numam-dpdk/app/test-bbdev/test_bbdev_perf.c
Srikanth Yalavarthi a62ac101fe app/bbdev: use helper function to set IOVA address
Use helper function rte_mbuf_iova_set to set IOVA address
to fix compilation failures.

Below error was observed:

app/test-bbdev/test_bbdev_perf.c: In function ‘init_op_data_objs’:
app/test-bbdev/test_bbdev_perf.c:1145:11: error:
‘struct rte_mbuf’ has no member named ‘buf_iova’
 1145 |     m_head->buf_iova = rte_malloc_virt2iova(data);
      |           ^~

Fixes: 0acdb98667 ("test/bbdev: add FFT operations cases")

Signed-off-by: Srikanth Yalavarthi <syalavarthi@marvell.com>
Acked-by: Jerin Jacob <jerinj@marvell.com>
2022-11-03 08:03:24 +01:00

5655 lines
171 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2017 Intel Corporation
*/
#include <stdio.h>
#include <stdlib.h>
#include <inttypes.h>
#include <math.h>
#include <rte_eal.h>
#include <rte_common.h>
#include <rte_dev.h>
#include <rte_launch.h>
#include <rte_bbdev.h>
#include <rte_cycles.h>
#include <rte_lcore.h>
#include <rte_malloc.h>
#include <rte_random.h>
#include <rte_hexdump.h>
#include <rte_interrupts.h>
#include "main.h"
#include "test_bbdev_vector.h"
#define GET_SOCKET(socket_id) (((socket_id) == SOCKET_ID_ANY) ? 0 : (socket_id))
#define MAX_QUEUES RTE_MAX_LCORE
#define TEST_REPETITIONS 100
#define WAIT_OFFLOAD_US 1000
#ifdef RTE_BASEBAND_FPGA_LTE_FEC
#include <fpga_lte_fec.h>
#define FPGA_LTE_PF_DRIVER_NAME ("intel_fpga_lte_fec_pf")
#define FPGA_LTE_VF_DRIVER_NAME ("intel_fpga_lte_fec_vf")
#define VF_UL_4G_QUEUE_VALUE 4
#define VF_DL_4G_QUEUE_VALUE 4
#define UL_4G_BANDWIDTH 3
#define DL_4G_BANDWIDTH 3
#define UL_4G_LOAD_BALANCE 128
#define DL_4G_LOAD_BALANCE 128
#define FLR_4G_TIMEOUT 610
#endif
#ifdef RTE_BASEBAND_FPGA_5GNR_FEC
#include <rte_pmd_fpga_5gnr_fec.h>
#define FPGA_5GNR_PF_DRIVER_NAME ("intel_fpga_5gnr_fec_pf")
#define FPGA_5GNR_VF_DRIVER_NAME ("intel_fpga_5gnr_fec_vf")
#define VF_UL_5G_QUEUE_VALUE 4
#define VF_DL_5G_QUEUE_VALUE 4
#define UL_5G_BANDWIDTH 3
#define DL_5G_BANDWIDTH 3
#define UL_5G_LOAD_BALANCE 128
#define DL_5G_LOAD_BALANCE 128
#endif
#ifdef RTE_BASEBAND_ACC
#include <rte_acc_cfg.h>
#define ACC100PF_DRIVER_NAME ("intel_acc100_pf")
#define ACC100VF_DRIVER_NAME ("intel_acc100_vf")
#define ACC100_QMGR_NUM_AQS 16
#define ACC100_QMGR_NUM_QGS 2
#define ACC100_QMGR_AQ_DEPTH 5
#define ACC100_QMGR_INVALID_IDX -1
#define ACC100_QMGR_RR 1
#define ACC100_QOS_GBR 0
#define ACC200PF_DRIVER_NAME ("intel_acc200_pf")
#define ACC200VF_DRIVER_NAME ("intel_acc200_vf")
#define ACC200_QMGR_NUM_AQS 16
#define ACC200_QMGR_NUM_QGS 2
#define ACC200_QMGR_AQ_DEPTH 5
#define ACC200_QMGR_INVALID_IDX -1
#define ACC200_QMGR_RR 1
#define ACC200_QOS_GBR 0
#endif
#define OPS_CACHE_SIZE 256U
#define OPS_POOL_SIZE_MIN 511U /* 0.5K per queue */
#define SYNC_WAIT 0
#define SYNC_START 1
#define INVALID_OPAQUE -1
#define INVALID_QUEUE_ID -1
/* Increment for next code block in external HARQ memory */
#define HARQ_INCR 32768
/* Headroom for filler LLRs insertion in HARQ buffer */
#define FILLER_HEADROOM 1024
/* Constants from K0 computation from 3GPP 38.212 Table 5.4.2.1-2 */
#define N_ZC_1 66 /* N = 66 Zc for BG 1 */
#define N_ZC_2 50 /* N = 50 Zc for BG 2 */
#define K0_1_1 17 /* K0 fraction numerator for rv 1 and BG 1 */
#define K0_1_2 13 /* K0 fraction numerator for rv 1 and BG 2 */
#define K0_2_1 33 /* K0 fraction numerator for rv 2 and BG 1 */
#define K0_2_2 25 /* K0 fraction numerator for rv 2 and BG 2 */
#define K0_3_1 56 /* K0 fraction numerator for rv 3 and BG 1 */
#define K0_3_2 43 /* K0 fraction numerator for rv 3 and BG 2 */
static struct test_bbdev_vector test_vector;
/* Switch between PMD and Interrupt for throughput TC */
static bool intr_enabled;
/* LLR arithmetic representation for numerical conversion */
static int ldpc_llr_decimals;
static int ldpc_llr_size;
/* Keep track of the LDPC decoder device capability flag */
static uint32_t ldpc_cap_flags;
/* Represents tested active devices */
static struct active_device {
const char *driver_name;
uint8_t dev_id;
uint16_t supported_ops;
uint16_t queue_ids[MAX_QUEUES];
uint16_t nb_queues;
struct rte_mempool *ops_mempool;
struct rte_mempool *in_mbuf_pool;
struct rte_mempool *hard_out_mbuf_pool;
struct rte_mempool *soft_out_mbuf_pool;
struct rte_mempool *harq_in_mbuf_pool;
struct rte_mempool *harq_out_mbuf_pool;
} active_devs[RTE_BBDEV_MAX_DEVS];
static uint8_t nb_active_devs;
/* Data buffers used by BBDEV ops */
struct test_buffers {
struct rte_bbdev_op_data *inputs;
struct rte_bbdev_op_data *hard_outputs;
struct rte_bbdev_op_data *soft_outputs;
struct rte_bbdev_op_data *harq_inputs;
struct rte_bbdev_op_data *harq_outputs;
};
/* Operation parameters specific for given test case */
struct test_op_params {
struct rte_mempool *mp;
struct rte_bbdev_dec_op *ref_dec_op;
struct rte_bbdev_enc_op *ref_enc_op;
struct rte_bbdev_fft_op *ref_fft_op;
uint16_t burst_sz;
uint16_t num_to_process;
uint16_t num_lcores;
int vector_mask;
uint16_t sync;
struct test_buffers q_bufs[RTE_MAX_NUMA_NODES][MAX_QUEUES];
};
/* Contains per lcore params */
struct thread_params {
uint8_t dev_id;
uint16_t queue_id;
uint32_t lcore_id;
uint64_t start_time;
double ops_per_sec;
double mbps;
uint8_t iter_count;
double iter_average;
double bler;
uint16_t nb_dequeued;
int16_t processing_status;
uint16_t burst_sz;
struct test_op_params *op_params;
struct rte_bbdev_dec_op *dec_ops[MAX_BURST];
struct rte_bbdev_enc_op *enc_ops[MAX_BURST];
struct rte_bbdev_fft_op *fft_ops[MAX_BURST];
};
#ifdef RTE_BBDEV_OFFLOAD_COST
/* Stores time statistics */
struct test_time_stats {
/* Stores software enqueue total working time */
uint64_t enq_sw_total_time;
/* Stores minimum value of software enqueue working time */
uint64_t enq_sw_min_time;
/* Stores maximum value of software enqueue working time */
uint64_t enq_sw_max_time;
/* Stores turbo enqueue total working time */
uint64_t enq_acc_total_time;
/* Stores minimum value of accelerator enqueue working time */
uint64_t enq_acc_min_time;
/* Stores maximum value of accelerator enqueue working time */
uint64_t enq_acc_max_time;
/* Stores dequeue total working time */
uint64_t deq_total_time;
/* Stores minimum value of dequeue working time */
uint64_t deq_min_time;
/* Stores maximum value of dequeue working time */
uint64_t deq_max_time;
};
#endif
typedef int (test_case_function)(struct active_device *ad,
struct test_op_params *op_params);
static inline void
mbuf_reset(struct rte_mbuf *m)
{
m->pkt_len = 0;
do {
m->data_len = 0;
m = m->next;
} while (m != NULL);
}
/* Read flag value 0/1 from bitmap */
static inline bool
check_bit(uint32_t bitmap, uint32_t bitmask)
{
return bitmap & bitmask;
}
static inline void
set_avail_op(struct active_device *ad, enum rte_bbdev_op_type op_type)
{
ad->supported_ops |= (1 << op_type);
}
static inline bool
is_avail_op(struct active_device *ad, enum rte_bbdev_op_type op_type)
{
return ad->supported_ops & (1 << op_type);
}
static inline bool
flags_match(uint32_t flags_req, uint32_t flags_present)
{
return (flags_req & flags_present) == flags_req;
}
static void
clear_soft_out_cap(uint32_t *op_flags)
{
*op_flags &= ~RTE_BBDEV_TURBO_SOFT_OUTPUT;
*op_flags &= ~RTE_BBDEV_TURBO_POS_LLR_1_BIT_SOFT_OUT;
*op_flags &= ~RTE_BBDEV_TURBO_NEG_LLR_1_BIT_SOFT_OUT;
}
/* This API is to convert all the test vector op data entries
* to big endian format. It is used when the device supports
* the input in the big endian format.
*/
static inline void
convert_op_data_to_be(void)
{
struct op_data_entries *op;
enum op_data_type type;
uint8_t nb_segs, *rem_data, temp;
uint32_t *data, len;
int complete, rem, i, j;
for (type = DATA_INPUT; type < DATA_NUM_TYPES; ++type) {
nb_segs = test_vector.entries[type].nb_segments;
op = &test_vector.entries[type];
/* Invert byte endianness for all the segments */
for (i = 0; i < nb_segs; ++i) {
len = op->segments[i].length;
data = op->segments[i].addr;
/* Swap complete u32 bytes */
complete = len / 4;
for (j = 0; j < complete; j++)
data[j] = rte_bswap32(data[j]);
/* Swap any remaining bytes */
rem = len % 4;
rem_data = (uint8_t *)&data[j];
for (j = 0; j < rem/2; j++) {
temp = rem_data[j];
rem_data[j] = rem_data[rem - j - 1];
rem_data[rem - j - 1] = temp;
}
}
}
}
static int
check_dev_cap(const struct rte_bbdev_info *dev_info)
{
unsigned int i;
unsigned int nb_inputs, nb_soft_outputs, nb_hard_outputs,
nb_harq_inputs, nb_harq_outputs;
const struct rte_bbdev_op_cap *op_cap = dev_info->drv.capabilities;
uint8_t dev_data_endianness = dev_info->drv.data_endianness;
nb_inputs = test_vector.entries[DATA_INPUT].nb_segments;
nb_soft_outputs = test_vector.entries[DATA_SOFT_OUTPUT].nb_segments;
nb_hard_outputs = test_vector.entries[DATA_HARD_OUTPUT].nb_segments;
nb_harq_inputs = test_vector.entries[DATA_HARQ_INPUT].nb_segments;
nb_harq_outputs = test_vector.entries[DATA_HARQ_OUTPUT].nb_segments;
for (i = 0; op_cap->type != RTE_BBDEV_OP_NONE; ++i, ++op_cap) {
if (op_cap->type != test_vector.op_type)
continue;
if (dev_data_endianness == RTE_BIG_ENDIAN)
convert_op_data_to_be();
if (op_cap->type == RTE_BBDEV_OP_TURBO_DEC) {
const struct rte_bbdev_op_cap_turbo_dec *cap =
&op_cap->cap.turbo_dec;
/* Ignore lack of soft output capability, just skip
* checking if soft output is valid.
*/
if ((test_vector.turbo_dec.op_flags &
RTE_BBDEV_TURBO_SOFT_OUTPUT) &&
!(cap->capability_flags &
RTE_BBDEV_TURBO_SOFT_OUTPUT)) {
printf(
"INFO: Device \"%s\" does not support soft output - soft output flags will be ignored.\n",
dev_info->dev_name);
clear_soft_out_cap(
&test_vector.turbo_dec.op_flags);
}
if (!flags_match(test_vector.turbo_dec.op_flags,
cap->capability_flags))
return TEST_FAILED;
if (nb_inputs > cap->num_buffers_src) {
printf("Too many inputs defined: %u, max: %u\n",
nb_inputs, cap->num_buffers_src);
return TEST_FAILED;
}
if (nb_soft_outputs > cap->num_buffers_soft_out &&
(test_vector.turbo_dec.op_flags &
RTE_BBDEV_TURBO_SOFT_OUTPUT)) {
printf(
"Too many soft outputs defined: %u, max: %u\n",
nb_soft_outputs,
cap->num_buffers_soft_out);
return TEST_FAILED;
}
if (nb_hard_outputs > cap->num_buffers_hard_out) {
printf(
"Too many hard outputs defined: %u, max: %u\n",
nb_hard_outputs,
cap->num_buffers_hard_out);
return TEST_FAILED;
}
if (intr_enabled && !(cap->capability_flags &
RTE_BBDEV_TURBO_DEC_INTERRUPTS)) {
printf(
"Dequeue interrupts are not supported!\n");
return TEST_FAILED;
}
return TEST_SUCCESS;
} else if (op_cap->type == RTE_BBDEV_OP_TURBO_ENC) {
const struct rte_bbdev_op_cap_turbo_enc *cap =
&op_cap->cap.turbo_enc;
if (!flags_match(test_vector.turbo_enc.op_flags,
cap->capability_flags))
return TEST_FAILED;
if (nb_inputs > cap->num_buffers_src) {
printf("Too many inputs defined: %u, max: %u\n",
nb_inputs, cap->num_buffers_src);
return TEST_FAILED;
}
if (nb_hard_outputs > cap->num_buffers_dst) {
printf(
"Too many hard outputs defined: %u, max: %u\n",
nb_hard_outputs, cap->num_buffers_dst);
return TEST_FAILED;
}
if (intr_enabled && !(cap->capability_flags &
RTE_BBDEV_TURBO_ENC_INTERRUPTS)) {
printf(
"Dequeue interrupts are not supported!\n");
return TEST_FAILED;
}
return TEST_SUCCESS;
} else if (op_cap->type == RTE_BBDEV_OP_LDPC_ENC) {
const struct rte_bbdev_op_cap_ldpc_enc *cap =
&op_cap->cap.ldpc_enc;
if (!flags_match(test_vector.ldpc_enc.op_flags,
cap->capability_flags)){
printf("Flag Mismatch\n");
return TEST_FAILED;
}
if (nb_inputs > cap->num_buffers_src) {
printf("Too many inputs defined: %u, max: %u\n",
nb_inputs, cap->num_buffers_src);
return TEST_FAILED;
}
if (nb_hard_outputs > cap->num_buffers_dst) {
printf(
"Too many hard outputs defined: %u, max: %u\n",
nb_hard_outputs, cap->num_buffers_dst);
return TEST_FAILED;
}
if (intr_enabled && !(cap->capability_flags &
RTE_BBDEV_LDPC_ENC_INTERRUPTS)) {
printf(
"Dequeue interrupts are not supported!\n");
return TEST_FAILED;
}
return TEST_SUCCESS;
} else if (op_cap->type == RTE_BBDEV_OP_LDPC_DEC) {
const struct rte_bbdev_op_cap_ldpc_dec *cap =
&op_cap->cap.ldpc_dec;
if (!flags_match(test_vector.ldpc_dec.op_flags,
cap->capability_flags)){
printf("Flag Mismatch\n");
return TEST_FAILED;
}
if (nb_inputs > cap->num_buffers_src) {
printf("Too many inputs defined: %u, max: %u\n",
nb_inputs, cap->num_buffers_src);
return TEST_FAILED;
}
if (nb_hard_outputs > cap->num_buffers_hard_out) {
printf(
"Too many hard outputs defined: %u, max: %u\n",
nb_hard_outputs,
cap->num_buffers_hard_out);
return TEST_FAILED;
}
if (nb_harq_inputs > cap->num_buffers_hard_out) {
printf(
"Too many HARQ inputs defined: %u, max: %u\n",
nb_harq_inputs,
cap->num_buffers_hard_out);
return TEST_FAILED;
}
if (nb_harq_outputs > cap->num_buffers_hard_out) {
printf(
"Too many HARQ outputs defined: %u, max: %u\n",
nb_harq_outputs,
cap->num_buffers_hard_out);
return TEST_FAILED;
}
if (intr_enabled && !(cap->capability_flags &
RTE_BBDEV_LDPC_DEC_INTERRUPTS)) {
printf(
"Dequeue interrupts are not supported!\n");
return TEST_FAILED;
}
if (intr_enabled && (test_vector.ldpc_dec.op_flags &
(RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE |
RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE |
RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK
))) {
printf("Skip loop-back with interrupt\n");
return TEST_FAILED;
}
return TEST_SUCCESS;
} else if (op_cap->type == RTE_BBDEV_OP_FFT) {
const struct rte_bbdev_op_cap_fft *cap = &op_cap->cap.fft;
if (!flags_match(test_vector.fft.op_flags, cap->capability_flags)) {
printf("Flag Mismatch\n");
return TEST_FAILED;
}
if (nb_inputs > cap->num_buffers_src) {
printf("Too many inputs defined: %u, max: %u\n",
nb_inputs, cap->num_buffers_src);
return TEST_FAILED;
}
return TEST_SUCCESS;
}
}
if ((i == 0) && (test_vector.op_type == RTE_BBDEV_OP_NONE))
return TEST_SUCCESS; /* Special case for NULL device */
return TEST_FAILED;
}
/* calculates optimal mempool size not smaller than the val */
static unsigned int
optimal_mempool_size(unsigned int val)
{
return rte_align32pow2(val + 1) - 1;
}
/* allocates mbuf mempool for inputs and outputs */
static struct rte_mempool *
create_mbuf_pool(struct op_data_entries *entries, uint8_t dev_id,
int socket_id, unsigned int mbuf_pool_size,
const char *op_type_str)
{
unsigned int i;
uint32_t max_seg_sz = 0;
char pool_name[RTE_MEMPOOL_NAMESIZE];
/* find max input segment size */
for (i = 0; i < entries->nb_segments; ++i)
if (entries->segments[i].length > max_seg_sz)
max_seg_sz = entries->segments[i].length;
snprintf(pool_name, sizeof(pool_name), "%s_pool_%u", op_type_str,
dev_id);
return rte_pktmbuf_pool_create(pool_name, mbuf_pool_size, 0, 0,
RTE_MAX(max_seg_sz + RTE_PKTMBUF_HEADROOM
+ FILLER_HEADROOM,
(unsigned int)RTE_MBUF_DEFAULT_BUF_SIZE), socket_id);
}
static int
create_mempools(struct active_device *ad, int socket_id,
enum rte_bbdev_op_type org_op_type, uint16_t num_ops)
{
struct rte_mempool *mp;
unsigned int ops_pool_size, mbuf_pool_size = 0;
char pool_name[RTE_MEMPOOL_NAMESIZE];
const char *op_type_str;
enum rte_bbdev_op_type op_type = org_op_type;
struct op_data_entries *in = &test_vector.entries[DATA_INPUT];
struct op_data_entries *hard_out =
&test_vector.entries[DATA_HARD_OUTPUT];
struct op_data_entries *soft_out =
&test_vector.entries[DATA_SOFT_OUTPUT];
struct op_data_entries *harq_in =
&test_vector.entries[DATA_HARQ_INPUT];
struct op_data_entries *harq_out =
&test_vector.entries[DATA_HARQ_OUTPUT];
/* allocate ops mempool */
ops_pool_size = optimal_mempool_size(RTE_MAX(
/* Ops used plus 1 reference op */
RTE_MAX((unsigned int)(ad->nb_queues * num_ops + 1),
/* Minimal cache size plus 1 reference op */
(unsigned int)(1.5 * rte_lcore_count() *
OPS_CACHE_SIZE + 1)),
OPS_POOL_SIZE_MIN));
if (org_op_type == RTE_BBDEV_OP_NONE)
op_type = RTE_BBDEV_OP_TURBO_ENC;
op_type_str = rte_bbdev_op_type_str(op_type);
TEST_ASSERT_NOT_NULL(op_type_str, "Invalid op type: %u", op_type);
snprintf(pool_name, sizeof(pool_name), "%s_pool_%u", op_type_str,
ad->dev_id);
mp = rte_bbdev_op_pool_create(pool_name, op_type,
ops_pool_size, OPS_CACHE_SIZE, socket_id);
TEST_ASSERT_NOT_NULL(mp,
"ERROR Failed to create %u items ops pool for dev %u on socket %u.",
ops_pool_size,
ad->dev_id,
socket_id);
ad->ops_mempool = mp;
/* Do not create inputs and outputs mbufs for BaseBand Null Device */
if (org_op_type == RTE_BBDEV_OP_NONE)
return TEST_SUCCESS;
/* Inputs */
if (in->nb_segments > 0) {
mbuf_pool_size = optimal_mempool_size(ops_pool_size *
in->nb_segments);
mp = create_mbuf_pool(in, ad->dev_id, socket_id,
mbuf_pool_size, "in");
TEST_ASSERT_NOT_NULL(mp,
"ERROR Failed to create %u items input pktmbuf pool for dev %u on socket %u.",
mbuf_pool_size,
ad->dev_id,
socket_id);
ad->in_mbuf_pool = mp;
}
/* Hard outputs */
if (hard_out->nb_segments > 0) {
mbuf_pool_size = optimal_mempool_size(ops_pool_size *
hard_out->nb_segments);
mp = create_mbuf_pool(hard_out, ad->dev_id, socket_id,
mbuf_pool_size,
"hard_out");
TEST_ASSERT_NOT_NULL(mp,
"ERROR Failed to create %u items hard output pktmbuf pool for dev %u on socket %u.",
mbuf_pool_size,
ad->dev_id,
socket_id);
ad->hard_out_mbuf_pool = mp;
}
/* Soft outputs */
if (soft_out->nb_segments > 0) {
mbuf_pool_size = optimal_mempool_size(ops_pool_size *
soft_out->nb_segments);
mp = create_mbuf_pool(soft_out, ad->dev_id, socket_id,
mbuf_pool_size,
"soft_out");
TEST_ASSERT_NOT_NULL(mp,
"ERROR Failed to create %uB soft output pktmbuf pool for dev %u on socket %u.",
mbuf_pool_size,
ad->dev_id,
socket_id);
ad->soft_out_mbuf_pool = mp;
}
/* HARQ inputs */
if (harq_in->nb_segments > 0) {
mbuf_pool_size = optimal_mempool_size(ops_pool_size *
harq_in->nb_segments);
mp = create_mbuf_pool(harq_in, ad->dev_id, socket_id,
mbuf_pool_size,
"harq_in");
TEST_ASSERT_NOT_NULL(mp,
"ERROR Failed to create %uB harq input pktmbuf pool for dev %u on socket %u.",
mbuf_pool_size,
ad->dev_id,
socket_id);
ad->harq_in_mbuf_pool = mp;
}
/* HARQ outputs */
if (harq_out->nb_segments > 0) {
mbuf_pool_size = optimal_mempool_size(ops_pool_size *
harq_out->nb_segments);
mp = create_mbuf_pool(harq_out, ad->dev_id, socket_id,
mbuf_pool_size,
"harq_out");
TEST_ASSERT_NOT_NULL(mp,
"ERROR Failed to create %uB harq output pktmbuf pool for dev %u on socket %u.",
mbuf_pool_size,
ad->dev_id,
socket_id);
ad->harq_out_mbuf_pool = mp;
}
return TEST_SUCCESS;
}
static int
add_bbdev_dev(uint8_t dev_id, struct rte_bbdev_info *info,
struct test_bbdev_vector *vector)
{
int ret;
unsigned int queue_id;
struct rte_bbdev_queue_conf qconf;
struct active_device *ad = &active_devs[nb_active_devs];
unsigned int nb_queues;
enum rte_bbdev_op_type op_type = vector->op_type;
/* Configure fpga lte fec with PF & VF values
* if '-i' flag is set and using fpga device
*/
#ifdef RTE_BASEBAND_FPGA_LTE_FEC
if ((get_init_device() == true) &&
(!strcmp(info->drv.driver_name, FPGA_LTE_PF_DRIVER_NAME))) {
struct rte_fpga_lte_fec_conf conf;
unsigned int i;
printf("Configure FPGA LTE FEC Driver %s with default values\n",
info->drv.driver_name);
/* clear default configuration before initialization */
memset(&conf, 0, sizeof(struct rte_fpga_lte_fec_conf));
/* Set PF mode :
* true if PF is used for data plane
* false for VFs
*/
conf.pf_mode_en = true;
for (i = 0; i < FPGA_LTE_FEC_NUM_VFS; ++i) {
/* Number of UL queues per VF (fpga supports 8 VFs) */
conf.vf_ul_queues_number[i] = VF_UL_4G_QUEUE_VALUE;
/* Number of DL queues per VF (fpga supports 8 VFs) */
conf.vf_dl_queues_number[i] = VF_DL_4G_QUEUE_VALUE;
}
/* UL bandwidth. Needed for schedule algorithm */
conf.ul_bandwidth = UL_4G_BANDWIDTH;
/* DL bandwidth */
conf.dl_bandwidth = DL_4G_BANDWIDTH;
/* UL & DL load Balance Factor to 64 */
conf.ul_load_balance = UL_4G_LOAD_BALANCE;
conf.dl_load_balance = DL_4G_LOAD_BALANCE;
/**< FLR timeout value */
conf.flr_time_out = FLR_4G_TIMEOUT;
/* setup FPGA PF with configuration information */
ret = rte_fpga_lte_fec_configure(info->dev_name, &conf);
TEST_ASSERT_SUCCESS(ret,
"Failed to configure 4G FPGA PF for bbdev %s",
info->dev_name);
}
#endif
#ifdef RTE_BASEBAND_FPGA_5GNR_FEC
if ((get_init_device() == true) &&
(!strcmp(info->drv.driver_name, FPGA_5GNR_PF_DRIVER_NAME))) {
