
route = "\n".join(filter(lambda ln: not ln.startswith("169.254"),
route.splitlines()))
rt_info = route.split()
for i in xrange(len(rt_info) - 1):
if rt_info[i] == "dev":
ssh_if.append(rt_info[i+1])
# based on the basic info, get extended text details
for d in devices.keys():
# get additional info and add it to existing data
devices[d] = dict(devices[d].items() +
get_pci_device_details(d).items())
for _if in ssh_if:
if _if in devices[d]["Interface"].split(","):
devices[d]["Ssh_if"] = True
devices[d]["Active"] = "*Active*"
break;
# add igb_uio to list of supporting modules if needed
if "Module_str" in devices[d]:
for driver in dpdk_drivers:
if driver not in devices[d]["Module_str"]:
devices[d]["Module_str"] = devices[d]["Module_str"] + ",%s" % driver
else:
devices[d]["Module_str"] = ",".join(dpdk_drivers)
# make sure the driver and module strings do not have any duplicates
if has_driver(d):
modules = devices[d]["Module_str"].split(",")
if devices[d]["Driver_str"] in modules:
modules.remove(devices[d]["Driver_str"])
devices[d]["Module_str"] = ",".join(modules)
def dev_id_from_dev_name(dev_name):
'''Take a device "name" - a string passed in by user to identify a NIC
device, and determine the device id - i.e. the domain:bus:slot.func - for
it, which can then be used to index into the devices array'''
dev = None
# check if it's already a suitable index
if dev_name in devices:
return dev_name
# check if it's an index just missing the domain part
elif "0000:" + dev_name in devices:
return "0000:" + dev_name
else:
# check if it's an interface name, e.g. eth1
for d in devices.keys():
if dev_name in devices[d]["Interface"].split(","):
return devices[d]["Slot"]
# if nothing else matches - error
print "Unknown device: %s. " \
"Please specify device in \"bus:slot.func\" format" % dev_name
sys.exit(1)
def unbind_one(dev_id, force):
'''Unbind the device identified by "dev_id" from its current driver'''
dev = devices[dev_id]
if not has_driver(dev_id):
print "%s %s %s is not currently managed by any driver\n" % \
(dev["Slot"], dev["Device_str"], dev["Interface"])
return
# prevent us disconnecting ourselves
if dev["Ssh_if"] and not force:
print "Routing table indicates that interface %s is active" \
". Skipping unbind" % (dev_id)
return
# write to /sys to unbind
filename = "/sys/bus/pci/drivers/%s/unbind" % dev["Driver_str"]
try:
f = open(filename, "a")
except:
print "Error: unbind failed for %s - Cannot open %s" % (dev_id, filename)
sys/exit(1)
f.write(dev_id)
f.close()
def bind_one(dev_id, driver, force):
'''Bind the device given by "dev_id" to the driver "driver". If the device
is already bound to a different driver, it will be unbound first'''
dev = devices[dev_id]
saved_driver = None # used to rollback any unbind in case of failure
# prevent disconnection of our ssh session
if dev["Ssh_if"] and not force:
print "Routing table indicates that interface %s is active" \
". Not modifying" % (dev_id)
return
# unbind any existing drivers we don't want
if has_driver(dev_id):
if dev["Driver_str"] == driver:
print "%s already bound to driver %s, skipping\n" % (dev_id, driver)
return
else:
saved_driver = dev["Driver_str"]
unbind_one(dev_id, force)
dev["Driver_str"] = "" # clear driver string
# if we are binding to one of DPDK drivers, add PCI id's to that driver
if driver in dpdk_drivers:
filename = "/sys/bus/pci/drivers/%s/new_id" % driver
try:
f = open(filename, "w")
except:
print "Error: bind failed for %s - Cannot open %s" % (dev_id, filename)
return
try:
f.write("%04x %04x" % (dev["Vendor"], dev["Device"]))
f.close()
except:
print "Error: bind failed for %s - Cannot write new PCI ID to " \
"driver %s" % (dev_id, driver)
return
# do the bind by writing to /sys
filename = "/sys/bus/pci/drivers/%s/bind" % driver
try:
f = open(filename, "a")
except:
print "Error: bind failed for %s - Cannot open %s" % (dev_id, filename)
if saved_driver is not None: # restore any previous driver
bind_one(dev_id, saved_driver, force)
return
try:
f.write(dev_id)
f.close()
except:
# for some reason, closing dev_id after adding a new PCI ID to new_id
# results in IOError. however, if the device was successfully bound,
# we don't care for any errors and can safely ignore IOError
tmp = get_pci_device_details(dev_id)
if "Driver_str" in tmp and tmp["Driver_str"] == driver:
return
print "Error: bind failed for %s - Cannot bind to driver %s" % (dev_id, driver)
if saved_driver is not None: # restore any previous driver
bind_one(dev_id, saved_driver, force)
return
def unbind_all(dev_list, force=False):
"""Unbind method, takes a list of device locations"""
dev_list = map(dev_id_from_dev_name, dev_list)
for d in dev_list:
unbind_one(d, force)
def bind_all(dev_list, driver, force=False):
"""Unbind method, takes a list of device locations"""
global devices
dev_list = map(dev_id_from_dev_name, dev_list)
for d in dev_list:
bind_one(d, driver, force)
