numam-dpdk/drivers/net/mlx5/mlx5_mr.c
Michael Baum a294e58c80 net/mlx5: use direct API to find port by device
Using RTE_ETH_FOREACH_DEV_OF loop is not necessary when the driver wants
to find only the first match.

Use rte_eth_find_next_of to find it.

Signed-off-by: Michael Baum <michaelba@mellanox.com>
Acked-by: Matan Azrad <matan@mellanox.com>
2020-06-30 14:52:30 +02:00

555 lines
16 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2016 6WIND S.A.
* Copyright 2016 Mellanox Technologies, Ltd
*/
#ifdef PEDANTIC
#pragma GCC diagnostic ignored "-Wpedantic"
#endif
#include <infiniband/verbs.h>
#ifdef PEDANTIC
#pragma GCC diagnostic error "-Wpedantic"
#endif
#include <rte_eal_memconfig.h>
#include <rte_mempool.h>
#include <rte_malloc.h>
#include <rte_rwlock.h>
#include <rte_bus_pci.h>
#include <mlx5_glue.h>
#include <mlx5_common_mp.h>
#include <mlx5_common_mr.h>
#include "mlx5.h"
#include "mlx5_mr.h"
#include "mlx5_rxtx.h"
struct mr_find_contig_memsegs_data {
uintptr_t addr;
uintptr_t start;
uintptr_t end;
const struct rte_memseg_list *msl;
};
struct mr_update_mp_data {
struct rte_eth_dev *dev;
struct mlx5_mr_ctrl *mr_ctrl;
int ret;
};
/**
* Callback for memory free event. Iterate freed memsegs and check whether it
* belongs to an existing MR. If found, clear the bit from bitmap of MR. As a
* result, the MR would be fragmented. If it becomes empty, the MR will be freed
* later by mlx5_mr_garbage_collect(). Even if this callback is called from a
* secondary process, the garbage collector will be called in primary process
* as the secondary process can't call mlx5_mr_create().
*
* The global cache must be rebuilt if there's any change and this event has to
* be propagated to dataplane threads to flush the local caches.
*
* @param sh
* Pointer to the Ethernet device shared context.
* @param addr
* Address of freed memory.
* @param len
* Size of freed memory.
*/
static void
mlx5_mr_mem_event_free_cb(struct mlx5_dev_ctx_shared *sh,
const void *addr, size_t len)
{
const struct rte_memseg_list *msl;
struct mlx5_mr *mr;
int ms_n;
int i;
int rebuild = 0;
DEBUG("device %s free callback: addr=%p, len=%zu",
sh->ibdev_name, addr, len);
msl = rte_mem_virt2memseg_list(addr);
/* addr and len must be page-aligned. */
MLX5_ASSERT((uintptr_t)addr ==
RTE_ALIGN((uintptr_t)addr, msl->page_sz));
MLX5_ASSERT(len == RTE_ALIGN(len, msl->page_sz));
ms_n = len / msl->page_sz;
rte_rwlock_write_lock(&sh->share_cache.rwlock);
/* Clear bits of freed memsegs from MR. */
for (i = 0; i < ms_n; ++i) {
const struct rte_memseg *ms;
struct mr_cache_entry entry;
uintptr_t start;
int ms_idx;
uint32_t pos;
/* Find MR having this memseg. */
start = (uintptr_t)addr + i * msl->page_sz;
mr = mlx5_mr_lookup_list(&sh->share_cache, &entry, start);
if (mr == NULL)
continue;
MLX5_ASSERT(mr->msl); /* Can't be external memory. */
ms = rte_mem_virt2memseg((void *)start, msl);
MLX5_ASSERT(ms != NULL);
MLX5_ASSERT(msl->page_sz == ms->hugepage_sz);
ms_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
pos = ms_idx - mr->ms_base_idx;
MLX5_ASSERT(rte_bitmap_get(mr->ms_bmp, pos));
MLX5_ASSERT(pos < mr->ms_bmp_n);
DEBUG("device %s MR(%p): clear bitmap[%u] for addr %p",
sh->ibdev_name, (void *)mr, pos, (void *)start);
rte_bitmap_clear(mr->ms_bmp, pos);
if (--mr->ms_n == 0) {
LIST_REMOVE(mr, mr);
LIST_INSERT_HEAD(&sh->share_cache.mr_free_list, mr, mr);
DEBUG("device %s remove MR(%p) from list",
sh->ibdev_name, (void *)mr);
}
/*
* MR is fragmented or will be freed. the global cache must be
* rebuilt.