struct rte_fpga_5gnr_fec_conf conf;
unsigned int i;
printf("Configure FPGA 5GNR FEC Driver %s with default values\n",
info->drv.driver_name);
/* clear default configuration before initialization */
memset(&conf, 0, sizeof(struct rte_fpga_5gnr_fec_conf));
/* Set PF mode :
* true if PF is used for data plane
* false for VFs
*/
conf.pf_mode_en = true;
for (i = 0; i < FPGA_5GNR_FEC_NUM_VFS; ++i) {
/* Number of UL queues per VF (fpga supports 8 VFs) */
conf.vf_ul_queues_number[i] = VF_UL_5G_QUEUE_VALUE;
/* Number of DL queues per VF (fpga supports 8 VFs) */
conf.vf_dl_queues_number[i] = VF_DL_5G_QUEUE_VALUE;
}
/* UL bandwidth. Needed for schedule algorithm */
conf.ul_bandwidth = UL_5G_BANDWIDTH;
/* DL bandwidth */
conf.dl_bandwidth = DL_5G_BANDWIDTH;
/* UL & DL load Balance Factor to 64 */
conf.ul_load_balance = UL_5G_LOAD_BALANCE;
conf.dl_load_balance = DL_5G_LOAD_BALANCE;
/* setup FPGA PF with configuration information */
ret = rte_fpga_5gnr_fec_configure(info->dev_name, &conf);
TEST_ASSERT_SUCCESS(ret,
"Failed to configure 5G FPGA PF for bbdev %s",
info->dev_name);
}
#endif
#ifdef RTE_BASEBAND_ACC
if ((get_init_device() == true) &&
(!strcmp(info->drv.driver_name, ACC100PF_DRIVER_NAME))) {
struct rte_acc_conf conf;
unsigned int i;
printf("Configure ACC100/ACC101 FEC Driver %s with default values\n",
info->drv.driver_name);
/* clear default configuration before initialization */
memset(&conf, 0, sizeof(struct rte_acc_conf));
/* Always set in PF mode for built-in configuration */
conf.pf_mode_en = true;
for (i = 0; i < RTE_ACC_NUM_VFS; ++i) {
conf.arb_dl_4g[i].gbr_threshold1 = ACC100_QOS_GBR;
conf.arb_dl_4g[i].gbr_threshold1 = ACC100_QOS_GBR;
conf.arb_dl_4g[i].round_robin_weight = ACC100_QMGR_RR;
conf.arb_ul_4g[i].gbr_threshold1 = ACC100_QOS_GBR;
conf.arb_ul_4g[i].gbr_threshold1 = ACC100_QOS_GBR;
conf.arb_ul_4g[i].round_robin_weight = ACC100_QMGR_RR;
conf.arb_dl_5g[i].gbr_threshold1 = ACC100_QOS_GBR;
conf.arb_dl_5g[i].gbr_threshold1 = ACC100_QOS_GBR;
conf.arb_dl_5g[i].round_robin_weight = ACC100_QMGR_RR;
conf.arb_ul_5g[i].gbr_threshold1 = ACC100_QOS_GBR;
conf.arb_ul_5g[i].gbr_threshold1 = ACC100_QOS_GBR;
conf.arb_ul_5g[i].round_robin_weight = ACC100_QMGR_RR;
}
conf.input_pos_llr_1_bit = true;
conf.output_pos_llr_1_bit = true;
conf.num_vf_bundles = 1; /**< Number of VF bundles to setup */
conf.q_ul_4g.num_qgroups = ACC100_QMGR_NUM_QGS;
conf.q_ul_4g.first_qgroup_index = ACC100_QMGR_INVALID_IDX;
conf.q_ul_4g.num_aqs_per_groups = ACC100_QMGR_NUM_AQS;
conf.q_ul_4g.aq_depth_log2 = ACC100_QMGR_AQ_DEPTH;
conf.q_dl_4g.num_qgroups = ACC100_QMGR_NUM_QGS;
conf.q_dl_4g.first_qgroup_index = ACC100_QMGR_INVALID_IDX;
conf.q_dl_4g.num_aqs_per_groups = ACC100_QMGR_NUM_AQS;
conf.q_dl_4g.aq_depth_log2 = ACC100_QMGR_AQ_DEPTH;
conf.q_ul_5g.num_qgroups = ACC100_QMGR_NUM_QGS;
conf.q_ul_5g.first_qgroup_index = ACC100_QMGR_INVALID_IDX;
conf.q_ul_5g.num_aqs_per_groups = ACC100_QMGR_NUM_AQS;
conf.q_ul_5g.aq_depth_log2 = ACC100_QMGR_AQ_DEPTH;
conf.q_dl_5g.num_qgroups = ACC100_QMGR_NUM_QGS;
conf.q_dl_5g.first_qgroup_index = ACC100_QMGR_INVALID_IDX;
conf.q_dl_5g.num_aqs_per_groups = ACC100_QMGR_NUM_AQS;
conf.q_dl_5g.aq_depth_log2 = ACC100_QMGR_AQ_DEPTH;
/* setup PF with configuration information */
ret = rte_acc_configure(info->dev_name, &conf);
TEST_ASSERT_SUCCESS(ret,
"Failed to configure ACC100 PF for bbdev %s",
info->dev_name);
}
if ((get_init_device() == true) &&
(!strcmp(info->drv.driver_name, ACC200PF_DRIVER_NAME))) {
struct rte_acc_conf conf;
unsigned int i;
printf("Configure ACC200 FEC Driver %s with default values\n",
info->drv.driver_name);
/* clear default configuration before initialization */
memset(&conf, 0, sizeof(struct rte_acc_conf));
/* Always set in PF mode for built-in configuration */
conf.pf_mode_en = true;
for (i = 0; i < RTE_ACC_NUM_VFS; ++i) {
conf.arb_dl_4g[i].gbr_threshold1 = ACC200_QOS_GBR;
conf.arb_dl_4g[i].gbr_threshold1 = ACC200_QOS_GBR;
conf.arb_dl_4g[i].round_robin_weight = ACC200_QMGR_RR;
conf.arb_ul_4g[i].gbr_threshold1 = ACC200_QOS_GBR;
conf.arb_ul_4g[i].gbr_threshold1 = ACC200_QOS_GBR;
conf.arb_ul_4g[i].round_robin_weight = ACC200_QMGR_RR;
conf.arb_dl_5g[i].gbr_threshold1 = ACC200_QOS_GBR;
conf.arb_dl_5g[i].gbr_threshold1 = ACC200_QOS_GBR;
conf.arb_dl_5g[i].round_robin_weight = ACC200_QMGR_RR;
conf.arb_ul_5g[i].gbr_threshold1 = ACC200_QOS_GBR;
conf.arb_ul_5g[i].gbr_threshold1 = ACC200_QOS_GBR;
conf.arb_ul_5g[i].round_robin_weight = ACC200_QMGR_RR;
conf.arb_fft[i].gbr_threshold1 = ACC200_QOS_GBR;
conf.arb_fft[i].gbr_threshold1 = ACC200_QOS_GBR;
conf.arb_fft[i].round_robin_weight = ACC200_QMGR_RR;
}
conf.input_pos_llr_1_bit = true;
conf.output_pos_llr_1_bit = true;
conf.num_vf_bundles = 1; /**< Number of VF bundles to setup */
conf.q_ul_4g.num_qgroups = ACC200_QMGR_NUM_QGS;
conf.q_ul_4g.first_qgroup_index = ACC200_QMGR_INVALID_IDX;
conf.q_ul_4g.num_aqs_per_groups = ACC200_QMGR_NUM_AQS;
conf.q_ul_4g.aq_depth_log2 = ACC200_QMGR_AQ_DEPTH;
conf.q_dl_4g.num_qgroups = ACC200_QMGR_NUM_QGS;
conf.q_dl_4g.first_qgroup_index = ACC200_QMGR_INVALID_IDX;
conf.q_dl_4g.num_aqs_per_groups = ACC200_QMGR_NUM_AQS;
conf.q_dl_4g.aq_depth_log2 = ACC200_QMGR_AQ_DEPTH;
conf.q_ul_5g.num_qgroups = ACC200_QMGR_NUM_QGS;
conf.q_ul_5g.first_qgroup_index = ACC200_QMGR_INVALID_IDX;
conf.q_ul_5g.num_aqs_per_groups = ACC200_QMGR_NUM_AQS;
conf.q_ul_5g.aq_depth_log2 = ACC200_QMGR_AQ_DEPTH;
conf.q_dl_5g.num_qgroups = ACC200_QMGR_NUM_QGS;
conf.q_dl_5g.first_qgroup_index = ACC200_QMGR_INVALID_IDX;
conf.q_dl_5g.num_aqs_per_groups = ACC200_QMGR_NUM_AQS;
conf.q_dl_5g.aq_depth_log2 = ACC200_QMGR_AQ_DEPTH;
conf.q_fft.num_qgroups = ACC200_QMGR_NUM_QGS;
conf.q_fft.first_qgroup_index = ACC200_QMGR_INVALID_IDX;
conf.q_fft.num_aqs_per_groups = ACC200_QMGR_NUM_AQS;
conf.q_fft.aq_depth_log2 = ACC200_QMGR_AQ_DEPTH;
/* setup PF with configuration information */
ret = rte_acc_configure(info->dev_name, &conf);
TEST_ASSERT_SUCCESS(ret,
"Failed to configure ACC200 PF for bbdev %s",
info->dev_name);
}
#endif
/* Let's refresh this now this is configured */
rte_bbdev_info_get(dev_id, info);
nb_queues = RTE_MIN(rte_lcore_count(), info->drv.max_num_queues);
nb_queues = RTE_MIN(nb_queues, (unsigned int) MAX_QUEUES);
/* setup device */
ret = rte_bbdev_setup_queues(dev_id, nb_queues, info->socket_id);
if (ret < 0) {
printf("rte_bbdev_setup_queues(%u, %u, %d) ret %i\n",
dev_id, nb_queues, info->socket_id, ret);
return TEST_FAILED;
}
/* configure interrupts if needed */
if (intr_enabled) {
ret = rte_bbdev_intr_enable(dev_id);
if (ret < 0) {
printf("rte_bbdev_intr_enable(%u) ret %i\n", dev_id,
ret);
return TEST_FAILED;
}
}
/* setup device queues */
qconf.socket = info->socket_id;
qconf.queue_size = info->drv.default_queue_conf.queue_size;
qconf.priority = 0;
qconf.deferred_start = 0;
qconf.op_type = op_type;
for (queue_id = 0; queue_id < nb_queues; ++queue_id) {
ret = rte_bbdev_queue_configure(dev_id, queue_id, &qconf);
if (ret != 0) {
printf(
"Allocated all queues (id=%u) at prio%u on dev%u\n",
queue_id, qconf.priority, dev_id);
qconf.priority++;
ret = rte_bbdev_queue_configure(ad->dev_id, queue_id,
&qconf);
}
if (ret != 0) {
printf("All queues on dev %u allocated: %u\n",
dev_id, queue_id);
break;
}
ad->queue_ids[queue_id] = queue_id;
}
TEST_ASSERT(queue_id != 0,
"ERROR Failed to configure any queues on dev %u",
dev_id);
ad->nb_queues = queue_id;
set_avail_op(ad, op_type);
return TEST_SUCCESS;
}
static int
add_active_device(uint8_t dev_id, struct rte_bbdev_info *info,
struct test_bbdev_vector *vector)
{
int ret;
active_devs[nb_active_devs].driver_name = info->drv.driver_name;
active_devs[nb_active_devs].dev_id = dev_id;
ret = add_bbdev_dev(dev_id, info, vector);
if (ret == TEST_SUCCESS)
++nb_active_devs;
return ret;
}
static uint8_t
populate_active_devices(void)
{
int ret;
uint8_t dev_id;
uint8_t nb_devs_added = 0;
struct rte_bbdev_info info;
RTE_BBDEV_FOREACH(dev_id) {
rte_bbdev_info_get(dev_id, &info);
if (check_dev_cap(&info)) {
printf(
"Device %d (%s) does not support specified capabilities\n",
dev_id, info.dev_name);
continue;
}
ret = add_active_device(dev_id, &info, &test_vector);
if (ret != 0) {
printf("Adding active bbdev %s skipped\n",
info.dev_name);
continue;
}
nb_devs_added++;
}
return nb_devs_added;
}
static int
read_test_vector(void)
{
int ret;
memset(&test_vector, 0, sizeof(test_vector));
printf("Test vector file = %s\n", get_vector_filename());
ret = test_bbdev_vector_read(get_vector_filename(), &test_vector);
TEST_ASSERT_SUCCESS(ret, "Failed to parse file %s\n",
get_vector_filename());
return TEST_SUCCESS;
}
static int
testsuite_setup(void)
{
TEST_ASSERT_SUCCESS(read_test_vector(), "Test suite setup failed\n");
if (populate_active_devices() == 0) {
printf("No suitable devices found!\n");
return TEST_SKIPPED;
}
return TEST_SUCCESS;
}
static int
interrupt_testsuite_setup(void)
{
TEST_ASSERT_SUCCESS(read_test_vector(), "Test suite setup failed\n");
/* Enable interrupts */
intr_enabled = true;
/* Special case for NULL device (RTE_BBDEV_OP_NONE) */
if (populate_active_devices() == 0 ||
test_vector.op_type == RTE_BBDEV_OP_NONE) {
intr_enabled = false;
printf("No suitable devices found!\n");
return TEST_SKIPPED;
}
return TEST_SUCCESS;
}
static void
testsuite_teardown(void)
{
uint8_t dev_id;
/* Unconfigure devices */
RTE_BBDEV_FOREACH(dev_id)
rte_bbdev_close(dev_id);
/* Clear active devices structs. */
memset(active_devs, 0, sizeof(active_devs));
nb_active_devs = 0;
/* Disable interrupts */
intr_enabled = false;
}
static int
ut_setup(void)
{
uint8_t i, dev_id;
for (i = 0; i < nb_active_devs; i++) {
dev_id = active_devs[i].dev_id;
/* reset bbdev stats */
TEST_ASSERT_SUCCESS(rte_bbdev_stats_reset(dev_id),
"Failed to reset stats of bbdev %u", dev_id);
/* start the device */
TEST_ASSERT_SUCCESS(rte_bbdev_start(dev_id),
"Failed to start bbdev %u", dev_id);
}
return TEST_SUCCESS;
}
static void
ut_teardown(void)
{
uint8_t i, dev_id;
struct rte_bbdev_stats stats;
for (i = 0; i < nb_active_devs; i++) {
dev_id = active_devs[i].dev_id;
/* read stats and print */
rte_bbdev_stats_get(dev_id, &stats);
/* Stop the device */
rte_bbdev_stop(dev_id);
}
}
static int
init_op_data_objs(struct rte_bbdev_op_data *bufs,
struct op_data_entries *ref_entries,
struct rte_mempool *mbuf_pool, const uint16_t n,
enum op_data_type op_type, uint16_t min_alignment)
{
int ret;
unsigned int i, j;
bool large_input = false;
for (i = 0; i < n; ++i) {
char *data;
struct op_data_buf *seg = &ref_entries->segments[0];
struct rte_mbuf *m_head = rte_pktmbuf_alloc(mbuf_pool);
TEST_ASSERT_NOT_NULL(m_head,
"Not enough mbufs in %d data type mbuf pool (needed %u, available %u)",
op_type, n * ref_entries->nb_segments,
mbuf_pool->size);
if ((seg->length + RTE_PKTMBUF_HEADROOM) > RTE_BBDEV_LDPC_E_MAX_MBUF) {
/*
* Special case when DPDK mbuf cannot handle
* the required input size
*/
printf("Warning: Larger input size than DPDK mbuf %d\n",
seg->length);
large_input = true;
}
bufs[i].data = m_head;
bufs[i].offset = 0;
bufs[i].length = 0;
if ((op_type == DATA_INPUT) || (op_type == DATA_HARQ_INPUT)) {
if (large_input) {
/* Allocate a fake overused mbuf */
data = rte_malloc(NULL, seg->length, 0);
TEST_ASSERT_NOT_NULL(data,
"rte malloc failed with %u bytes",
seg->length);
memcpy(data, seg->addr, seg->length);
m_head->buf_addr = data;
rte_mbuf_iova_set(m_head, rte_malloc_virt2iova(data));
m_head->data_off = 0;
m_head->data_len = seg->length;
} else {
data = rte_pktmbuf_append(m_head, seg->length);
TEST_ASSERT_NOT_NULL(data,
"Couldn't append %u bytes to mbuf from %d data type mbuf pool",
seg->length, op_type);
TEST_ASSERT(data == RTE_PTR_ALIGN(
data, min_alignment),
"Data addr in mbuf (%p) is not aligned to device min alignment (%u)",
data, min_alignment);
rte_memcpy(data, seg->addr, seg->length);
}
bufs[i].length += seg->length;
for (j = 1; j < ref_entries->nb_segments; ++j) {
struct rte_mbuf *m_tail =
rte_pktmbuf_alloc(mbuf_pool);
TEST_ASSERT_NOT_NULL(m_tail,
"Not enough mbufs in %d data type mbuf pool (needed %u, available %u)",
op_type,
n * ref_entries->nb_segments,
mbuf_pool->size);
seg += 1;
data = rte_pktmbuf_append(m_tail, seg->length);
TEST_ASSERT_NOT_NULL(data,
"Couldn't append %u bytes to mbuf from %d data type mbuf pool",
seg->length, op_type);
TEST_ASSERT(data == RTE_PTR_ALIGN(data,
min_alignment),
"Data addr in mbuf (%p) is not aligned to device min alignment (%u)",
data, min_alignment);
rte_memcpy(data, seg->addr, seg->length);
bufs[i].length += seg->length;
ret = rte_pktmbuf_chain(m_head, m_tail);
TEST_ASSERT_SUCCESS(ret,
"Couldn't chain mbufs from %d data type mbuf pool",
op_type);
}
} else {
if (((op_type == DATA_HARD_OUTPUT) || (op_type == DATA_SOFT_OUTPUT))
&& ((seg->length + RTE_PKTMBUF_HEADROOM)
> RTE_BBDEV_LDPC_E_MAX_MBUF)) {
/* Allocate a fake overused mbuf + margin */
data = rte_malloc(NULL, seg->length + 1024, 0);
TEST_ASSERT_NOT_NULL(data,
"rte malloc failed with %u bytes",
seg->length + 1024);
m_head->buf_addr = data;
rte_mbuf_iova_set(m_head, rte_malloc_virt2iova(data));
m_head->data_off = 0;
m_head->data_len = seg->length;
} else {
/* allocate chained-mbuf for output buffer */
for (j = 1; j < ref_entries->nb_segments; ++j) {
struct rte_mbuf *m_tail =
rte_pktmbuf_alloc(mbuf_pool);
TEST_ASSERT_NOT_NULL(m_tail,
"Not enough mbufs in %d data type mbuf pool (needed %u, available %u)",
op_type,
n * ref_entries->nb_segments,
mbuf_pool->size);
ret = rte_pktmbuf_chain(m_head, m_tail);
TEST_ASSERT_SUCCESS(ret,
"Couldn't chain mbufs from %d data type mbuf pool",
op_type);
}
}
bufs[i].length += seg->length;
}
}
return 0;
}
static int
allocate_buffers_on_socket(struct rte_bbdev_op_data **buffers, const int len,
const int socket)
{
int i;
*buffers = rte_zmalloc_socket(NULL, len, 0, socket);
if (*buffers == NULL) {
printf("WARNING: Failed to allocate op_data on socket %d\n",
socket);
/* try to allocate memory on other detected sockets */
for (i = 0; i < socket; i++) {
*buffers = rte_zmalloc_socket(NULL, len, 0, i);
if (*buffers != NULL)
break;
}
}
return (*buffers == NULL) ? TEST_FAILED : TEST_SUCCESS;
}
static void
limit_input_llr_val_range(struct rte_bbdev_op_data *input_ops,
const uint16_t n, const int8_t max_llr_modulus)
{
uint16_t i, byte_idx;
for (i = 0; i < n; ++i) {
struct rte_mbuf *m = input_ops[i].data;
while (m != NULL) {
int8_t *llr = rte_pktmbuf_mtod_offset(m, int8_t *,
input_ops[i].offset);
for (byte_idx = 0; byte_idx < rte_pktmbuf_data_len(m);
++byte_idx)
llr[byte_idx] = round((double)max_llr_modulus *
llr[byte_idx] / INT8_MAX);
m = m->next;
}
}
}
/*
* We may have to insert filler bits
* when they are required by the HARQ assumption
*/
static void
ldpc_add_filler(struct rte_bbdev_op_data *input_ops,
const uint16_t n, struct test_op_params *op_params)
{
struct rte_bbdev_op_ldpc_dec dec = op_params->ref_dec_op->ldpc_dec;
if (input_ops == NULL)
return;
/* No need to add filler if not required by device */
if (!(ldpc_cap_flags &
RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_FILLERS))
return;
/* No need to add filler for loopback operation */
if (dec.op_flags & RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK)
return;
uint16_t i, j, parity_offset;
for (i = 0; i < n; ++i) {
struct rte_mbuf *m = input_ops[i].data;
int8_t *llr = rte_pktmbuf_mtod_offset(m, int8_t *,
input_ops[i].offset);
parity_offset = (dec.basegraph == 1 ? 20 : 8)
* dec.z_c - dec.n_filler;
uint16_t new_hin_size = input_ops[i].length + dec.n_filler;
m->data_len = new_hin_size;
input_ops[i].length = new_hin_size;
for (j = new_hin_size - 1; j >= parity_offset + dec.n_filler;
j--)
llr[j] = llr[j - dec.n_filler];
uint16_t llr_max_pre_scaling = (1 << (ldpc_llr_size - 1)) - 1;
for (j = 0; j < dec.n_filler; j++)
llr[parity_offset + j] = llr_max_pre_scaling;
}
}
static void
ldpc_input_llr_scaling(struct rte_bbdev_op_data *input_ops,
const uint16_t n, const int8_t llr_size,
const int8_t llr_decimals)
{
if (input_ops == NULL)
return;
uint16_t i, byte_idx;
int16_t llr_max, llr_min, llr_tmp;
llr_max = (1 << (llr_size - 1)) - 1;
llr_min = -llr_max;
for (i = 0; i < n; ++i) {
struct rte_mbuf *m = input_ops[i].data;
while (m != NULL) {
int8_t *llr = rte_pktmbuf_mtod_offset(m, int8_t *,
input_ops[i].offset);
for (byte_idx = 0; byte_idx < rte_pktmbuf_data_len(m);
++byte_idx) {
llr_tmp = llr[byte_idx];
if (llr_decimals == 4)
llr_tmp *= 8;
else if (llr_decimals == 2)
llr_tmp *= 2;
else if (llr_decimals == 0)
llr_tmp /= 2;
llr_tmp = RTE_MIN(llr_max,
RTE_MAX(llr_min, llr_tmp));
llr[byte_idx] = (int8_t) llr_tmp;
}
m = m->next;
}
}
}
static int
fill_queue_buffers(struct test_op_params *op_params,
struct rte_mempool *in_mp, struct rte_mempool *hard_out_mp,
struct rte_mempool *soft_out_mp,
struct rte_mempool *harq_in_mp, struct rte_mempool *harq_out_mp,
uint16_t queue_id,
const struct rte_bbdev_op_cap *capabilities,
uint16_t min_alignment, const int socket_id)
{
int ret;
enum op_data_type type;
const uint16_t n = op_params->num_to_process;
struct rte_mempool *mbuf_pools[DATA_NUM_TYPES] = {
in_mp,
soft_out_mp,
hard_out_mp,
harq_in_mp,
harq_out_mp,
};
struct rte_bbdev_op_data **queue_ops[DATA_NUM_TYPES] = {
&op_params->q_bufs[socket_id][queue_id].inputs,
&op_params->q_bufs[socket_id][queue_id].soft_outputs,
&op_params->q_bufs[socket_id][queue_id].hard_outputs,
&op_params->q_bufs[socket_id][queue_id].harq_inputs,
&op_params->q_bufs[socket_id][queue_id].harq_outputs,
};
for (type = DATA_INPUT; type < DATA_NUM_TYPES; ++type) {
struct op_data_entries *ref_entries =
&test_vector.entries[type];
if (ref_entries->nb_segments == 0)
continue;
ret = allocate_buffers_on_socket(queue_ops[type],
n * sizeof(struct rte_bbdev_op_data),
socket_id);
TEST_ASSERT_SUCCESS(ret,
"Couldn't allocate memory for rte_bbdev_op_data structs");
ret = init_op_data_objs(*queue_ops[type], ref_entries,
mbuf_pools[type], n, type, min_alignment);
TEST_ASSERT_SUCCESS(ret,
"Couldn't init rte_bbdev_op_data structs");
}
if (test_vector.op_type == RTE_BBDEV_OP_TURBO_DEC)
limit_input_llr_val_range(*queue_ops[DATA_INPUT], n,
capabilities->cap.turbo_dec.max_llr_modulus);
if (test_vector.op_type == RTE_BBDEV_OP_LDPC_DEC) {
bool loopback = op_params->ref_dec_op->ldpc_dec.op_flags &
RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK;
bool llr_comp = op_params->ref_dec_op->ldpc_dec.op_flags &
RTE_BBDEV_LDPC_LLR_COMPRESSION;
bool harq_comp = op_params->ref_dec_op->ldpc_dec.op_flags &
RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION;
ldpc_llr_decimals = capabilities->cap.ldpc_dec.llr_decimals;
ldpc_llr_size = capabilities->cap.ldpc_dec.llr_size;
ldpc_cap_flags = capabilities->cap.ldpc_dec.capability_flags;
if (!loopback && !llr_comp)
ldpc_input_llr_scaling(*queue_ops[DATA_INPUT], n,
ldpc_llr_size, ldpc_llr_decimals);
if (!loopback && !harq_comp)
ldpc_input_llr_scaling(*queue_ops[DATA_HARQ_INPUT], n,
ldpc_llr_size, ldpc_llr_decimals);
if (!loopback)
ldpc_add_filler(*queue_ops[DATA_HARQ_INPUT], n,
op_params);
}
return 0;
}
static void
free_buffers(struct active_device *ad, struct test_op_params *op_params)
{
unsigned int i, j;
rte_mempool_free(ad->ops_mempool);
rte_mempool_free(ad->in_mbuf_pool);
rte_mempool_free(ad->hard_out_mbuf_pool);
rte_mempool_free(ad->soft_out_mbuf_pool);
rte_mempool_free(ad->harq_in_mbuf_pool);
rte_mempool_free(ad->harq_out_mbuf_pool);
for (i = 0; i < rte_lcore_count(); ++i) {
for (j = 0; j < RTE_MAX_NUMA_NODES; ++j) {
rte_free(op_params->q_bufs[j][i].inputs);
rte_free(op_params->q_bufs[j][i].hard_outputs);
rte_free(op_params->q_bufs[j][i].soft_outputs);
rte_free(op_params->q_bufs[j][i].harq_inputs);
rte_free(op_params->q_bufs[j][i].harq_outputs);
}
}
}
static void
copy_reference_dec_op(struct rte_bbdev_dec_op **ops, unsigned int n,
unsigned int start_idx,
struct rte_bbdev_op_data *inputs,
struct rte_bbdev_op_data *hard_outputs,
struct rte_bbdev_op_data *soft_outputs,
struct rte_bbdev_dec_op *ref_op)
{
unsigned int i;
struct rte_bbdev_op_turbo_dec *turbo_dec = &ref_op->turbo_dec;
for (i = 0; i < n; ++i) {
