74e5a25d4a
Use lightweight transmit handler which handles non-offloaded Tx data path. We get CPU utilization improvement of ~8%. Signed-off-by: Shahed Shaikh <shshaikh@marvell.com>
2810 lines
79 KiB
C
2810 lines
79 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright (c) 2016 - 2018 Cavium Inc.
|
|
* All rights reserved.
|
|
* www.cavium.com
|
|
*/
|
|
|
|
#include <rte_net.h>
|
|
#include "qede_rxtx.h"
|
|
|
|
static inline int qede_alloc_rx_buffer(struct qede_rx_queue *rxq)
|
|
{
|
|
struct rte_mbuf *new_mb = NULL;
|
|
struct eth_rx_bd *rx_bd;
|
|
dma_addr_t mapping;
|
|
uint16_t idx = rxq->sw_rx_prod & NUM_RX_BDS(rxq);
|
|
|
|
new_mb = rte_mbuf_raw_alloc(rxq->mb_pool);
|
|
if (unlikely(!new_mb)) {
|
|
PMD_RX_LOG(ERR, rxq,
|
|
"Failed to allocate rx buffer "
|
|
"sw_rx_prod %u sw_rx_cons %u mp entries %u free %u",
|
|
idx, rxq->sw_rx_cons & NUM_RX_BDS(rxq),
|
|
rte_mempool_avail_count(rxq->mb_pool),
|
|
rte_mempool_in_use_count(rxq->mb_pool));
|
|
return -ENOMEM;
|
|
}
|
|
rxq->sw_rx_ring[idx].mbuf = new_mb;
|
|
rxq->sw_rx_ring[idx].page_offset = 0;
|
|
mapping = rte_mbuf_data_iova_default(new_mb);
|
|
/* Advance PROD and get BD pointer */
|
|
rx_bd = (struct eth_rx_bd *)ecore_chain_produce(&rxq->rx_bd_ring);
|
|
rx_bd->addr.hi = rte_cpu_to_le_32(U64_HI(mapping));
|
|
rx_bd->addr.lo = rte_cpu_to_le_32(U64_LO(mapping));
|
|
rxq->sw_rx_prod++;
|
|
return 0;
|
|
}
|
|
|
|
#define QEDE_MAX_BULK_ALLOC_COUNT 512
|
|
|
|
static inline int qede_alloc_rx_bulk_mbufs(struct qede_rx_queue *rxq, int count)
|
|
{
|
|
void *obj_p[QEDE_MAX_BULK_ALLOC_COUNT] __rte_cache_aligned;
|
|
struct rte_mbuf *mbuf = NULL;
|
|
struct eth_rx_bd *rx_bd;
|
|
dma_addr_t mapping;
|
|
int i, ret = 0;
|
|
uint16_t idx;
|
|
|
|
if (count > QEDE_MAX_BULK_ALLOC_COUNT)
|
|
count = QEDE_MAX_BULK_ALLOC_COUNT;
|
|
|
|
ret = rte_mempool_get_bulk(rxq->mb_pool, obj_p, count);
|
|
if (unlikely(ret)) {
|
|
PMD_RX_LOG(ERR, rxq,
|
|
"Failed to allocate %d rx buffers "
|
|
"sw_rx_prod %u sw_rx_cons %u mp entries %u free %u",
|
|
count,
|
|
rxq->sw_rx_prod & NUM_RX_BDS(rxq),
|
|
rxq->sw_rx_cons & NUM_RX_BDS(rxq),
|
|
rte_mempool_avail_count(rxq->mb_pool),
|
|
rte_mempool_in_use_count(rxq->mb_pool));
|
|
return -ENOMEM;
|
|
}
|
|
|
|
for (i = 0; i < count; i++) {
|
|
mbuf = obj_p[i];
|
|
if (likely(i < count - 1))
|
|
rte_prefetch0(obj_p[i + 1]);
|
|
|
|
idx = rxq->sw_rx_prod & NUM_RX_BDS(rxq);
|
|
rxq->sw_rx_ring[idx].mbuf = mbuf;
|
|
rxq->sw_rx_ring[idx].page_offset = 0;
|
|
mapping = rte_mbuf_data_iova_default(mbuf);
|
|
rx_bd = (struct eth_rx_bd *)
|
|
ecore_chain_produce(&rxq->rx_bd_ring);
|
|
rx_bd->addr.hi = rte_cpu_to_le_32(U64_HI(mapping));
|
|
rx_bd->addr.lo = rte_cpu_to_le_32(U64_LO(mapping));
|
|
rxq->sw_rx_prod++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Criterias for calculating Rx buffer size -
|
|
* 1) rx_buf_size should not exceed the size of mbuf
|
|
* 2) In scattered_rx mode - minimum rx_buf_size should be
|
|
* (MTU + Maximum L2 Header Size + 2) / ETH_RX_MAX_BUFF_PER_PKT
|
|
* 3) In regular mode - minimum rx_buf_size should be
|
|
* (MTU + Maximum L2 Header Size + 2)
|
|
* In above cases +2 corrosponds to 2 bytes padding in front of L2
|
|
* header.
|
|
* 4) rx_buf_size should be cacheline-size aligned. So considering
|
|
* criteria 1, we need to adjust the size to floor instead of ceil,
|
|
* so that we don't exceed mbuf size while ceiling rx_buf_size.
|
|
*/
|
|
int
|
|
qede_calc_rx_buf_size(struct rte_eth_dev *dev, uint16_t mbufsz,
|
|
uint16_t max_frame_size)
|
|
{
|
|
struct qede_dev *qdev = QEDE_INIT_QDEV(dev);
|
|
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
|
|
int rx_buf_size;
|
|
|
|
if (dev->data->scattered_rx) {
|
|
/* per HW limitation, only ETH_RX_MAX_BUFF_PER_PKT number of
|
|
* bufferes can be used for single packet. So need to make sure
|
|
* mbuf size is sufficient enough for this.
|
|
*/
|
|
if ((mbufsz * ETH_RX_MAX_BUFF_PER_PKT) <
|
|
(max_frame_size + QEDE_ETH_OVERHEAD)) {
|
|
DP_ERR(edev, "mbuf %d size is not enough to hold max fragments (%d) for max rx packet length (%d)\n",
|
|
mbufsz, ETH_RX_MAX_BUFF_PER_PKT, max_frame_size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
rx_buf_size = RTE_MAX(mbufsz,
|
|
(max_frame_size + QEDE_ETH_OVERHEAD) /
|
|
ETH_RX_MAX_BUFF_PER_PKT);
|
|
} else {
|
|
rx_buf_size = max_frame_size + QEDE_ETH_OVERHEAD;
|
|
}
|
|
|
|
/* Align to cache-line size if needed */
|
|
return QEDE_FLOOR_TO_CACHE_LINE_SIZE(rx_buf_size);
|
|
}
|
|
|
|
static struct qede_rx_queue *
|
|
qede_alloc_rx_queue_mem(struct rte_eth_dev *dev,
|
|
uint16_t queue_idx,
|
|
uint16_t nb_desc,
|
|
unsigned int socket_id,
|
|
struct rte_mempool *mp,
|
|
uint16_t bufsz)
|
|
{
|
|
struct qede_dev *qdev = QEDE_INIT_QDEV(dev);
|
|
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
|
|
struct qede_rx_queue *rxq;
|
|
size_t size;
|
|
int rc;
|
|
|
|
/* First allocate the rx queue data structure */
|
|
rxq = rte_zmalloc_socket("qede_rx_queue", sizeof(struct qede_rx_queue),
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
|
|
if (!rxq) {
|
|
DP_ERR(edev, "Unable to allocate memory for rxq on socket %u",
|
|
socket_id);
|
|
return NULL;
|
|
}
|
|
|
|
rxq->qdev = qdev;
|
|
rxq->mb_pool = mp;
|
|
rxq->nb_rx_desc = nb_desc;
|
|
rxq->queue_id = queue_idx;
|
|
rxq->port_id = dev->data->port_id;
|
|
|
|
|
|
rxq->rx_buf_size = bufsz;
|
|
|
|
DP_INFO(edev, "mtu %u mbufsz %u bd_max_bytes %u scatter_mode %d\n",
|
|
qdev->mtu, bufsz, rxq->rx_buf_size, dev->data->scattered_rx);
|
|
|
|
/* Allocate the parallel driver ring for Rx buffers */
|
|
size = sizeof(*rxq->sw_rx_ring) * rxq->nb_rx_desc;
|
|
rxq->sw_rx_ring = rte_zmalloc_socket("sw_rx_ring", size,
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
if (!rxq->sw_rx_ring) {
|
|
DP_ERR(edev, "Memory allocation fails for sw_rx_ring on"
|
|
" socket %u\n", socket_id);
|
|
rte_free(rxq);
|
|
return NULL;
|
|
}
|
|
|
|
/* Allocate FW Rx ring */
|
|
rc = qdev->ops->common->chain_alloc(edev,
|
|
ECORE_CHAIN_USE_TO_CONSUME_PRODUCE,
|
|
ECORE_CHAIN_MODE_NEXT_PTR,
|
|
ECORE_CHAIN_CNT_TYPE_U16,
|
|
rxq->nb_rx_desc,
|
|
sizeof(struct eth_rx_bd),
|
|
&rxq->rx_bd_ring,
|
|
NULL);
|
|
|
|
if (rc != ECORE_SUCCESS) {
|
|
DP_ERR(edev, "Memory allocation fails for RX BD ring"
|
|
" on socket %u\n", socket_id);
|
|
rte_free(rxq->sw_rx_ring);
|
|
rte_free(rxq);
|
|
return NULL;
|
|
}
|
|
|
|
/* Allocate FW completion ring */
|
|
rc = qdev->ops->common->chain_alloc(edev,
|
|
ECORE_CHAIN_USE_TO_CONSUME,
|
|
ECORE_CHAIN_MODE_PBL,
|
|
ECORE_CHAIN_CNT_TYPE_U16,
|
|
rxq->nb_rx_desc,
|
|
sizeof(union eth_rx_cqe),
|
|
&rxq->rx_comp_ring,
|
|
NULL);
|
|
|
|
if (rc != ECORE_SUCCESS) {
|
|
DP_ERR(edev, "Memory allocation fails for RX CQE ring"
|
|
" on socket %u\n", socket_id);
|
|
qdev->ops->common->chain_free(edev, &rxq->rx_bd_ring);
|
|
rte_free(rxq->sw_rx_ring);
|
|
rte_free(rxq);
|
|
return NULL;
|
|
}
|
|
|
|
return rxq;
|
|
}
|
|
|
|
int
|
|
qede_rx_queue_setup(struct rte_eth_dev *dev, uint16_t qid,
|
|
uint16_t nb_desc, unsigned int socket_id,
|
|
__rte_unused const struct rte_eth_rxconf *rx_conf,
|
|
struct rte_mempool *mp)
|
|
{
|
|
struct qede_dev *qdev = QEDE_INIT_QDEV(dev);
|
|
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
|
|
struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
|
|
struct qede_rx_queue *rxq;
|
|
uint16_t max_rx_pkt_len;
|
|
uint16_t bufsz;
|
|
int rc;
|
|
|
|
PMD_INIT_FUNC_TRACE(edev);