# when binding devices to a generic driver (i.e. one that doesn't have a
# PCI ID table), some devices that are not bound to any other driver could
# be bound even if no one has asked them to. hence, we check the list of
# drivers again, and see if some of the previously-unbound devices were
# erroneously bound.
for d in devices.keys():
# skip devices that were already bound or that we know should be bound
if "Driver_str" in devices[d] or d in dev_list:
continue
# update information about this device
devices[d] = dict(devices[d].items() +
get_pci_device_details(d).items())
# check if updated information indicates that the device was bound
if "Driver_str" in devices[d]:
unbind_one(d, force)
def display_devices(title, dev_list, extra_params = None):
'''Displays to the user the details of a list of devices given in "dev_list"
The "extra_params" parameter, if given, should contain a string with
%()s fields in it for replacement by the named fields in each device's
dictionary.'''
strings = [] # this holds the strings to print. We sort before printing
print "\n%s" % title
print "="*len(title)
if len(dev_list) == 0:
strings.append("<none>")
else:
for dev in dev_list:
if extra_params is not None:
strings.append("%s '%s' %s" % (dev["Slot"], \
dev["Device_str"], extra_params % dev))
else:
strings.append("%s '%s'" % (dev["Slot"], dev["Device_str"]))
# sort before printing, so that the entries appear in PCI order
strings.sort()
print "\n".join(strings) # print one per line
def show_status():
'''Function called when the script is passed the "--status" option. Displays
to the user what devices are bound to the igb_uio driver, the kernel driver
or to no driver'''
global dpdk_drivers
kernel_drv = []
dpdk_drv = []
no_drv = []
# split our list of devices into the three categories above
for d in devices.keys():
if not has_driver(d):
no_drv.append(devices[d])
continue
if devices[d]["Driver_str"] in dpdk_drivers:
dpdk_drv.append(devices[d])
else:
kernel_drv.append(devices[d])
# print each category separately, so we can clearly see what's used by DPDK
display_devices("Network devices using DPDK-compatible driver", dpdk_drv, \
"drv=%(Driver_str)s unused=%(Module_str)s")
display_devices("Network devices using kernel driver", kernel_drv,
"if=%(Interface)s drv=%(Driver_str)s unused=%(Module_str)s %(Active)s")
display_devices("Other network devices", no_drv,\
"unused=%(Module_str)s")
def parse_args():
'''Parses the command-line arguments given by the user and takes the
appropriate action for each'''
global b_flag
global status_flag
global force_flag
global args
if len(sys.argv) <= 1:
usage()
sys.exit(0)
try:
opts, args = getopt.getopt(sys.argv[1:], "b:u",
["help", "usage", "status", "force",
"bind=", "unbind"])
except getopt.GetoptError, error:
print str(error)
print "Run '%s --usage' for further information" % sys.argv[0]
sys.exit(1)
for opt, arg in opts:
if opt == "--help" or opt == "--usage":
usage()
sys.exit(0)
if opt == "--status":
status_flag = True
if opt == "--force":
force_flag = True
if opt == "-b" or opt == "-u" or opt == "--bind" or opt == "--unbind":
if b_flag is not None:
print "Error - Only one bind or unbind may be specified\n"
sys.exit(1)
if opt == "-u" or opt == "--unbind":
b_flag = "none"
else:
b_flag = arg
def do_arg_actions():
'''do the actual action requested by the user'''
global b_flag
global status_flag
global force_flag
global args
if b_flag is None and not status_flag:
print "Error: No action specified for devices. Please give a -b or -u option"
print "Run '%s --usage' for further information" % sys.argv[0]
sys.exit(1)
if b_flag is not None and len(args) == 0:
print "Error: No devices specified."
print "Run '%s --usage' for further information" % sys.argv[0]
sys.exit(1)
if b_flag == "none" or b_flag == "None":
unbind_all(args, force_flag)
elif b_flag is not None:
bind_all(args, b_flag, force_flag)
if status_flag:
if b_flag is not None:
get_nic_details() # refresh if we have changed anything
show_status()
def main():
'''program main function'''
parse_args()
check_modules()
get_nic_details()
do_arg_actions()
if __name__ == "__main__":
main()