if (turbo_dec->code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
ops[i]->turbo_dec.tb_params.ea =
turbo_dec->tb_params.ea;
ops[i]->turbo_dec.tb_params.eb =
turbo_dec->tb_params.eb;
ops[i]->turbo_dec.tb_params.k_pos =
turbo_dec->tb_params.k_pos;
ops[i]->turbo_dec.tb_params.k_neg =
turbo_dec->tb_params.k_neg;
ops[i]->turbo_dec.tb_params.c =
turbo_dec->tb_params.c;
ops[i]->turbo_dec.tb_params.c_neg =
turbo_dec->tb_params.c_neg;
ops[i]->turbo_dec.tb_params.cab =
turbo_dec->tb_params.cab;
ops[i]->turbo_dec.tb_params.r =
turbo_dec->tb_params.r;
} else {
ops[i]->turbo_dec.cb_params.e = turbo_dec->cb_params.e;
ops[i]->turbo_dec.cb_params.k = turbo_dec->cb_params.k;
}
ops[i]->turbo_dec.ext_scale = turbo_dec->ext_scale;
ops[i]->turbo_dec.iter_max = turbo_dec->iter_max;
ops[i]->turbo_dec.iter_min = turbo_dec->iter_min;
ops[i]->turbo_dec.op_flags = turbo_dec->op_flags;
ops[i]->turbo_dec.rv_index = turbo_dec->rv_index;
ops[i]->turbo_dec.num_maps = turbo_dec->num_maps;
ops[i]->turbo_dec.code_block_mode = turbo_dec->code_block_mode;
ops[i]->turbo_dec.hard_output = hard_outputs[start_idx + i];
ops[i]->turbo_dec.input = inputs[start_idx + i];
if (soft_outputs != NULL)
ops[i]->turbo_dec.soft_output =
soft_outputs[start_idx + i];
}
}
static void
copy_reference_enc_op(struct rte_bbdev_enc_op **ops, unsigned int n,
unsigned int start_idx,
struct rte_bbdev_op_data *inputs,
struct rte_bbdev_op_data *outputs,
struct rte_bbdev_enc_op *ref_op)
{
unsigned int i;
struct rte_bbdev_op_turbo_enc *turbo_enc = &ref_op->turbo_enc;
for (i = 0; i < n; ++i) {
if (turbo_enc->code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
ops[i]->turbo_enc.tb_params.ea =
turbo_enc->tb_params.ea;
ops[i]->turbo_enc.tb_params.eb =
turbo_enc->tb_params.eb;
ops[i]->turbo_enc.tb_params.k_pos =
turbo_enc->tb_params.k_pos;
ops[i]->turbo_enc.tb_params.k_neg =
turbo_enc->tb_params.k_neg;
ops[i]->turbo_enc.tb_params.c =
turbo_enc->tb_params.c;
ops[i]->turbo_enc.tb_params.c_neg =
turbo_enc->tb_params.c_neg;
ops[i]->turbo_enc.tb_params.cab =
turbo_enc->tb_params.cab;
ops[i]->turbo_enc.tb_params.ncb_pos =
turbo_enc->tb_params.ncb_pos;
ops[i]->turbo_enc.tb_params.ncb_neg =
turbo_enc->tb_params.ncb_neg;
ops[i]->turbo_enc.tb_params.r = turbo_enc->tb_params.r;
} else {
ops[i]->turbo_enc.cb_params.e = turbo_enc->cb_params.e;
ops[i]->turbo_enc.cb_params.k = turbo_enc->cb_params.k;
ops[i]->turbo_enc.cb_params.ncb =
turbo_enc->cb_params.ncb;
}
ops[i]->turbo_enc.rv_index = turbo_enc->rv_index;
ops[i]->turbo_enc.op_flags = turbo_enc->op_flags;
ops[i]->turbo_enc.code_block_mode = turbo_enc->code_block_mode;
ops[i]->turbo_enc.output = outputs[start_idx + i];
ops[i]->turbo_enc.input = inputs[start_idx + i];
}
}
/* Returns a random number drawn from a normal distribution
* with mean of 0 and variance of 1
* Marsaglia algorithm
*/
static double
randn(int n)
{
double S, Z, U1, U2, u, v, fac;
do {
U1 = (double)rand() / RAND_MAX;
U2 = (double)rand() / RAND_MAX;
u = 2. * U1 - 1.;
v = 2. * U2 - 1.;
S = u * u + v * v;
} while (S >= 1 || S == 0);
fac = sqrt(-2. * log(S) / S);
Z = (n % 2) ? u * fac : v * fac;
return Z;
}
static inline double
maxstar(double A, double B)
{
if (fabs(A - B) > 5)
return RTE_MAX(A, B);
else
return RTE_MAX(A, B) + log1p(exp(-fabs(A - B)));
}
/*
* Generate Qm LLRS for Qm==8
* Modulation, AWGN and LLR estimation from max log development
*/
static void
gen_qm8_llr(int8_t *llrs, uint32_t i, double N0, double llr_max)
{
int qm = 8;
int qam = 256;
int m, k;
double I, Q, p0, p1, llr_, b[qm], log_syml_prob[qam];
/* 5.1.4 of TS38.211 */
const double symbols_I[256] = {
5, 5, 7, 7, 5, 5, 7, 7, 3, 3, 1, 1, 3, 3, 1, 1, 5,
5, 7, 7, 5, 5, 7, 7, 3, 3, 1, 1, 3, 3, 1, 1, 11,
11, 9, 9, 11, 11, 9, 9, 13, 13, 15, 15, 13, 13,
15, 15, 11, 11, 9, 9, 11, 11, 9, 9, 13, 13, 15,
15, 13, 13, 15, 15, 5, 5, 7, 7, 5, 5, 7, 7, 3, 3,
1, 1, 3, 3, 1, 1, 5, 5, 7, 7, 5, 5, 7, 7, 3, 3, 1,
1, 3, 3, 1, 1, 11, 11, 9, 9, 11, 11, 9, 9, 13, 13,
15, 15, 13, 13, 15, 15, 11, 11, 9, 9, 11, 11, 9, 9,
13, 13, 15, 15, 13, 13, 15, 15, -5, -5, -7, -7, -5,
-5, -7, -7, -3, -3, -1, -1, -3, -3, -1, -1, -5, -5,
-7, -7, -5, -5, -7, -7, -3, -3, -1, -1, -3, -3,
-1, -1, -11, -11, -9, -9, -11, -11, -9, -9, -13,
-13, -15, -15, -13, -13, -15, -15, -11, -11, -9,
-9, -11, -11, -9, -9, -13, -13, -15, -15, -13,
-13, -15, -15, -5, -5, -7, -7, -5, -5, -7, -7, -3,
-3, -1, -1, -3, -3, -1, -1, -5, -5, -7, -7, -5, -5,
-7, -7, -3, -3, -1, -1, -3, -3, -1, -1, -11, -11,
-9, -9, -11, -11, -9, -9, -13, -13, -15, -15, -13,
-13, -15, -15, -11, -11, -9, -9, -11, -11, -9, -9,
-13, -13, -15, -15, -13, -13, -15, -15};
const double symbols_Q[256] = {
5, 7, 5, 7, 3, 1, 3, 1, 5, 7, 5, 7, 3, 1, 3, 1, 11,
9, 11, 9, 13, 15, 13, 15, 11, 9, 11, 9, 13, 15, 13,
15, 5, 7, 5, 7, 3, 1, 3, 1, 5, 7, 5, 7, 3, 1, 3, 1,
11, 9, 11, 9, 13, 15, 13, 15, 11, 9, 11, 9, 13,
15, 13, 15, -5, -7, -5, -7, -3, -1, -3, -1, -5,
-7, -5, -7, -3, -1, -3, -1, -11, -9, -11, -9, -13,
-15, -13, -15, -11, -9, -11, -9, -13, -15, -13,
-15, -5, -7, -5, -7, -3, -1, -3, -1, -5, -7, -5,
-7, -3, -1, -3, -1, -11, -9, -11, -9, -13, -15,
-13, -15, -11, -9, -11, -9, -13, -15, -13, -15, 5,
7, 5, 7, 3, 1, 3, 1, 5, 7, 5, 7, 3, 1, 3, 1, 11,
9, 11, 9, 13, 15, 13, 15, 11, 9, 11, 9, 13, 15,
13, 15, 5, 7, 5, 7, 3, 1, 3, 1, 5, 7, 5, 7, 3, 1,
3, 1, 11, 9, 11, 9, 13, 15, 13, 15, 11, 9, 11, 9,
13, 15, 13, 15, -5, -7, -5, -7, -3, -1, -3, -1,
-5, -7, -5, -7, -3, -1, -3, -1, -11, -9, -11, -9,
-13, -15, -13, -15, -11, -9, -11, -9, -13, -15,
-13, -15, -5, -7, -5, -7, -3, -1, -3, -1, -5, -7,
-5, -7, -3, -1, -3, -1, -11, -9, -11, -9, -13, -15,
-13, -15, -11, -9, -11, -9, -13, -15, -13, -15};
/* Average constellation point energy */
N0 *= 170.0;
for (k = 0; k < qm; k++)
b[k] = llrs[qm * i + k] < 0 ? 1.0 : 0.0;
/* 5.1.4 of TS38.211 */
I = (1 - 2 * b[0]) * (8 - (1 - 2 * b[2]) *
(4 - (1 - 2 * b[4]) * (2 - (1 - 2 * b[6]))));
Q = (1 - 2 * b[1]) * (8 - (1 - 2 * b[3]) *
(4 - (1 - 2 * b[5]) * (2 - (1 - 2 * b[7]))));
/* AWGN channel */
I += sqrt(N0 / 2) * randn(0);
Q += sqrt(N0 / 2) * randn(1);
/*
* Calculate the log of the probability that each of
* the constellation points was transmitted
*/
for (m = 0; m < qam; m++)
log_syml_prob[m] = -(pow(I - symbols_I[m], 2.0)
+ pow(Q - symbols_Q[m], 2.0)) / N0;
/* Calculate an LLR for each of the k_64QAM bits in the set */
for (k = 0; k < qm; k++) {
p0 = -999999;
p1 = -999999;
/* For each constellation point */
for (m = 0; m < qam; m++) {
if ((m >> (qm - k - 1)) & 1)
p1 = maxstar(p1, log_syml_prob[m]);
else
p0 = maxstar(p0, log_syml_prob[m]);
}
/* Calculate the LLR */
llr_ = p0 - p1;
llr_ *= (1 << ldpc_llr_decimals);
llr_ = round(llr_);
if (llr_ > llr_max)
llr_ = llr_max;
if (llr_ < -llr_max)
llr_ = -llr_max;
llrs[qm * i + k] = (int8_t) llr_;
}
}
/*
* Generate Qm LLRS for Qm==6
* Modulation, AWGN and LLR estimation from max log development
*/
static void
gen_qm6_llr(int8_t *llrs, uint32_t i, double N0, double llr_max)
{
int qm = 6;
int qam = 64;
int m, k;
double I, Q, p0, p1, llr_, b[qm], log_syml_prob[qam];
/* 5.1.4 of TS38.211 */
const double symbols_I[64] = {
3, 3, 1, 1, 3, 3, 1, 1, 5, 5, 7, 7, 5, 5, 7, 7,
3, 3, 1, 1, 3, 3, 1, 1, 5, 5, 7, 7, 5, 5, 7, 7,
-3, -3, -1, -1, -3, -3, -1, -1, -5, -5, -7, -7,
-5, -5, -7, -7, -3, -3, -1, -1, -3, -3, -1, -1,
-5, -5, -7, -7, -5, -5, -7, -7};
const double symbols_Q[64] = {
3, 1, 3, 1, 5, 7, 5, 7, 3, 1, 3, 1, 5, 7, 5, 7,
-3, -1, -3, -1, -5, -7, -5, -7, -3, -1, -3, -1,
-5, -7, -5, -7, 3, 1, 3, 1, 5, 7, 5, 7, 3, 1, 3, 1,
5, 7, 5, 7, -3, -1, -3, -1, -5, -7, -5, -7,
-3, -1, -3, -1, -5, -7, -5, -7};
/* Average constellation point energy */
N0 *= 42.0;
for (k = 0; k < qm; k++)
b[k] = llrs[qm * i + k] < 0 ? 1.0 : 0.0;
/* 5.1.4 of TS38.211 */
I = (1 - 2 * b[0])*(4 - (1 - 2 * b[2]) * (2 - (1 - 2 * b[4])));
Q = (1 - 2 * b[1])*(4 - (1 - 2 * b[3]) * (2 - (1 - 2 * b[5])));
/* AWGN channel */
I += sqrt(N0 / 2) * randn(0);
Q += sqrt(N0 / 2) * randn(1);
/*
* Calculate the log of the probability that each of
* the constellation points was transmitted
*/
for (m = 0; m < qam; m++)
log_syml_prob[m] = -(pow(I - symbols_I[m], 2.0)
+ pow(Q - symbols_Q[m], 2.0)) / N0;
/* Calculate an LLR for each of the k_64QAM bits in the set */
for (k = 0; k < qm; k++) {
p0 = -999999;
p1 = -999999;
/* For each constellation point */
for (m = 0; m < qam; m++) {
if ((m >> (qm - k - 1)) & 1)
p1 = maxstar(p1, log_syml_prob[m]);
else
p0 = maxstar(p0, log_syml_prob[m]);
}
/* Calculate the LLR */
llr_ = p0 - p1;
llr_ *= (1 << ldpc_llr_decimals);
llr_ = round(llr_);
if (llr_ > llr_max)
llr_ = llr_max;
if (llr_ < -llr_max)
llr_ = -llr_max;
llrs[qm * i + k] = (int8_t) llr_;
}
}
/*
* Generate Qm LLRS for Qm==4
* Modulation, AWGN and LLR estimation from max log development
*/
static void
gen_qm4_llr(int8_t *llrs, uint32_t i, double N0, double llr_max)
{
int qm = 4;
int qam = 16;
int m, k;
double I, Q, p0, p1, llr_, b[qm], log_syml_prob[qam];
/* 5.1.4 of TS38.211 */
const double symbols_I[16] = {1, 1, 3, 3, 1, 1, 3, 3,
-1, -1, -3, -3, -1, -1, -3, -3};
const double symbols_Q[16] = {1, 3, 1, 3, -1, -3, -1, -3,
1, 3, 1, 3, -1, -3, -1, -3};
/* Average constellation point energy */
N0 *= 10.0;
for (k = 0; k < qm; k++)
b[k] = llrs[qm * i + k] < 0 ? 1.0 : 0.0;
/* 5.1.4 of TS38.211 */
I = (1 - 2 * b[0]) * (2 - (1 - 2 * b[2]));
Q = (1 - 2 * b[1]) * (2 - (1 - 2 * b[3]));
/* AWGN channel */
I += sqrt(N0 / 2) * randn(0);
Q += sqrt(N0 / 2) * randn(1);
/*
* Calculate the log of the probability that each of
* the constellation points was transmitted
*/
for (m = 0; m < qam; m++)
log_syml_prob[m] = -(pow(I - symbols_I[m], 2.0)
+ pow(Q - symbols_Q[m], 2.0)) / N0;
/* Calculate an LLR for each of the k_64QAM bits in the set */
for (k = 0; k < qm; k++) {
p0 = -999999;
p1 = -999999;
/* For each constellation point */
for (m = 0; m < qam; m++) {
if ((m >> (qm - k - 1)) & 1)
p1 = maxstar(p1, log_syml_prob[m]);
else
p0 = maxstar(p0, log_syml_prob[m]);
}
/* Calculate the LLR */
llr_ = p0 - p1;
llr_ *= (1 << ldpc_llr_decimals);
llr_ = round(llr_);
if (llr_ > llr_max)
llr_ = llr_max;
if (llr_ < -llr_max)
llr_ = -llr_max;
llrs[qm * i + k] = (int8_t) llr_;
}
}
static void
gen_qm2_llr(int8_t *llrs, uint32_t j, double N0, double llr_max)
{
double b, b1, n;
double coeff = 2.0 * sqrt(N0);
/* Ignore in vectors rare quasi null LLRs not to be saturated */
if (llrs[j] < 8 && llrs[j] > -8)
return;
/* Note don't change sign here */
n = randn(j % 2);
b1 = ((llrs[j] > 0 ? 2.0 : -2.0)
+ coeff * n) / N0;
b = b1 * (1 << ldpc_llr_decimals);
b = round(b);
if (b > llr_max)
b = llr_max;
if (b < -llr_max)
b = -llr_max;
llrs[j] = (int8_t) b;
}
/* Generate LLR for a given SNR */
static void
generate_llr_input(uint16_t n, struct rte_bbdev_op_data *inputs,
struct rte_bbdev_dec_op *ref_op)
{
struct rte_mbuf *m;
uint16_t qm;
uint32_t i, j, e, range;
double N0, llr_max;
e = ref_op->ldpc_dec.cb_params.e;
qm = ref_op->ldpc_dec.q_m;
llr_max = (1 << (ldpc_llr_size - 1)) - 1;
range = e / qm;
N0 = 1.0 / pow(10.0, get_snr() / 10.0);
for (i = 0; i < n; ++i) {
m = inputs[i].data;
int8_t *llrs = rte_pktmbuf_mtod_offset(m, int8_t *, 0);
if (qm == 8) {
for (j = 0; j < range; ++j)
gen_qm8_llr(llrs, j, N0, llr_max);
} else if (qm == 6) {
for (j = 0; j < range; ++j)
gen_qm6_llr(llrs, j, N0, llr_max);
} else if (qm == 4) {
for (j = 0; j < range; ++j)
gen_qm4_llr(llrs, j, N0, llr_max);
} else {
for (j = 0; j < e; ++j)
gen_qm2_llr(llrs, j, N0, llr_max);
}
}
}
static void
copy_reference_ldpc_dec_op(struct rte_bbdev_dec_op **ops, unsigned int n,
unsigned int start_idx,
struct rte_bbdev_op_data *inputs,
struct rte_bbdev_op_data *hard_outputs,
struct rte_bbdev_op_data *soft_outputs,
struct rte_bbdev_op_data *harq_inputs,
struct rte_bbdev_op_data *harq_outputs,
struct rte_bbdev_dec_op *ref_op)
{
unsigned int i;
struct rte_bbdev_op_ldpc_dec *ldpc_dec = &ref_op->ldpc_dec;
for (i = 0; i < n; ++i) {
if (ldpc_dec->code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
ops[i]->ldpc_dec.tb_params.ea =
ldpc_dec->tb_params.ea;
ops[i]->ldpc_dec.tb_params.eb =
ldpc_dec->tb_params.eb;
ops[i]->ldpc_dec.tb_params.c =
ldpc_dec->tb_params.c;
ops[i]->ldpc_dec.tb_params.cab =
ldpc_dec->tb_params.cab;
ops[i]->ldpc_dec.tb_params.r =
ldpc_dec->tb_params.r;
} else {
ops[i]->ldpc_dec.cb_params.e = ldpc_dec->cb_params.e;
}
ops[i]->ldpc_dec.basegraph = ldpc_dec->basegraph;
ops[i]->ldpc_dec.z_c = ldpc_dec->z_c;
ops[i]->ldpc_dec.q_m = ldpc_dec->q_m;
ops[i]->ldpc_dec.n_filler = ldpc_dec->n_filler;
ops[i]->ldpc_dec.n_cb = ldpc_dec->n_cb;
ops[i]->ldpc_dec.iter_max = ldpc_dec->iter_max;
ops[i]->ldpc_dec.rv_index = ldpc_dec->rv_index;
ops[i]->ldpc_dec.op_flags = ldpc_dec->op_flags;
ops[i]->ldpc_dec.code_block_mode = ldpc_dec->code_block_mode;
if (hard_outputs != NULL)
ops[i]->ldpc_dec.hard_output =
hard_outputs[start_idx + i];
if (inputs != NULL)
ops[i]->ldpc_dec.input =
inputs[start_idx + i];
if (soft_outputs != NULL)
ops[i]->ldpc_dec.soft_output =
soft_outputs[start_idx + i];
if (harq_inputs != NULL)
ops[i]->ldpc_dec.harq_combined_input =
harq_inputs[start_idx + i];
if (harq_outputs != NULL)
ops[i]->ldpc_dec.harq_combined_output =
harq_outputs[start_idx + i];
}
}
static void
copy_reference_ldpc_enc_op(struct rte_bbdev_enc_op **ops, unsigned int n,
unsigned int start_idx,
struct rte_bbdev_op_data *inputs,
struct rte_bbdev_op_data *outputs,
struct rte_bbdev_enc_op *ref_op)
{
unsigned int i;
struct rte_bbdev_op_ldpc_enc *ldpc_enc = &ref_op->ldpc_enc;
for (i = 0; i < n; ++i) {
if (ldpc_enc->code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
ops[i]->ldpc_enc.tb_params.ea = ldpc_enc->tb_params.ea;
ops[i]->ldpc_enc.tb_params.eb = ldpc_enc->tb_params.eb;
ops[i]->ldpc_enc.tb_params.cab =
ldpc_enc->tb_params.cab;
ops[i]->ldpc_enc.tb_params.c = ldpc_enc->tb_params.c;
ops[i]->ldpc_enc.tb_params.r = ldpc_enc->tb_params.r;
} else {
ops[i]->ldpc_enc.cb_params.e = ldpc_enc->cb_params.e;
}
ops[i]->ldpc_enc.basegraph = ldpc_enc->basegraph;
ops[i]->ldpc_enc.z_c = ldpc_enc->z_c;
ops[i]->ldpc_enc.q_m = ldpc_enc->q_m;
ops[i]->ldpc_enc.n_filler = ldpc_enc->n_filler;
ops[i]->ldpc_enc.n_cb = ldpc_enc->n_cb;
ops[i]->ldpc_enc.rv_index = ldpc_enc->rv_index;
ops[i]->ldpc_enc.op_flags = ldpc_enc->op_flags;
ops[i]->ldpc_enc.code_block_mode = ldpc_enc->code_block_mode;
ops[i]->ldpc_enc.output = outputs[start_idx + i];
ops[i]->ldpc_enc.input = inputs[start_idx + i];
}
}
static void
copy_reference_fft_op(struct rte_bbdev_fft_op **ops, unsigned int n,
unsigned int start_idx, struct rte_bbdev_op_data *inputs,
struct rte_bbdev_op_data *outputs, struct rte_bbdev_op_data *pwrouts,
struct rte_bbdev_fft_op *ref_op)
{
unsigned int i, j;
struct rte_bbdev_op_fft *fft = &ref_op->fft;
for (i = 0; i < n; i++) {
ops[i]->fft.input_sequence_size = fft->input_sequence_size;
ops[i]->fft.input_leading_padding = fft->input_leading_padding;
ops[i]->fft.output_sequence_size = fft->output_sequence_size;
ops[i]->fft.output_leading_depadding =
fft->output_leading_depadding;
for (j = 0; j < RTE_BBDEV_MAX_CS_2; j++)
ops[i]->fft.window_index[j] = fft->window_index[j];
ops[i]->fft.cs_bitmap = fft->cs_bitmap;
ops[i]->fft.num_antennas_log2 = fft->num_antennas_log2;
ops[i]->fft.idft_log2 = fft->idft_log2;
ops[i]->fft.dft_log2 = fft->dft_log2;
ops[i]->fft.cs_time_adjustment = fft->cs_time_adjustment;
ops[i]->fft.idft_shift = fft->idft_shift;
ops[i]->fft.dft_shift = fft->dft_shift;
ops[i]->fft.ncs_reciprocal = fft->ncs_reciprocal;
ops[i]->fft.power_shift = fft->power_shift;
ops[i]->fft.fp16_exp_adjust = fft->fp16_exp_adjust;
ops[i]->fft.base_output = outputs[start_idx + i];
ops[i]->fft.base_input = inputs[start_idx + i];
if (pwrouts != NULL)
ops[i]->fft.power_meas_output = pwrouts[start_idx + i];
ops[i]->fft.op_flags = fft->op_flags;
}
}
static int
check_dec_status_and_ordering(struct rte_bbdev_dec_op *op,
unsigned int order_idx, const int expected_status)
{
int status = op->status;
/* ignore parity mismatch false alarms for long iterations */
if (get_iter_max() >= 10) {
if (!(expected_status & (1 << RTE_BBDEV_SYNDROME_ERROR)) &&
(status & (1 << RTE_BBDEV_SYNDROME_ERROR))) {
printf("WARNING: Ignore Syndrome Check mismatch\n");
status -= (1 << RTE_BBDEV_SYNDROME_ERROR);
}
if ((expected_status & (1 << RTE_BBDEV_SYNDROME_ERROR)) &&
!(status & (1 << RTE_BBDEV_SYNDROME_ERROR))) {
printf("WARNING: Ignore Syndrome Check mismatch\n");
status += (1 << RTE_BBDEV_SYNDROME_ERROR);
}
}
TEST_ASSERT(status == expected_status,
"op_status (%d) != expected_status (%d)",
op->status, expected_status);
TEST_ASSERT((void *)(uintptr_t)order_idx == op->opaque_data,
"Ordering error, expected %p, got %p",
(void *)(uintptr_t)order_idx, op->opaque_data);
return TEST_SUCCESS;
}
static int
check_enc_status_and_ordering(struct rte_bbdev_enc_op *op,
unsigned int order_idx, const int expected_status)
{
TEST_ASSERT(op->status == expected_status,
"op_status (%d) != expected_status (%d)",
op->status, expected_status);
if (op->opaque_data != (void *)(uintptr_t)INVALID_OPAQUE)
TEST_ASSERT((void *)(uintptr_t)order_idx == op->opaque_data,
"Ordering error, expected %p, got %p",
(void *)(uintptr_t)order_idx, op->opaque_data);
return TEST_SUCCESS;
}
static int
check_fft_status_and_ordering(struct rte_bbdev_fft_op *op,
unsigned int order_idx, const int expected_status)
{
TEST_ASSERT(op->status == expected_status,
"op_status (%d) != expected_status (%d)",
op->status, expected_status);
TEST_ASSERT((void *)(uintptr_t)order_idx == op->opaque_data,
"Ordering error, expected %p, got %p",
(void *)(uintptr_t)order_idx, op->opaque_data);
return TEST_SUCCESS;
}
static inline int
validate_op_chain(struct rte_bbdev_op_data *op,
struct op_data_entries *orig_op)
{
uint8_t i;
struct rte_mbuf *m = op->data;
uint8_t nb_dst_segments = orig_op->nb_segments;
uint32_t total_data_size = 0;
TEST_ASSERT(nb_dst_segments == m->nb_segs,
"Number of segments differ in original (%u) and filled (%u) op",
nb_dst_segments, m->nb_segs);
/* Validate each mbuf segment length */
for (i = 0; i < nb_dst_segments; ++i) {
/* Apply offset to the first mbuf segment */
uint16_t offset = (i == 0) ? op->offset : 0;
uint16_t data_len = rte_pktmbuf_data_len(m) - offset;
total_data_size += orig_op->segments[i].length;
TEST_ASSERT(orig_op->segments[i].length == data_len,
"Length of segment differ in original (%u) and filled (%u) op",
orig_op->segments[i].length, data_len);
TEST_ASSERT_BUFFERS_ARE_EQUAL(orig_op->segments[i].addr,
rte_pktmbuf_mtod_offset(m, uint32_t *, offset),
data_len,
"Output buffers (CB=%u) are not equal", i);
m = m->next;
}
/* Validate total mbuf pkt length */
uint32_t pkt_len = rte_pktmbuf_pkt_len(op->data) - op->offset;
TEST_ASSERT(total_data_size == pkt_len,
"Length of data differ in original (%u) and filled (%u) op",
total_data_size, pkt_len);
return TEST_SUCCESS;
}
/*
* Compute K0 for a given configuration for HARQ output length computation
* As per definition in 3GPP 38.212 Table 5.4.2.1-2
*/
static inline uint16_t
get_k0(uint16_t n_cb, uint16_t z_c, uint8_t bg, uint8_t rv_index)
{
if (rv_index == 0)
return 0;
uint16_t n = (bg == 1 ? N_ZC_1 : N_ZC_2) * z_c;
if (n_cb == n) {
if (rv_index == 1)
return (bg == 1 ? K0_1_1 : K0_1_2) * z_c;
else if (rv_index == 2)
return (bg == 1 ? K0_2_1 : K0_2_2) * z_c;
else
return (bg == 1 ? K0_3_1 : K0_3_2) * z_c;
}
/* LBRM case - includes a division by N */
if (rv_index == 1)
return (((bg == 1 ? K0_1_1 : K0_1_2) * n_cb)
/ n) * z_c;
else if (rv_index == 2)
return (((bg == 1 ? K0_2_1 : K0_2_2) * n_cb)
/ n) * z_c;
else
return (((bg == 1 ? K0_3_1 : K0_3_2) * n_cb)
/ n) * z_c;
}
/* HARQ output length including the Filler bits */
static inline uint16_t
compute_harq_len(struct rte_bbdev_op_ldpc_dec *ops_ld)
{
uint16_t k0 = 0;
uint8_t max_rv = (ops_ld->rv_index == 1) ? 3 : ops_ld->rv_index;
k0 = get_k0(ops_ld->n_cb, ops_ld->z_c, ops_ld->basegraph, max_rv);
/* Compute RM out size and number of rows */
uint16_t parity_offset = (ops_ld->basegraph == 1 ? 20 : 8)
* ops_ld->z_c - ops_ld->n_filler;
uint16_t deRmOutSize = RTE_MIN(
k0 + ops_ld->cb_params.e +
((k0 > parity_offset) ?