|
|
|
|
/* Note: Ring size/align is controlled by struct rte_eth_desc_lim */
|
|
if (!rte_is_power_of_2(nb_desc)) {
|
|
DP_ERR(edev, "Ring size %u is not power of 2\n",
|
|
nb_desc);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Free memory prior to re-allocation if needed... */
|
|
if (dev->data->rx_queues[qid] != NULL) {
|
|
qede_rx_queue_release(dev->data->rx_queues[qid]);
|
|
dev->data->rx_queues[qid] = NULL;
|
|
}
|
|
|
|
max_rx_pkt_len = (uint16_t)rxmode->max_rx_pkt_len;
|
|
|
|
/* Fix up RX buffer size */
|
|
bufsz = (uint16_t)rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
|
|
/* cache align the mbuf size to simplfy rx_buf_size calculation */
|
|
bufsz = QEDE_FLOOR_TO_CACHE_LINE_SIZE(bufsz);
|
|
if ((rxmode->offloads & DEV_RX_OFFLOAD_SCATTER) ||
|
|
(max_rx_pkt_len + QEDE_ETH_OVERHEAD) > bufsz) {
|
|
if (!dev->data->scattered_rx) {
|
|
DP_INFO(edev, "Forcing scatter-gather mode\n");
|
|
dev->data->scattered_rx = 1;
|
|
}
|
|
}
|
|
|
|
rc = qede_calc_rx_buf_size(dev, bufsz, max_rx_pkt_len);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
bufsz = rc;
|
|
|
|
if (ECORE_IS_CMT(edev)) {
|
|
rxq = qede_alloc_rx_queue_mem(dev, qid * 2, nb_desc,
|
|
socket_id, mp, bufsz);
|
|
if (!rxq)
|
|
return -ENOMEM;
|
|
|
|
qdev->fp_array[qid * 2].rxq = rxq;
|
|
rxq = qede_alloc_rx_queue_mem(dev, qid * 2 + 1, nb_desc,
|
|
socket_id, mp, bufsz);
|
|
if (!rxq)
|
|
return -ENOMEM;
|
|
|
|
qdev->fp_array[qid * 2 + 1].rxq = rxq;
|
|
/* provide per engine fp struct as rx queue */
|
|
dev->data->rx_queues[qid] = &qdev->fp_array_cmt[qid];
|
|
} else {
|
|
rxq = qede_alloc_rx_queue_mem(dev, qid, nb_desc,
|
|
socket_id, mp, bufsz);
|
|
if (!rxq)
|
|
return -ENOMEM;
|
|
|
|
dev->data->rx_queues[qid] = rxq;
|
|
qdev->fp_array[qid].rxq = rxq;
|
|
}
|
|
|
|
DP_INFO(edev, "rxq %d num_desc %u rx_buf_size=%u socket %u\n",
|
|
qid, nb_desc, rxq->rx_buf_size, socket_id);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
qede_rx_queue_reset(__rte_unused struct qede_dev *qdev,
|
|
struct qede_rx_queue *rxq)
|
|
{
|
|
DP_INFO(&qdev->edev, "Reset RX queue %u\n", rxq->queue_id);
|
|
ecore_chain_reset(&rxq->rx_bd_ring);
|
|
ecore_chain_reset(&rxq->rx_comp_ring);
|
|
rxq->sw_rx_prod = 0;
|
|
rxq->sw_rx_cons = 0;
|
|
*rxq->hw_cons_ptr = 0;
|
|
}
|
|
|
|
static void qede_rx_queue_release_mbufs(struct qede_rx_queue *rxq)
|
|
{
|
|
uint16_t i;
|
|
|
|
if (rxq->sw_rx_ring) {
|
|
for (i = 0; i < rxq->nb_rx_desc; i++) {
|
|
if (rxq->sw_rx_ring[i].mbuf) {
|
|
rte_pktmbuf_free(rxq->sw_rx_ring[i].mbuf);
|
|
rxq->sw_rx_ring[i].mbuf = NULL;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void _qede_rx_queue_release(struct qede_dev *qdev,
|
|
struct ecore_dev *edev,
|
|
struct qede_rx_queue *rxq)
|
|
{
|
|
qede_rx_queue_release_mbufs(rxq);
|
|
qdev->ops->common->chain_free(edev, &rxq->rx_bd_ring);
|
|
qdev->ops->common->chain_free(edev, &rxq->rx_comp_ring);
|
|
rte_free(rxq->sw_rx_ring);
|
|
rte_free(rxq);
|
|
}
|
|
|
|
void qede_rx_queue_release(void *rx_queue)
|
|
{
|
|
struct qede_rx_queue *rxq = rx_queue;
|
|
struct qede_fastpath_cmt *fp_cmt;
|
|
struct qede_dev *qdev;
|
|
struct ecore_dev *edev;
|
|
|
|
if (rxq) {
|
|
qdev = rxq->qdev;
|
|
edev = QEDE_INIT_EDEV(qdev);
|
|
PMD_INIT_FUNC_TRACE(edev);
|
|
if (ECORE_IS_CMT(edev)) {
|
|
fp_cmt = rx_queue;
|
|
_qede_rx_queue_release(qdev, edev, fp_cmt->fp0->rxq);
|
|
_qede_rx_queue_release(qdev, edev, fp_cmt->fp1->rxq);
|
|
} else {
|
|
_qede_rx_queue_release(qdev, edev, rxq);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Stops a given RX queue in the HW */
|
|
static int qede_rx_queue_stop(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id)
|
|
{
|
|
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
|
|
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
|
|
struct ecore_hwfn *p_hwfn;
|
|
struct qede_rx_queue *rxq;
|
|
int hwfn_index;
|
|
int rc;
|
|
|
|
if (rx_queue_id < qdev->num_rx_queues) {
|
|
rxq = qdev->fp_array[rx_queue_id].rxq;
|
|
hwfn_index = rx_queue_id % edev->num_hwfns;
|
|
p_hwfn = &edev->hwfns[hwfn_index];
|
|
rc = ecore_eth_rx_queue_stop(p_hwfn, rxq->handle,
|
|
true, false);
|
|
if (rc != ECORE_SUCCESS) {
|
|
DP_ERR(edev, "RX queue %u stop fails\n", rx_queue_id);
|
|
return -1;
|
|
}
|
|
qede_rx_queue_release_mbufs(rxq);
|
|
qede_rx_queue_reset(qdev, rxq);
|
|
eth_dev->data->rx_queue_state[rx_queue_id] =
|
|
RTE_ETH_QUEUE_STATE_STOPPED;
|
|
DP_INFO(edev, "RX queue %u stopped\n", rx_queue_id);
|
|
} else {
|
|
DP_ERR(edev, "RX queue %u is not in range\n", rx_queue_id);
|
|
rc = -EINVAL;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static struct qede_tx_queue *
|
|
qede_alloc_tx_queue_mem(struct rte_eth_dev *dev,
|
|
uint16_t queue_idx,
|
|
uint16_t nb_desc,
|
|
unsigned int socket_id,
|
|
const struct rte_eth_txconf *tx_conf)
|
|
{
|
|
struct qede_dev *qdev = dev->data->dev_private;
|
|
struct ecore_dev *edev = &qdev->edev;
|
|
struct qede_tx_queue *txq;
|
|
int rc;
|
|
|
|
txq = rte_zmalloc_socket("qede_tx_queue", sizeof(struct qede_tx_queue),
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
|
|
if (txq == NULL) {
|
|
DP_ERR(edev,
|
|
"Unable to allocate memory for txq on socket %u",
|
|
socket_id);
|
|
return NULL;
|
|
}
|
|
|
|
txq->nb_tx_desc = nb_desc;
|
|
txq->qdev = qdev;
|
|
txq->port_id = dev->data->port_id;
|
|
|
|
rc = qdev->ops->common->chain_alloc(edev,
|
|
ECORE_CHAIN_USE_TO_CONSUME_PRODUCE,
|
|
ECORE_CHAIN_MODE_PBL,
|
|
ECORE_CHAIN_CNT_TYPE_U16,
|
|
txq->nb_tx_desc,
|
|
sizeof(union eth_tx_bd_types),
|
|
&txq->tx_pbl,
|
|
NULL);
|
|
if (rc != ECORE_SUCCESS) {
|
|
DP_ERR(edev,
|
|
"Unable to allocate memory for txbd ring on socket %u",
|
|
socket_id);
|
|
qede_tx_queue_release(txq);
|
|
return NULL;
|
|
}
|
|
|
|
/* Allocate software ring */
|
|
txq->sw_tx_ring = rte_zmalloc_socket("txq->sw_tx_ring",
|
|
(sizeof(struct qede_tx_entry) *
|
|
txq->nb_tx_desc),
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
|
|
if (!txq->sw_tx_ring) {
|
|
DP_ERR(edev,
|
|
"Unable to allocate memory for txbd ring on socket %u",
|
|
socket_id);
|
|
qdev->ops->common->chain_free(edev, &txq->tx_pbl);
|
|
qede_tx_queue_release(txq);
|
|
return NULL;
|
|
}
|
|
|
|
txq->queue_id = queue_idx;
|
|
|
|
txq->nb_tx_avail = txq->nb_tx_desc;
|
|
|
|
txq->tx_free_thresh =
|
|
tx_conf->tx_free_thresh ? tx_conf->tx_free_thresh :
|
|
(txq->nb_tx_desc - QEDE_DEFAULT_TX_FREE_THRESH);
|
|
|
|
DP_INFO(edev,
|
|
"txq %u num_desc %u tx_free_thresh %u socket %u\n",
|
|
queue_idx, nb_desc, txq->tx_free_thresh, socket_id);
|
|
return txq;
|
|
}
|
|
|
|
int
|
|
qede_tx_queue_setup(struct rte_eth_dev *dev,
|
|
uint16_t queue_idx,
|
|
uint16_t nb_desc,
|
|
unsigned int socket_id,
|
|
const struct rte_eth_txconf *tx_conf)
|
|
{
|
|
struct qede_dev *qdev = dev->data->dev_private;
|
|
struct ecore_dev *edev = &qdev->edev;
|
|
struct qede_tx_queue *txq;
|
|
|
|
PMD_INIT_FUNC_TRACE(edev);
|
|
|
|
if (!rte_is_power_of_2(nb_desc)) {
|
|
DP_ERR(edev, "Ring size %u is not power of 2\n",
|
|
nb_desc);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Free memory prior to re-allocation if needed... */
|
|
if (dev->data->tx_queues[queue_idx] != NULL) {
|
|
qede_tx_queue_release(dev->data->tx_queues[queue_idx]);
|
|
dev->data->tx_queues[queue_idx] = NULL;
|
|
}
|
|
|
|
if (ECORE_IS_CMT(edev)) {
|
|
txq = qede_alloc_tx_queue_mem(dev, queue_idx * 2, nb_desc,
|
|
socket_id, tx_conf);
|
|
if (!txq)
|
|