*/
rebuild = 1;
}
if (rebuild) {
mlx5_mr_rebuild_cache(&sh->share_cache);
/*
* Flush local caches by propagating invalidation across cores.
* rte_smp_wmb() is enough to synchronize this event. If one of
* freed memsegs is seen by other core, that means the memseg
* has been allocated by allocator, which will come after this
* free call. Therefore, this store instruction (incrementing
* generation below) will be guaranteed to be seen by other core
* before the core sees the newly allocated memory.
*/
++sh->share_cache.dev_gen;
DEBUG("broadcasting local cache flush, gen=%d",
sh->share_cache.dev_gen);
rte_smp_wmb();
}
rte_rwlock_write_unlock(&sh->share_cache.rwlock);
}
/**
* Callback for memory event. This can be called from both primary and secondary
* process.
*
* @param event_type
* Memory event type.
* @param addr
* Address of memory.
* @param len
* Size of memory.
*/
void
mlx5_mr_mem_event_cb(enum rte_mem_event event_type, const void *addr,
size_t len, void *arg __rte_unused)
{
struct mlx5_dev_ctx_shared *sh;
struct mlx5_dev_list *dev_list = &mlx5_shared_data->mem_event_cb_list;
/* Must be called from the primary process. */
MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY);
switch (event_type) {
case RTE_MEM_EVENT_FREE:
rte_rwlock_write_lock(&mlx5_shared_data->mem_event_rwlock);
/* Iterate all the existing mlx5 devices. */
LIST_FOREACH(sh, dev_list, mem_event_cb)
mlx5_mr_mem_event_free_cb(sh, addr, len);
rte_rwlock_write_unlock(&mlx5_shared_data->mem_event_rwlock);
break;
case RTE_MEM_EVENT_ALLOC:
default:
break;
}
}
/**
* Bottom-half of LKey search on Rx.
*
* @param rxq
* Pointer to Rx queue structure.
* @param addr
* Search key.
*
* @return
* Searched LKey on success, UINT32_MAX on no match.
*/
uint32_t
mlx5_rx_addr2mr_bh(struct mlx5_rxq_data *rxq, uintptr_t addr)
{
struct mlx5_rxq_ctrl *rxq_ctrl =
container_of(rxq, struct mlx5_rxq_ctrl, rxq);
struct mlx5_mr_ctrl *mr_ctrl = &rxq->mr_ctrl;
struct mlx5_priv *priv = rxq_ctrl->priv;
return mlx5_mr_addr2mr_bh(priv->sh->pd, &priv->mp_id,
&priv->sh->share_cache, mr_ctrl, addr,
priv->config.mr_ext_memseg_en);
}
/**
* Bottom-half of LKey search on Tx.
*
* @param txq
* Pointer to Tx queue structure.
* @param addr
* Search key.
*
* @return
* Searched LKey on success, UINT32_MAX on no match.
*/
static uint32_t
mlx5_tx_addr2mr_bh(struct mlx5_txq_data *txq, uintptr_t addr)
{
struct mlx5_txq_ctrl *txq_ctrl =
container_of(txq, struct mlx5_txq_ctrl, txq);
struct mlx5_mr_ctrl *mr_ctrl = &txq->mr_ctrl;
struct mlx5_priv *priv = txq_ctrl->priv;
return mlx5_mr_addr2mr_bh(priv->sh->pd, &priv->mp_id,
&priv->sh->share_cache, mr_ctrl, addr,
priv->config.mr_ext_memseg_en);
}
/**
* Bottom-half of LKey search on Tx. If it can't be searched in the memseg
* list, register the mempool of the mbuf as externally allocated memory.