0 : ops_ld->n_filler),
ops_ld->n_cb);
uint16_t numRows = ((deRmOutSize + ops_ld->z_c - 1)
/ ops_ld->z_c);
uint16_t harq_output_len = numRows * ops_ld->z_c;
return harq_output_len;
}
static inline int
validate_op_harq_chain(struct rte_bbdev_op_data *op,
struct op_data_entries *orig_op,
struct rte_bbdev_op_ldpc_dec *ops_ld)
{
uint8_t i;
uint32_t j, jj, k;
struct rte_mbuf *m = op->data;
uint8_t nb_dst_segments = orig_op->nb_segments;
uint32_t total_data_size = 0;
int8_t *harq_orig, *harq_out, abs_harq_origin;
uint32_t byte_error = 0, cum_error = 0, error;
int16_t llr_max = (1 << (ldpc_llr_size - ldpc_llr_decimals)) - 1;
int16_t llr_max_pre_scaling = (1 << (ldpc_llr_size - 1)) - 1;
uint16_t parity_offset;
TEST_ASSERT(nb_dst_segments == m->nb_segs,
"Number of segments differ in original (%u) and filled (%u) op",
nb_dst_segments, m->nb_segs);
/* Validate each mbuf segment length */
for (i = 0; i < nb_dst_segments; ++i) {
/* Apply offset to the first mbuf segment */
uint16_t offset = (i == 0) ? op->offset : 0;
uint16_t data_len = rte_pktmbuf_data_len(m) - offset;
total_data_size += orig_op->segments[i].length;
TEST_ASSERT(orig_op->segments[i].length <
(uint32_t)(data_len + 64),
"Length of segment differ in original (%u) and filled (%u) op",
orig_op->segments[i].length, data_len);
harq_orig = (int8_t *) orig_op->segments[i].addr;
harq_out = rte_pktmbuf_mtod_offset(m, int8_t *, offset);
if (!(ldpc_cap_flags &
RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_FILLERS
) || (ops_ld->op_flags &
RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK)) {
data_len -= ops_ld->z_c;
parity_offset = data_len;
} else {
/* Compute RM out size and number of rows */
parity_offset = (ops_ld->basegraph == 1 ? 20 : 8)
* ops_ld->z_c - ops_ld->n_filler;
uint16_t deRmOutSize = compute_harq_len(ops_ld) -
ops_ld->n_filler;
if (data_len > deRmOutSize)
data_len = deRmOutSize;
if (data_len > orig_op->segments[i].length)
data_len = orig_op->segments[i].length;
}
/*
* HARQ output can have minor differences
* due to integer representation and related scaling
*/
for (j = 0, jj = 0; j < data_len; j++, jj++) {
if (j == parity_offset) {
/* Special Handling of the filler bits */
for (k = 0; k < ops_ld->n_filler; k++) {
if (harq_out[jj] !=
llr_max_pre_scaling) {
printf("HARQ Filler issue %d: %d %d\n",
jj, harq_out[jj],
llr_max);
byte_error++;
}
jj++;
}
}
if (!(ops_ld->op_flags &
RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK)) {
if (ldpc_llr_decimals > 1)
harq_out[jj] = (harq_out[jj] + 1)
>> (ldpc_llr_decimals - 1);
/* Saturated to S7 */
if (harq_orig[j] > llr_max)
harq_orig[j] = llr_max;
if (harq_orig[j] < -llr_max)
harq_orig[j] = -llr_max;
}
if (harq_orig[j] != harq_out[jj]) {
error = (harq_orig[j] > harq_out[jj]) ?
harq_orig[j] - harq_out[jj] :
harq_out[jj] - harq_orig[j];
abs_harq_origin = harq_orig[j] > 0 ?
harq_orig[j] :
-harq_orig[j];
/* Residual quantization error */
if ((error > 8 && (abs_harq_origin <
(llr_max - 16))) ||
(error > 16)) {
printf("HARQ mismatch %d: exp %d act %d => %d\n",
j, harq_orig[j],
harq_out[jj], error);
byte_error++;
cum_error += error;
}
}
}
m = m->next;
}
if (byte_error)
TEST_ASSERT(byte_error <= 1,
"HARQ output mismatch (%d) %d",
byte_error, cum_error);
/* Validate total mbuf pkt length */
uint32_t pkt_len = rte_pktmbuf_pkt_len(op->data) - op->offset;
TEST_ASSERT(total_data_size < pkt_len + 64,
"Length of data differ in original (%u) and filled (%u) op",
total_data_size, pkt_len);
return TEST_SUCCESS;
}
static inline int
validate_op_so_chain(struct rte_bbdev_op_data *op,
struct op_data_entries *orig_op)
{
struct rte_mbuf *m = op->data;
uint8_t i, nb_dst_segments = orig_op->nb_segments;
uint32_t j, jj;
int8_t *so_orig, *so_out;
uint32_t byte_error = 0, error, margin_error = 0;
TEST_ASSERT(nb_dst_segments == m->nb_segs,
"Number of segments differ in original (%u) and filled (%u) op",
nb_dst_segments, m->nb_segs);
/* Validate each mbuf segment length. */
for (i = 0; i < nb_dst_segments; ++i) {
/* Apply offset to the first mbuf segment. */
uint16_t offset = (i == 0) ? op->offset : 0;
uint16_t data_len = rte_pktmbuf_data_len(m) - offset;
TEST_ASSERT(orig_op->segments[i].length == data_len,
"Length of segment differ in original (%u) and filled (%u) op",
orig_op->segments[i].length, data_len);
so_orig = (int8_t *) orig_op->segments[i].addr;
so_out = rte_pktmbuf_mtod_offset(m, int8_t *, offset);
margin_error += data_len / 8; /* Allow for few % errors. */
/* SO output can have minor differences due to algorithm variations. */
for (j = 0, jj = 0; j < data_len; j++, jj++) {
if (so_orig[j] != so_out[jj]) {
error = (so_orig[j] > so_out[jj]) ? so_orig[j] - so_out[jj] :
so_out[jj] - so_orig[j];
/* Residual quantization error. */
if (error > 32) {
printf("Warning: Soft mismatch %d: exp %d act %d => %d\n",
j, so_orig[j], so_out[jj], error);
byte_error++;
}
}
}
m = m->next;
}
if (byte_error > margin_error)
TEST_ASSERT(byte_error <= 1, "Soft output mismatch (%d) %d",
byte_error, margin_error);
return TEST_SUCCESS;
}
static int
validate_dec_op(struct rte_bbdev_dec_op **ops, const uint16_t n,
struct rte_bbdev_dec_op *ref_op, const int vector_mask)
{
unsigned int i;
int ret;
struct op_data_entries *hard_data_orig =
&test_vector.entries[DATA_HARD_OUTPUT];
struct op_data_entries *soft_data_orig =
&test_vector.entries[DATA_SOFT_OUTPUT];
struct rte_bbdev_op_turbo_dec *ops_td;
struct rte_bbdev_op_data *hard_output;
struct rte_bbdev_op_data *soft_output;
struct rte_bbdev_op_turbo_dec *ref_td = &ref_op->turbo_dec;
for (i = 0; i < n; ++i) {
ops_td = &ops[i]->turbo_dec;
hard_output = &ops_td->hard_output;
soft_output = &ops_td->soft_output;
if (vector_mask & TEST_BBDEV_VF_EXPECTED_ITER_COUNT)
TEST_ASSERT(ops_td->iter_count <= ref_td->iter_count,
"Returned iter_count (%d) > expected iter_count (%d)",
ops_td->iter_count, ref_td->iter_count);
ret = check_dec_status_and_ordering(ops[i], i, ref_op->status);
TEST_ASSERT_SUCCESS(ret,
"Checking status and ordering for decoder failed");
TEST_ASSERT_SUCCESS(validate_op_chain(hard_output,
hard_data_orig),
"Hard output buffers (CB=%u) are not equal",
i);
if (ref_op->turbo_dec.op_flags & RTE_BBDEV_TURBO_SOFT_OUTPUT)
TEST_ASSERT_SUCCESS(validate_op_so_chain(soft_output,
soft_data_orig),
"Soft output buffers (CB=%u) are not equal",
i);
}
return TEST_SUCCESS;
}
/* Check Number of code blocks errors */
static int
validate_ldpc_bler(struct rte_bbdev_dec_op **ops, const uint16_t n)
{
unsigned int i;
struct op_data_entries *hard_data_orig =
&test_vector.entries[DATA_HARD_OUTPUT];
struct rte_bbdev_op_ldpc_dec *ops_td;
struct rte_bbdev_op_data *hard_output;
int errors = 0;
struct rte_mbuf *m;
for (i = 0; i < n; ++i) {
ops_td = &ops[i]->ldpc_dec;
hard_output = &ops_td->hard_output;
m = hard_output->data;
if (memcmp(rte_pktmbuf_mtod_offset(m, uint32_t *, 0),
hard_data_orig->segments[0].addr,
hard_data_orig->segments[0].length))
errors++;
}
return errors;
}
static int
validate_ldpc_dec_op(struct rte_bbdev_dec_op **ops, const uint16_t n,
struct rte_bbdev_dec_op *ref_op, const int vector_mask)
{
unsigned int i;
int ret;
struct op_data_entries *hard_data_orig =
&test_vector.entries[DATA_HARD_OUTPUT];
struct op_data_entries *soft_data_orig =
&test_vector.entries[DATA_SOFT_OUTPUT];
struct op_data_entries *harq_data_orig =
&test_vector.entries[DATA_HARQ_OUTPUT];
struct rte_bbdev_op_ldpc_dec *ops_td;
struct rte_bbdev_op_data *hard_output;
struct rte_bbdev_op_data *harq_output;
struct rte_bbdev_op_data *soft_output;
struct rte_bbdev_op_ldpc_dec *ref_td = &ref_op->ldpc_dec;
for (i = 0; i < n; ++i) {
ops_td = &ops[i]->ldpc_dec;
hard_output = &ops_td->hard_output;
harq_output = &ops_td->harq_combined_output;
soft_output = &ops_td->soft_output;
ret = check_dec_status_and_ordering(ops[i], i, ref_op->status);
TEST_ASSERT_SUCCESS(ret,
"Checking status and ordering for decoder failed");
if (vector_mask & TEST_BBDEV_VF_EXPECTED_ITER_COUNT)
TEST_ASSERT(ops_td->iter_count <= ref_td->iter_count,
"Returned iter_count (%d) > expected iter_count (%d)",
ops_td->iter_count, ref_td->iter_count);
/*
* We can ignore output data when the decoding failed to
* converge or for loop-back cases
*/
if (!check_bit(ops[i]->ldpc_dec.op_flags,
RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK
) && (
ops[i]->status & (1 << RTE_BBDEV_SYNDROME_ERROR
)) == 0)
TEST_ASSERT_SUCCESS(validate_op_chain(hard_output,
hard_data_orig),
"Hard output buffers (CB=%u) are not equal",
i);
if (ref_op->ldpc_dec.op_flags & RTE_BBDEV_LDPC_SOFT_OUT_ENABLE)
TEST_ASSERT_SUCCESS(validate_op_chain(soft_output,
soft_data_orig),
"Soft output buffers (CB=%u) are not equal",
i);
if (ref_op->ldpc_dec.op_flags &
RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE) {
TEST_ASSERT_SUCCESS(validate_op_harq_chain(harq_output,
harq_data_orig, ops_td),
"HARQ output buffers (CB=%u) are not equal",
i);
}
if (ref_op->ldpc_dec.op_flags &
RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK)
TEST_ASSERT_SUCCESS(validate_op_harq_chain(harq_output,
harq_data_orig, ops_td),
"HARQ output buffers (CB=%u) are not equal",
i);
}
return TEST_SUCCESS;
}
static int
validate_enc_op(struct rte_bbdev_enc_op **ops, const uint16_t n,
struct rte_bbdev_enc_op *ref_op)
{
unsigned int i;
int ret;
struct op_data_entries *hard_data_orig =
&test_vector.entries[DATA_HARD_OUTPUT];
for (i = 0; i < n; ++i) {
ret = check_enc_status_and_ordering(ops[i], i, ref_op->status);
TEST_ASSERT_SUCCESS(ret,
"Checking status and ordering for encoder failed");
TEST_ASSERT_SUCCESS(validate_op_chain(
&ops[i]->turbo_enc.output,
hard_data_orig),
"Output buffers (CB=%u) are not equal",
i);
}
return TEST_SUCCESS;
}
static int
validate_ldpc_enc_op(struct rte_bbdev_enc_op **ops, const uint16_t n,
struct rte_bbdev_enc_op *ref_op)
{
unsigned int i;
int ret;
struct op_data_entries *hard_data_orig =
&test_vector.entries[DATA_HARD_OUTPUT];
for (i = 0; i < n; ++i) {
ret = check_enc_status_and_ordering(ops[i], i, ref_op->status);
TEST_ASSERT_SUCCESS(ret,
"Checking status and ordering for encoder failed");
TEST_ASSERT_SUCCESS(validate_op_chain(
&ops[i]->ldpc_enc.output,
hard_data_orig),
"Output buffers (CB=%u) are not equal",
i);
}
return TEST_SUCCESS;
}
static inline int
validate_op_fft_chain(struct rte_bbdev_op_data *op, struct op_data_entries *orig_op)
{
struct rte_mbuf *m = op->data;
uint8_t i, nb_dst_segments = orig_op->nb_segments;
int16_t delt, abs_delt, thres_hold = 3;
uint32_t j, data_len_iq, error_num;
int16_t *ref_out, *op_out;
TEST_ASSERT(nb_dst_segments == m->nb_segs,
"Number of segments differ in original (%u) and filled (%u) op fft",
nb_dst_segments, m->nb_segs);
/* Due to size limitation of mbuf, FFT doesn't use real mbuf. */
for (i = 0; i < nb_dst_segments; ++i) {
uint16_t offset = (i == 0) ? op->offset : 0;
uint32_t data_len = op->length;
TEST_ASSERT(orig_op->segments[i].length == data_len,
"Length of segment differ in original (%u) and filled (%u) op fft",
orig_op->segments[i].length, data_len);
/* Divided by 2 to get the number of 16bits data. */
data_len_iq = data_len >> 1;
ref_out = (int16_t *)(orig_op->segments[i].addr);
op_out = rte_pktmbuf_mtod_offset(m, int16_t *, offset);
error_num = 0;
for (j = 0; j < data_len_iq; j++) {
delt = ref_out[j] - op_out[j];
abs_delt = delt > 0 ? delt : -delt;
error_num += (abs_delt > thres_hold ? 1 : 0);
}
if (error_num > 0) {
rte_memdump(stdout, "Buffer A", ref_out, data_len);
rte_memdump(stdout, "Buffer B", op_out, data_len);
TEST_ASSERT(error_num == 0,
"FFT Output are not matched total (%u) errors (%u)",
data_len_iq, error_num);
}
m = m->next;
}
return TEST_SUCCESS;
}
static int
validate_fft_op(struct rte_bbdev_fft_op **ops, const uint16_t n,
struct rte_bbdev_fft_op *ref_op)
{
unsigned int i;
int ret;
struct op_data_entries *fft_data_orig = &test_vector.entries[DATA_HARD_OUTPUT];
struct op_data_entries *fft_pwr_orig = &test_vector.entries[DATA_SOFT_OUTPUT];
for (i = 0; i < n; ++i) {
ret = check_fft_status_and_ordering(ops[i], i, ref_op->status);
TEST_ASSERT_SUCCESS(ret, "Checking status and ordering for FFT failed");
TEST_ASSERT_SUCCESS(validate_op_fft_chain(
&ops[i]->fft.base_output, fft_data_orig),
"FFT Output buffers (op=%u) are not matched", i);
if (check_bit(ops[i]->fft.op_flags, RTE_BBDEV_FFT_POWER_MEAS))
TEST_ASSERT_SUCCESS(validate_op_fft_chain(
&ops[i]->fft.power_meas_output, fft_pwr_orig),
"FFT Power Output buffers (op=%u) are not matched", i);
}
return TEST_SUCCESS;
}
static void
create_reference_dec_op(struct rte_bbdev_dec_op *op)
{
unsigned int i;
struct op_data_entries *entry;
op->turbo_dec = test_vector.turbo_dec;
entry = &test_vector.entries[DATA_INPUT];
for (i = 0; i < entry->nb_segments; ++i)
op->turbo_dec.input.length +=
entry->segments[i].length;
}
static void
create_reference_ldpc_dec_op(struct rte_bbdev_dec_op *op)
{
unsigned int i;
struct op_data_entries *entry;
op->ldpc_dec = test_vector.ldpc_dec;
entry = &test_vector.entries[DATA_INPUT];
for (i = 0; i < entry->nb_segments; ++i)
op->ldpc_dec.input.length +=
entry->segments[i].length;
if (test_vector.ldpc_dec.op_flags &
RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE) {
entry = &test_vector.entries[DATA_HARQ_INPUT];
for (i = 0; i < entry->nb_segments; ++i)
op->ldpc_dec.harq_combined_input.length +=
entry->segments[i].length;
}
}
static void
create_reference_fft_op(struct rte_bbdev_fft_op *op)
{
unsigned int i;
struct op_data_entries *entry;
op->fft = test_vector.fft;
entry = &test_vector.entries[DATA_INPUT];
for (i = 0; i < entry->nb_segments; ++i)
op->fft.base_input.length += entry->segments[i].length;
}
static void
create_reference_enc_op(struct rte_bbdev_enc_op *op)
{
unsigned int i;
struct op_data_entries *entry;
op->turbo_enc = test_vector.turbo_enc;
entry = &test_vector.entries[DATA_INPUT];
for (i = 0; i < entry->nb_segments; ++i)
op->turbo_enc.input.length +=
entry->segments[i].length;
}
static void
create_reference_ldpc_enc_op(struct rte_bbdev_enc_op *op)
{
unsigned int i;
struct op_data_entries *entry;
op->ldpc_enc = test_vector.ldpc_enc;
entry = &test_vector.entries[DATA_INPUT];
for (i = 0; i < entry->nb_segments; ++i)
op->ldpc_enc.input.length +=
entry->segments[i].length;
}
static uint32_t
calc_dec_TB_size(struct rte_bbdev_dec_op *op)
{
uint8_t i;
uint32_t c, r, tb_size = 0;
if (op->turbo_dec.code_block_mode == RTE_BBDEV_CODE_BLOCK) {
tb_size = op->turbo_dec.tb_params.k_neg;
} else {
c = op->turbo_dec.tb_params.c;
r = op->turbo_dec.tb_params.r;
for (i = 0; i < c-r; i++)
tb_size += (r < op->turbo_dec.tb_params.c_neg) ?
op->turbo_dec.tb_params.k_neg :
op->turbo_dec.tb_params.k_pos;
}
return tb_size;
}
static uint32_t
calc_ldpc_dec_TB_size(struct rte_bbdev_dec_op *op)
{
uint8_t i;
uint32_t c, r, tb_size = 0;
uint16_t sys_cols = (op->ldpc_dec.basegraph == 1) ? 22 : 10;
if (op->ldpc_dec.code_block_mode == RTE_BBDEV_CODE_BLOCK) {
tb_size = sys_cols * op->ldpc_dec.z_c - op->ldpc_dec.n_filler;
} else {
c = op->ldpc_dec.tb_params.c;
r = op->ldpc_dec.tb_params.r;
for (i = 0; i < c-r; i++)
tb_size += sys_cols * op->ldpc_dec.z_c
- op->ldpc_dec.n_filler;
}
return tb_size;
}
static uint32_t
calc_enc_TB_size(struct rte_bbdev_enc_op *op)
{
uint8_t i;
uint32_t c, r, tb_size = 0;
if (op->turbo_enc.code_block_mode == RTE_BBDEV_CODE_BLOCK) {
tb_size = op->turbo_enc.tb_params.k_neg;
} else {
c = op->turbo_enc.tb_params.c;
r = op->turbo_enc.tb_params.r;
for (i = 0; i < c-r; i++)
tb_size += (r < op->turbo_enc.tb_params.c_neg) ?
op->turbo_enc.tb_params.k_neg :
op->turbo_enc.tb_params.k_pos;
}
return tb_size;
}
static uint32_t
calc_ldpc_enc_TB_size(struct rte_bbdev_enc_op *op)
{
uint8_t i;
uint32_t c, r, tb_size = 0;
uint16_t sys_cols = (op->ldpc_enc.basegraph == 1) ? 22 : 10;
if (op->ldpc_enc.code_block_mode == RTE_BBDEV_CODE_BLOCK) {
tb_size = sys_cols * op->ldpc_enc.z_c - op->ldpc_enc.n_filler;
} else {
c = op->turbo_enc.tb_params.c;
r = op->turbo_enc.tb_params.r;
for (i = 0; i < c-r; i++)
tb_size += sys_cols * op->ldpc_enc.z_c
- op->ldpc_enc.n_filler;
}
return tb_size;
}
static uint32_t
calc_fft_size(struct rte_bbdev_fft_op *op)
{
uint32_t output_size;
int num_cs = 0, i;
for (i = 0; i < 12; i++)
if (check_bit(op->fft.cs_bitmap, 1 << i))
num_cs++;
output_size = (num_cs * op->fft.output_sequence_size * 4) << op->fft.num_antennas_log2;
return output_size;
}
static int
init_test_op_params(struct test_op_params *op_params,
enum rte_bbdev_op_type op_type, const int expected_status,
const int vector_mask, struct rte_mempool *ops_mp,
uint16_t burst_sz, uint16_t num_to_process, uint16_t num_lcores)
{
int ret = 0;
if (op_type == RTE_BBDEV_OP_TURBO_DEC ||
op_type == RTE_BBDEV_OP_LDPC_DEC)
ret = rte_bbdev_dec_op_alloc_bulk(ops_mp,
&op_params->ref_dec_op, 1);
else if (op_type == RTE_BBDEV_OP_FFT)
ret = rte_bbdev_fft_op_alloc_bulk(ops_mp,
&op_params->ref_fft_op, 1);
else
ret = rte_bbdev_enc_op_alloc_bulk(ops_mp,
&op_params->ref_enc_op, 1);
TEST_ASSERT_SUCCESS(ret, "rte_bbdev_op_alloc_bulk() failed");
op_params->mp = ops_mp;
op_params->burst_sz = burst_sz;
op_params->num_to_process = num_to_process;
op_params->num_lcores = num_lcores;
op_params->vector_mask = vector_mask;
if (op_type == RTE_BBDEV_OP_TURBO_DEC ||
op_type == RTE_BBDEV_OP_LDPC_DEC)
op_params->ref_dec_op->status = expected_status;
else if (op_type == RTE_BBDEV_OP_TURBO_ENC
|| op_type == RTE_BBDEV_OP_LDPC_ENC)
op_params->ref_enc_op->status = expected_status;
else if (op_type == RTE_BBDEV_OP_FFT)
op_params->ref_fft_op->status = expected_status;
return 0;
}
static int
run_test_case_on_device(test_case_function *test_case_func, uint8_t dev_id,
struct test_op_params *op_params)
{
int t_ret, f_ret, socket_id = SOCKET_ID_ANY;
unsigned int i;
struct active_device *ad;
unsigned int burst_sz = get_burst_sz();
enum rte_bbdev_op_type op_type = test_vector.op_type;
const struct rte_bbdev_op_cap *capabilities = NULL;
ad = &active_devs[dev_id];
/* Check if device supports op_type */
if (!is_avail_op(ad, test_vector.op_type))
return TEST_SUCCESS;
struct rte_bbdev_info info;
rte_bbdev_info_get(ad->dev_id, &info);
socket_id = GET_SOCKET(info.socket_id);
f_ret = create_mempools(ad, socket_id, op_type,
get_num_ops());
if (f_ret != TEST_SUCCESS) {
printf("Couldn't create mempools");
goto fail;
}
if (op_type == RTE_BBDEV_OP_NONE)
op_type = RTE_BBDEV_OP_TURBO_ENC;
f_ret = init_test_op_params(op_params, test_vector.op_type,
test_vector.expected_status,
test_vector.mask,
ad->ops_mempool,
burst_sz,
get_num_ops(),
get_num_lcores());
if (f_ret != TEST_SUCCESS) {
printf("Couldn't init test op params");
goto fail;
}
/* Find capabilities */
const struct rte_bbdev_op_cap *cap = info.drv.capabilities;
do {
if (cap->type == test_vector.op_type) {
capabilities = cap;
break;
}
cap++;
} while (cap->type != RTE_BBDEV_OP_NONE);
TEST_ASSERT_NOT_NULL(capabilities,
"Couldn't find capabilities");
if (test_vector.op_type == RTE_BBDEV_OP_TURBO_DEC) {
create_reference_dec_op(op_params->ref_dec_op);
} else if (test_vector.op_type == RTE_BBDEV_OP_TURBO_ENC)
create_reference_enc_op(op_params->ref_enc_op);
else if (test_vector.op_type == RTE_BBDEV_OP_LDPC_ENC)
create_reference_ldpc_enc_op(op_params->ref_enc_op);
else if (test_vector.op_type == RTE_BBDEV_OP_LDPC_DEC)
create_reference_ldpc_dec_op(op_params->ref_dec_op);
else if (test_vector.op_type == RTE_BBDEV_OP_FFT)
create_reference_fft_op(op_params->ref_fft_op);
for (i = 0; i < ad->nb_queues; ++i) {
f_ret = fill_queue_buffers(op_params,
ad->in_mbuf_pool,
ad->hard_out_mbuf_pool,
ad->soft_out_mbuf_pool,
ad->harq_in_mbuf_pool,
ad->harq_out_mbuf_pool,
ad->queue_ids[i],
capabilities,
info.drv.min_alignment,
socket_id);
if (f_ret != TEST_SUCCESS) {
printf("Couldn't init queue buffers");
goto fail;
}
}
/* Run test case function */
t_ret = test_case_func(ad, op_params);
/* Free active device resources and return */
free_buffers(ad, op_params);
return t_ret;
fail:
free_buffers(ad, op_params);
return TEST_FAILED;
}
/* Run given test function per active device per supported op type
* per burst size.