return -ENOMEM;
|
|
|
|
qdev->fp_array[queue_idx * 2].txq = txq;
|
|
txq = qede_alloc_tx_queue_mem(dev, (queue_idx * 2) + 1, nb_desc,
|
|
socket_id, tx_conf);
|
|
if (!txq)
|
|
return -ENOMEM;
|
|
|
|
qdev->fp_array[(queue_idx * 2) + 1].txq = txq;
|
|
dev->data->tx_queues[queue_idx] =
|
|
&qdev->fp_array_cmt[queue_idx];
|
|
} else {
|
|
txq = qede_alloc_tx_queue_mem(dev, queue_idx, nb_desc,
|
|
socket_id, tx_conf);
|
|
if (!txq)
|
|
return -ENOMEM;
|
|
|
|
dev->data->tx_queues[queue_idx] = txq;
|
|
qdev->fp_array[queue_idx].txq = txq;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
qede_tx_queue_reset(__rte_unused struct qede_dev *qdev,
|
|
struct qede_tx_queue *txq)
|
|
{
|
|
DP_INFO(&qdev->edev, "Reset TX queue %u\n", txq->queue_id);
|
|
ecore_chain_reset(&txq->tx_pbl);
|
|
txq->sw_tx_cons = 0;
|
|
txq->sw_tx_prod = 0;
|
|
*txq->hw_cons_ptr = 0;
|
|
}
|
|
|
|
static void qede_tx_queue_release_mbufs(struct qede_tx_queue *txq)
|
|
{
|
|
uint16_t i;
|
|
|
|
if (txq->sw_tx_ring) {
|
|
for (i = 0; i < txq->nb_tx_desc; i++) {
|
|
if (txq->sw_tx_ring[i].mbuf) {
|
|
rte_pktmbuf_free(txq->sw_tx_ring[i].mbuf);
|
|
txq->sw_tx_ring[i].mbuf = NULL;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void _qede_tx_queue_release(struct qede_dev *qdev,
|
|
struct ecore_dev *edev,
|
|
struct qede_tx_queue *txq)
|
|
{
|
|
qede_tx_queue_release_mbufs(txq);
|
|
qdev->ops->common->chain_free(edev, &txq->tx_pbl);
|
|
rte_free(txq->sw_tx_ring);
|
|
rte_free(txq);
|
|
}
|
|
|
|
void qede_tx_queue_release(void *tx_queue)
|
|
{
|
|
struct qede_tx_queue *txq = tx_queue;
|
|
struct qede_fastpath_cmt *fp_cmt;
|
|
struct qede_dev *qdev;
|
|
struct ecore_dev *edev;
|
|
|
|
if (txq) {
|
|
qdev = txq->qdev;
|
|
edev = QEDE_INIT_EDEV(qdev);
|
|
PMD_INIT_FUNC_TRACE(edev);
|
|
|
|
if (ECORE_IS_CMT(edev)) {
|
|
fp_cmt = tx_queue;
|
|
_qede_tx_queue_release(qdev, edev, fp_cmt->fp0->txq);
|
|
_qede_tx_queue_release(qdev, edev, fp_cmt->fp1->txq);
|
|
} else {
|
|
_qede_tx_queue_release(qdev, edev, txq);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* This function allocates fast-path status block memory */
|
|
static int
|
|
qede_alloc_mem_sb(struct qede_dev *qdev, struct ecore_sb_info *sb_info,
|
|
uint16_t sb_id)
|
|
{
|
|
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
|
|
struct status_block *sb_virt;
|
|
dma_addr_t sb_phys;
|
|
int rc;
|
|
|
|
sb_virt = OSAL_DMA_ALLOC_COHERENT(edev, &sb_phys,
|
|
sizeof(struct status_block));
|
|
if (!sb_virt) {
|
|
DP_ERR(edev, "Status block allocation failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
rc = qdev->ops->common->sb_init(edev, sb_info, sb_virt,
|
|
sb_phys, sb_id);
|
|
if (rc) {
|
|
DP_ERR(edev, "Status block initialization failed\n");
|
|
OSAL_DMA_FREE_COHERENT(edev, sb_virt, sb_phys,
|
|
sizeof(struct status_block));
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int qede_alloc_fp_resc(struct qede_dev *qdev)
|
|
{
|
|
struct ecore_dev *edev = &qdev->edev;
|
|
struct qede_fastpath *fp;
|
|
uint32_t num_sbs;
|
|
uint16_t sb_idx;
|
|
int i;
|
|
|
|
if (IS_VF(edev))
|
|
ecore_vf_get_num_sbs(ECORE_LEADING_HWFN(edev), &num_sbs);
|
|
else
|
|
num_sbs = ecore_cxt_get_proto_cid_count
|
|
(ECORE_LEADING_HWFN(edev), PROTOCOLID_ETH, NULL);
|
|
|
|
if (num_sbs == 0) {
|
|
DP_ERR(edev, "No status blocks available\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
qdev->fp_array = rte_calloc("fp", QEDE_RXTX_MAX(qdev),
|
|
sizeof(*qdev->fp_array), RTE_CACHE_LINE_SIZE);
|
|
|
|
if (!qdev->fp_array) {
|
|
DP_ERR(edev, "fp array allocation failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
memset((void *)qdev->fp_array, 0, QEDE_RXTX_MAX(qdev) *
|
|
sizeof(*qdev->fp_array));
|
|
|
|
if (ECORE_IS_CMT(edev)) {
|
|
qdev->fp_array_cmt = rte_calloc("fp_cmt",
|
|
QEDE_RXTX_MAX(qdev) / 2,
|
|
sizeof(*qdev->fp_array_cmt),
|
|
RTE_CACHE_LINE_SIZE);
|
|
|
|
if (!qdev->fp_array_cmt) {
|
|
DP_ERR(edev, "fp array for CMT allocation failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
memset((void *)qdev->fp_array_cmt, 0,
|
|
(QEDE_RXTX_MAX(qdev) / 2) * sizeof(*qdev->fp_array_cmt));
|
|
|
|
/* Establish the mapping of fp_array with fp_array_cmt */
|
|
for (i = 0; i < QEDE_RXTX_MAX(qdev) / 2; i++) {
|
|
qdev->fp_array_cmt[i].qdev = qdev;
|
|
qdev->fp_array_cmt[i].fp0 = &qdev->fp_array[i * 2];
|
|
qdev->fp_array_cmt[i].fp1 = &qdev->fp_array[i * 2 + 1];
|
|
}
|
|
}
|
|
|
|
for (sb_idx = 0; sb_idx < QEDE_RXTX_MAX(qdev); sb_idx++) {
|
|
fp = &qdev->fp_array[sb_idx];
|
|
if (!fp)
|
|
continue;
|
|
fp->sb_info = rte_calloc("sb", 1, sizeof(struct ecore_sb_info),
|
|
RTE_CACHE_LINE_SIZE);
|
|
if (!fp->sb_info) {
|
|
DP_ERR(edev, "FP sb_info allocation fails\n");
|
|
return -1;
|
|
}
|
|
if (qede_alloc_mem_sb(qdev, fp->sb_info, sb_idx)) {
|
|
DP_ERR(edev, "FP status block allocation fails\n");
|
|
return -1;
|
|
}
|
|
DP_INFO(edev, "sb_info idx 0x%x initialized\n",
|
|
fp->sb_info->igu_sb_id);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void qede_dealloc_fp_resc(struct rte_eth_dev *eth_dev)
|
|
{
|
|
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
|
|
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
|
|
struct qede_fastpath *fp;
|
|
uint16_t sb_idx;
|
|
uint8_t i;
|
|
|
|
PMD_INIT_FUNC_TRACE(edev);
|
|
|
|
for (sb_idx = 0; sb_idx < QEDE_RXTX_MAX(qdev); sb_idx++) {
|
|
fp = &qdev->fp_array[sb_idx];
|
|
if (!fp)
|
|
continue;
|
|
DP_INFO(edev, "Free sb_info index 0x%x\n",
|
|
fp->sb_info->igu_sb_id);
|
|
if (fp->sb_info) {
|
|
OSAL_DMA_FREE_COHERENT(edev, fp->sb_info->sb_virt,
|
|
fp->sb_info->sb_phys,
|
|
sizeof(struct status_block));
|
|
rte_free(fp->sb_info);
|
|
fp->sb_info = NULL;
|
|
}
|
|
}
|
|
|
|
/* Free packet buffers and ring memories */
|
|
for (i = 0; i < eth_dev->data->nb_rx_queues; i++) {
|
|
if (eth_dev->data->rx_queues[i]) {
|
|
qede_rx_queue_release(eth_dev->data->rx_queues[i]);
|
|
eth_dev->data->rx_queues[i] = NULL;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < eth_dev->data->nb_tx_queues; i++) {
|
|
if (eth_dev->data->tx_queues[i]) {
|
|
qede_tx_queue_release(eth_dev->data->tx_queues[i]);
|
|
eth_dev->data->tx_queues[i] = NULL;
|
|
}
|
|
}
|
|
|
|
if (qdev->fp_array)
|
|
rte_free(qdev->fp_array);
|
|
qdev->fp_array = NULL;
|
|
|
|
if (qdev->fp_array_cmt)
|
|
rte_free(qdev->fp_array_cmt);
|
|
qdev->fp_array_cmt = NULL;
|
|
}
|
|
|
|
static inline void
|
|
qede_update_rx_prod(__rte_unused struct qede_dev *edev,
|
|
struct qede_rx_queue *rxq)
|
|
{
|
|
uint16_t bd_prod = ecore_chain_get_prod_idx(&rxq->rx_bd_ring);
|
|
uint16_t cqe_prod = ecore_chain_get_prod_idx(&rxq->rx_comp_ring);
|
|
struct eth_rx_prod_data rx_prods = { 0 };
|
|
|
|
/* Update producers */
|
|
rx_prods.bd_prod = rte_cpu_to_le_16(bd_prod);
|
|
rx_prods.cqe_prod = rte_cpu_to_le_16(cqe_prod);
|
|
|
|
/* Make sure that the BD and SGE data is updated before updating the
|
|
* producers since FW might read the BD/SGE right after the producer
|
|
* is updated.
|
|
*/
|
|
rte_wmb();
|
|
|
|
internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
|
|
(uint32_t *)&rx_prods);
|
|
|
|
/* mmiowb is needed to synchronize doorbell writes from more than one
|
|
* processor. It guarantees that the write arrives to the device before
|
|
* the napi lock is released and another qede_poll is called (possibly
|
|
* on another CPU). Without this barrier, the next doorbell can bypass
|
|
* this doorbell. This is applicable to IA64/Altix systems.