*
* @param txq
* Pointer to Tx queue structure.
* @param mb
* Pointer to mbuf.
*
* @return
* Searched LKey on success, UINT32_MAX on no match.
*/
uint32_t
mlx5_tx_mb2mr_bh(struct mlx5_txq_data *txq, struct rte_mbuf *mb)
{
uintptr_t addr = (uintptr_t)mb->buf_addr;
uint32_t lkey;
lkey = mlx5_tx_addr2mr_bh(txq, addr);
if (lkey == UINT32_MAX && rte_errno == ENXIO) {
/* Mempool may have externally allocated memory. */
return mlx5_tx_update_ext_mp(txq, addr, mlx5_mb2mp(mb));
}
return lkey;
}
/**
* Called during rte_mempool_mem_iter() by mlx5_mr_update_ext_mp().
*
* Externally allocated chunk is registered and a MR is created for the chunk.
* The MR object is added to the global list. If memseg list of a MR object
* (mr->msl) is null, the MR object can be regarded as externally allocated
* memory.
*
* Once external memory is registered, it should be static. If the memory is
* freed and the virtual address range has different physical memory mapped
* again, it may cause crash on device due to the wrong translation entry. PMD
* can't track the free event of the external memory for now.
*/
static void
mlx5_mr_update_ext_mp_cb(struct rte_mempool *mp, void *opaque,
struct rte_mempool_memhdr *memhdr,
unsigned mem_idx __rte_unused)
{
struct mr_update_mp_data *data = opaque;
struct rte_eth_dev *dev = data->dev;
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_dev_ctx_shared *sh = priv->sh;
struct mlx5_mr_ctrl *mr_ctrl = data->mr_ctrl;
struct mlx5_mr *mr = NULL;
uintptr_t addr = (uintptr_t)memhdr->addr;
size_t len = memhdr->len;
struct mr_cache_entry entry;
uint32_t lkey;
MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY);
/* If already registered, it should return. */
rte_rwlock_read_lock(&sh->share_cache.rwlock);
lkey = mlx5_mr_lookup_cache(&sh->share_cache, &entry, addr);
rte_rwlock_read_unlock(&sh->share_cache.rwlock);
if (lkey != UINT32_MAX)
return;
DRV_LOG(DEBUG, "port %u register MR for chunk #%d of mempool (%s)",
dev->data->port_id, mem_idx, mp->name);
mr = mlx5_create_mr_ext(sh->pd, addr, len, mp->socket_id,
sh->share_cache.reg_mr_cb);
if (!mr) {
DRV_LOG(WARNING,
"port %u unable to allocate a new MR of"
" mempool (%s).",
dev->data->port_id, mp->name);
data->ret = -1;
return;
}
rte_rwlock_write_lock(&sh->share_cache.rwlock);
LIST_INSERT_HEAD(&sh->share_cache.mr_list, mr, mr);
/* Insert to the global cache table. */
mlx5_mr_insert_cache(&sh->share_cache, mr);
rte_rwlock_write_unlock(&sh->share_cache.rwlock);
/* Insert to the local cache table */
mlx5_mr_addr2mr_bh(sh->pd, &priv->mp_id, &sh->share_cache,
mr_ctrl, addr, priv->config.mr_ext_memseg_en);
}
/**
* Finds the first ethdev that match the pci device.
* The existence of multiple ethdev per pci device is only with representors.
* On such case, it is enough to get only one of the ports as they all share
* the same ibv context.
*
* @param pdev
* Pointer to the PCI device.
*
* @return
* Pointer to the ethdev if found, NULL otherwise.
*/
static struct rte_eth_dev *
pci_dev_to_eth_dev(struct rte_pci_device *pdev)
{
uint16_t port_id;
port_id = rte_eth_find_next_of(0, &pdev->device);
if (port_id == RTE_MAX_ETHPORTS)
return NULL;
return &rte_eth_devices[port_id];
}
/**
* DPDK callback to DMA map external memory to a PCI device.