*/
static int
run_test_case(test_case_function *test_case_func)
{
int ret = 0;
uint8_t dev;
/* Alloc op_params */
struct test_op_params *op_params = rte_zmalloc(NULL,
sizeof(struct test_op_params), RTE_CACHE_LINE_SIZE);
TEST_ASSERT_NOT_NULL(op_params, "Failed to alloc %zuB for op_params",
RTE_ALIGN(sizeof(struct test_op_params),
RTE_CACHE_LINE_SIZE));
/* For each device run test case function */
for (dev = 0; dev < nb_active_devs; ++dev)
ret |= run_test_case_on_device(test_case_func, dev, op_params);
rte_free(op_params);
return ret;
}
/* Push back the HARQ output from DDR to host */
static void
retrieve_harq_ddr(uint16_t dev_id, uint16_t queue_id,
struct rte_bbdev_dec_op **ops,
const uint16_t n)
{
uint16_t j;
int save_status, ret;
uint32_t harq_offset = (uint32_t) queue_id * HARQ_INCR * MAX_OPS;
struct rte_bbdev_dec_op *ops_deq[MAX_BURST];
uint32_t flags = ops[0]->ldpc_dec.op_flags;
bool loopback = flags & RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK;
bool mem_out = flags & RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE;
bool hc_out = flags & RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE;
bool h_comp = flags & RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION;
for (j = 0; j < n; ++j) {
if ((loopback && mem_out) || hc_out) {
save_status = ops[j]->status;
ops[j]->ldpc_dec.op_flags =
RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK +
RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_IN_ENABLE;
if (h_comp)
ops[j]->ldpc_dec.op_flags +=
RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION;
ops[j]->ldpc_dec.harq_combined_input.offset =
harq_offset;
ops[j]->ldpc_dec.harq_combined_output.offset = 0;
harq_offset += HARQ_INCR;
if (!loopback)
ops[j]->ldpc_dec.harq_combined_input.length =
ops[j]->ldpc_dec.harq_combined_output.length;
rte_bbdev_enqueue_ldpc_dec_ops(dev_id, queue_id,
&ops[j], 1);
ret = 0;
while (ret == 0)
ret = rte_bbdev_dequeue_ldpc_dec_ops(
dev_id, queue_id,
&ops_deq[j], 1);
ops[j]->ldpc_dec.op_flags = flags;
ops[j]->status = save_status;
}
}
}
/*
* Push back the HARQ output from HW DDR to Host
* Preload HARQ memory input and adjust HARQ offset
*/
static void
preload_harq_ddr(uint16_t dev_id, uint16_t queue_id,
struct rte_bbdev_dec_op **ops, const uint16_t n,
bool preload)
{
uint16_t j;
int deq;
uint32_t harq_offset = (uint32_t) queue_id * HARQ_INCR * MAX_OPS;
struct rte_bbdev_op_data save_hc_in[MAX_OPS], save_hc_out[MAX_OPS];
struct rte_bbdev_dec_op *ops_deq[MAX_OPS];
uint32_t flags = ops[0]->ldpc_dec.op_flags;
bool mem_in = flags & RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_IN_ENABLE;
bool hc_in = flags & RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE;
bool mem_out = flags & RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE;
bool hc_out = flags & RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE;
bool h_comp = flags & RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION;
if ((mem_in || hc_in) && preload) {
for (j = 0; j < n; ++j) {
save_hc_in[j] = ops[j]->ldpc_dec.harq_combined_input;
save_hc_out[j] = ops[j]->ldpc_dec.harq_combined_output;
ops[j]->ldpc_dec.op_flags =
RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK +
RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE;
if (h_comp)
ops[j]->ldpc_dec.op_flags +=
RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION;
ops[j]->ldpc_dec.harq_combined_output.offset =
harq_offset;
ops[j]->ldpc_dec.harq_combined_input.offset = 0;
harq_offset += HARQ_INCR;
}
rte_bbdev_enqueue_ldpc_dec_ops(dev_id, queue_id, &ops[0], n);
deq = 0;
while (deq != n)
deq += rte_bbdev_dequeue_ldpc_dec_ops(
dev_id, queue_id, &ops_deq[deq],
n - deq);
/* Restore the operations */
for (j = 0; j < n; ++j) {
ops[j]->ldpc_dec.op_flags = flags;
ops[j]->ldpc_dec.harq_combined_input = save_hc_in[j];
ops[j]->ldpc_dec.harq_combined_output = save_hc_out[j];
}
}
harq_offset = (uint32_t) queue_id * HARQ_INCR * MAX_OPS;
for (j = 0; j < n; ++j) {
/* Adjust HARQ offset when we reach external DDR */
if (mem_in || hc_in)
ops[j]->ldpc_dec.harq_combined_input.offset
= harq_offset;
if (mem_out || hc_out)
ops[j]->ldpc_dec.harq_combined_output.offset
= harq_offset;
harq_offset += HARQ_INCR;
}
}
static void
dequeue_event_callback(uint16_t dev_id,
enum rte_bbdev_event_type event, void *cb_arg,
void *ret_param)
{
int ret;
uint16_t i;
uint64_t total_time;
uint16_t deq, burst_sz, num_ops;
uint16_t queue_id = *(uint16_t *) ret_param;
struct rte_bbdev_info info;
double tb_len_bits;
struct thread_params *tp = cb_arg;
/* Find matching thread params using queue_id */
for (i = 0; i < MAX_QUEUES; ++i, ++tp)
if (tp->queue_id == queue_id)
break;
if (i == MAX_QUEUES) {
printf("%s: Queue_id from interrupt details was not found!\n",
__func__);
return;
}
if (unlikely(event != RTE_BBDEV_EVENT_DEQUEUE)) {
__atomic_store_n(&tp->processing_status, TEST_FAILED, __ATOMIC_RELAXED);
printf(
"Dequeue interrupt handler called for incorrect event!\n");
return;
}
burst_sz = __atomic_load_n(&tp->burst_sz, __ATOMIC_RELAXED);
num_ops = tp->op_params->num_to_process;
if (test_vector.op_type == RTE_BBDEV_OP_TURBO_DEC)
deq = rte_bbdev_dequeue_dec_ops(dev_id, queue_id,
&tp->dec_ops[
__atomic_load_n(&tp->nb_dequeued, __ATOMIC_RELAXED)],
burst_sz);
else if (test_vector.op_type == RTE_BBDEV_OP_LDPC_DEC)
deq = rte_bbdev_dequeue_ldpc_dec_ops(dev_id, queue_id,
&tp->dec_ops[
__atomic_load_n(&tp->nb_dequeued, __ATOMIC_RELAXED)],
burst_sz);
else if (test_vector.op_type == RTE_BBDEV_OP_LDPC_ENC)
deq = rte_bbdev_dequeue_ldpc_enc_ops(dev_id, queue_id,
&tp->enc_ops[
__atomic_load_n(&tp->nb_dequeued, __ATOMIC_RELAXED)],
burst_sz);
else if (test_vector.op_type == RTE_BBDEV_OP_FFT)
deq = rte_bbdev_dequeue_fft_ops(dev_id, queue_id,
&tp->fft_ops[
__atomic_load_n(&tp->nb_dequeued, __ATOMIC_RELAXED)],
burst_sz);
else /*RTE_BBDEV_OP_TURBO_ENC*/
deq = rte_bbdev_dequeue_enc_ops(dev_id, queue_id,
&tp->enc_ops[
__atomic_load_n(&tp->nb_dequeued, __ATOMIC_RELAXED)],
burst_sz);
if (deq < burst_sz) {
printf(
"After receiving the interrupt all operations should be dequeued. Expected: %u, got: %u\n",
burst_sz, deq);
__atomic_store_n(&tp->processing_status, TEST_FAILED, __ATOMIC_RELAXED);
return;
}
if (__atomic_load_n(&tp->nb_dequeued, __ATOMIC_RELAXED) + deq < num_ops) {
__atomic_fetch_add(&tp->nb_dequeued, deq, __ATOMIC_RELAXED);
return;
}
total_time = rte_rdtsc_precise() - tp->start_time;
rte_bbdev_info_get(dev_id, &info);
ret = TEST_SUCCESS;
if (test_vector.op_type == RTE_BBDEV_OP_TURBO_DEC) {
struct rte_bbdev_dec_op *ref_op = tp->op_params->ref_dec_op;
ret = validate_dec_op(tp->dec_ops, num_ops, ref_op,
tp->op_params->vector_mask);
/* get the max of iter_count for all dequeued ops */
for (i = 0; i < num_ops; ++i)
tp->iter_count = RTE_MAX(
tp->dec_ops[i]->turbo_dec.iter_count,
tp->iter_count);
rte_bbdev_dec_op_free_bulk(tp->dec_ops, deq);
} else if (test_vector.op_type == RTE_BBDEV_OP_TURBO_ENC) {
struct rte_bbdev_enc_op *ref_op = tp->op_params->ref_enc_op;
ret = validate_enc_op(tp->enc_ops, num_ops, ref_op);
rte_bbdev_enc_op_free_bulk(tp->enc_ops, deq);
} else if (test_vector.op_type == RTE_BBDEV_OP_LDPC_ENC) {
struct rte_bbdev_enc_op *ref_op = tp->op_params->ref_enc_op;
ret = validate_ldpc_enc_op(tp->enc_ops, num_ops, ref_op);
rte_bbdev_enc_op_free_bulk(tp->enc_ops, deq);
} else if (test_vector.op_type == RTE_BBDEV_OP_FFT) {
struct rte_bbdev_fft_op *ref_op = tp->op_params->ref_fft_op;
ret = validate_fft_op(tp->fft_ops, num_ops, ref_op);
rte_bbdev_fft_op_free_bulk(tp->fft_ops, deq);
} else if (test_vector.op_type == RTE_BBDEV_OP_LDPC_DEC) {
struct rte_bbdev_dec_op *ref_op = tp->op_params->ref_dec_op;
ret = validate_ldpc_dec_op(tp->dec_ops, num_ops, ref_op,
tp->op_params->vector_mask);
rte_bbdev_dec_op_free_bulk(tp->dec_ops, deq);
}
if (ret) {
printf("Buffers validation failed\n");
__atomic_store_n(&tp->processing_status, TEST_FAILED, __ATOMIC_RELAXED);
}
switch (test_vector.op_type) {
case RTE_BBDEV_OP_TURBO_DEC:
tb_len_bits = calc_dec_TB_size(tp->op_params->ref_dec_op);
break;
case RTE_BBDEV_OP_TURBO_ENC:
tb_len_bits = calc_enc_TB_size(tp->op_params->ref_enc_op);
break;
case RTE_BBDEV_OP_LDPC_DEC:
tb_len_bits = calc_ldpc_dec_TB_size(tp->op_params->ref_dec_op);
break;
case RTE_BBDEV_OP_FFT:
tb_len_bits = calc_fft_size(tp->op_params->ref_fft_op);
break;
case RTE_BBDEV_OP_LDPC_ENC:
tb_len_bits = calc_ldpc_enc_TB_size(tp->op_params->ref_enc_op);
break;
case RTE_BBDEV_OP_NONE:
tb_len_bits = 0.0;
break;
default:
printf("Unknown op type: %d\n", test_vector.op_type);
__atomic_store_n(&tp->processing_status, TEST_FAILED, __ATOMIC_RELAXED);
return;
}
tp->ops_per_sec += ((double)num_ops) /
((double)total_time / (double)rte_get_tsc_hz());
tp->mbps += (((double)(num_ops * tb_len_bits)) / 1000000.0) /
((double)total_time / (double)rte_get_tsc_hz());
__atomic_fetch_add(&tp->nb_dequeued, deq, __ATOMIC_RELAXED);
}
static int
throughput_intr_lcore_ldpc_dec(void *arg)
{
struct thread_params *tp = arg;
unsigned int enqueued;
const uint16_t queue_id = tp->queue_id;
const uint16_t burst_sz = tp->op_params->burst_sz;
const uint16_t num_to_process = tp->op_params->num_to_process;
struct rte_bbdev_dec_op *ops[num_to_process];
struct test_buffers *bufs = NULL;
struct rte_bbdev_info info;
int ret, i, j;
struct rte_bbdev_dec_op *ref_op = tp->op_params->ref_dec_op;
uint16_t num_to_enq, enq;
bool loopback = check_bit(ref_op->ldpc_dec.op_flags,
RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK);
bool hc_out = check_bit(ref_op->ldpc_dec.op_flags,
RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE);
TEST_ASSERT_SUCCESS((burst_sz > MAX_BURST),
"BURST_SIZE should be <= %u", MAX_BURST);
TEST_ASSERT_SUCCESS(rte_bbdev_queue_intr_enable(tp->dev_id, queue_id),
"Failed to enable interrupts for dev: %u, queue_id: %u",
tp->dev_id, queue_id);
rte_bbdev_info_get(tp->dev_id, &info);
TEST_ASSERT_SUCCESS((num_to_process > info.drv.queue_size_lim),
"NUM_OPS cannot exceed %u for this device",
info.drv.queue_size_lim);
bufs = &tp->op_params->q_bufs[GET_SOCKET(info.socket_id)][queue_id];
__atomic_store_n(&tp->processing_status, 0, __ATOMIC_RELAXED);
__atomic_store_n(&tp->nb_dequeued, 0, __ATOMIC_RELAXED);
rte_wait_until_equal_16(&tp->op_params->sync, SYNC_START, __ATOMIC_RELAXED);
ret = rte_bbdev_dec_op_alloc_bulk(tp->op_params->mp, ops,
num_to_process);
TEST_ASSERT_SUCCESS(ret, "Allocation failed for %d ops",
num_to_process);
if (test_vector.op_type != RTE_BBDEV_OP_NONE)
copy_reference_ldpc_dec_op(ops, num_to_process, 0, bufs->inputs,
bufs->hard_outputs, bufs->soft_outputs,
bufs->harq_inputs, bufs->harq_outputs, ref_op);
/* Set counter to validate the ordering */
for (j = 0; j < num_to_process; ++j)
ops[j]->opaque_data = (void *)(uintptr_t)j;
for (j = 0; j < TEST_REPETITIONS; ++j) {
for (i = 0; i < num_to_process; ++i) {
if (!loopback)
rte_pktmbuf_reset(
ops[i]->ldpc_dec.hard_output.data);
if (hc_out || loopback)
mbuf_reset(
ops[i]->ldpc_dec.harq_combined_output.data);
}
tp->start_time = rte_rdtsc_precise();
for (enqueued = 0; enqueued < num_to_process;) {
num_to_enq = burst_sz;
if (unlikely(num_to_process - enqueued < num_to_enq))
num_to_enq = num_to_process - enqueued;
enq = 0;
do {
enq += rte_bbdev_enqueue_ldpc_dec_ops(
tp->dev_id,
queue_id, &ops[enqueued],
num_to_enq);
} while (unlikely(num_to_enq != enq));
enqueued += enq;
/* Write to thread burst_sz current number of enqueued
* descriptors. It ensures that proper number of
* descriptors will be dequeued in callback
* function - needed for last batch in case where
* the number of operations is not a multiple of
* burst size.
*/
__atomic_store_n(&tp->burst_sz, num_to_enq, __ATOMIC_RELAXED);
/* Wait until processing of previous batch is
* completed
*/
rte_wait_until_equal_16(&tp->nb_dequeued, enqueued, __ATOMIC_RELAXED);
}
if (j != TEST_REPETITIONS - 1)
__atomic_store_n(&tp->nb_dequeued, 0, __ATOMIC_RELAXED);
}
return TEST_SUCCESS;
}
static int
throughput_intr_lcore_dec(void *arg)
{
struct thread_params *tp = arg;
unsigned int enqueued;
const uint16_t queue_id = tp->queue_id;
const uint16_t burst_sz = tp->op_params->burst_sz;
const uint16_t num_to_process = tp->op_params->num_to_process;
struct rte_bbdev_dec_op *ops[num_to_process];
struct test_buffers *bufs = NULL;
struct rte_bbdev_info info;
struct rte_bbdev_dec_op *ref_op = tp->op_params->ref_dec_op;
int ret, i, j;
uint16_t num_to_enq, enq;
TEST_ASSERT_SUCCESS((burst_sz > MAX_BURST),
"BURST_SIZE should be <= %u", MAX_BURST);
TEST_ASSERT_SUCCESS(rte_bbdev_queue_intr_enable(tp->dev_id, queue_id),
"Failed to enable interrupts for dev: %u, queue_id: %u",
tp->dev_id, queue_id);
rte_bbdev_info_get(tp->dev_id, &info);
TEST_ASSERT_SUCCESS((num_to_process > info.drv.queue_size_lim),
"NUM_OPS cannot exceed %u for this device",
info.drv.queue_size_lim);
bufs = &tp->op_params->q_bufs[GET_SOCKET(info.socket_id)][queue_id];
__atomic_store_n(&tp->processing_status, 0, __ATOMIC_RELAXED);
__atomic_store_n(&tp->nb_dequeued, 0, __ATOMIC_RELAXED);
rte_wait_until_equal_16(&tp->op_params->sync, SYNC_START, __ATOMIC_RELAXED);
ret = rte_bbdev_dec_op_alloc_bulk(tp->op_params->mp, ops,
num_to_process);
TEST_ASSERT_SUCCESS(ret, "Allocation failed for %d ops", num_to_process);
ref_op->turbo_dec.iter_max = get_iter_max();
if (test_vector.op_type != RTE_BBDEV_OP_NONE)
copy_reference_dec_op(ops, num_to_process, 0, bufs->inputs,
bufs->hard_outputs, bufs->soft_outputs,
tp->op_params->ref_dec_op);
/* Set counter to validate the ordering. */
for (j = 0; j < num_to_process; ++j)
ops[j]->opaque_data = (void *)(uintptr_t)j;
for (j = 0; j < TEST_REPETITIONS; ++j) {
for (i = 0; i < num_to_process; ++i) {
rte_pktmbuf_reset(ops[i]->turbo_dec.hard_output.data);
if (ops[i]->turbo_dec.soft_output.data != NULL)
rte_pktmbuf_reset(ops[i]->turbo_dec.soft_output.data);
}
tp->start_time = rte_rdtsc_precise();
for (enqueued = 0; enqueued < num_to_process;) {
num_to_enq = burst_sz;
if (unlikely(num_to_process - enqueued < num_to_enq))
num_to_enq = num_to_process - enqueued;
enq = 0;
do {
enq += rte_bbdev_enqueue_dec_ops(tp->dev_id,
queue_id, &ops[enqueued],
num_to_enq);
} while (unlikely(num_to_enq != enq));
enqueued += enq;
/* Write to thread burst_sz current number of enqueued
* descriptors. It ensures that proper number of
* descriptors will be dequeued in callback
* function - needed for last batch in case where
* the number of operations is not a multiple of
* burst size.
*/
__atomic_store_n(&tp->burst_sz, num_to_enq, __ATOMIC_RELAXED);
/* Wait until processing of previous batch is
* completed
*/
rte_wait_until_equal_16(&tp->nb_dequeued, enqueued, __ATOMIC_RELAXED);
}
if (j != TEST_REPETITIONS - 1)
__atomic_store_n(&tp->nb_dequeued, 0, __ATOMIC_RELAXED);
}
return TEST_SUCCESS;
}
static int
throughput_intr_lcore_enc(void *arg)
{
struct thread_params *tp = arg;
unsigned int enqueued;
const uint16_t queue_id = tp->queue_id;
const uint16_t burst_sz = tp->op_params->burst_sz;
const uint16_t num_to_process = tp->op_params->num_to_process;
struct rte_bbdev_enc_op *ops[num_to_process];
struct test_buffers *bufs = NULL;
struct rte_bbdev_info info;
int ret, i, j;
uint16_t num_to_enq, enq;
TEST_ASSERT_SUCCESS((burst_sz > MAX_BURST),
"BURST_SIZE should be <= %u", MAX_BURST);
TEST_ASSERT_SUCCESS(rte_bbdev_queue_intr_enable(tp->dev_id, queue_id),
"Failed to enable interrupts for dev: %u, queue_id: %u",
tp->dev_id, queue_id);
rte_bbdev_info_get(tp->dev_id, &info);
TEST_ASSERT_SUCCESS((num_to_process > info.drv.queue_size_lim),
"NUM_OPS cannot exceed %u for this device",
info.drv.queue_size_lim);
bufs = &tp->op_params->q_bufs[GET_SOCKET(info.socket_id)][queue_id];
__atomic_store_n(&tp->processing_status, 0, __ATOMIC_RELAXED);
__atomic_store_n(&tp->nb_dequeued, 0, __ATOMIC_RELAXED);
rte_wait_until_equal_16(&tp->op_params->sync, SYNC_START, __ATOMIC_RELAXED);
ret = rte_bbdev_enc_op_alloc_bulk(tp->op_params->mp, ops,
num_to_process);
TEST_ASSERT_SUCCESS(ret, "Allocation failed for %d ops",
num_to_process);
if (test_vector.op_type != RTE_BBDEV_OP_NONE)
copy_reference_enc_op(ops, num_to_process, 0, bufs->inputs,
bufs->hard_outputs, tp->op_params->ref_enc_op);
/* Set counter to validate the ordering */
for (j = 0; j < num_to_process; ++j)
ops[j]->opaque_data = (void *)(uintptr_t)j;
for (j = 0; j < TEST_REPETITIONS; ++j) {
for (i = 0; i < num_to_process; ++i)
rte_pktmbuf_reset(ops[i]->turbo_enc.output.data);
tp->start_time = rte_rdtsc_precise();
for (enqueued = 0; enqueued < num_to_process;) {
num_to_enq = burst_sz;
if (unlikely(num_to_process - enqueued < num_to_enq))
num_to_enq = num_to_process - enqueued;
enq = 0;
do {
enq += rte_bbdev_enqueue_enc_ops(tp->dev_id,
queue_id, &ops[enqueued],
num_to_enq);
} while (unlikely(enq != num_to_enq));
enqueued += enq;
/* Write to thread burst_sz current number of enqueued
* descriptors. It ensures that proper number of
* descriptors will be dequeued in callback
* function - needed for last batch in case where
* the number of operations is not a multiple of
* burst size.
*/
__atomic_store_n(&tp->burst_sz, num_to_enq, __ATOMIC_RELAXED);
/* Wait until processing of previous batch is
* completed
*/
rte_wait_until_equal_16(&tp->nb_dequeued, enqueued, __ATOMIC_RELAXED);
}
if (j != TEST_REPETITIONS - 1)
__atomic_store_n(&tp->nb_dequeued, 0, __ATOMIC_RELAXED);
}
return TEST_SUCCESS;
}
static int
throughput_intr_lcore_ldpc_enc(void *arg)
{
struct thread_params *tp = arg;
unsigned int enqueued;
const uint16_t queue_id = tp->queue_id;
const uint16_t burst_sz = tp->op_params->burst_sz;
const uint16_t num_to_process = tp->op_params->num_to_process;
struct rte_bbdev_enc_op *ops[num_to_process];
struct test_buffers *bufs = NULL;
struct rte_bbdev_info info;
int ret, i, j;
uint16_t num_to_enq, enq;
TEST_ASSERT_SUCCESS((burst_sz > MAX_BURST),
"BURST_SIZE should be <= %u", MAX_BURST);
TEST_ASSERT_SUCCESS(rte_bbdev_queue_intr_enable(tp->dev_id, queue_id),
"Failed to enable interrupts for dev: %u, queue_id: %u",
tp->dev_id, queue_id);
rte_bbdev_info_get(tp->dev_id, &info);
TEST_ASSERT_SUCCESS((num_to_process > info.drv.queue_size_lim),
"NUM_OPS cannot exceed %u for this device",
info.drv.queue_size_lim);
bufs = &tp->op_params->q_bufs[GET_SOCKET(info.socket_id)][queue_id];
__atomic_store_n(&tp->processing_status, 0, __ATOMIC_RELAXED);
__atomic_store_n(&tp->nb_dequeued, 0, __ATOMIC_RELAXED);
rte_wait_until_equal_16(&tp->op_params->sync, SYNC_START, __ATOMIC_RELAXED);
ret = rte_bbdev_enc_op_alloc_bulk(tp->op_params->mp, ops,
num_to_process);
TEST_ASSERT_SUCCESS(ret, "Allocation failed for %d ops",
num_to_process);
if (test_vector.op_type != RTE_BBDEV_OP_NONE)
copy_reference_ldpc_enc_op(ops, num_to_process, 0,
bufs->inputs, bufs->hard_outputs,
tp->op_params->ref_enc_op);
/* Set counter to validate the ordering */
for (j = 0; j < num_to_process; ++j)
ops[j]->opaque_data = (void *)(uintptr_t)j;
for (j = 0; j < TEST_REPETITIONS; ++j) {
for (i = 0; i < num_to_process; ++i)
rte_pktmbuf_reset(ops[i]->turbo_enc.output.data);
tp->start_time = rte_rdtsc_precise();
for (enqueued = 0; enqueued < num_to_process;) {
num_to_enq = burst_sz;
if (unlikely(num_to_process - enqueued < num_to_enq))
num_to_enq = num_to_process - enqueued;
enq = 0;
do {
enq += rte_bbdev_enqueue_ldpc_enc_ops(
tp->dev_id,
queue_id, &ops[enqueued],
num_to_enq);
} while (unlikely(enq != num_to_enq));
enqueued += enq;
/* Write to thread burst_sz current number of enqueued
* descriptors. It ensures that proper number of
* descriptors will be dequeued in callback
* function - needed for last batch in case where
* the number of operations is not a multiple of
* burst size.
*/
__atomic_store_n(&tp->burst_sz, num_to_enq, __ATOMIC_RELAXED);
/* Wait until processing of previous batch is
* completed
*/
rte_wait_until_equal_16(&tp->nb_dequeued, enqueued, __ATOMIC_RELAXED);
}
if (j != TEST_REPETITIONS - 1)
__atomic_store_n(&tp->nb_dequeued, 0, __ATOMIC_RELAXED);
}
return TEST_SUCCESS;
}
static int
throughput_intr_lcore_fft(void *arg)
{
struct thread_params *tp = arg;
unsigned int enqueued;
const uint16_t queue_id = tp->queue_id;
const uint16_t burst_sz = tp->op_params->burst_sz;
const uint16_t num_to_process = tp->op_params->num_to_process;
struct rte_bbdev_fft_op *ops[num_to_process];
struct test_buffers *bufs = NULL;
struct rte_bbdev_info info;
int ret, i, j;
uint16_t num_to_enq, enq;
TEST_ASSERT_SUCCESS((burst_sz > MAX_BURST),
"BURST_SIZE should be <= %u", MAX_BURST);
TEST_ASSERT_SUCCESS(rte_bbdev_queue_intr_enable(tp->dev_id, queue_id),
"Failed to enable interrupts for dev: %u, queue_id: %u",
tp->dev_id, queue_id);
rte_bbdev_info_get(tp->dev_id, &info);
TEST_ASSERT_SUCCESS((num_to_process > info.drv.queue_size_lim),
"NUM_OPS cannot exceed %u for this device",
info.drv.queue_size_lim);
bufs = &tp->op_params->q_bufs[GET_SOCKET(info.socket_id)][queue_id];
__atomic_store_n(&tp->processing_status, 0, __ATOMIC_RELAXED);
__atomic_store_n(&tp->nb_dequeued, 0, __ATOMIC_RELAXED);
rte_wait_until_equal_16(&tp->op_params->sync, SYNC_START, __ATOMIC_RELAXED);
ret = rte_bbdev_fft_op_alloc_bulk(tp->op_params->mp, ops,
num_to_process);
TEST_ASSERT_SUCCESS(ret, "Allocation failed for %d ops",
num_to_process);
if (test_vector.op_type != RTE_BBDEV_OP_NONE)
copy_reference_fft_op(ops, num_to_process, 0, bufs->inputs,
bufs->hard_outputs, bufs->soft_outputs, tp->op_params->ref_fft_op);
/* Set counter to validate the ordering */
for (j = 0; j < num_to_process; ++j)
ops[j]->opaque_data = (void *)(uintptr_t)j;
for (j = 0; j < TEST_REPETITIONS; ++j) {
for (i = 0; i < num_to_process; ++i)
rte_pktmbuf_reset(ops[i]->fft.base_output.data);
tp->start_time = rte_rdtsc_precise();
for (enqueued = 0; enqueued < num_to_process;) {
num_to_enq = burst_sz;
if (unlikely(num_to_process - enqueued < num_to_enq))
num_to_enq = num_to_process - enqueued;
enq = 0;
do {
enq += rte_bbdev_enqueue_fft_ops(tp->dev_id,
queue_id, &ops[enqueued],
num_to_enq);
} while (unlikely(enq != num_to_enq));
enqueued += enq;
/* Write to thread burst_sz current number of enqueued
* descriptors. It ensures that proper number of
* descriptors will be dequeued in callback
* function - needed for last batch in case where
* the number of operations is not a multiple of
* burst size.