|
|
*/
|
|
rte_wmb();
|
|
|
|
PMD_RX_LOG(DEBUG, rxq, "bd_prod %u cqe_prod %u", bd_prod, cqe_prod);
|
|
}
|
|
|
|
/* Starts a given RX queue in HW */
|
|
static int
|
|
qede_rx_queue_start(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id)
|
|
{
|
|
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
|
|
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
|
|
struct ecore_queue_start_common_params params;
|
|
struct ecore_rxq_start_ret_params ret_params;
|
|
struct qede_rx_queue *rxq;
|
|
struct qede_fastpath *fp;
|
|
struct ecore_hwfn *p_hwfn;
|
|
dma_addr_t p_phys_table;
|
|
uint16_t page_cnt;
|
|
uint16_t j;
|
|
int hwfn_index;
|
|
int rc;
|
|
|
|
if (rx_queue_id < qdev->num_rx_queues) {
|
|
fp = &qdev->fp_array[rx_queue_id];
|
|
rxq = fp->rxq;
|
|
/* Allocate buffers for the Rx ring */
|
|
for (j = 0; j < rxq->nb_rx_desc; j++) {
|
|
rc = qede_alloc_rx_buffer(rxq);
|
|
if (rc) {
|
|
DP_ERR(edev, "RX buffer allocation failed"
|
|
" for rxq = %u\n", rx_queue_id);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
/* disable interrupts */
|
|
ecore_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0);
|
|
/* Prepare ramrod */
|
|
memset(¶ms, 0, sizeof(params));
|
|
params.queue_id = rx_queue_id / edev->num_hwfns;
|
|
params.vport_id = 0;
|
|
params.stats_id = params.vport_id;
|
|
params.p_sb = fp->sb_info;
|
|
DP_INFO(edev, "rxq %u igu_sb_id 0x%x\n",
|
|
fp->rxq->queue_id, fp->sb_info->igu_sb_id);
|
|
params.sb_idx = RX_PI;
|
|
hwfn_index = rx_queue_id % edev->num_hwfns;
|
|
p_hwfn = &edev->hwfns[hwfn_index];
|
|
p_phys_table = ecore_chain_get_pbl_phys(&fp->rxq->rx_comp_ring);
|
|
page_cnt = ecore_chain_get_page_cnt(&fp->rxq->rx_comp_ring);
|
|
memset(&ret_params, 0, sizeof(ret_params));
|
|
rc = ecore_eth_rx_queue_start(p_hwfn,
|
|
p_hwfn->hw_info.opaque_fid,
|
|
¶ms, fp->rxq->rx_buf_size,
|
|
fp->rxq->rx_bd_ring.p_phys_addr,
|
|
p_phys_table, page_cnt,
|
|
&ret_params);
|
|
if (rc) {
|
|
DP_ERR(edev, "RX queue %u could not be started, rc = %d\n",
|
|
rx_queue_id, rc);
|
|
return -1;
|
|
}
|
|
/* Update with the returned parameters */
|
|
fp->rxq->hw_rxq_prod_addr = ret_params.p_prod;
|
|
fp->rxq->handle = ret_params.p_handle;
|
|
|
|
fp->rxq->hw_cons_ptr = &fp->sb_info->sb_pi_array[RX_PI];
|
|
qede_update_rx_prod(qdev, fp->rxq);
|
|
eth_dev->data->rx_queue_state[rx_queue_id] =
|
|
RTE_ETH_QUEUE_STATE_STARTED;
|
|
DP_INFO(edev, "RX queue %u started\n", rx_queue_id);
|
|
} else {
|
|
DP_ERR(edev, "RX queue %u is not in range\n", rx_queue_id);
|
|
rc = -EINVAL;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
qede_tx_queue_start(struct rte_eth_dev *eth_dev, uint16_t tx_queue_id)
|
|
{
|
|
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
|
|
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
|
|
struct ecore_queue_start_common_params params;
|
|
struct ecore_txq_start_ret_params ret_params;
|
|
struct ecore_hwfn *p_hwfn;
|
|
dma_addr_t p_phys_table;
|
|
struct qede_tx_queue *txq;
|
|
struct qede_fastpath *fp;
|
|
uint16_t page_cnt;
|
|
int hwfn_index;
|
|
int rc;
|
|
|
|
if (tx_queue_id < qdev->num_tx_queues) {
|
|
fp = &qdev->fp_array[tx_queue_id];
|
|
txq = fp->txq;
|
|
memset(¶ms, 0, sizeof(params));
|
|
params.queue_id = tx_queue_id / edev->num_hwfns;
|
|
params.vport_id = 0;
|
|
params.stats_id = params.vport_id;
|
|
params.p_sb = fp->sb_info;
|
|
DP_INFO(edev, "txq %u igu_sb_id 0x%x\n",
|
|
fp->txq->queue_id, fp->sb_info->igu_sb_id);
|
|
params.sb_idx = TX_PI(0); /* tc = 0 */
|
|
p_phys_table = ecore_chain_get_pbl_phys(&txq->tx_pbl);
|
|
page_cnt = ecore_chain_get_page_cnt(&txq->tx_pbl);
|
|
hwfn_index = tx_queue_id % edev->num_hwfns;
|
|
p_hwfn = &edev->hwfns[hwfn_index];
|
|
if (qdev->dev_info.is_legacy)
|
|
fp->txq->is_legacy = true;
|
|
rc = ecore_eth_tx_queue_start(p_hwfn,
|
|
p_hwfn->hw_info.opaque_fid,
|
|
¶ms, 0 /* tc */,
|
|
p_phys_table, page_cnt,
|
|
&ret_params);
|
|
if (rc != ECORE_SUCCESS) {
|
|
DP_ERR(edev, "TX queue %u couldn't be started, rc=%d\n",
|
|
tx_queue_id, rc);
|
|
return -1;
|
|
}
|
|
txq->doorbell_addr = ret_params.p_doorbell;
|
|
txq->handle = ret_params.p_handle;
|
|
|
|
txq->hw_cons_ptr = &fp->sb_info->sb_pi_array[TX_PI(0)];
|
|
SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST,
|
|
DB_DEST_XCM);
|
|
SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
|
|
DB_AGG_CMD_SET);
|
|
SET_FIELD(txq->tx_db.data.params,
|
|
ETH_DB_DATA_AGG_VAL_SEL,
|
|
DQ_XCM_ETH_TX_BD_PROD_CMD);
|
|
txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
|
|
eth_dev->data->tx_queue_state[tx_queue_id] =
|
|
RTE_ETH_QUEUE_STATE_STARTED;
|
|
DP_INFO(edev, "TX queue %u started\n", tx_queue_id);
|
|
} else {
|
|
DP_ERR(edev, "TX queue %u is not in range\n", tx_queue_id);
|
|
rc = -EINVAL;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static inline void
|
|
qede_free_tx_pkt(struct qede_tx_queue *txq)
|
|
{
|
|
struct rte_mbuf *mbuf;
|
|
uint16_t nb_segs;
|
|
uint16_t idx;
|
|
|
|
idx = TX_CONS(txq);
|
|
mbuf = txq->sw_tx_ring[idx].mbuf;
|
|
if (mbuf) {
|
|
nb_segs = mbuf->nb_segs;
|
|
PMD_TX_LOG(DEBUG, txq, "nb_segs to free %u\n", nb_segs);
|
|
while (nb_segs) {
|
|
/* It's like consuming rxbuf in recv() */
|
|
ecore_chain_consume(&txq->tx_pbl);
|
|
txq->nb_tx_avail++;
|
|
nb_segs--;
|
|
}
|
|
rte_pktmbuf_free(mbuf);
|
|
txq->sw_tx_ring[idx].mbuf = NULL;
|
|
txq->sw_tx_cons++;
|
|
PMD_TX_LOG(DEBUG, txq, "Freed tx packet\n");
|
|
} else {
|
|
ecore_chain_consume(&txq->tx_pbl);
|
|
txq->nb_tx_avail++;
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
qede_process_tx_compl(__rte_unused struct ecore_dev *edev,
|
|
struct qede_tx_queue *txq)
|
|
{
|
|
uint16_t hw_bd_cons;
|
|
#ifdef RTE_LIBRTE_QEDE_DEBUG_TX
|
|
uint16_t sw_tx_cons;
|
|
#endif
|
|
|
|
rte_compiler_barrier();
|
|
hw_bd_cons = rte_le_to_cpu_16(*txq->hw_cons_ptr);
|
|
#ifdef RTE_LIBRTE_QEDE_DEBUG_TX
|
|
sw_tx_cons = ecore_chain_get_cons_idx(&txq->tx_pbl);
|
|
PMD_TX_LOG(DEBUG, txq, "Tx Completions = %u\n",
|
|
abs(hw_bd_cons - sw_tx_cons));
|
|
#endif
|
|
while (hw_bd_cons != ecore_chain_get_cons_idx(&txq->tx_pbl))
|
|
qede_free_tx_pkt(txq);
|
|
}
|
|
|
|
static int qede_drain_txq(struct qede_dev *qdev,
|
|
struct qede_tx_queue *txq, bool allow_drain)
|
|
{
|
|
struct ecore_dev *edev = &qdev->edev;
|
|
int rc, cnt = 1000;
|
|
|
|
while (txq->sw_tx_cons != txq->sw_tx_prod) {
|
|
qede_process_tx_compl(edev, txq);
|
|
if (!cnt) {
|
|
if (allow_drain) {
|
|
DP_ERR(edev, "Tx queue[%u] is stuck,"
|
|
"requesting MCP to drain\n",
|
|
txq->queue_id);
|
|
rc = qdev->ops->common->drain(edev);
|
|
if (rc)
|
|
return rc;
|
|
return qede_drain_txq(qdev, txq, false);
|
|
}
|
|
DP_ERR(edev, "Timeout waiting for tx queue[%d]:"
|
|
"PROD=%d, CONS=%d\n",
|
|
txq->queue_id, txq->sw_tx_prod,
|
|
txq->sw_tx_cons);
|
|
return -1;
|
|
}
|
|
cnt--;
|
|
DELAY(1000);
|
|
rte_compiler_barrier();
|
|
}
|
|
|
|
/* FW finished processing, wait for HW to transmit all tx packets */
|
|
DELAY(2000);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Stops a given TX queue in the HW */
|
|
static int qede_tx_queue_stop(struct rte_eth_dev *eth_dev, uint16_t tx_queue_id)
|
|
{
|
|
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
|
|
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
|
|
struct ecore_hwfn *p_hwfn;
|
|
struct qede_tx_queue *txq;
|
|
int hwfn_index;
|
|
int rc;
|
|
|
|
if (tx_queue_id < qdev->num_tx_queues) {
|
|
txq = qdev->fp_array[tx_queue_id].txq;
|
|
/* Drain txq */
|
|
if (qede_drain_txq(qdev, txq, true))
|
|
return -1; /* For the lack of retcodes */
|
|
/* Stop txq */
|
|
hwfn_index = tx_queue_id % edev->num_hwfns;
|
|
p_hwfn = &edev->hwfns[hwfn_index];
|
|
rc = ecore_eth_tx_queue_stop(p_hwfn, txq->handle);
|
|
if (rc != ECORE_SUCCESS) {
|
|
DP_ERR(edev, "TX queue %u stop fails\n", tx_queue_id);
|
|
return -1;
|
|
}
|
|
qede_tx_queue_release_mbufs(txq);
|
|
qede_tx_queue_reset(qdev, txq);
|
|
eth_dev->data->tx_queue_state[tx_queue_id] =
|
|
RTE_ETH_QUEUE_STATE_STOPPED;
|
|
DP_INFO(edev, "TX queue %u stopped\n", tx_queue_id);
|
|
} else {
|
|
DP_ERR(edev, "TX queue %u is not in range\n", tx_queue_id);
|
|
rc = -EINVAL;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
int qede_start_queues(struct rte_eth_dev *eth_dev)
|
|
{
|
|
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
|
|
uint8_t id;
|
|
int rc = -1;
|
|
|
|
for (id = 0; id < qdev->num_rx_queues; id++) {
|
|
rc = qede_rx_queue_start(eth_dev, id);
|
|
if (rc != ECORE_SUCCESS)
|
|
return -1;
|
|
}
|
|
|
|
for (id = 0; id < qdev->num_tx_queues; id++) {
|
|
rc = qede_tx_queue_start(eth_dev, id);
|
|
if (rc != ECORE_SUCCESS)
|
|
return -1;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
void qede_stop_queues(struct rte_eth_dev *eth_dev)
|
|
{
|
|
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
|
|
uint8_t id;
|
|
|
|
/* Stopping RX/TX queues */
|
|
for (id = 0; id < qdev->num_tx_queues; id++)
|
|
qede_tx_queue_stop(eth_dev, id);
|
|
|
|
for (id = 0; id < qdev->num_rx_queues; id++)
|
|
qede_rx_queue_stop(eth_dev, id);
|
|
}
|
|
|
|
static inline bool qede_tunn_exist(uint16_t flag)
|
|
{
|
|
return !!((PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
|
|
PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT) & flag);
|
|
}
|
|
|
|
static inline uint8_t qede_check_tunn_csum_l3(uint16_t flag)
|
|
{
|
|
return !!((PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
|
|
PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT) & flag);
|
|
}
|
|
|
|
/*
|
|
* qede_check_tunn_csum_l4:
|
|
* Returns:
|
|
* 1 : If L4 csum is enabled AND if the validation has failed.