*
* @param pdev
* Pointer to the PCI device.
* @param addr
* Starting virtual address of memory to be mapped.
* @param iova
* Starting IOVA address of memory to be mapped.
* @param len
* Length of memory segment being mapped.
*
* @return
* 0 on success, negative value on error.
*/
int
mlx5_dma_map(struct rte_pci_device *pdev, void *addr,
uint64_t iova __rte_unused, size_t len)
{
struct rte_eth_dev *dev;
struct mlx5_mr *mr;
struct mlx5_priv *priv;
struct mlx5_dev_ctx_shared *sh;
dev = pci_dev_to_eth_dev(pdev);
if (!dev) {
DRV_LOG(WARNING, "unable to find matching ethdev "
"to PCI device %p", (void *)pdev);
rte_errno = ENODEV;
return -1;
}
priv = dev->data->dev_private;
sh = priv->sh;
mr = mlx5_create_mr_ext(sh->pd, (uintptr_t)addr, len, SOCKET_ID_ANY,
sh->share_cache.reg_mr_cb);
if (!mr) {
DRV_LOG(WARNING,
"port %u unable to dma map", dev->data->port_id);
rte_errno = EINVAL;
return -1;
}
rte_rwlock_write_lock(&sh->share_cache.rwlock);
LIST_INSERT_HEAD(&sh->share_cache.mr_list, mr, mr);
/* Insert to the global cache table. */
mlx5_mr_insert_cache(&sh->share_cache, mr);
rte_rwlock_write_unlock(&sh->share_cache.rwlock);
return 0;
}
/**
* DPDK callback to DMA unmap external memory to a PCI device.
*
* @param pdev
* Pointer to the PCI device.
* @param addr
* Starting virtual address of memory to be unmapped.
* @param iova
* Starting IOVA address of memory to be unmapped.
* @param len
* Length of memory segment being unmapped.
*
* @return
* 0 on success, negative value on error.
*/
int
mlx5_dma_unmap(struct rte_pci_device *pdev, void *addr,
uint64_t iova __rte_unused, size_t len __rte_unused)
{
struct rte_eth_dev *dev;
struct mlx5_priv *priv;
struct mlx5_dev_ctx_shared *sh;
struct mlx5_mr *mr;
struct mr_cache_entry entry;
dev = pci_dev_to_eth_dev(pdev);
if (!dev) {
DRV_LOG(WARNING, "unable to find matching ethdev "
"to PCI device %p", (void *)pdev);
rte_errno = ENODEV;
return -1;
}
priv = dev->data->dev_private;
sh = priv->sh;
rte_rwlock_read_lock(&sh->share_cache.rwlock);
mr = mlx5_mr_lookup_list(&sh->share_cache, &entry, (uintptr_t)addr);
if (!mr) {
rte_rwlock_read_unlock(&sh->share_cache.rwlock);
DRV_LOG(WARNING, "address 0x%" PRIxPTR " wasn't registered "
"to PCI device %p", (uintptr_t)addr,
(void *)pdev);
rte_errno = EINVAL;
return -1;
}
LIST_REMOVE(mr, mr);
LIST_INSERT_HEAD(&sh->share_cache.mr_free_list, mr, mr);
DEBUG("port %u remove MR(%p) from list", dev->data->port_id,
(void *)mr);
mlx5_mr_rebuild_cache(&sh->share_cache);
/*
* Flush local caches by propagating invalidation across cores.
* rte_smp_wmb() is enough to synchronize this event. If one of
* freed memsegs is seen by other core, that means the memseg
* has been allocated by allocator, which will come after this
* free call. Therefore, this store instruction (incrementing
* generation below) will be guaranteed to be seen by other core
* before the core sees the newly allocated memory.