*/
__atomic_store_n(&tp->burst_sz, num_to_enq, __ATOMIC_RELAXED);
/* Wait until processing of previous batch is
* completed
*/
rte_wait_until_equal_16(&tp->nb_dequeued, enqueued, __ATOMIC_RELAXED);
}
if (j != TEST_REPETITIONS - 1)
__atomic_store_n(&tp->nb_dequeued, 0, __ATOMIC_RELAXED);
}
return TEST_SUCCESS;
}
static int
throughput_pmd_lcore_dec(void *arg)
{
struct thread_params *tp = arg;
uint16_t enq, deq;
uint64_t total_time = 0, start_time;
const uint16_t queue_id = tp->queue_id;
const uint16_t burst_sz = tp->op_params->burst_sz;
const uint16_t num_ops = tp->op_params->num_to_process;
struct rte_bbdev_dec_op *ops_enq[num_ops];
struct rte_bbdev_dec_op *ops_deq[num_ops];
struct rte_bbdev_dec_op *ref_op = tp->op_params->ref_dec_op;
struct test_buffers *bufs = NULL;
int i, j, ret;
struct rte_bbdev_info info;
uint16_t num_to_enq;
bool so_enable;
TEST_ASSERT_SUCCESS((burst_sz > MAX_BURST),
"BURST_SIZE should be <= %u", MAX_BURST);
rte_bbdev_info_get(tp->dev_id, &info);
TEST_ASSERT_SUCCESS((num_ops > info.drv.queue_size_lim),
"NUM_OPS cannot exceed %u for this device",
info.drv.queue_size_lim);
bufs = &tp->op_params->q_bufs[GET_SOCKET(info.socket_id)][queue_id];
rte_wait_until_equal_16(&tp->op_params->sync, SYNC_START, __ATOMIC_RELAXED);
ret = rte_bbdev_dec_op_alloc_bulk(tp->op_params->mp, ops_enq, num_ops);
TEST_ASSERT_SUCCESS(ret, "Allocation failed for %d ops", num_ops);
ref_op->turbo_dec.iter_max = get_iter_max();
if (test_vector.op_type != RTE_BBDEV_OP_NONE)
copy_reference_dec_op(ops_enq, num_ops, 0, bufs->inputs,
bufs->hard_outputs, bufs->soft_outputs, ref_op);
so_enable = check_bit(ops_enq[0]->turbo_dec.op_flags, RTE_BBDEV_TURBO_SOFT_OUTPUT);
/* Set counter to validate the ordering */
for (j = 0; j < num_ops; ++j)
ops_enq[j]->opaque_data = (void *)(uintptr_t)j;
for (i = 0; i < TEST_REPETITIONS; ++i) {
for (j = 0; j < num_ops; ++j)
mbuf_reset(ops_enq[j]->turbo_dec.hard_output.data);
if (so_enable)
for (j = 0; j < num_ops; ++j)
mbuf_reset(ops_enq[j]->turbo_dec.soft_output.data);
start_time = rte_rdtsc_precise();
for (enq = 0, deq = 0; enq < num_ops;) {
num_to_enq = burst_sz;
if (unlikely(num_ops - enq < num_to_enq))
num_to_enq = num_ops - enq;
enq += rte_bbdev_enqueue_dec_ops(tp->dev_id,
queue_id, &ops_enq[enq], num_to_enq);
deq += rte_bbdev_dequeue_dec_ops(tp->dev_id,
queue_id, &ops_deq[deq], enq - deq);
}
/* dequeue the remaining */
while (deq < enq) {
deq += rte_bbdev_dequeue_dec_ops(tp->dev_id,
queue_id, &ops_deq[deq], enq - deq);
}
total_time += rte_rdtsc_precise() - start_time;
}
tp->iter_count = 0;
/* get the max of iter_count for all dequeued ops */
for (i = 0; i < num_ops; ++i) {
tp->iter_count = RTE_MAX(ops_enq[i]->turbo_dec.iter_count,
tp->iter_count);
}
if (test_vector.op_type != RTE_BBDEV_OP_NONE) {
ret = validate_dec_op(ops_deq, num_ops, ref_op,
tp->op_params->vector_mask);
TEST_ASSERT_SUCCESS(ret, "Validation failed!");
}
rte_bbdev_dec_op_free_bulk(ops_enq, num_ops);
double tb_len_bits = calc_dec_TB_size(ref_op);
tp->ops_per_sec = ((double)num_ops * TEST_REPETITIONS) /
((double)total_time / (double)rte_get_tsc_hz());
tp->mbps = (((double)(num_ops * TEST_REPETITIONS * tb_len_bits)) /
1000000.0) / ((double)total_time /
(double)rte_get_tsc_hz());
return TEST_SUCCESS;
}
static int
bler_pmd_lcore_ldpc_dec(void *arg)
{
struct thread_params *tp = arg;
uint16_t enq, deq;
uint64_t total_time = 0, start_time;
const uint16_t queue_id = tp->queue_id;
const uint16_t burst_sz = tp->op_params->burst_sz;
const uint16_t num_ops = tp->op_params->num_to_process;
struct rte_bbdev_dec_op *ops_enq[num_ops];
struct rte_bbdev_dec_op *ops_deq[num_ops];
struct rte_bbdev_dec_op *ref_op = tp->op_params->ref_dec_op;
struct test_buffers *bufs = NULL;
int i, j, ret;
float parity_bler = 0;
struct rte_bbdev_info info;
uint16_t num_to_enq;
bool extDdr = check_bit(ldpc_cap_flags,
RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE);
bool loopback = check_bit(ref_op->ldpc_dec.op_flags,
RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK);
bool hc_out = check_bit(ref_op->ldpc_dec.op_flags,
RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE);
TEST_ASSERT_SUCCESS((burst_sz > MAX_BURST),
"BURST_SIZE should be <= %u", MAX_BURST);
rte_bbdev_info_get(tp->dev_id, &info);
TEST_ASSERT_SUCCESS((num_ops > info.drv.queue_size_lim),
"NUM_OPS cannot exceed %u for this device",
info.drv.queue_size_lim);
bufs = &tp->op_params->q_bufs[GET_SOCKET(info.socket_id)][queue_id];
rte_wait_until_equal_16(&tp->op_params->sync, SYNC_START, __ATOMIC_RELAXED);
ret = rte_bbdev_dec_op_alloc_bulk(tp->op_params->mp, ops_enq, num_ops);
TEST_ASSERT_SUCCESS(ret, "Allocation failed for %d ops", num_ops);
/* For BLER tests we need to enable early termination */
if (!check_bit(ref_op->ldpc_dec.op_flags,
RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE))
ref_op->ldpc_dec.op_flags +=
RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE;
ref_op->ldpc_dec.iter_max = get_iter_max();
ref_op->ldpc_dec.iter_count = ref_op->ldpc_dec.iter_max;
if (test_vector.op_type != RTE_BBDEV_OP_NONE)
copy_reference_ldpc_dec_op(ops_enq, num_ops, 0, bufs->inputs,
bufs->hard_outputs, bufs->soft_outputs,
bufs->harq_inputs, bufs->harq_outputs, ref_op);
generate_llr_input(num_ops, bufs->inputs, ref_op);
/* Set counter to validate the ordering */
for (j = 0; j < num_ops; ++j)
ops_enq[j]->opaque_data = (void *)(uintptr_t)j;
for (i = 0; i < 1; ++i) { /* Could add more iterations */
for (j = 0; j < num_ops; ++j) {
if (!loopback)
mbuf_reset(
ops_enq[j]->ldpc_dec.hard_output.data);
if (hc_out || loopback)
mbuf_reset(ops_enq[j]->ldpc_dec.harq_combined_output.data);
}
if (extDdr)
preload_harq_ddr(tp->dev_id, queue_id, ops_enq,
num_ops, true);
start_time = rte_rdtsc_precise();
for (enq = 0, deq = 0; enq < num_ops;) {
num_to_enq = burst_sz;
if (unlikely(num_ops - enq < num_to_enq))
num_to_enq = num_ops - enq;
enq += rte_bbdev_enqueue_ldpc_dec_ops(tp->dev_id,
queue_id, &ops_enq[enq], num_to_enq);
deq += rte_bbdev_dequeue_ldpc_dec_ops(tp->dev_id,
queue_id, &ops_deq[deq], enq - deq);
}
/* dequeue the remaining */
while (deq < enq) {
deq += rte_bbdev_dequeue_ldpc_dec_ops(tp->dev_id,
queue_id, &ops_deq[deq], enq - deq);
}
total_time += rte_rdtsc_precise() - start_time;
}
tp->iter_count = 0;
tp->iter_average = 0;
/* get the max of iter_count for all dequeued ops */
for (i = 0; i < num_ops; ++i) {
tp->iter_count = RTE_MAX(ops_enq[i]->ldpc_dec.iter_count,
tp->iter_count);
tp->iter_average += (double) ops_enq[i]->ldpc_dec.iter_count;
if (ops_enq[i]->status & (1 << RTE_BBDEV_SYNDROME_ERROR))
parity_bler += 1.0;
}
parity_bler /= num_ops; /* This one is based on SYND */
tp->iter_average /= num_ops;
tp->bler = (double) validate_ldpc_bler(ops_deq, num_ops) / num_ops;
if (test_vector.op_type != RTE_BBDEV_OP_NONE
&& tp->bler == 0
&& parity_bler == 0
&& !hc_out) {
ret = validate_ldpc_dec_op(ops_deq, num_ops, ref_op,
tp->op_params->vector_mask);
TEST_ASSERT_SUCCESS(ret, "Validation failed!");
}
rte_bbdev_dec_op_free_bulk(ops_enq, num_ops);
double tb_len_bits = calc_ldpc_dec_TB_size(ref_op);
tp->ops_per_sec = ((double)num_ops * 1) /
((double)total_time / (double)rte_get_tsc_hz());
tp->mbps = (((double)(num_ops * 1 * tb_len_bits)) /
1000000.0) / ((double)total_time /
(double)rte_get_tsc_hz());
return TEST_SUCCESS;
}
static int
throughput_pmd_lcore_ldpc_dec(void *arg)
{
struct thread_params *tp = arg;
uint16_t enq, deq;
uint64_t total_time = 0, start_time;
const uint16_t queue_id = tp->queue_id;
const uint16_t burst_sz = tp->op_params->burst_sz;
const uint16_t num_ops = tp->op_params->num_to_process;
struct rte_bbdev_dec_op *ops_enq[num_ops];
struct rte_bbdev_dec_op *ops_deq[num_ops];
struct rte_bbdev_dec_op *ref_op = tp->op_params->ref_dec_op;
struct test_buffers *bufs = NULL;
int i, j, ret;
struct rte_bbdev_info info;
uint16_t num_to_enq;
bool extDdr = check_bit(ldpc_cap_flags,
RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE);
bool loopback = check_bit(ref_op->ldpc_dec.op_flags,
RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK);
bool hc_out = check_bit(ref_op->ldpc_dec.op_flags,
RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE);
TEST_ASSERT_SUCCESS((burst_sz > MAX_BURST),
"BURST_SIZE should be <= %u", MAX_BURST);
rte_bbdev_info_get(tp->dev_id, &info);
TEST_ASSERT_SUCCESS((num_ops > info.drv.queue_size_lim),
"NUM_OPS cannot exceed %u for this device",
info.drv.queue_size_lim);
bufs = &tp->op_params->q_bufs[GET_SOCKET(info.socket_id)][queue_id];
rte_wait_until_equal_16(&tp->op_params->sync, SYNC_START, __ATOMIC_RELAXED);
ret = rte_bbdev_dec_op_alloc_bulk(tp->op_params->mp, ops_enq, num_ops);
TEST_ASSERT_SUCCESS(ret, "Allocation failed for %d ops", num_ops);
/* For throughput tests we need to disable early termination */
if (check_bit(ref_op->ldpc_dec.op_flags,
RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE))
ref_op->ldpc_dec.op_flags -=
RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE;
ref_op->ldpc_dec.iter_max = get_iter_max();
ref_op->ldpc_dec.iter_count = ref_op->ldpc_dec.iter_max;
if (test_vector.op_type != RTE_BBDEV_OP_NONE)
copy_reference_ldpc_dec_op(ops_enq, num_ops, 0, bufs->inputs,
bufs->hard_outputs, bufs->soft_outputs,
bufs->harq_inputs, bufs->harq_outputs, ref_op);
/* Set counter to validate the ordering */
for (j = 0; j < num_ops; ++j)
ops_enq[j]->opaque_data = (void *)(uintptr_t)j;
for (i = 0; i < TEST_REPETITIONS; ++i) {
for (j = 0; j < num_ops; ++j) {
if (!loopback)
mbuf_reset(
ops_enq[j]->ldpc_dec.hard_output.data);
if (hc_out || loopback)
mbuf_reset(
ops_enq[j]->ldpc_dec.harq_combined_output.data);
}
if (extDdr)
preload_harq_ddr(tp->dev_id, queue_id, ops_enq,
num_ops, true);
start_time = rte_rdtsc_precise();
for (enq = 0, deq = 0; enq < num_ops;) {
num_to_enq = burst_sz;
if (unlikely(num_ops - enq < num_to_enq))
num_to_enq = num_ops - enq;
enq += rte_bbdev_enqueue_ldpc_dec_ops(tp->dev_id,
queue_id, &ops_enq[enq], num_to_enq);
deq += rte_bbdev_dequeue_ldpc_dec_ops(tp->dev_id,
queue_id, &ops_deq[deq], enq - deq);
}
/* dequeue the remaining */
while (deq < enq) {
deq += rte_bbdev_dequeue_ldpc_dec_ops(tp->dev_id,
queue_id, &ops_deq[deq], enq - deq);
}
total_time += rte_rdtsc_precise() - start_time;
}
tp->iter_count = 0;
/* get the max of iter_count for all dequeued ops */
for (i = 0; i < num_ops; ++i) {
tp->iter_count = RTE_MAX(ops_enq[i]->ldpc_dec.iter_count,
tp->iter_count);
}
if (extDdr) {
/* Read loopback is not thread safe */
retrieve_harq_ddr(tp->dev_id, queue_id, ops_enq, num_ops);
}
if (test_vector.op_type != RTE_BBDEV_OP_NONE) {
ret = validate_ldpc_dec_op(ops_deq, num_ops, ref_op,
tp->op_params->vector_mask);
TEST_ASSERT_SUCCESS(ret, "Validation failed!");
}
rte_bbdev_dec_op_free_bulk(ops_enq, num_ops);
double tb_len_bits = calc_ldpc_dec_TB_size(ref_op);
tp->ops_per_sec = ((double)num_ops * TEST_REPETITIONS) /
((double)total_time / (double)rte_get_tsc_hz());
tp->mbps = (((double)(num_ops * TEST_REPETITIONS * tb_len_bits)) /
1000000.0) / ((double)total_time /
(double)rte_get_tsc_hz());
return TEST_SUCCESS;
}
static int
throughput_pmd_lcore_enc(void *arg)
{
struct thread_params *tp = arg;
uint16_t enq, deq;
uint64_t total_time = 0, start_time;
const uint16_t queue_id = tp->queue_id;
const uint16_t burst_sz = tp->op_params->burst_sz;
const uint16_t num_ops = tp->op_params->num_to_process;
struct rte_bbdev_enc_op *ops_enq[num_ops];
struct rte_bbdev_enc_op *ops_deq[num_ops];
struct rte_bbdev_enc_op *ref_op = tp->op_params->ref_enc_op;
struct test_buffers *bufs = NULL;
int i, j, ret;
struct rte_bbdev_info info;
uint16_t num_to_enq;
TEST_ASSERT_SUCCESS((burst_sz > MAX_BURST),
"BURST_SIZE should be <= %u", MAX_BURST);
rte_bbdev_info_get(tp->dev_id, &info);
TEST_ASSERT_SUCCESS((num_ops > info.drv.queue_size_lim),
"NUM_OPS cannot exceed %u for this device",
info.drv.queue_size_lim);
bufs = &tp->op_params->q_bufs[GET_SOCKET(info.socket_id)][queue_id];
rte_wait_until_equal_16(&tp->op_params->sync, SYNC_START, __ATOMIC_RELAXED);
ret = rte_bbdev_enc_op_alloc_bulk(tp->op_params->mp, ops_enq,
num_ops);
TEST_ASSERT_SUCCESS(ret, "Allocation failed for %d ops",
num_ops);
if (test_vector.op_type != RTE_BBDEV_OP_NONE)
copy_reference_enc_op(ops_enq, num_ops, 0, bufs->inputs,
bufs->hard_outputs, ref_op);
/* Set counter to validate the ordering */
for (j = 0; j < num_ops; ++j)
ops_enq[j]->opaque_data = (void *)(uintptr_t)j;
for (i = 0; i < TEST_REPETITIONS; ++i) {
if (test_vector.op_type != RTE_BBDEV_OP_NONE)
for (j = 0; j < num_ops; ++j)
mbuf_reset(ops_enq[j]->turbo_enc.output.data);
start_time = rte_rdtsc_precise();
for (enq = 0, deq = 0; enq < num_ops;) {
num_to_enq = burst_sz;
if (unlikely(num_ops - enq < num_to_enq))
num_to_enq = num_ops - enq;
enq += rte_bbdev_enqueue_enc_ops(tp->dev_id,
queue_id, &ops_enq[enq], num_to_enq);
deq += rte_bbdev_dequeue_enc_ops(tp->dev_id,
queue_id, &ops_deq[deq], enq - deq);
}
/* dequeue the remaining */
while (deq < enq) {
deq += rte_bbdev_dequeue_enc_ops(tp->dev_id,
queue_id, &ops_deq[deq], enq - deq);
}
total_time += rte_rdtsc_precise() - start_time;
}
if (test_vector.op_type != RTE_BBDEV_OP_NONE) {
ret = validate_enc_op(ops_deq, num_ops, ref_op);
TEST_ASSERT_SUCCESS(ret, "Validation failed!");
}
rte_bbdev_enc_op_free_bulk(ops_enq, num_ops);
double tb_len_bits = calc_enc_TB_size(ref_op);
tp->ops_per_sec = ((double)num_ops * TEST_REPETITIONS) /
((double)total_time / (double)rte_get_tsc_hz());
tp->mbps = (((double)(num_ops * TEST_REPETITIONS * tb_len_bits))
/ 1000000.0) / ((double)total_time /
(double)rte_get_tsc_hz());
return TEST_SUCCESS;
}
static int
throughput_pmd_lcore_ldpc_enc(void *arg)
{
struct thread_params *tp = arg;
uint16_t enq, deq;
uint64_t total_time = 0, start_time;
const uint16_t queue_id = tp->queue_id;
const uint16_t burst_sz = tp->op_params->burst_sz;
const uint16_t num_ops = tp->op_params->num_to_process;
struct rte_bbdev_enc_op *ops_enq[num_ops];
struct rte_bbdev_enc_op *ops_deq[num_ops];
struct rte_bbdev_enc_op *ref_op = tp->op_params->ref_enc_op;
struct test_buffers *bufs = NULL;
int i, j, ret;
struct rte_bbdev_info info;
uint16_t num_to_enq;
TEST_ASSERT_SUCCESS((burst_sz > MAX_BURST),
"BURST_SIZE should be <= %u", MAX_BURST);
rte_bbdev_info_get(tp->dev_id, &info);
TEST_ASSERT_SUCCESS((num_ops > info.drv.queue_size_lim),
"NUM_OPS cannot exceed %u for this device",
info.drv.queue_size_lim);
bufs = &tp->op_params->q_bufs[GET_SOCKET(info.socket_id)][queue_id];
rte_wait_until_equal_16(&tp->op_params->sync, SYNC_START, __ATOMIC_RELAXED);
ret = rte_bbdev_enc_op_alloc_bulk(tp->op_params->mp, ops_enq,
num_ops);
TEST_ASSERT_SUCCESS(ret, "Allocation failed for %d ops",
num_ops);
if (test_vector.op_type != RTE_BBDEV_OP_NONE)
copy_reference_ldpc_enc_op(ops_enq, num_ops, 0, bufs->inputs,
bufs->hard_outputs, ref_op);
/* Set counter to validate the ordering */
for (j = 0; j < num_ops; ++j)
ops_enq[j]->opaque_data = (void *)(uintptr_t)j;
for (i = 0; i < TEST_REPETITIONS; ++i) {
if (test_vector.op_type != RTE_BBDEV_OP_NONE)
for (j = 0; j < num_ops; ++j)
mbuf_reset(ops_enq[j]->turbo_enc.output.data);
start_time = rte_rdtsc_precise();
for (enq = 0, deq = 0; enq < num_ops;) {
num_to_enq = burst_sz;
if (unlikely(num_ops - enq < num_to_enq))
num_to_enq = num_ops - enq;
enq += rte_bbdev_enqueue_ldpc_enc_ops(tp->dev_id,
queue_id, &ops_enq[enq], num_to_enq);
deq += rte_bbdev_dequeue_ldpc_enc_ops(tp->dev_id,
queue_id, &ops_deq[deq], enq - deq);
}
/* dequeue the remaining */
while (deq < enq) {
deq += rte_bbdev_dequeue_ldpc_enc_ops(tp->dev_id,
queue_id, &ops_deq[deq], enq - deq);
}
total_time += rte_rdtsc_precise() - start_time;
}
if (test_vector.op_type != RTE_BBDEV_OP_NONE) {
ret = validate_ldpc_enc_op(ops_deq, num_ops, ref_op);
TEST_ASSERT_SUCCESS(ret, "Validation failed!");
}
rte_bbdev_enc_op_free_bulk(ops_enq, num_ops);
double tb_len_bits = calc_ldpc_enc_TB_size(ref_op);
tp->ops_per_sec = ((double)num_ops * TEST_REPETITIONS) /
((double)total_time / (double)rte_get_tsc_hz());
tp->mbps = (((double)(num_ops * TEST_REPETITIONS * tb_len_bits))
/ 1000000.0) / ((double)total_time /
(double)rte_get_tsc_hz());
return TEST_SUCCESS;
}
static int
throughput_pmd_lcore_fft(void *arg)
{
struct thread_params *tp = arg;
uint16_t enq, deq;
uint64_t total_time = 0, start_time;
const uint16_t queue_id = tp->queue_id;
const uint16_t burst_sz = tp->op_params->burst_sz;
const uint16_t num_ops = tp->op_params->num_to_process;
struct rte_bbdev_fft_op *ops_enq[num_ops];
struct rte_bbdev_fft_op *ops_deq[num_ops];
struct rte_bbdev_fft_op *ref_op = tp->op_params->ref_fft_op;
struct test_buffers *bufs = NULL;
int i, j, ret;
struct rte_bbdev_info info;
uint16_t num_to_enq;
TEST_ASSERT_SUCCESS((burst_sz > MAX_BURST),
"BURST_SIZE should be <= %u", MAX_BURST);
rte_bbdev_info_get(tp->dev_id, &info);
TEST_ASSERT_SUCCESS((num_ops > info.drv.queue_size_lim),
"NUM_OPS cannot exceed %u for this device",
info.drv.queue_size_lim);
bufs = &tp->op_params->q_bufs[GET_SOCKET(info.socket_id)][queue_id];
rte_wait_until_equal_16(&tp->op_params->sync, SYNC_START, __ATOMIC_RELAXED);
ret = rte_bbdev_fft_op_alloc_bulk(tp->op_params->mp, ops_enq, num_ops);
TEST_ASSERT_SUCCESS(ret, "Allocation failed for %d ops", num_ops);
if (test_vector.op_type != RTE_BBDEV_OP_NONE)
copy_reference_fft_op(ops_enq, num_ops, 0, bufs->inputs,
bufs->hard_outputs, bufs->soft_outputs, ref_op);
/* Set counter to validate the ordering */
for (j = 0; j < num_ops; ++j)
ops_enq[j]->opaque_data = (void *)(uintptr_t)j;
for (i = 0; i < TEST_REPETITIONS; ++i) {
for (j = 0; j < num_ops; ++j)
mbuf_reset(ops_enq[j]->fft.base_output.data);
start_time = rte_rdtsc_precise();
for (enq = 0, deq = 0; enq < num_ops;) {
num_to_enq = burst_sz;
if (unlikely(num_ops - enq < num_to_enq))
num_to_enq = num_ops - enq;
enq += rte_bbdev_enqueue_fft_ops(tp->dev_id,
queue_id, &ops_enq[enq], num_to_enq);
deq += rte_bbdev_dequeue_fft_ops(tp->dev_id,
queue_id, &ops_deq[deq], enq - deq);
}
/* dequeue the remaining */
while (deq < enq) {
deq += rte_bbdev_dequeue_fft_ops(tp->dev_id,
queue_id, &ops_deq[deq], enq - deq);
}
total_time += rte_rdtsc_precise() - start_time;
}
if (test_vector.op_type != RTE_BBDEV_OP_NONE) {
ret = validate_fft_op(ops_deq, num_ops, ref_op);
TEST_ASSERT_SUCCESS(ret, "Validation failed!");
}
rte_bbdev_fft_op_free_bulk(ops_enq, num_ops);
double tb_len_bits = calc_fft_size(ref_op);
tp->ops_per_sec = ((double)num_ops * TEST_REPETITIONS) /
((double)total_time / (double)rte_get_tsc_hz());
tp->mbps = (((double)(num_ops * TEST_REPETITIONS * tb_len_bits)) /
1000000.0) / ((double)total_time /
(double)rte_get_tsc_hz());
return TEST_SUCCESS;
}
static void
print_enc_throughput(struct thread_params *t_params, unsigned int used_cores)
{
unsigned int iter = 0;
double total_mops = 0, total_mbps = 0;
for (iter = 0; iter < used_cores; iter++) {
printf(
"Throughput for core (%u): %.8lg Ops/s, %.8lg Mbps\n",
t_params[iter].lcore_id, t_params[iter].ops_per_sec,
t_params[iter].mbps);
total_mops += t_params[iter].ops_per_sec;
total_mbps += t_params[iter].mbps;
}
printf(
"\nTotal throughput for %u cores: %.8lg MOPS, %.8lg Mbps\n",
used_cores, total_mops, total_mbps);
}
/* Aggregate the performance results over the number of cores used */
static void
print_dec_throughput(struct thread_params *t_params, unsigned int used_cores)
{
unsigned int core_idx = 0;
double total_mops = 0, total_mbps = 0;
uint8_t iter_count = 0;
for (core_idx = 0; core_idx < used_cores; core_idx++) {
printf(
"Throughput for core (%u): %.8lg Ops/s, %.8lg Mbps @ max %u iterations\n",
t_params[core_idx].lcore_id,
t_params[core_idx].ops_per_sec,
t_params[core_idx].mbps,
t_params[core_idx].iter_count);
total_mops += t_params[core_idx].ops_per_sec;
total_mbps += t_params[core_idx].mbps;
iter_count = RTE_MAX(iter_count,
t_params[core_idx].iter_count);
}
printf(
"\nTotal throughput for %u cores: %.8lg MOPS, %.8lg Mbps @ max %u iterations\n",
used_cores, total_mops, total_mbps, iter_count);
}
/* Aggregate the performance results over the number of cores used */
static void
print_dec_bler(struct thread_params *t_params, unsigned int used_cores)
{
unsigned int core_idx = 0;
double total_mbps = 0, total_bler = 0, total_iter = 0;
double snr = get_snr();
for (core_idx = 0; core_idx < used_cores; core_idx++) {
printf("Core%u BLER %.1f %% - Iters %.1f - Tp %.1f Mbps %s\n",
t_params[core_idx].lcore_id,
t_params[core_idx].bler * 100,
t_params[core_idx].iter_average,
t_params[core_idx].mbps,
get_vector_filename());
total_mbps += t_params[core_idx].mbps;
total_bler += t_params[core_idx].bler;
total_iter += t_params[core_idx].iter_average;
}
total_bler /= used_cores;
total_iter /= used_cores;
printf("SNR %.2f BLER %.1f %% - Iterations %.1f %d - Tp %.1f Mbps %s\n",
snr, total_bler * 100, total_iter, get_iter_max(),
total_mbps, get_vector_filename());
}
/*
* Test function that determines BLER wireless performance
*/
static int
bler_test(struct active_device *ad,
struct test_op_params *op_params)
{
int ret;
unsigned int lcore_id, used_cores = 0;
struct thread_params *t_params;
struct rte_bbdev_info info;
lcore_function_t *bler_function;
uint16_t num_lcores;
const char *op_type_str;
rte_bbdev_info_get(ad->dev_id, &info);
op_type_str = rte_bbdev_op_type_str(test_vector.op_type);
TEST_ASSERT_NOT_NULL(op_type_str, "Invalid op type: %u",
test_vector.op_type);
printf("+ ------------------------------------------------------- +\n");
printf("== test: bler\ndev: %s, nb_queues: %u, burst size: %u, num ops: %u, num_lcores: %u, op type: %s, itr mode: %s, GHz: %lg\n",
info.dev_name, ad->nb_queues, op_params->burst_sz,
op_params->num_to_process, op_params->num_lcores,
op_type_str,
intr_enabled ? "Interrupt mode" : "PMD mode",
(double)rte_get_tsc_hz() / 1000000000.0);
/* Set number of lcores */
num_lcores = (ad->nb_queues < (op_params->num_lcores))
? ad->nb_queues
: op_params->num_lcores;
/* Allocate memory for thread parameters structure */
t_params = rte_zmalloc(NULL, num_lcores * sizeof(struct thread_params),
RTE_CACHE_LINE_SIZE);
TEST_ASSERT_NOT_NULL(t_params, "Failed to alloc %zuB for t_params",
RTE_ALIGN(sizeof(struct thread_params) * num_lcores,
RTE_CACHE_LINE_SIZE));
if ((test_vector.op_type == RTE_BBDEV_OP_LDPC_DEC) &&
!check_bit(test_vector.ldpc_dec.op_flags,
RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK)
&& !check_bit(test_vector.ldpc_dec.op_flags,
RTE_BBDEV_LDPC_LLR_COMPRESSION))
bler_function = bler_pmd_lcore_ldpc_dec;
else
return TEST_SKIPPED;
__atomic_store_n(&op_params->sync, SYNC_WAIT, __ATOMIC_RELAXED);
/* Main core is set at first entry */
t_params[0].dev_id = ad->dev_id;
t_params[0].lcore_id = rte_lcore_id();
t_params[0].op_params = op_params;
t_params[0].queue_id = ad->queue_ids[used_cores++];
t_params[0].iter_count = 0;
RTE_LCORE_FOREACH_WORKER(lcore_id) {
if (used_cores >= num_lcores)
break;
t_params[used_cores].dev_id = ad->dev_id;
t_params[used_cores].lcore_id = lcore_id;
t_params[used_cores].op_params = op_params;
t_params[used_cores].queue_id = ad->queue_ids[used_cores];
t_params[used_cores].iter_count = 0;
rte_eal_remote_launch(bler_function,
&t_params[used_cores++], lcore_id);
}
__atomic_store_n(&op_params->sync, SYNC_START, __ATOMIC_RELAXED);
ret = bler_function(&t_params[0]);
/* Main core is always used */
for (used_cores = 1; used_cores < num_lcores; used_cores++)
ret |= rte_eal_wait_lcore(t_params[used_cores].lcore_id);
print_dec_bler(t_params, num_lcores);
/* Return if test failed */
if (ret) {
rte_free(t_params);
return ret;
}
/* Function to print something here*/
rte_free(t_params);
return ret;
}
/*
* Test function that determines how long an enqueue + dequeue of a burst
* takes on available lcores.