|
|
* 0 : Otherwise
|
|
*/
|
|
static inline uint8_t qede_check_tunn_csum_l4(uint16_t flag)
|
|
{
|
|
if ((PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
|
|
PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT) & flag)
|
|
return !!((PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
|
|
PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT) & flag);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline uint8_t qede_check_notunn_csum_l4(uint16_t flag)
|
|
{
|
|
if ((PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
|
|
PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT) & flag)
|
|
return !!((PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
|
|
PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT) & flag);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Returns outer L2, L3 and L4 packet_type for tunneled packets */
|
|
static inline uint32_t qede_rx_cqe_to_pkt_type_outer(struct rte_mbuf *m)
|
|
{
|
|
uint32_t packet_type = RTE_PTYPE_UNKNOWN;
|
|
struct rte_ether_hdr *eth_hdr;
|
|
struct rte_ipv4_hdr *ipv4_hdr;
|
|
struct rte_ipv6_hdr *ipv6_hdr;
|
|
struct rte_vlan_hdr *vlan_hdr;
|
|
uint16_t ethertype;
|
|
bool vlan_tagged = 0;
|
|
uint16_t len;
|
|
|
|
eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
|
|
len = sizeof(struct rte_ether_hdr);
|
|
ethertype = rte_cpu_to_be_16(eth_hdr->ether_type);
|
|
|
|
/* Note: Valid only if VLAN stripping is disabled */
|
|
if (ethertype == RTE_ETHER_TYPE_VLAN) {
|
|
vlan_tagged = 1;
|
|
vlan_hdr = (struct rte_vlan_hdr *)(eth_hdr + 1);
|
|
len += sizeof(struct rte_vlan_hdr);
|
|
ethertype = rte_cpu_to_be_16(vlan_hdr->eth_proto);
|
|
}
|
|
|
|
if (ethertype == RTE_ETHER_TYPE_IPV4) {
|
|
packet_type |= RTE_PTYPE_L3_IPV4;
|
|
ipv4_hdr = rte_pktmbuf_mtod_offset(m,
|
|
struct rte_ipv4_hdr *, len);
|
|
if (ipv4_hdr->next_proto_id == IPPROTO_TCP)
|
|
packet_type |= RTE_PTYPE_L4_TCP;
|
|
else if (ipv4_hdr->next_proto_id == IPPROTO_UDP)
|
|
packet_type |= RTE_PTYPE_L4_UDP;
|
|
} else if (ethertype == RTE_ETHER_TYPE_IPV6) {
|
|
packet_type |= RTE_PTYPE_L3_IPV6;
|
|
ipv6_hdr = rte_pktmbuf_mtod_offset(m,
|
|
struct rte_ipv6_hdr *, len);
|
|
if (ipv6_hdr->proto == IPPROTO_TCP)
|
|
packet_type |= RTE_PTYPE_L4_TCP;
|
|
else if (ipv6_hdr->proto == IPPROTO_UDP)
|
|
packet_type |= RTE_PTYPE_L4_UDP;
|
|
}
|
|
|
|
if (vlan_tagged)
|
|
packet_type |= RTE_PTYPE_L2_ETHER_VLAN;
|
|
else
|
|
packet_type |= RTE_PTYPE_L2_ETHER;
|
|
|
|
return packet_type;
|
|
}
|
|
|
|
static inline uint32_t qede_rx_cqe_to_pkt_type_inner(uint16_t flags)
|
|
{
|
|
uint16_t val;
|
|
|
|
/* Lookup table */
|
|
static const uint32_t
|
|
ptype_lkup_tbl[QEDE_PKT_TYPE_MAX] __rte_cache_aligned = {
|
|
[QEDE_PKT_TYPE_IPV4] = RTE_PTYPE_INNER_L3_IPV4 |
|
|
RTE_PTYPE_INNER_L2_ETHER,
|
|
[QEDE_PKT_TYPE_IPV6] = RTE_PTYPE_INNER_L3_IPV6 |
|
|
RTE_PTYPE_INNER_L2_ETHER,
|
|
[QEDE_PKT_TYPE_IPV4_TCP] = RTE_PTYPE_INNER_L3_IPV4 |
|
|
RTE_PTYPE_INNER_L4_TCP |
|
|
RTE_PTYPE_INNER_L2_ETHER,
|
|
[QEDE_PKT_TYPE_IPV6_TCP] = RTE_PTYPE_INNER_L3_IPV6 |
|
|
RTE_PTYPE_INNER_L4_TCP |
|
|
RTE_PTYPE_INNER_L2_ETHER,
|
|
[QEDE_PKT_TYPE_IPV4_UDP] = RTE_PTYPE_INNER_L3_IPV4 |
|
|
RTE_PTYPE_INNER_L4_UDP |
|
|
RTE_PTYPE_INNER_L2_ETHER,
|
|
[QEDE_PKT_TYPE_IPV6_UDP] = RTE_PTYPE_INNER_L3_IPV6 |
|
|
RTE_PTYPE_INNER_L4_UDP |
|
|
RTE_PTYPE_INNER_L2_ETHER,
|
|
/* Frags with no VLAN */
|
|
[QEDE_PKT_TYPE_IPV4_FRAG] = RTE_PTYPE_INNER_L3_IPV4 |
|
|
RTE_PTYPE_INNER_L4_FRAG |
|
|
RTE_PTYPE_INNER_L2_ETHER,
|
|
[QEDE_PKT_TYPE_IPV6_FRAG] = RTE_PTYPE_INNER_L3_IPV6 |
|
|
RTE_PTYPE_INNER_L4_FRAG |
|
|
RTE_PTYPE_INNER_L2_ETHER,
|
|
/* VLANs */
|
|
[QEDE_PKT_TYPE_IPV4_VLAN] = RTE_PTYPE_INNER_L3_IPV4 |
|
|
RTE_PTYPE_INNER_L2_ETHER_VLAN,
|
|
[QEDE_PKT_TYPE_IPV6_VLAN] = RTE_PTYPE_INNER_L3_IPV6 |
|
|
RTE_PTYPE_INNER_L2_ETHER_VLAN,
|
|
[QEDE_PKT_TYPE_IPV4_TCP_VLAN] = RTE_PTYPE_INNER_L3_IPV4 |
|
|
RTE_PTYPE_INNER_L4_TCP |
|
|
RTE_PTYPE_INNER_L2_ETHER_VLAN,
|
|
[QEDE_PKT_TYPE_IPV6_TCP_VLAN] = RTE_PTYPE_INNER_L3_IPV6 |
|
|
RTE_PTYPE_INNER_L4_TCP |
|
|
RTE_PTYPE_INNER_L2_ETHER_VLAN,
|
|
[QEDE_PKT_TYPE_IPV4_UDP_VLAN] = RTE_PTYPE_INNER_L3_IPV4 |
|
|
RTE_PTYPE_INNER_L4_UDP |
|
|
RTE_PTYPE_INNER_L2_ETHER_VLAN,
|
|
[QEDE_PKT_TYPE_IPV6_UDP_VLAN] = RTE_PTYPE_INNER_L3_IPV6 |
|
|
RTE_PTYPE_INNER_L4_UDP |
|
|
RTE_PTYPE_INNER_L2_ETHER_VLAN,
|
|
/* Frags with VLAN */
|
|
[QEDE_PKT_TYPE_IPV4_VLAN_FRAG] = RTE_PTYPE_INNER_L3_IPV4 |
|
|
RTE_PTYPE_INNER_L4_FRAG |
|
|
RTE_PTYPE_INNER_L2_ETHER_VLAN,
|
|
[QEDE_PKT_TYPE_IPV6_VLAN_FRAG] = RTE_PTYPE_INNER_L3_IPV6 |
|
|
RTE_PTYPE_INNER_L4_FRAG |
|
|
RTE_PTYPE_INNER_L2_ETHER_VLAN,
|
|
};
|
|
|
|
/* Bits (0..3) provides L3/L4 protocol type */
|
|
/* Bits (4,5) provides frag and VLAN info */
|
|
val = ((PARSING_AND_ERR_FLAGS_L3TYPE_MASK <<
|
|
PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) |
|
|
(PARSING_AND_ERR_FLAGS_L4PROTOCOL_MASK <<
|
|
PARSING_AND_ERR_FLAGS_L4PROTOCOL_SHIFT) |
|
|
(PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
|
|
PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT) |
|
|
(PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK <<
|
|
PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT)) & flags;
|
|
|
|
if (val < QEDE_PKT_TYPE_MAX)
|
|
return ptype_lkup_tbl[val];
|
|
|
|
return RTE_PTYPE_UNKNOWN;
|
|
}
|
|
|
|
static inline uint32_t qede_rx_cqe_to_pkt_type(uint16_t flags)
|
|
{
|
|
uint16_t val;
|
|
|
|
/* Lookup table */
|
|
static const uint32_t
|
|
ptype_lkup_tbl[QEDE_PKT_TYPE_MAX] __rte_cache_aligned = {
|
|
[QEDE_PKT_TYPE_IPV4] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L2_ETHER,
|
|
[QEDE_PKT_TYPE_IPV6] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L2_ETHER,
|
|
[QEDE_PKT_TYPE_IPV4_TCP] = RTE_PTYPE_L3_IPV4 |
|
|
RTE_PTYPE_L4_TCP |
|
|
RTE_PTYPE_L2_ETHER,
|
|
[QEDE_PKT_TYPE_IPV6_TCP] = RTE_PTYPE_L3_IPV6 |
|
|
RTE_PTYPE_L4_TCP |
|
|
RTE_PTYPE_L2_ETHER,
|
|
[QEDE_PKT_TYPE_IPV4_UDP] = RTE_PTYPE_L3_IPV4 |
|
|
RTE_PTYPE_L4_UDP |
|
|
RTE_PTYPE_L2_ETHER,
|
|
[QEDE_PKT_TYPE_IPV6_UDP] = RTE_PTYPE_L3_IPV6 |
|
|
RTE_PTYPE_L4_UDP |
|
|
RTE_PTYPE_L2_ETHER,
|
|
/* Frags with no VLAN */
|
|
[QEDE_PKT_TYPE_IPV4_FRAG] = RTE_PTYPE_L3_IPV4 |
|
|
RTE_PTYPE_L4_FRAG |
|
|
RTE_PTYPE_L2_ETHER,
|
|
[QEDE_PKT_TYPE_IPV6_FRAG] = RTE_PTYPE_L3_IPV6 |
|
|
RTE_PTYPE_L4_FRAG |
|
|
RTE_PTYPE_L2_ETHER,
|
|
/* VLANs */
|
|
[QEDE_PKT_TYPE_IPV4_VLAN] = RTE_PTYPE_L3_IPV4 |
|
|
RTE_PTYPE_L2_ETHER_VLAN,
|
|
[QEDE_PKT_TYPE_IPV6_VLAN] = RTE_PTYPE_L3_IPV6 |
|
|
RTE_PTYPE_L2_ETHER_VLAN,
|
|
[QEDE_PKT_TYPE_IPV4_TCP_VLAN] = RTE_PTYPE_L3_IPV4 |
|
|
RTE_PTYPE_L4_TCP |
|
|
RTE_PTYPE_L2_ETHER_VLAN,
|
|
[QEDE_PKT_TYPE_IPV6_TCP_VLAN] = RTE_PTYPE_L3_IPV6 |
|
|
RTE_PTYPE_L4_TCP |
|
|
RTE_PTYPE_L2_ETHER_VLAN,
|
|
[QEDE_PKT_TYPE_IPV4_UDP_VLAN] = RTE_PTYPE_L3_IPV4 |
|
|
RTE_PTYPE_L4_UDP |
|
|
RTE_PTYPE_L2_ETHER_VLAN,
|
|
[QEDE_PKT_TYPE_IPV6_UDP_VLAN] = RTE_PTYPE_L3_IPV6 |
|
|
RTE_PTYPE_L4_UDP |
|
|
RTE_PTYPE_L2_ETHER_VLAN,
|
|
/* Frags with VLAN */
|
|
[QEDE_PKT_TYPE_IPV4_VLAN_FRAG] = RTE_PTYPE_L3_IPV4 |
|
|
RTE_PTYPE_L4_FRAG |
|
|
RTE_PTYPE_L2_ETHER_VLAN,
|
|
[QEDE_PKT_TYPE_IPV6_VLAN_FRAG] = RTE_PTYPE_L3_IPV6 |
|
|
RTE_PTYPE_L4_FRAG |
|
|
RTE_PTYPE_L2_ETHER_VLAN,
|
|
};
|
|
|
|
/* Bits (0..3) provides L3/L4 protocol type */
|
|
/* Bits (4,5) provides frag and VLAN info */
|
|
val = ((PARSING_AND_ERR_FLAGS_L3TYPE_MASK <<
|
|
PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) |
|
|
(PARSING_AND_ERR_FLAGS_L4PROTOCOL_MASK <<
|
|
PARSING_AND_ERR_FLAGS_L4PROTOCOL_SHIFT) |
|
|
(PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
|
|
PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT) |
|
|
(PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK <<
|
|
PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT)) & flags;
|
|
|
|
if (val < QEDE_PKT_TYPE_MAX)