*/
++sh->share_cache.dev_gen;
DEBUG("broadcasting local cache flush, gen=%d",
sh->share_cache.dev_gen);
rte_smp_wmb();
rte_rwlock_read_unlock(&sh->share_cache.rwlock);
return 0;
}
/**
* Register MR for entire memory chunks in a Mempool having externally allocated
* memory and fill in local cache.
*
* @param dev
* Pointer to Ethernet device.
* @param mr_ctrl
* Pointer to per-queue MR control structure.
* @param mp
* Pointer to registering Mempool.
*
* @return
* 0 on success, -1 on failure.
*/
static uint32_t
mlx5_mr_update_ext_mp(struct rte_eth_dev *dev, struct mlx5_mr_ctrl *mr_ctrl,
struct rte_mempool *mp)
{
struct mr_update_mp_data data = {
.dev = dev,
.mr_ctrl = mr_ctrl,
.ret = 0,
};
rte_mempool_mem_iter(mp, mlx5_mr_update_ext_mp_cb, &data);
return data.ret;
}
/**
* Register MR entire memory chunks in a Mempool having externally allocated
* memory and search LKey of the address to return.
*
* @param dev
* Pointer to Ethernet device.
* @param addr
* Search key.
* @param mp
* Pointer to registering Mempool where addr belongs.
*
* @return
* LKey for address on success, UINT32_MAX on failure.
*/
uint32_t
mlx5_tx_update_ext_mp(struct mlx5_txq_data *txq, uintptr_t addr,
struct rte_mempool *mp)
{
struct mlx5_txq_ctrl *txq_ctrl =
container_of(txq, struct mlx5_txq_ctrl, txq);
struct mlx5_mr_ctrl *mr_ctrl = &txq->mr_ctrl;
struct mlx5_priv *priv = txq_ctrl->priv;
if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
DRV_LOG(WARNING,
"port %u using address (%p) from unregistered mempool"
" having externally allocated memory"
" in secondary process, please create mempool"
" prior to rte_eth_dev_start()",
PORT_ID(priv), (void *)addr);
return UINT32_MAX;
}
mlx5_mr_update_ext_mp(ETH_DEV(priv), mr_ctrl, mp);
return mlx5_tx_addr2mr_bh(txq, addr);
}
/* Called during rte_mempool_mem_iter() by mlx5_mr_update_mp(). */
static void
mlx5_mr_update_mp_cb(struct rte_mempool *mp __rte_unused, void *opaque,
struct rte_mempool_memhdr *memhdr,
unsigned mem_idx __rte_unused)
{
struct mr_update_mp_data *data = opaque;
struct rte_eth_dev *dev = data->dev;
struct mlx5_priv *priv = dev->data->dev_private;
uint32_t lkey;
/* Stop iteration if failed in the previous walk. */
if (data->ret < 0)
return;
/* Register address of the chunk and update local caches. */
lkey = mlx5_mr_addr2mr_bh(priv->sh->pd, &priv->mp_id,
&priv->sh->share_cache, data->mr_ctrl,
(uintptr_t)memhdr->addr,
priv->config.mr_ext_memseg_en);
if (lkey == UINT32_MAX)
data->ret = -1;
}
/**
* Register entire memory chunks in a Mempool.
*
* @param dev
* Pointer to Ethernet device.
* @param mr_ctrl
* Pointer to per-queue MR control structure.
* @param mp
* Pointer to registering Mempool.
*
* @return
* 0 on success, -1 on failure.
*/
int
mlx5_mr_update_mp(struct rte_eth_dev *dev, struct mlx5_mr_ctrl *mr_ctrl,
struct rte_mempool *mp)
{
struct mr_update_mp_data data = {
.dev = dev,
.mr_ctrl = mr_ctrl,
.ret = 0,
};
rte_mempool_mem_iter(mp, mlx5_mr_update_mp_cb, &data);
if (data.ret < 0 && rte_errno == ENXIO) {
/* Mempool may have externally allocated memory. */
return mlx5_mr_update_ext_mp(dev, mr_ctrl, mp);
}
return data.ret;
}