*/
static int
throughput_test(struct active_device *ad,
struct test_op_params *op_params)
{
int ret;
unsigned int lcore_id, used_cores = 0;
struct thread_params *t_params, *tp;
struct rte_bbdev_info info;
lcore_function_t *throughput_function;
uint16_t num_lcores;
const char *op_type_str;
rte_bbdev_info_get(ad->dev_id, &info);
op_type_str = rte_bbdev_op_type_str(test_vector.op_type);
TEST_ASSERT_NOT_NULL(op_type_str, "Invalid op type: %u",
test_vector.op_type);
printf("+ ------------------------------------------------------- +\n");
printf("== test: throughput\ndev: %s, nb_queues: %u, burst size: %u, num ops: %u, num_lcores: %u, op type: %s, itr mode: %s, GHz: %lg\n",
info.dev_name, ad->nb_queues, op_params->burst_sz,
op_params->num_to_process, op_params->num_lcores,
op_type_str,
intr_enabled ? "Interrupt mode" : "PMD mode",
(double)rte_get_tsc_hz() / 1000000000.0);
/* Set number of lcores */
num_lcores = (ad->nb_queues < (op_params->num_lcores))
? ad->nb_queues
: op_params->num_lcores;
/* Allocate memory for thread parameters structure */
t_params = rte_zmalloc(NULL, num_lcores * sizeof(struct thread_params),
RTE_CACHE_LINE_SIZE);
TEST_ASSERT_NOT_NULL(t_params, "Failed to alloc %zuB for t_params",
RTE_ALIGN(sizeof(struct thread_params) * num_lcores,
RTE_CACHE_LINE_SIZE));
if (intr_enabled) {
if (test_vector.op_type == RTE_BBDEV_OP_TURBO_DEC)
throughput_function = throughput_intr_lcore_dec;
else if (test_vector.op_type == RTE_BBDEV_OP_LDPC_DEC)
throughput_function = throughput_intr_lcore_ldpc_dec;
else if (test_vector.op_type == RTE_BBDEV_OP_TURBO_ENC)
throughput_function = throughput_intr_lcore_enc;
else if (test_vector.op_type == RTE_BBDEV_OP_LDPC_ENC)
throughput_function = throughput_intr_lcore_ldpc_enc;
else if (test_vector.op_type == RTE_BBDEV_OP_FFT)
throughput_function = throughput_intr_lcore_fft;
else
throughput_function = throughput_intr_lcore_enc;
/* Dequeue interrupt callback registration */
ret = rte_bbdev_callback_register(ad->dev_id,
RTE_BBDEV_EVENT_DEQUEUE, dequeue_event_callback,
t_params);
if (ret < 0) {
rte_free(t_params);
return ret;
}
} else {
if (test_vector.op_type == RTE_BBDEV_OP_TURBO_DEC)
throughput_function = throughput_pmd_lcore_dec;
else if (test_vector.op_type == RTE_BBDEV_OP_LDPC_DEC)
throughput_function = throughput_pmd_lcore_ldpc_dec;
else if (test_vector.op_type == RTE_BBDEV_OP_TURBO_ENC)
throughput_function = throughput_pmd_lcore_enc;
else if (test_vector.op_type == RTE_BBDEV_OP_LDPC_ENC)
throughput_function = throughput_pmd_lcore_ldpc_enc;
else if (test_vector.op_type == RTE_BBDEV_OP_FFT)
throughput_function = throughput_pmd_lcore_fft;
else
throughput_function = throughput_pmd_lcore_enc;
}
__atomic_store_n(&op_params->sync, SYNC_WAIT, __ATOMIC_RELAXED);
/* Main core is set at first entry */
t_params[0].dev_id = ad->dev_id;
t_params[0].lcore_id = rte_lcore_id();
t_params[0].op_params = op_params;
t_params[0].queue_id = ad->queue_ids[used_cores++];
t_params[0].iter_count = 0;
RTE_LCORE_FOREACH_WORKER(lcore_id) {
if (used_cores >= num_lcores)
break;
t_params[used_cores].dev_id = ad->dev_id;
t_params[used_cores].lcore_id = lcore_id;
t_params[used_cores].op_params = op_params;
t_params[used_cores].queue_id = ad->queue_ids[used_cores];
t_params[used_cores].iter_count = 0;
rte_eal_remote_launch(throughput_function,
&t_params[used_cores++], lcore_id);
}
__atomic_store_n(&op_params->sync, SYNC_START, __ATOMIC_RELAXED);
ret = throughput_function(&t_params[0]);
/* Main core is always used */
for (used_cores = 1; used_cores < num_lcores; used_cores++)
ret |= rte_eal_wait_lcore(t_params[used_cores].lcore_id);
/* Return if test failed */
if (ret) {
rte_free(t_params);
return ret;
}
/* Print throughput if interrupts are disabled and test passed */
if (!intr_enabled) {
if (test_vector.op_type == RTE_BBDEV_OP_TURBO_DEC ||
test_vector.op_type == RTE_BBDEV_OP_LDPC_DEC)
print_dec_throughput(t_params, num_lcores);
else
print_enc_throughput(t_params, num_lcores);
rte_free(t_params);
return ret;
}
/* In interrupt TC we need to wait for the interrupt callback to deqeue
* all pending operations. Skip waiting for queues which reported an
* error using processing_status variable.
* Wait for main lcore operations.
*/
tp = &t_params[0];
while ((__atomic_load_n(&tp->nb_dequeued, __ATOMIC_RELAXED) <
op_params->num_to_process) &&
(__atomic_load_n(&tp->processing_status, __ATOMIC_RELAXED) !=
TEST_FAILED))
rte_pause();
tp->ops_per_sec /= TEST_REPETITIONS;
tp->mbps /= TEST_REPETITIONS;
ret |= (int)__atomic_load_n(&tp->processing_status, __ATOMIC_RELAXED);
/* Wait for worker lcores operations */
for (used_cores = 1; used_cores < num_lcores; used_cores++) {
tp = &t_params[used_cores];
while ((__atomic_load_n(&tp->nb_dequeued, __ATOMIC_RELAXED) <
op_params->num_to_process) &&
(__atomic_load_n(&tp->processing_status, __ATOMIC_RELAXED) !=
TEST_FAILED))
rte_pause();
tp->ops_per_sec /= TEST_REPETITIONS;
tp->mbps /= TEST_REPETITIONS;
ret |= (int)__atomic_load_n(&tp->processing_status, __ATOMIC_RELAXED);
}
/* Print throughput if test passed */
if (!ret) {
if (test_vector.op_type == RTE_BBDEV_OP_TURBO_DEC ||
test_vector.op_type == RTE_BBDEV_OP_LDPC_DEC)
print_dec_throughput(t_params, num_lcores);
else if (test_vector.op_type == RTE_BBDEV_OP_TURBO_ENC ||
test_vector.op_type == RTE_BBDEV_OP_LDPC_ENC)
print_enc_throughput(t_params, num_lcores);
}
rte_free(t_params);
return ret;
}
static int
latency_test_dec(struct rte_mempool *mempool,
struct test_buffers *bufs, struct rte_bbdev_dec_op *ref_op,
int vector_mask, uint16_t dev_id, uint16_t queue_id,
const uint16_t num_to_process, uint16_t burst_sz,
uint64_t *total_time, uint64_t *min_time, uint64_t *max_time)
{
int ret = TEST_SUCCESS;
uint16_t i, j, dequeued;
struct rte_bbdev_dec_op *ops_enq[MAX_BURST], *ops_deq[MAX_BURST];
uint64_t start_time = 0, last_time = 0;
for (i = 0, dequeued = 0; dequeued < num_to_process; ++i) {
uint16_t enq = 0, deq = 0;
bool first_time = true;
last_time = 0;
if (unlikely(num_to_process - dequeued < burst_sz))
burst_sz = num_to_process - dequeued;
ret = rte_bbdev_dec_op_alloc_bulk(mempool, ops_enq, burst_sz);
TEST_ASSERT_SUCCESS(ret,
"rte_bbdev_dec_op_alloc_bulk() failed");
if (test_vector.op_type != RTE_BBDEV_OP_NONE)
copy_reference_dec_op(ops_enq, burst_sz, dequeued,
bufs->inputs,
bufs->hard_outputs,
bufs->soft_outputs,
ref_op);
/* Set counter to validate the ordering */
for (j = 0; j < burst_sz; ++j)
ops_enq[j]->opaque_data = (void *)(uintptr_t)j;
start_time = rte_rdtsc_precise();
enq = rte_bbdev_enqueue_dec_ops(dev_id, queue_id, &ops_enq[enq],
burst_sz);
TEST_ASSERT(enq == burst_sz,
"Error enqueueing burst, expected %u, got %u",
burst_sz, enq);
/* Dequeue */
do {
deq += rte_bbdev_dequeue_dec_ops(dev_id, queue_id,
&ops_deq[deq], burst_sz - deq);
if (likely(first_time && (deq > 0))) {
last_time = rte_rdtsc_precise() - start_time;
first_time = false;
}
} while (unlikely(burst_sz != deq));
*max_time = RTE_MAX(*max_time, last_time);
*min_time = RTE_MIN(*min_time, last_time);
*total_time += last_time;
if (test_vector.op_type != RTE_BBDEV_OP_NONE) {
ret = validate_dec_op(ops_deq, burst_sz, ref_op,
vector_mask);
TEST_ASSERT_SUCCESS(ret, "Validation failed!");
}
rte_bbdev_dec_op_free_bulk(ops_enq, deq);
dequeued += deq;
}
return i;
}
/* Test case for latency/validation for LDPC Decoder */
static int
latency_test_ldpc_dec(struct rte_mempool *mempool,
struct test_buffers *bufs, struct rte_bbdev_dec_op *ref_op,
int vector_mask, uint16_t dev_id, uint16_t queue_id,
const uint16_t num_to_process, uint16_t burst_sz,
uint64_t *total_time, uint64_t *min_time, uint64_t *max_time,
bool disable_et)
{
int ret = TEST_SUCCESS;
uint16_t i, j, dequeued;
struct rte_bbdev_dec_op *ops_enq[MAX_BURST], *ops_deq[MAX_BURST];
uint64_t start_time = 0, last_time = 0;
bool extDdr = ldpc_cap_flags &
RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE;
for (i = 0, dequeued = 0; dequeued < num_to_process; ++i) {
uint16_t enq = 0, deq = 0;
bool first_time = true;
last_time = 0;
if (unlikely(num_to_process - dequeued < burst_sz))
burst_sz = num_to_process - dequeued;
ret = rte_bbdev_dec_op_alloc_bulk(mempool, ops_enq, burst_sz);
TEST_ASSERT_SUCCESS(ret,
"rte_bbdev_dec_op_alloc_bulk() failed");
/* For latency tests we need to disable early termination */
if (disable_et && check_bit(ref_op->ldpc_dec.op_flags,
RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE))
ref_op->ldpc_dec.op_flags -=
RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE;
ref_op->ldpc_dec.iter_max = get_iter_max();
ref_op->ldpc_dec.iter_count = ref_op->ldpc_dec.iter_max;
if (test_vector.op_type != RTE_BBDEV_OP_NONE)
copy_reference_ldpc_dec_op(ops_enq, burst_sz, dequeued,
bufs->inputs,
bufs->hard_outputs,
bufs->soft_outputs,
bufs->harq_inputs,
bufs->harq_outputs,
ref_op);
if (extDdr)
preload_harq_ddr(dev_id, queue_id, ops_enq,
burst_sz, true);
/* Set counter to validate the ordering */
for (j = 0; j < burst_sz; ++j)
ops_enq[j]->opaque_data = (void *)(uintptr_t)j;
start_time = rte_rdtsc_precise();
enq = rte_bbdev_enqueue_ldpc_dec_ops(dev_id, queue_id,
&ops_enq[enq], burst_sz);
TEST_ASSERT(enq == burst_sz,
"Error enqueueing burst, expected %u, got %u",
burst_sz, enq);
/* Dequeue */
do {
deq += rte_bbdev_dequeue_ldpc_dec_ops(dev_id, queue_id,
&ops_deq[deq], burst_sz - deq);
if (likely(first_time && (deq > 0))) {
last_time = rte_rdtsc_precise() - start_time;
first_time = false;
}
} while (unlikely(burst_sz != deq));
*max_time = RTE_MAX(*max_time, last_time);
*min_time = RTE_MIN(*min_time, last_time);
*total_time += last_time;
if (extDdr)
retrieve_harq_ddr(dev_id, queue_id, ops_enq, burst_sz);
if (test_vector.op_type != RTE_BBDEV_OP_NONE) {
ret = validate_ldpc_dec_op(ops_deq, burst_sz, ref_op,
vector_mask);
TEST_ASSERT_SUCCESS(ret, "Validation failed!");
}
rte_bbdev_dec_op_free_bulk(ops_enq, deq);
dequeued += deq;
}
return i;
}
static int
latency_test_enc(struct rte_mempool *mempool,
struct test_buffers *bufs, struct rte_bbdev_enc_op *ref_op,
uint16_t dev_id, uint16_t queue_id,
const uint16_t num_to_process, uint16_t burst_sz,
uint64_t *total_time, uint64_t *min_time, uint64_t *max_time)
{
int ret = TEST_SUCCESS;
uint16_t i, j, dequeued;
struct rte_bbdev_enc_op *ops_enq[MAX_BURST], *ops_deq[MAX_BURST];
uint64_t start_time = 0, last_time = 0;
for (i = 0, dequeued = 0; dequeued < num_to_process; ++i) {
uint16_t enq = 0, deq = 0;
bool first_time = true;
last_time = 0;
if (unlikely(num_to_process - dequeued < burst_sz))
burst_sz = num_to_process - dequeued;
ret = rte_bbdev_enc_op_alloc_bulk(mempool, ops_enq, burst_sz);
TEST_ASSERT_SUCCESS(ret,
"rte_bbdev_enc_op_alloc_bulk() failed");
if (test_vector.op_type != RTE_BBDEV_OP_NONE)
copy_reference_enc_op(ops_enq, burst_sz, dequeued,
bufs->inputs,
bufs->hard_outputs,
ref_op);
/* Set counter to validate the ordering */
for (j = 0; j < burst_sz; ++j)
ops_enq[j]->opaque_data = (void *)(uintptr_t)j;
start_time = rte_rdtsc_precise();
enq = rte_bbdev_enqueue_enc_ops(dev_id, queue_id, &ops_enq[enq],
burst_sz);
TEST_ASSERT(enq == burst_sz,
"Error enqueueing burst, expected %u, got %u",
burst_sz, enq);
/* Dequeue */
do {
deq += rte_bbdev_dequeue_enc_ops(dev_id, queue_id,
&ops_deq[deq], burst_sz - deq);
if (likely(first_time && (deq > 0))) {
last_time += rte_rdtsc_precise() - start_time;
first_time = false;
}
} while (unlikely(burst_sz != deq));
*max_time = RTE_MAX(*max_time, last_time);
*min_time = RTE_MIN(*min_time, last_time);
*total_time += last_time;
if (test_vector.op_type != RTE_BBDEV_OP_NONE) {
ret = validate_enc_op(ops_deq, burst_sz, ref_op);
TEST_ASSERT_SUCCESS(ret, "Validation failed!");
}
rte_bbdev_enc_op_free_bulk(ops_enq, deq);
dequeued += deq;
}
return i;
}
static int
latency_test_ldpc_enc(struct rte_mempool *mempool,
struct test_buffers *bufs, struct rte_bbdev_enc_op *ref_op,
uint16_t dev_id, uint16_t queue_id,
const uint16_t num_to_process, uint16_t burst_sz,
uint64_t *total_time, uint64_t *min_time, uint64_t *max_time)
{
int ret = TEST_SUCCESS;
uint16_t i, j, dequeued;
struct rte_bbdev_enc_op *ops_enq[MAX_BURST], *ops_deq[MAX_BURST];
uint64_t start_time = 0, last_time = 0;
for (i = 0, dequeued = 0; dequeued < num_to_process; ++i) {
uint16_t enq = 0, deq = 0;
bool first_time = true;
last_time = 0;
if (unlikely(num_to_process - dequeued < burst_sz))
burst_sz = num_to_process - dequeued;
ret = rte_bbdev_enc_op_alloc_bulk(mempool, ops_enq, burst_sz);
TEST_ASSERT_SUCCESS(ret,
"rte_bbdev_enc_op_alloc_bulk() failed");
if (test_vector.op_type != RTE_BBDEV_OP_NONE)
copy_reference_ldpc_enc_op(ops_enq, burst_sz, dequeued,
bufs->inputs,
bufs->hard_outputs,
ref_op);
/* Set counter to validate the ordering */
for (j = 0; j < burst_sz; ++j)
ops_enq[j]->opaque_data = (void *)(uintptr_t)j;
start_time = rte_rdtsc_precise();
enq = rte_bbdev_enqueue_ldpc_enc_ops(dev_id, queue_id,
&ops_enq[enq], burst_sz);
TEST_ASSERT(enq == burst_sz,
"Error enqueueing burst, expected %u, got %u",
burst_sz, enq);
/* Dequeue */
do {
deq += rte_bbdev_dequeue_ldpc_enc_ops(dev_id, queue_id,
&ops_deq[deq], burst_sz - deq);
if (likely(first_time && (deq > 0))) {
last_time += rte_rdtsc_precise() - start_time;
first_time = false;
}
} while (unlikely(burst_sz != deq));
*max_time = RTE_MAX(*max_time, last_time);
*min_time = RTE_MIN(*min_time, last_time);
*total_time += last_time;
if (test_vector.op_type != RTE_BBDEV_OP_NONE) {
ret = validate_enc_op(ops_deq, burst_sz, ref_op);
TEST_ASSERT_SUCCESS(ret, "Validation failed!");
}
rte_bbdev_enc_op_free_bulk(ops_enq, deq);
dequeued += deq;
}
return i;
}
static int
latency_test_fft(struct rte_mempool *mempool,
struct test_buffers *bufs, struct rte_bbdev_fft_op *ref_op,
uint16_t dev_id, uint16_t queue_id,
const uint16_t num_to_process, uint16_t burst_sz,
uint64_t *total_time, uint64_t *min_time, uint64_t *max_time)
{
int ret = TEST_SUCCESS;
uint16_t i, j, dequeued;
struct rte_bbdev_fft_op *ops_enq[MAX_BURST], *ops_deq[MAX_BURST];
uint64_t start_time = 0, last_time = 0;
for (i = 0, dequeued = 0; dequeued < num_to_process; ++i) {
uint16_t enq = 0, deq = 0;
bool first_time = true;
last_time = 0;
if (unlikely(num_to_process - dequeued < burst_sz))
burst_sz = num_to_process - dequeued;
ret = rte_bbdev_fft_op_alloc_bulk(mempool, ops_enq, burst_sz);
TEST_ASSERT_SUCCESS(ret,
"rte_bbdev_fft_op_alloc_bulk() failed");
if (test_vector.op_type != RTE_BBDEV_OP_NONE)
copy_reference_fft_op(ops_enq, burst_sz, dequeued,
bufs->inputs,
bufs->hard_outputs, bufs->soft_outputs,
ref_op);
/* Set counter to validate the ordering */
for (j = 0; j < burst_sz; ++j)
ops_enq[j]->opaque_data = (void *)(uintptr_t)j;
start_time = rte_rdtsc_precise();
enq = rte_bbdev_enqueue_fft_ops(dev_id, queue_id,
&ops_enq[enq], burst_sz);
TEST_ASSERT(enq == burst_sz,
"Error enqueueing burst, expected %u, got %u",
burst_sz, enq);
/* Dequeue */
do {
deq += rte_bbdev_dequeue_fft_ops(dev_id, queue_id,
&ops_deq[deq], burst_sz - deq);
if (likely(first_time && (deq > 0))) {
last_time += rte_rdtsc_precise() - start_time;
first_time = false;
}
} while (unlikely(burst_sz != deq));
*max_time = RTE_MAX(*max_time, last_time);
*min_time = RTE_MIN(*min_time, last_time);
*total_time += last_time;
if (test_vector.op_type != RTE_BBDEV_OP_NONE) {
ret = validate_fft_op(ops_deq, burst_sz, ref_op);
TEST_ASSERT_SUCCESS(ret, "Validation failed!");
}
rte_bbdev_fft_op_free_bulk(ops_enq, deq);
dequeued += deq;
}
return i;
}
/* Common function for running validation and latency test cases */
static int
validation_latency_test(struct active_device *ad,
struct test_op_params *op_params, bool latency_flag)
{
int iter;
uint16_t burst_sz = op_params->burst_sz;
const uint16_t num_to_process = op_params->num_to_process;
const enum rte_bbdev_op_type op_type = test_vector.op_type;
const uint16_t queue_id = ad->queue_ids[0];
struct test_buffers *bufs = NULL;
struct rte_bbdev_info info;
uint64_t total_time, min_time, max_time;
const char *op_type_str;
total_time = max_time = 0;
min_time = UINT64_MAX;
TEST_ASSERT_SUCCESS((burst_sz > MAX_BURST),
"BURST_SIZE should be <= %u", MAX_BURST);
rte_bbdev_info_get(ad->dev_id, &info);
bufs = &op_params->q_bufs[GET_SOCKET(info.socket_id)][queue_id];
op_type_str = rte_bbdev_op_type_str(op_type);
TEST_ASSERT_NOT_NULL(op_type_str, "Invalid op type: %u", op_type);
printf("+ ------------------------------------------------------- +\n");
if (latency_flag)
printf("== test: latency\ndev:");
else
printf("== test: validation\ndev:");
printf("%s, burst size: %u, num ops: %u, op type: %s\n",
info.dev_name, burst_sz, num_to_process, op_type_str);
if (op_type == RTE_BBDEV_OP_TURBO_DEC)
iter = latency_test_dec(op_params->mp, bufs,
op_params->ref_dec_op, op_params->vector_mask,
ad->dev_id, queue_id, num_to_process,
burst_sz, &total_time, &min_time, &max_time);
else if (op_type == RTE_BBDEV_OP_LDPC_ENC)
iter = latency_test_ldpc_enc(op_params->mp, bufs,
op_params->ref_enc_op, ad->dev_id, queue_id,
num_to_process, burst_sz, &total_time,
&min_time, &max_time);
else if (op_type == RTE_BBDEV_OP_LDPC_DEC)
iter = latency_test_ldpc_dec(op_params->mp, bufs,
op_params->ref_dec_op, op_params->vector_mask,
ad->dev_id, queue_id, num_to_process,
burst_sz, &total_time, &min_time, &max_time,
latency_flag);
else if (op_type == RTE_BBDEV_OP_FFT)
iter = latency_test_fft(op_params->mp, bufs,
op_params->ref_fft_op,
ad->dev_id, queue_id,
num_to_process, burst_sz, &total_time,
&min_time, &max_time);
else /* RTE_BBDEV_OP_TURBO_ENC */
iter = latency_test_enc(op_params->mp, bufs,
op_params->ref_enc_op,
ad->dev_id, queue_id,
num_to_process, burst_sz, &total_time,
&min_time, &max_time);
if (iter <= 0)
return TEST_FAILED;
printf("Operation latency:\n"
"\tavg: %lg cycles, %lg us\n"
"\tmin: %lg cycles, %lg us\n"
"\tmax: %lg cycles, %lg us\n",
(double)total_time / (double)iter,
(double)(total_time * 1000000) / (double)iter /
(double)rte_get_tsc_hz(), (double)min_time,
(double)(min_time * 1000000) / (double)rte_get_tsc_hz(),
(double)max_time, (double)(max_time * 1000000) /
(double)rte_get_tsc_hz());
return TEST_SUCCESS;
}
static int
latency_test(struct active_device *ad, struct test_op_params *op_params)
{
return validation_latency_test(ad, op_params, true);
}
static int
validation_test(struct active_device *ad, struct test_op_params *op_params)
{
return validation_latency_test(ad, op_params, false);
}
#ifdef RTE_BBDEV_OFFLOAD_COST
static int
get_bbdev_queue_stats(uint16_t dev_id, uint16_t queue_id,
struct rte_bbdev_stats *stats)
{
struct rte_bbdev *dev = &rte_bbdev_devices[dev_id];
struct rte_bbdev_stats *q_stats;
if (queue_id >= dev->data->num_queues)
return -1;
q_stats = &dev->data->queues[queue_id].queue_stats;
stats->enqueued_count = q_stats->enqueued_count;
stats->dequeued_count = q_stats->dequeued_count;
stats->enqueue_err_count = q_stats->enqueue_err_count;
stats->dequeue_err_count = q_stats->dequeue_err_count;
stats->enqueue_warning_count = q_stats->enqueue_warning_count;
stats->dequeue_warning_count = q_stats->dequeue_warning_count;
stats->acc_offload_cycles = q_stats->acc_offload_cycles;
return 0;
}
static int
offload_latency_test_dec(struct rte_mempool *mempool, struct test_buffers *bufs,
struct rte_bbdev_dec_op *ref_op, uint16_t dev_id,
uint16_t queue_id, const uint16_t num_to_process,
uint16_t burst_sz, struct test_time_stats *time_st)
{
int i, dequeued, ret;
struct rte_bbdev_dec_op *ops_enq[MAX_BURST], *ops_deq[MAX_BURST];
uint64_t enq_start_time, deq_start_time;
uint64_t enq_sw_last_time, deq_last_time;
struct rte_bbdev_stats stats;
for (i = 0, dequeued = 0; dequeued < num_to_process; ++i) {
uint16_t enq = 0, deq = 0;
if (unlikely(num_to_process - dequeued < burst_sz))
burst_sz = num_to_process - dequeued;
rte_bbdev_dec_op_alloc_bulk(mempool, ops_enq, burst_sz);
if (test_vector.op_type != RTE_BBDEV_OP_NONE)
copy_reference_dec_op(ops_enq, burst_sz, dequeued,
bufs->inputs,
bufs->hard_outputs,
bufs->soft_outputs,
ref_op);
/* Start time meas for enqueue function offload latency */
enq_start_time = rte_rdtsc_precise();
do {
enq += rte_bbdev_enqueue_dec_ops(dev_id, queue_id,
&ops_enq[enq], burst_sz - enq);
} while (unlikely(burst_sz != enq));
ret = get_bbdev_queue_stats(dev_id, queue_id, &stats);
TEST_ASSERT_SUCCESS(ret,
"Failed to get stats for queue (%u) of device (%u)",
queue_id, dev_id);
enq_sw_last_time = rte_rdtsc_precise() - enq_start_time -
stats.acc_offload_cycles;
time_st->enq_sw_max_time = RTE_MAX(time_st->enq_sw_max_time,
enq_sw_last_time);