|
|
return ptype_lkup_tbl[val];
|
|
|
|
return RTE_PTYPE_UNKNOWN;
|
|
}
|
|
|
|
static inline uint8_t
|
|
qede_check_notunn_csum_l3(struct rte_mbuf *m, uint16_t flag)
|
|
{
|
|
struct rte_ipv4_hdr *ip;
|
|
uint16_t pkt_csum;
|
|
uint16_t calc_csum;
|
|
uint16_t val;
|
|
|
|
val = ((PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
|
|
PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT) & flag);
|
|
|
|
if (unlikely(val)) {
|
|
m->packet_type = qede_rx_cqe_to_pkt_type(flag);
|
|
if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) {
|
|
ip = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
|
|
sizeof(struct rte_ether_hdr));
|
|
pkt_csum = ip->hdr_checksum;
|
|
ip->hdr_checksum = 0;
|
|
calc_csum = rte_ipv4_cksum(ip);
|
|
ip->hdr_checksum = pkt_csum;
|
|
return (calc_csum != pkt_csum);
|
|
} else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
|
|
{
|
|
ecore_chain_consume(&rxq->rx_bd_ring);
|
|
rxq->sw_rx_cons++;
|
|
}
|
|
|
|
static inline void
|
|
qede_reuse_page(__rte_unused struct qede_dev *qdev,
|
|
struct qede_rx_queue *rxq, struct qede_rx_entry *curr_cons)
|
|
{
|
|
struct eth_rx_bd *rx_bd_prod = ecore_chain_produce(&rxq->rx_bd_ring);
|
|
uint16_t idx = rxq->sw_rx_prod & NUM_RX_BDS(rxq);
|
|
struct qede_rx_entry *curr_prod;
|
|
dma_addr_t new_mapping;
|
|
|
|
curr_prod = &rxq->sw_rx_ring[idx];
|
|
*curr_prod = *curr_cons;
|
|
|
|
new_mapping = rte_mbuf_data_iova_default(curr_prod->mbuf) +
|
|
curr_prod->page_offset;
|
|
|
|
rx_bd_prod->addr.hi = rte_cpu_to_le_32(U64_HI(new_mapping));
|
|
rx_bd_prod->addr.lo = rte_cpu_to_le_32(U64_LO(new_mapping));
|
|
|
|
rxq->sw_rx_prod++;
|
|
}
|
|
|
|
static inline void
|
|
qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq,
|
|
struct qede_dev *qdev, uint8_t count)
|
|
{
|
|
struct qede_rx_entry *curr_cons;
|
|
|
|
for (; count > 0; count--) {
|
|
curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS(rxq)];
|
|
qede_reuse_page(qdev, rxq, curr_cons);
|
|
qede_rx_bd_ring_consume(rxq);
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
qede_rx_process_tpa_cmn_cont_end_cqe(__rte_unused struct qede_dev *qdev,
|
|
struct qede_rx_queue *rxq,
|
|
uint8_t agg_index, uint16_t len)
|
|
{
|
|
struct qede_agg_info *tpa_info;
|
|
struct rte_mbuf *curr_frag; /* Pointer to currently filled TPA seg */
|
|
uint16_t cons_idx;
|
|
|
|
/* Under certain conditions it is possible that FW may not consume
|
|
* additional or new BD. So decision to consume the BD must be made
|
|
* based on len_list[0].
|
|
*/
|
|
if (rte_le_to_cpu_16(len)) {
|
|
tpa_info = &rxq->tpa_info[agg_index];
|
|
cons_idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
|
|
curr_frag = rxq->sw_rx_ring[cons_idx].mbuf;
|
|
assert(curr_frag);
|
|
curr_frag->nb_segs = 1;
|
|
curr_frag->pkt_len = rte_le_to_cpu_16(len);
|
|
curr_frag->data_len = curr_frag->pkt_len;
|
|
tpa_info->tpa_tail->next = curr_frag;
|
|
tpa_info->tpa_tail = curr_frag;
|
|
qede_rx_bd_ring_consume(rxq);
|
|
if (unlikely(qede_alloc_rx_buffer(rxq) != 0)) {
|
|
PMD_RX_LOG(ERR, rxq, "mbuf allocation fails\n");
|
|
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
|
|
rxq->rx_alloc_errors++;
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
qede_rx_process_tpa_cont_cqe(struct qede_dev *qdev,
|
|
struct qede_rx_queue *rxq,
|
|
struct eth_fast_path_rx_tpa_cont_cqe *cqe)
|
|
{
|
|
PMD_RX_LOG(INFO, rxq, "TPA cont[%d] - len [%d]\n",
|
|
cqe->tpa_agg_index, rte_le_to_cpu_16(cqe->len_list[0]));
|
|
/* only len_list[0] will have value */
|
|
qede_rx_process_tpa_cmn_cont_end_cqe(qdev, rxq, cqe->tpa_agg_index,
|
|
cqe->len_list[0]);
|
|
}
|
|
|
|
static inline void
|
|
qede_rx_process_tpa_end_cqe(struct qede_dev *qdev,
|
|
struct qede_rx_queue *rxq,
|
|
struct eth_fast_path_rx_tpa_end_cqe *cqe)
|
|
{
|
|
struct rte_mbuf *rx_mb; /* Pointer to head of the chained agg */
|
|
|
|
qede_rx_process_tpa_cmn_cont_end_cqe(qdev, rxq, cqe->tpa_agg_index,
|
|
cqe->len_list[0]);
|
|
/* Update total length and frags based on end TPA */
|
|
rx_mb = rxq->tpa_info[cqe->tpa_agg_index].tpa_head;
|
|
/* TODO: Add Sanity Checks */
|
|
rx_mb->nb_segs = cqe->num_of_bds;
|
|
rx_mb->pkt_len = cqe->total_packet_len;
|
|
|
|
PMD_RX_LOG(INFO, rxq, "TPA End[%d] reason %d cqe_len %d nb_segs %d"
|
|
" pkt_len %d\n", cqe->tpa_agg_index, cqe->end_reason,
|
|
rte_le_to_cpu_16(cqe->len_list[0]), rx_mb->nb_segs,
|
|
rx_mb->pkt_len);
|
|
}
|
|
|
|
static inline uint32_t qede_rx_cqe_to_tunn_pkt_type(uint16_t flags)
|
|
{
|
|
uint32_t val;
|
|
|
|
/* Lookup table */
|
|
static const uint32_t
|
|
ptype_tunn_lkup_tbl[QEDE_PKT_TYPE_TUNN_MAX_TYPE] __rte_cache_aligned = {
|
|
[QEDE_PKT_TYPE_UNKNOWN] = RTE_PTYPE_UNKNOWN,
|
|
[QEDE_PKT_TYPE_TUNN_GENEVE] = RTE_PTYPE_TUNNEL_GENEVE,
|
|
[QEDE_PKT_TYPE_TUNN_GRE] = RTE_PTYPE_TUNNEL_GRE,
|
|
[QEDE_PKT_TYPE_TUNN_VXLAN] = RTE_PTYPE_TUNNEL_VXLAN,
|
|
[QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_GENEVE] =
|
|
RTE_PTYPE_TUNNEL_GENEVE,
|
|
[QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_GRE] =
|
|
RTE_PTYPE_TUNNEL_GRE,
|
|
[QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_VXLAN] =
|
|
RTE_PTYPE_TUNNEL_VXLAN,
|
|
[QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_GENEVE] =
|
|
RTE_PTYPE_TUNNEL_GENEVE,
|
|
[QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_GRE] =
|
|
RTE_PTYPE_TUNNEL_GRE,
|
|
[QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_VXLAN] =
|
|
RTE_PTYPE_TUNNEL_VXLAN,
|
|
[QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_GENEVE] =
|
|
RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV4,
|
|
[QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_GRE] =
|
|
RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV4,
|
|
[QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_VXLAN] =
|
|
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV4,
|
|
[QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_GENEVE] =
|
|
RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV4,
|
|
[QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_GRE] =
|
|
RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV4,
|
|
[QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_VXLAN] =
|
|
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV4,
|
|
[QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_GENEVE] =
|
|
RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV6,
|
|
[QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_GRE] =
|
|
RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV6,
|
|
[QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_VXLAN] =
|
|
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV6,
|
|
[QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_GENEVE] =
|
|
RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV6,
|
|
[QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_GRE] =
|
|
RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV6,
|
|
[QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_VXLAN] =
|
|
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV6,
|
|
};
|
|
|
|
/* Cover bits[4-0] to include tunn_type and next protocol */
|
|
val = ((ETH_TUNNEL_PARSING_FLAGS_TYPE_MASK <<
|
|
ETH_TUNNEL_PARSING_FLAGS_TYPE_SHIFT) |
|
|
(ETH_TUNNEL_PARSING_FLAGS_NEXT_PROTOCOL_MASK <<
|
|
ETH_TUNNEL_PARSING_FLAGS_NEXT_PROTOCOL_SHIFT)) & flags;
|
|
|
|
if (val < QEDE_PKT_TYPE_TUNN_MAX_TYPE)
|
|
return ptype_tunn_lkup_tbl[val];
|
|
else
|
|
return RTE_PTYPE_UNKNOWN;
|
|
}
|
|
|
|
static inline int
|
|
qede_process_sg_pkts(void *p_rxq, struct rte_mbuf *rx_mb,
|
|
uint8_t num_segs, uint16_t pkt_len)
|
|
{
|
|
struct qede_rx_queue *rxq = p_rxq;
|
|
struct qede_dev *qdev = rxq->qdev;
|
|
register struct rte_mbuf *seg1 = NULL;
|
|
register struct rte_mbuf *seg2 = NULL;
|
|
uint16_t sw_rx_index;
|
|
uint16_t cur_size;
|
|
|
|
seg1 = rx_mb;
|
|
while (num_segs) {
|
|
cur_size = pkt_len > rxq->rx_buf_size ? rxq->rx_buf_size :
|
|
pkt_len;
|
|
if (unlikely(!cur_size)) {
|
|
PMD_RX_LOG(ERR, rxq, "Length is 0 while %u BDs"
|
|
" left for mapping jumbo\n", num_segs);
|
|
qede_recycle_rx_bd_ring(rxq, qdev, num_segs);
|
|
return -EINVAL;
|
|
}
|
|
sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
|
|
seg2 = rxq->sw_rx_ring[sw_rx_index].mbuf;
|
|
qede_rx_bd_ring_consume(rxq);
|
|
pkt_len -= cur_size;
|
|
seg2->data_len = cur_size;
|
|
seg1->next = seg2;
|
|
seg1 = seg1->next;
|
|
num_segs--;
|
|
rxq->rx_segs++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef RTE_LIBRTE_QEDE_DEBUG_RX
|
|
static inline void
|
|
print_rx_bd_info(struct rte_mbuf *m, struct qede_rx_queue *rxq,
|
|
uint8_t bitfield)
|
|
{
|
|
PMD_RX_LOG(INFO, rxq,
|
|
"len 0x%04x bf 0x%04x hash_val 0x%x"
|
|
" ol_flags 0x%04lx l2=%s l3=%s l4=%s tunn=%s"
|
|
" inner_l2=%s inner_l3=%s inner_l4=%s\n",
|
|
m->data_len, bitfield, m->hash.rss,
|
|
(unsigned long)m->ol_flags,
|
|
rte_get_ptype_l2_name(m->packet_type),
|
|
rte_get_ptype_l3_name(m->packet_type),
|
|
rte_get_ptype_l4_name(m->packet_type),
|
|
rte_get_ptype_tunnel_name(m->packet_type),
|
|
rte_get_ptype_inner_l2_name(m->packet_type),
|
|
rte_get_ptype_inner_l3_name(m->packet_type),
|
|
rte_get_ptype_inner_l4_name(m->packet_type));
|
|
}
|
|
#endif
|
|
|
|
uint16_t
|
|
qede_recv_pkts_regular(void *p_rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
|
|
{
|
|
struct eth_fast_path_rx_reg_cqe *fp_cqe = NULL;
|
|
register struct rte_mbuf *rx_mb = NULL;
|
|
struct qede_rx_queue *rxq = p_rxq;
|
|
struct qede_dev *qdev = rxq->qdev;
|
|
struct ecore_dev *edev = &qdev->edev;
|
|
union eth_rx_cqe *cqe;
|
|
uint64_t ol_flags;
|
|
enum eth_rx_cqe_type cqe_type;
|
|
int rss_enable = qdev->rss_enable;
|
|
int rx_alloc_count = 0;
|
|
uint32_t packet_type;
|
|
uint32_t rss_hash;
|
|
uint16_t vlan_tci, port_id;
|
|
uint16_t hw_comp_cons, sw_comp_cons, sw_rx_index, num_rx_bds;
|
|
uint16_t rx_pkt = 0;
|
|
uint16_t pkt_len = 0;
|
|
uint16_t len; /* Length of first BD */
|
|
uint16_t preload_idx;
|
|
uint16_t parse_flag;
|
|
#ifdef RTE_LIBRTE_QEDE_DEBUG_RX
|
|
uint8_t bitfield_val;
|
|
#endif
|
|
uint8_t offset, flags, bd_num;
|
|
|
|
|
|
/* Allocate buffers that we used in previous loop */
|
|
if (rxq->rx_alloc_count) {
|
|
if (unlikely(qede_alloc_rx_bulk_mbufs(rxq,
|
|
rxq->rx_alloc_count))) {
|
|
struct rte_eth_dev *dev;
|
|
|
|
PMD_RX_LOG(ERR, rxq,
|
|
"New buffer allocation failed,"
|
|
"dropping incoming packetn");
|
|
dev = &rte_eth_devices[rxq->port_id];
|
|
dev->data->rx_mbuf_alloc_failed +=
|
|
rxq->rx_alloc_count;
|
|
rxq->rx_alloc_errors += rxq->rx_alloc_count;
|
|
return 0;
|
|
}
|
|
qede_update_rx_prod(qdev, rxq);
|
|
rxq->rx_alloc_count = 0;
|
|
}
|
|
|
|
hw_comp_cons = rte_le_to_cpu_16(*rxq->hw_cons_ptr);
|
|
sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
|
|
|
|
rte_rmb();
|
|
|
|
if (hw_comp_cons == sw_comp_cons)
|
|
return 0;
|
|
|
|
num_rx_bds = NUM_RX_BDS(rxq);
|
|
port_id = rxq->port_id;
|
|
|
|
while (sw_comp_cons != hw_comp_cons) {
|
|
ol_flags = 0;
|
|
packet_type = RTE_PTYPE_UNKNOWN;
|
|
vlan_tci = 0;
|
|
rss_hash = 0;
|
|
|
|
/* Get the CQE from the completion ring */
|
|
cqe =
|
|
(union eth_rx_cqe *)ecore_chain_consume(&rxq->rx_comp_ring);
|
|
cqe_type = cqe->fast_path_regular.type;
|
|
PMD_RX_LOG(INFO, rxq, "Rx CQE type %d\n", cqe_type);
|
|
|
|
if (likely(cqe_type == ETH_RX_CQE_TYPE_REGULAR)) {
|
|
fp_cqe = &cqe->fast_path_regular;
|
|
} else {
|
|
if (cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH) {
|
|
PMD_RX_LOG(INFO, rxq, "Got unexpected slowpath CQE\n");
|
|
ecore_eth_cqe_completion
|
|
(&edev->hwfns[rxq->queue_id %
|
|
edev->num_hwfns],
|
|
(struct eth_slow_path_rx_cqe *)cqe);
|
|
}
|
|
goto next_cqe;
|
|
}
|
|
|
|
/* Get the data from the SW ring */
|
|
sw_rx_index = rxq->sw_rx_cons & num_rx_bds;
|
|
rx_mb = rxq->sw_rx_ring[sw_rx_index].mbuf;
|
|
assert(rx_mb != NULL);
|
|
|
|
parse_flag = rte_le_to_cpu_16(fp_cqe->pars_flags.flags);
|
|
offset = fp_cqe->placement_offset;
|
|
len = rte_le_to_cpu_16(fp_cqe->len_on_first_bd);
|
|
pkt_len = rte_le_to_cpu_16(fp_cqe->pkt_len);
|
|
vlan_tci = rte_le_to_cpu_16(fp_cqe->vlan_tag);
|
|
rss_hash = rte_le_to_cpu_32(fp_cqe->rss_hash);
|
|
bd_num = fp_cqe->bd_num;
|
|
#ifdef RTE_LIBRTE_QEDE_DEBUG_RX
|
|
bitfield_val = fp_cqe->bitfields;
|
|
#endif
|
|
|
|
if (unlikely(qede_tunn_exist(parse_flag))) {
|
|
PMD_RX_LOG(INFO, rxq, "Rx tunneled packet\n");
|
|
if (unlikely(qede_check_tunn_csum_l4(parse_flag))) {
|
|
PMD_RX_LOG(ERR, rxq,
|
|
"L4 csum failed, flags = 0x%x\n",
|
|
parse_flag);
|
|
rxq->rx_hw_errors++;
|
|
ol_flags |= PKT_RX_L4_CKSUM_BAD;
|
|
} else {
|
|
ol_flags |= PKT_RX_L4_CKSUM_GOOD;
|
|
}
|
|
|
|
if (unlikely(qede_check_tunn_csum_l3(parse_flag))) {
|
|
PMD_RX_LOG(ERR, rxq,
|
|
"Outer L3 csum failed, flags = 0x%x\n",
|
|
parse_flag);
|
|
rxq->rx_hw_errors++;
|
|
ol_flags |= PKT_RX_EIP_CKSUM_BAD;
|
|
} else {
|
|
ol_flags |= PKT_RX_IP_CKSUM_GOOD;
|
|
}
|
|
|
|
flags = fp_cqe->tunnel_pars_flags.flags;
|
|
|
|
/* Tunnel_type */
|
|
packet_type =
|
|
qede_rx_cqe_to_tunn_pkt_type(flags);
|
|
|
|
/* Inner header */
|
|
packet_type |=
|
|
qede_rx_cqe_to_pkt_type_inner(parse_flag);
|
|
|
|
/* Outer L3/L4 types is not available in CQE */
|
|
packet_type |= qede_rx_cqe_to_pkt_type_outer(rx_mb);
|
|
|
|
/* Outer L3/L4 types is not available in CQE.
|
|
* Need to add offset to parse correctly,
|
|
*/
|
|
rx_mb->data_off = offset + RTE_PKTMBUF_HEADROOM;
|
|
packet_type |= qede_rx_cqe_to_pkt_type_outer(rx_mb);
|
|
} else {
|
|
packet_type |= qede_rx_cqe_to_pkt_type(parse_flag);
|
|
}
|
|
|
|
/* Common handling for non-tunnel packets and for inner
|
|
* headers in the case of tunnel.
|
|
*/
|
|
if (unlikely(qede_check_notunn_csum_l4(parse_flag))) {
|
|
PMD_RX_LOG(ERR, rxq,
|
|
"L4 csum failed, flags = 0x%x\n",
|
|
parse_flag);
|
|
rxq->rx_hw_errors++;
|
|
ol_flags |= PKT_RX_L4_CKSUM_BAD;
|
|
} else {
|
|
ol_flags |= PKT_RX_L4_CKSUM_GOOD;
|
|
}
|
|
if (unlikely(qede_check_notunn_csum_l3(rx_mb, parse_flag))) {
|
|
PMD_RX_LOG(ERR, rxq, "IP csum failed, flags = 0x%x\n",
|
|
parse_flag);
|
|
rxq->rx_hw_errors++;
|
|
ol_flags |= PKT_RX_IP_CKSUM_BAD;
|
|
} else {
|
|
ol_flags |= PKT_RX_IP_CKSUM_GOOD;
|
|
}
|
|
|
|
if (unlikely(CQE_HAS_VLAN(parse_flag) ||
|
|
CQE_HAS_OUTER_VLAN(parse_flag))) {
|
|
/* Note: FW doesn't indicate Q-in-Q packet */
|
|
ol_flags |= PKT_RX_VLAN;
|
|
if (qdev->vlan_strip_flg) {
|
|
ol_flags |= PKT_RX_VLAN_STRIPPED;
|
|
rx_mb->vlan_tci = vlan_tci;
|
|
}
|
|
}
|
|
|
|
if (rss_enable) {
|
|
ol_flags |= PKT_RX_RSS_HASH;
|
|
rx_mb->hash.rss = rss_hash;
|
|
}
|
|
|
|
rx_alloc_count++;
|
|
qede_rx_bd_ring_consume(rxq);
|
|
|
|
/* Prefetch next mbuf while processing current one. */
|
|
preload_idx = rxq->sw_rx_cons & num_rx_bds;
|
|
rte_prefetch0(rxq->sw_rx_ring[preload_idx].mbuf);
|
|
|
|
/* Update rest of the MBUF fields */
|
|
rx_mb->data_off = offset + RTE_PKTMBUF_HEADROOM;
|
|
rx_mb->port = port_id;
|
|
rx_mb->ol_flags = ol_flags;
|
|
rx_mb->data_len = len;
|
|
rx_mb->packet_type = packet_type;
|
|
#ifdef RTE_LIBRTE_QEDE_DEBUG_RX
|
|
print_rx_bd_info(rx_mb, rxq, bitfield_val);
|
|
#endif
|
|
rx_mb->nb_segs = bd_num;
|
|
rx_mb->pkt_len = pkt_len;
|
|
|
|
rx_pkts[rx_pkt] = rx_mb;
|
|
rx_pkt++;
|
|
|
|
next_cqe:
|
|
ecore_chain_recycle_consumed(&rxq->rx_comp_ring);
|
|
sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
|
|
if (rx_pkt == nb_pkts) {
|
|
PMD_RX_LOG(DEBUG, rxq,
|
|
"Budget reached nb_pkts=%u received=%u",
|
|
rx_pkt, nb_pkts);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Request number of bufferes to be allocated in next loop */