time_st->enq_sw_min_time = RTE_MIN(time_st->enq_sw_min_time,
enq_sw_last_time);
time_st->enq_sw_total_time += enq_sw_last_time;
time_st->enq_acc_max_time = RTE_MAX(time_st->enq_acc_max_time,
stats.acc_offload_cycles);
time_st->enq_acc_min_time = RTE_MIN(time_st->enq_acc_min_time,
stats.acc_offload_cycles);
time_st->enq_acc_total_time += stats.acc_offload_cycles;
/* give time for device to process ops */
rte_delay_us(WAIT_OFFLOAD_US);
/* Start time meas for dequeue function offload latency */
deq_start_time = rte_rdtsc_precise();
/* Dequeue one operation */
do {
deq += rte_bbdev_dequeue_dec_ops(dev_id, queue_id,
&ops_deq[deq], enq);
} while (unlikely(deq == 0));
deq_last_time = rte_rdtsc_precise() - deq_start_time;
time_st->deq_max_time = RTE_MAX(time_st->deq_max_time,
deq_last_time);
time_st->deq_min_time = RTE_MIN(time_st->deq_min_time,
deq_last_time);
time_st->deq_total_time += deq_last_time;
/* Dequeue remaining operations if needed*/
while (burst_sz != deq)
deq += rte_bbdev_dequeue_dec_ops(dev_id, queue_id,
&ops_deq[deq], burst_sz - deq);
rte_bbdev_dec_op_free_bulk(ops_enq, deq);
dequeued += deq;
}
return i;
}
static int
offload_latency_test_ldpc_dec(struct rte_mempool *mempool,
struct test_buffers *bufs,
struct rte_bbdev_dec_op *ref_op, uint16_t dev_id,
uint16_t queue_id, const uint16_t num_to_process,
uint16_t burst_sz, struct test_time_stats *time_st)
{
int i, dequeued, ret;
struct rte_bbdev_dec_op *ops_enq[MAX_BURST], *ops_deq[MAX_BURST];
uint64_t enq_start_time, deq_start_time;
uint64_t enq_sw_last_time, deq_last_time;
struct rte_bbdev_stats stats;
bool extDdr = ldpc_cap_flags &
RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE;
for (i = 0, dequeued = 0; dequeued < num_to_process; ++i) {
uint16_t enq = 0, deq = 0;
if (unlikely(num_to_process - dequeued < burst_sz))
burst_sz = num_to_process - dequeued;
rte_bbdev_dec_op_alloc_bulk(mempool, ops_enq, burst_sz);
if (test_vector.op_type != RTE_BBDEV_OP_NONE)
copy_reference_ldpc_dec_op(ops_enq, burst_sz, dequeued,
bufs->inputs,
bufs->hard_outputs,
bufs->soft_outputs,
bufs->harq_inputs,
bufs->harq_outputs,
ref_op);
if (extDdr)
preload_harq_ddr(dev_id, queue_id, ops_enq,
burst_sz, true);
/* Start time meas for enqueue function offload latency */
enq_start_time = rte_rdtsc_precise();
do {
enq += rte_bbdev_enqueue_ldpc_dec_ops(dev_id, queue_id,
&ops_enq[enq], burst_sz - enq);
} while (unlikely(burst_sz != enq));
enq_sw_last_time = rte_rdtsc_precise() - enq_start_time;
ret = get_bbdev_queue_stats(dev_id, queue_id, &stats);
TEST_ASSERT_SUCCESS(ret,
"Failed to get stats for queue (%u) of device (%u)",
queue_id, dev_id);
enq_sw_last_time -= stats.acc_offload_cycles;
time_st->enq_sw_max_time = RTE_MAX(time_st->enq_sw_max_time,
enq_sw_last_time);
time_st->enq_sw_min_time = RTE_MIN(time_st->enq_sw_min_time,
enq_sw_last_time);
time_st->enq_sw_total_time += enq_sw_last_time;
time_st->enq_acc_max_time = RTE_MAX(time_st->enq_acc_max_time,
stats.acc_offload_cycles);
time_st->enq_acc_min_time = RTE_MIN(time_st->enq_acc_min_time,
stats.acc_offload_cycles);
time_st->enq_acc_total_time += stats.acc_offload_cycles;
/* give time for device to process ops */
rte_delay_us(WAIT_OFFLOAD_US);
/* Start time meas for dequeue function offload latency */
deq_start_time = rte_rdtsc_precise();
/* Dequeue one operation */
do {
deq += rte_bbdev_dequeue_ldpc_dec_ops(dev_id, queue_id,
&ops_deq[deq], enq);
} while (unlikely(deq == 0));
deq_last_time = rte_rdtsc_precise() - deq_start_time;
time_st->deq_max_time = RTE_MAX(time_st->deq_max_time,
deq_last_time);
time_st->deq_min_time = RTE_MIN(time_st->deq_min_time,
deq_last_time);
time_st->deq_total_time += deq_last_time;
/* Dequeue remaining operations if needed*/
while (burst_sz != deq)
deq += rte_bbdev_dequeue_ldpc_dec_ops(dev_id, queue_id,
&ops_deq[deq], burst_sz - deq);
if (extDdr) {
/* Read loopback is not thread safe */
retrieve_harq_ddr(dev_id, queue_id, ops_enq, burst_sz);
}
rte_bbdev_dec_op_free_bulk(ops_enq, deq);
dequeued += deq;
}
return i;
}
static int
offload_latency_test_enc(struct rte_mempool *mempool, struct test_buffers *bufs,
struct rte_bbdev_enc_op *ref_op, uint16_t dev_id,
uint16_t queue_id, const uint16_t num_to_process,
uint16_t burst_sz, struct test_time_stats *time_st)
{
int i, dequeued, ret;
struct rte_bbdev_enc_op *ops_enq[MAX_BURST], *ops_deq[MAX_BURST];
uint64_t enq_start_time, deq_start_time;
uint64_t enq_sw_last_time, deq_last_time;
struct rte_bbdev_stats stats;
for (i = 0, dequeued = 0; dequeued < num_to_process; ++i) {
uint16_t enq = 0, deq = 0;
if (unlikely(num_to_process - dequeued < burst_sz))
burst_sz = num_to_process - dequeued;
ret = rte_bbdev_enc_op_alloc_bulk(mempool, ops_enq, burst_sz);
TEST_ASSERT_SUCCESS(ret,
"rte_bbdev_enc_op_alloc_bulk() failed");
if (test_vector.op_type != RTE_BBDEV_OP_NONE)
copy_reference_enc_op(ops_enq, burst_sz, dequeued,
bufs->inputs,
bufs->hard_outputs,
ref_op);
/* Start time meas for enqueue function offload latency */
enq_start_time = rte_rdtsc_precise();
do {
enq += rte_bbdev_enqueue_enc_ops(dev_id, queue_id,
&ops_enq[enq], burst_sz - enq);
} while (unlikely(burst_sz != enq));
enq_sw_last_time = rte_rdtsc_precise() - enq_start_time;
ret = get_bbdev_queue_stats(dev_id, queue_id, &stats);
TEST_ASSERT_SUCCESS(ret,
"Failed to get stats for queue (%u) of device (%u)",
queue_id, dev_id);
enq_sw_last_time -= stats.acc_offload_cycles;
time_st->enq_sw_max_time = RTE_MAX(time_st->enq_sw_max_time,
enq_sw_last_time);
time_st->enq_sw_min_time = RTE_MIN(time_st->enq_sw_min_time,
enq_sw_last_time);
time_st->enq_sw_total_time += enq_sw_last_time;
time_st->enq_acc_max_time = RTE_MAX(time_st->enq_acc_max_time,
stats.acc_offload_cycles);
time_st->enq_acc_min_time = RTE_MIN(time_st->enq_acc_min_time,
stats.acc_offload_cycles);
time_st->enq_acc_total_time += stats.acc_offload_cycles;
/* give time for device to process ops */
rte_delay_us(WAIT_OFFLOAD_US);
/* Start time meas for dequeue function offload latency */
deq_start_time = rte_rdtsc_precise();
/* Dequeue one operation */
do {
deq += rte_bbdev_dequeue_enc_ops(dev_id, queue_id,
&ops_deq[deq], enq);
} while (unlikely(deq == 0));
deq_last_time = rte_rdtsc_precise() - deq_start_time;
time_st->deq_max_time = RTE_MAX(time_st->deq_max_time,
deq_last_time);
time_st->deq_min_time = RTE_MIN(time_st->deq_min_time,
deq_last_time);
time_st->deq_total_time += deq_last_time;
while (burst_sz != deq)
deq += rte_bbdev_dequeue_enc_ops(dev_id, queue_id,
&ops_deq[deq], burst_sz - deq);
rte_bbdev_enc_op_free_bulk(ops_enq, deq);
dequeued += deq;
}
return i;
}
static int
offload_latency_test_ldpc_enc(struct rte_mempool *mempool,
struct test_buffers *bufs,
struct rte_bbdev_enc_op *ref_op, uint16_t dev_id,
uint16_t queue_id, const uint16_t num_to_process,
uint16_t burst_sz, struct test_time_stats *time_st)
{
int i, dequeued, ret;
struct rte_bbdev_enc_op *ops_enq[MAX_BURST], *ops_deq[MAX_BURST];
uint64_t enq_start_time, deq_start_time;
uint64_t enq_sw_last_time, deq_last_time;
struct rte_bbdev_stats stats;
for (i = 0, dequeued = 0; dequeued < num_to_process; ++i) {
uint16_t enq = 0, deq = 0;
if (unlikely(num_to_process - dequeued < burst_sz))
burst_sz = num_to_process - dequeued;
ret = rte_bbdev_enc_op_alloc_bulk(mempool, ops_enq, burst_sz);
TEST_ASSERT_SUCCESS(ret,
"rte_bbdev_enc_op_alloc_bulk() failed");
if (test_vector.op_type != RTE_BBDEV_OP_NONE)
copy_reference_ldpc_enc_op(ops_enq, burst_sz, dequeued,
bufs->inputs,
bufs->hard_outputs,
ref_op);
/* Start time meas for enqueue function offload latency */
enq_start_time = rte_rdtsc_precise();
do {
enq += rte_bbdev_enqueue_ldpc_enc_ops(dev_id, queue_id,
&ops_enq[enq], burst_sz - enq);
} while (unlikely(burst_sz != enq));
enq_sw_last_time = rte_rdtsc_precise() - enq_start_time;
ret = get_bbdev_queue_stats(dev_id, queue_id, &stats);
TEST_ASSERT_SUCCESS(ret,
"Failed to get stats for queue (%u) of device (%u)",
queue_id, dev_id);
enq_sw_last_time -= stats.acc_offload_cycles;
time_st->enq_sw_max_time = RTE_MAX(time_st->enq_sw_max_time,
enq_sw_last_time);
time_st->enq_sw_min_time = RTE_MIN(time_st->enq_sw_min_time,
enq_sw_last_time);
time_st->enq_sw_total_time += enq_sw_last_time;
time_st->enq_acc_max_time = RTE_MAX(time_st->enq_acc_max_time,
stats.acc_offload_cycles);
time_st->enq_acc_min_time = RTE_MIN(time_st->enq_acc_min_time,
stats.acc_offload_cycles);
time_st->enq_acc_total_time += stats.acc_offload_cycles;
/* give time for device to process ops */
rte_delay_us(WAIT_OFFLOAD_US);
/* Start time meas for dequeue function offload latency */
deq_start_time = rte_rdtsc_precise();
/* Dequeue one operation */
do {
deq += rte_bbdev_dequeue_ldpc_enc_ops(dev_id, queue_id,
&ops_deq[deq], enq);
} while (unlikely(deq == 0));
deq_last_time = rte_rdtsc_precise() - deq_start_time;
time_st->deq_max_time = RTE_MAX(time_st->deq_max_time,
deq_last_time);
time_st->deq_min_time = RTE_MIN(time_st->deq_min_time,
deq_last_time);
time_st->deq_total_time += deq_last_time;
while (burst_sz != deq)
deq += rte_bbdev_dequeue_ldpc_enc_ops(dev_id, queue_id,
&ops_deq[deq], burst_sz - deq);
rte_bbdev_enc_op_free_bulk(ops_enq, deq);
dequeued += deq;
}
return i;
}
#endif
static int
offload_cost_test(struct active_device *ad,
struct test_op_params *op_params)
{
#ifndef RTE_BBDEV_OFFLOAD_COST
RTE_SET_USED(ad);
RTE_SET_USED(op_params);
printf("Offload latency test is disabled.\n");
printf("Set RTE_BBDEV_OFFLOAD_COST to 'y' to turn the test on.\n");
return TEST_SKIPPED;
#else
int iter;
uint16_t burst_sz = op_params->burst_sz;
const uint16_t num_to_process = op_params->num_to_process;
const enum rte_bbdev_op_type op_type = test_vector.op_type;
const uint16_t queue_id = ad->queue_ids[0];
struct test_buffers *bufs = NULL;
struct rte_bbdev_info info;
const char *op_type_str;
struct test_time_stats time_st;
memset(&time_st, 0, sizeof(struct test_time_stats));
time_st.enq_sw_min_time = UINT64_MAX;
time_st.enq_acc_min_time = UINT64_MAX;
time_st.deq_min_time = UINT64_MAX;
TEST_ASSERT_SUCCESS((burst_sz > MAX_BURST),
"BURST_SIZE should be <= %u", MAX_BURST);
rte_bbdev_info_get(ad->dev_id, &info);
bufs = &op_params->q_bufs[GET_SOCKET(info.socket_id)][queue_id];
op_type_str = rte_bbdev_op_type_str(op_type);
TEST_ASSERT_NOT_NULL(op_type_str, "Invalid op type: %u", op_type);
printf("+ ------------------------------------------------------- +\n");
printf("== test: offload latency test\ndev: %s, burst size: %u, num ops: %u, op type: %s\n",
info.dev_name, burst_sz, num_to_process, op_type_str);
if (op_type == RTE_BBDEV_OP_TURBO_DEC)
iter = offload_latency_test_dec(op_params->mp, bufs,
op_params->ref_dec_op, ad->dev_id, queue_id,
num_to_process, burst_sz, &time_st);
else if (op_type == RTE_BBDEV_OP_TURBO_ENC)
iter = offload_latency_test_enc(op_params->mp, bufs,
op_params->ref_enc_op, ad->dev_id, queue_id,
num_to_process, burst_sz, &time_st);
else if (op_type == RTE_BBDEV_OP_LDPC_ENC)
iter = offload_latency_test_ldpc_enc(op_params->mp, bufs,
op_params->ref_enc_op, ad->dev_id, queue_id,
num_to_process, burst_sz, &time_st);
else if (op_type == RTE_BBDEV_OP_LDPC_DEC)
iter = offload_latency_test_ldpc_dec(op_params->mp, bufs,
op_params->ref_dec_op, ad->dev_id, queue_id,
num_to_process, burst_sz, &time_st);
else if (op_type == RTE_BBDEV_OP_FFT)
iter = offload_latency_test_fft(op_params->mp, bufs,
op_params->ref_fft_op, ad->dev_id, queue_id,
num_to_process, burst_sz, &time_st);
else
iter = offload_latency_test_enc(op_params->mp, bufs,
op_params->ref_enc_op, ad->dev_id, queue_id,
num_to_process, burst_sz, &time_st);
if (iter <= 0)
return TEST_FAILED;
printf("Enqueue driver offload cost latency:\n"
"\tavg: %lg cycles, %lg us\n"
"\tmin: %lg cycles, %lg us\n"
"\tmax: %lg cycles, %lg us\n"
"Enqueue accelerator offload cost latency:\n"
"\tavg: %lg cycles, %lg us\n"
"\tmin: %lg cycles, %lg us\n"
"\tmax: %lg cycles, %lg us\n",
(double)time_st.enq_sw_total_time / (double)iter,
(double)(time_st.enq_sw_total_time * 1000000) /
(double)iter / (double)rte_get_tsc_hz(),
(double)time_st.enq_sw_min_time,
(double)(time_st.enq_sw_min_time * 1000000) /
rte_get_tsc_hz(), (double)time_st.enq_sw_max_time,
(double)(time_st.enq_sw_max_time * 1000000) /
rte_get_tsc_hz(), (double)time_st.enq_acc_total_time /
(double)iter,
(double)(time_st.enq_acc_total_time * 1000000) /
(double)iter / (double)rte_get_tsc_hz(),
(double)time_st.enq_acc_min_time,
(double)(time_st.enq_acc_min_time * 1000000) /
rte_get_tsc_hz(), (double)time_st.enq_acc_max_time,
(double)(time_st.enq_acc_max_time * 1000000) /
rte_get_tsc_hz());
printf("Dequeue offload cost latency - one op:\n"
"\tavg: %lg cycles, %lg us\n"
"\tmin: %lg cycles, %lg us\n"
"\tmax: %lg cycles, %lg us\n",
(double)time_st.deq_total_time / (double)iter,
(double)(time_st.deq_total_time * 1000000) /
(double)iter / (double)rte_get_tsc_hz(),
(double)time_st.deq_min_time,
(double)(time_st.deq_min_time * 1000000) /
rte_get_tsc_hz(), (double)time_st.deq_max_time,
(double)(time_st.deq_max_time * 1000000) /
rte_get_tsc_hz());
struct rte_bbdev_stats stats = {0};
get_bbdev_queue_stats(ad->dev_id, queue_id, &stats);
if (op_type != RTE_BBDEV_OP_LDPC_DEC) {
TEST_ASSERT_SUCCESS(stats.enqueued_count != num_to_process,
"Mismatch in enqueue count %10"PRIu64" %d",
stats.enqueued_count, num_to_process);
TEST_ASSERT_SUCCESS(stats.dequeued_count != num_to_process,
"Mismatch in dequeue count %10"PRIu64" %d",
stats.dequeued_count, num_to_process);
}
TEST_ASSERT_SUCCESS(stats.enqueue_err_count != 0,
"Enqueue count Error %10"PRIu64"",
stats.enqueue_err_count);
TEST_ASSERT_SUCCESS(stats.dequeue_err_count != 0,
"Dequeue count Error (%10"PRIu64"",
stats.dequeue_err_count);
return TEST_SUCCESS;
#endif
}
#ifdef RTE_BBDEV_OFFLOAD_COST
static int
offload_latency_empty_q_test_dec(uint16_t dev_id, uint16_t queue_id,
const uint16_t num_to_process, uint16_t burst_sz,
uint64_t *deq_total_time, uint64_t *deq_min_time,
uint64_t *deq_max_time, const enum rte_bbdev_op_type op_type)
{
int i, deq_total;
struct rte_bbdev_dec_op *ops[MAX_BURST];
uint64_t deq_start_time, deq_last_time;
/* Test deq offload latency from an empty queue */
for (i = 0, deq_total = 0; deq_total < num_to_process;
++i, deq_total += burst_sz) {
deq_start_time = rte_rdtsc_precise();
if (unlikely(num_to_process - deq_total < burst_sz))
burst_sz = num_to_process - deq_total;
if (op_type == RTE_BBDEV_OP_LDPC_DEC)
rte_bbdev_dequeue_ldpc_dec_ops(dev_id, queue_id, ops,
burst_sz);
else
rte_bbdev_dequeue_dec_ops(dev_id, queue_id, ops,
burst_sz);
deq_last_time = rte_rdtsc_precise() - deq_start_time;
*deq_max_time = RTE_MAX(*deq_max_time, deq_last_time);
*deq_min_time = RTE_MIN(*deq_min_time, deq_last_time);
*deq_total_time += deq_last_time;
}
return i;
}
static int
offload_latency_empty_q_test_enc(uint16_t dev_id, uint16_t queue_id,
const uint16_t num_to_process, uint16_t burst_sz,
uint64_t *deq_total_time, uint64_t *deq_min_time,
uint64_t *deq_max_time, const enum rte_bbdev_op_type op_type)
{
int i, deq_total;
struct rte_bbdev_enc_op *ops[MAX_BURST];
uint64_t deq_start_time, deq_last_time;
/* Test deq offload latency from an empty queue */
for (i = 0, deq_total = 0; deq_total < num_to_process;
++i, deq_total += burst_sz) {
deq_start_time = rte_rdtsc_precise();
if (unlikely(num_to_process - deq_total < burst_sz))
burst_sz = num_to_process - deq_total;
if (op_type == RTE_BBDEV_OP_LDPC_ENC)
rte_bbdev_dequeue_ldpc_enc_ops(dev_id, queue_id, ops,
burst_sz);
else
rte_bbdev_dequeue_enc_ops(dev_id, queue_id, ops,
burst_sz);
deq_last_time = rte_rdtsc_precise() - deq_start_time;
*deq_max_time = RTE_MAX(*deq_max_time, deq_last_time);
*deq_min_time = RTE_MIN(*deq_min_time, deq_last_time);
*deq_total_time += deq_last_time;
}
return i;
}
#endif
static int
offload_latency_empty_q_test(struct active_device *ad,
struct test_op_params *op_params)
{
#ifndef RTE_BBDEV_OFFLOAD_COST
RTE_SET_USED(ad);
RTE_SET_USED(op_params);
printf("Offload latency empty dequeue test is disabled.\n");
printf("Set RTE_BBDEV_OFFLOAD_COST to 'y' to turn the test on.\n");
return TEST_SKIPPED;
#else
int iter;
uint64_t deq_total_time, deq_min_time, deq_max_time;
uint16_t burst_sz = op_params->burst_sz;
const uint16_t num_to_process = op_params->num_to_process;
const enum rte_bbdev_op_type op_type = test_vector.op_type;
const uint16_t queue_id = ad->queue_ids[0];
struct rte_bbdev_info info;
const char *op_type_str;
deq_total_time = deq_max_time = 0;
deq_min_time = UINT64_MAX;
TEST_ASSERT_SUCCESS((burst_sz > MAX_BURST),
"BURST_SIZE should be <= %u", MAX_BURST);
rte_bbdev_info_get(ad->dev_id, &info);
op_type_str = rte_bbdev_op_type_str(op_type);
TEST_ASSERT_NOT_NULL(op_type_str, "Invalid op type: %u", op_type);
printf("+ ------------------------------------------------------- +\n");
printf("== test: offload latency empty dequeue\ndev: %s, burst size: %u, num ops: %u, op type: %s\n",
info.dev_name, burst_sz, num_to_process, op_type_str);
if (op_type == RTE_BBDEV_OP_TURBO_DEC ||
op_type == RTE_BBDEV_OP_LDPC_DEC)
iter = offload_latency_empty_q_test_dec(ad->dev_id, queue_id,
num_to_process, burst_sz, &deq_total_time,
&deq_min_time, &deq_max_time, op_type);
else
iter = offload_latency_empty_q_test_enc(ad->dev_id, queue_id,
num_to_process, burst_sz, &deq_total_time,
&deq_min_time, &deq_max_time, op_type);
if (iter <= 0)
return TEST_FAILED;
printf("Empty dequeue offload:\n"
"\tavg: %lg cycles, %lg us\n"
"\tmin: %lg cycles, %lg us\n"
"\tmax: %lg cycles, %lg us\n",
(double)deq_total_time / (double)iter,
(double)(deq_total_time * 1000000) / (double)iter /
(double)rte_get_tsc_hz(), (double)deq_min_time,
(double)(deq_min_time * 1000000) / rte_get_tsc_hz(),
(double)deq_max_time, (double)(deq_max_time * 1000000) /
rte_get_tsc_hz());
return TEST_SUCCESS;
#endif
}
static int
bler_tc(void)
{
return run_test_case(bler_test);
}
static int
throughput_tc(void)
{
return run_test_case(throughput_test);
}
static int
offload_cost_tc(void)
{
return run_test_case(offload_cost_test);
}
static int
offload_latency_empty_q_tc(void)
{
return run_test_case(offload_latency_empty_q_test);
}
static int
latency_tc(void)
{
return run_test_case(latency_test);
}
static int
validation_tc(void)
{
return run_test_case(validation_test);
}
static int
interrupt_tc(void)
{
return run_test_case(throughput_test);
}
static struct unit_test_suite bbdev_bler_testsuite = {
.suite_name = "BBdev BLER Tests",
.setup = testsuite_setup,
.teardown = testsuite_teardown,
.unit_test_cases = {
TEST_CASE_ST(ut_setup, ut_teardown, bler_tc),
TEST_CASES_END() /**< NULL terminate unit test array */
}
};
static struct unit_test_suite bbdev_throughput_testsuite = {
.suite_name = "BBdev Throughput Tests",
.setup = testsuite_setup,
.teardown = testsuite_teardown,
.unit_test_cases = {
TEST_CASE_ST(ut_setup, ut_teardown, throughput_tc),
TEST_CASES_END() /**< NULL terminate unit test array */
}
};
static struct unit_test_suite bbdev_validation_testsuite = {
.suite_name = "BBdev Validation Tests",
.setup = testsuite_setup,
.teardown = testsuite_teardown,
.unit_test_cases = {
TEST_CASE_ST(ut_setup, ut_teardown, validation_tc),
TEST_CASES_END() /**< NULL terminate unit test array */
}
};
static struct unit_test_suite bbdev_latency_testsuite = {
.suite_name = "BBdev Latency Tests",
.setup = testsuite_setup,
.teardown = testsuite_teardown,
.unit_test_cases = {
TEST_CASE_ST(ut_setup, ut_teardown, latency_tc),
TEST_CASES_END() /**< NULL terminate unit test array */
}
};
static struct unit_test_suite bbdev_offload_cost_testsuite = {
.suite_name = "BBdev Offload Cost Tests",
.setup = testsuite_setup,
.teardown = testsuite_teardown,
.unit_test_cases = {
TEST_CASE_ST(ut_setup, ut_teardown, offload_cost_tc),
TEST_CASE_ST(ut_setup, ut_teardown, offload_latency_empty_q_tc),
TEST_CASES_END() /**< NULL terminate unit test array */
}
};
static struct unit_test_suite bbdev_interrupt_testsuite = {
.suite_name = "BBdev Interrupt Tests",
.setup = interrupt_testsuite_setup,
.teardown = testsuite_teardown,
.unit_test_cases = {
TEST_CASE_ST(ut_setup, ut_teardown, interrupt_tc),
TEST_CASES_END() /**< NULL terminate unit test array */
}
};
REGISTER_TEST_COMMAND(bler, bbdev_bler_testsuite);
REGISTER_TEST_COMMAND(throughput, bbdev_throughput_testsuite);
REGISTER_TEST_COMMAND(validation, bbdev_validation_testsuite);
REGISTER_TEST_COMMAND(latency, bbdev_latency_testsuite);
REGISTER_TEST_COMMAND(offload, bbdev_offload_cost_testsuite);
REGISTER_TEST_COMMAND(interrupt, bbdev_interrupt_testsuite);