|
|
rxq->rx_alloc_count = rx_alloc_count;
|
|
|
|
rxq->rcv_pkts += rx_pkt;
|
|
rxq->rx_segs += rx_pkt;
|
|
PMD_RX_LOG(DEBUG, rxq, "rx_pkts=%u core=%d", rx_pkt, rte_lcore_id());
|
|
|
|
return rx_pkt;
|
|
}
|
|
|
|
uint16_t
|
|
qede_recv_pkts(void *p_rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
|
|
{
|
|
struct qede_rx_queue *rxq = p_rxq;
|
|
struct qede_dev *qdev = rxq->qdev;
|
|
struct ecore_dev *edev = &qdev->edev;
|
|
uint16_t hw_comp_cons, sw_comp_cons, sw_rx_index;
|
|
uint16_t rx_pkt = 0;
|
|
union eth_rx_cqe *cqe;
|
|
struct eth_fast_path_rx_reg_cqe *fp_cqe = NULL;
|
|
register struct rte_mbuf *rx_mb = NULL;
|
|
register struct rte_mbuf *seg1 = NULL;
|
|
enum eth_rx_cqe_type cqe_type;
|
|
uint16_t pkt_len = 0; /* Sum of all BD segments */
|
|
uint16_t len; /* Length of first BD */
|
|
uint8_t num_segs = 1;
|
|
uint16_t preload_idx;
|
|
uint16_t parse_flag;
|
|
#ifdef RTE_LIBRTE_QEDE_DEBUG_RX
|
|
uint8_t bitfield_val;
|
|
#endif
|
|
uint8_t tunn_parse_flag;
|
|
struct eth_fast_path_rx_tpa_start_cqe *cqe_start_tpa;
|
|
uint64_t ol_flags;
|
|
uint32_t packet_type;
|
|
uint16_t vlan_tci;
|
|
bool tpa_start_flg;
|
|
uint8_t offset, tpa_agg_idx, flags;
|
|
struct qede_agg_info *tpa_info = NULL;
|
|
uint32_t rss_hash;
|
|
int rx_alloc_count = 0;
|
|
|
|
|
|
/* Allocate buffers that we used in previous loop */
|
|
if (rxq->rx_alloc_count) {
|
|
if (unlikely(qede_alloc_rx_bulk_mbufs(rxq,
|
|
rxq->rx_alloc_count))) {
|
|
struct rte_eth_dev *dev;
|
|
|
|
PMD_RX_LOG(ERR, rxq,
|
|
"New buffer allocation failed,"
|
|
"dropping incoming packetn");
|
|
dev = &rte_eth_devices[rxq->port_id];
|
|
dev->data->rx_mbuf_alloc_failed +=
|
|
rxq->rx_alloc_count;
|
|
rxq->rx_alloc_errors += rxq->rx_alloc_count;
|
|
return 0;
|
|
}
|
|
qede_update_rx_prod(qdev, rxq);
|
|
rxq->rx_alloc_count = 0;
|
|
}
|
|
|
|
hw_comp_cons = rte_le_to_cpu_16(*rxq->hw_cons_ptr);
|
|
sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
|
|
|
|
rte_rmb();
|
|
|
|
if (hw_comp_cons == sw_comp_cons)
|
|
return 0;
|
|
|
|
while (sw_comp_cons != hw_comp_cons) {
|
|
ol_flags = 0;
|
|
packet_type = RTE_PTYPE_UNKNOWN;
|
|
vlan_tci = 0;
|
|
tpa_start_flg = false;
|
|
rss_hash = 0;
|
|
|
|
/* Get the CQE from the completion ring */
|
|
cqe =
|
|
(union eth_rx_cqe *)ecore_chain_consume(&rxq->rx_comp_ring);
|
|
cqe_type = cqe->fast_path_regular.type;
|
|
PMD_RX_LOG(INFO, rxq, "Rx CQE type %d\n", cqe_type);
|
|
|
|
switch (cqe_type) {
|
|
case ETH_RX_CQE_TYPE_REGULAR:
|
|
fp_cqe = &cqe->fast_path_regular;
|
|
break;
|
|
case ETH_RX_CQE_TYPE_TPA_START:
|
|
cqe_start_tpa = &cqe->fast_path_tpa_start;
|
|
tpa_info = &rxq->tpa_info[cqe_start_tpa->tpa_agg_index];
|
|
tpa_start_flg = true;
|
|
/* Mark it as LRO packet */
|
|
ol_flags |= PKT_RX_LRO;
|
|
/* In split mode, seg_len is same as len_on_first_bd
|
|
* and bw_ext_bd_len_list will be empty since there are
|
|
* no additional buffers
|
|
*/
|
|
PMD_RX_LOG(INFO, rxq,
|
|
"TPA start[%d] - len_on_first_bd %d header %d"
|
|
" [bd_list[0] %d], [seg_len %d]\n",
|
|
cqe_start_tpa->tpa_agg_index,
|
|
rte_le_to_cpu_16(cqe_start_tpa->len_on_first_bd),
|
|
cqe_start_tpa->header_len,
|
|
rte_le_to_cpu_16(cqe_start_tpa->bw_ext_bd_len_list[0]),
|
|
rte_le_to_cpu_16(cqe_start_tpa->seg_len));
|
|
|
|
break;
|
|
case ETH_RX_CQE_TYPE_TPA_CONT:
|
|
qede_rx_process_tpa_cont_cqe(qdev, rxq,
|
|
&cqe->fast_path_tpa_cont);
|
|
goto next_cqe;
|
|
case ETH_RX_CQE_TYPE_TPA_END:
|
|
qede_rx_process_tpa_end_cqe(qdev, rxq,
|
|
&cqe->fast_path_tpa_end);
|
|
tpa_agg_idx = cqe->fast_path_tpa_end.tpa_agg_index;
|
|
tpa_info = &rxq->tpa_info[tpa_agg_idx];
|
|
rx_mb = rxq->tpa_info[tpa_agg_idx].tpa_head;
|
|
goto tpa_end;
|
|
case ETH_RX_CQE_TYPE_SLOW_PATH:
|
|
PMD_RX_LOG(INFO, rxq, "Got unexpected slowpath CQE\n");
|
|
ecore_eth_cqe_completion(
|
|
&edev->hwfns[rxq->queue_id % edev->num_hwfns],
|
|
(struct eth_slow_path_rx_cqe *)cqe);
|
|
/* fall-thru */
|
|
default:
|
|
goto next_cqe;
|
|
}
|
|
|
|
/* Get the data from the SW ring */
|
|
sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
|
|
rx_mb = rxq->sw_rx_ring[sw_rx_index].mbuf;
|
|
assert(rx_mb != NULL);
|
|
|
|
/* Handle regular CQE or TPA start CQE */
|
|
if (!tpa_start_flg) {
|
|
parse_flag = rte_le_to_cpu_16(fp_cqe->pars_flags.flags);
|
|
offset = fp_cqe->placement_offset;
|
|
len = rte_le_to_cpu_16(fp_cqe->len_on_first_bd);
|
|
pkt_len = rte_le_to_cpu_16(fp_cqe->pkt_len);
|
|
vlan_tci = rte_le_to_cpu_16(fp_cqe->vlan_tag);
|
|
rss_hash = rte_le_to_cpu_32(fp_cqe->rss_hash);
|
|
#ifdef RTE_LIBRTE_QEDE_DEBUG_RX
|
|
bitfield_val = fp_cqe->bitfields;
|
|
#endif
|
|
} else {
|
|
parse_flag =
|
|
rte_le_to_cpu_16(cqe_start_tpa->pars_flags.flags);
|
|
offset = cqe_start_tpa->placement_offset;
|
|
/* seg_len = len_on_first_bd */
|
|
len = rte_le_to_cpu_16(cqe_start_tpa->len_on_first_bd);
|
|
vlan_tci = rte_le_to_cpu_16(cqe_start_tpa->vlan_tag);
|
|
#ifdef RTE_LIBRTE_QEDE_DEBUG_RX
|
|
bitfield_val = cqe_start_tpa->bitfields;
|
|
#endif
|
|
rss_hash = rte_le_to_cpu_32(cqe_start_tpa->rss_hash);
|
|
}
|
|
if (qede_tunn_exist(parse_flag)) {
|
|
PMD_RX_LOG(INFO, rxq, "Rx tunneled packet\n");
|
|
if (unlikely(qede_check_tunn_csum_l4(parse_flag))) {
|
|
PMD_RX_LOG(ERR, rxq,
|
|
"L4 csum failed, flags = 0x%x\n",
|
|
parse_flag);
|
|
rxq->rx_hw_errors++;
|
|
ol_flags |= PKT_RX_L4_CKSUM_BAD;
|
|
} else {
|
|
ol_flags |= PKT_RX_L4_CKSUM_GOOD;
|
|
}
|
|
|
|
if (unlikely(qede_check_tunn_csum_l3(parse_flag))) {
|
|
PMD_RX_LOG(ERR, rxq,
|
|
"Outer L3 csum failed, flags = 0x%x\n",
|
|
parse_flag);
|
|
rxq->rx_hw_errors++;
|
|
ol_flags |= PKT_RX_EIP_CKSUM_BAD;
|
|
} else {
|
|
ol_flags |= PKT_RX_IP_CKSUM_GOOD;
|
|
}
|
|
|
|
if (tpa_start_flg)
|
|
flags = cqe_start_tpa->tunnel_pars_flags.flags;
|
|
else
|
|
flags = fp_cqe->tunnel_pars_flags.flags;
|
|
tunn_parse_flag = flags;
|
|
|
|
/* Tunnel_type */
|
|
packet_type =
|
|
qede_rx_cqe_to_tunn_pkt_type(tunn_parse_flag);
|
|
|
|
/* Inner header */
|
|
packet_type |=
|
|
qede_rx_cqe_to_pkt_type_inner(parse_flag);
|
|
|
|
/* Outer L3/L4 types is not available in CQE */
|
|
packet_type |= qede_rx_cqe_to_pkt_type_outer(rx_mb);
|
|
|
|
/* Outer L3/L4 types is not available in CQE.
|
|
* Need to add offset to parse correctly,
|
|
*/
|
|
rx_mb->data_off = offset + RTE_PKTMBUF_HEADROOM;
|
|
packet_type |= qede_rx_cqe_to_pkt_type_outer(rx_mb);
|
|
} else {
|
|
packet_type |= qede_rx_cqe_to_pkt_type(parse_flag);
|
|
}
|
|
|
|
/* Common handling for non-tunnel packets and for inner
|
|
* headers in the case of tunnel.
|
|
*/
|
|
if (unlikely(qede_check_notunn_csum_l4(parse_flag))) {
|
|
PMD_RX_LOG(ERR, rxq,
|
|
"L4 csum failed, flags = 0x%x\n",
|
|
parse_flag);
|
|
rxq->rx_hw_errors++;
|
|
ol_flags |= PKT_RX_L4_CKSUM_BAD;
|
|
} else {
|
|
ol_flags |= PKT_RX_L4_CKSUM_GOOD;
|
|
}
|
|
if (unlikely(qede_check_notunn_csum_l3(rx_mb, parse_flag))) {
|
|
PMD_RX_LOG(ERR, rxq, "IP csum failed, flags = 0x%x\n",
|
|
parse_flag);
|
|
rxq->rx_hw_errors++;
|
|
ol_flags |= PKT_RX_IP_CKSUM_BAD;
|
|
} else {
|
|
ol_flags |= PKT_RX_IP_CKSUM_GOOD;
|
|
}
|
|
|
|
if (CQE_HAS_VLAN(parse_flag) ||
|
|
CQE_HAS_OUTER_VLAN(parse_flag)) {
|
|
/* Note: FW doesn't indicate Q-in-Q packet */
|
|
ol_flags |= PKT_RX_VLAN;
|
|
if (qdev->vlan_strip_flg) {
|
|
ol_flags |= PKT_RX_VLAN_STRIPPED;
|
|
rx_mb->vlan_tci = vlan_tci;
|
|
}
|
|
}
|
|
|
|
/* RSS Hash */
|
|
if (qdev->rss_enable) {
|
|
ol_flags |= PKT_RX_RSS_HASH;
|
|
rx_mb->hash.rss = rss_hash;
|
|
}
|
|
|
|
rx_alloc_count++;
|
|
qede_rx_bd_ring_consume(rxq);
|
|
|
|
if (!tpa_start_flg && fp_cqe->bd_num > 1) {
|
|
PMD_RX_LOG(DEBUG, rxq, "Jumbo-over-BD packet: %02x BDs"
|
|
" len on first: %04x Total Len: %04x",
|
|
fp_cqe->bd_num, len, pkt_len);
|
|
num_segs = fp_cqe->bd_num - 1;
|
|
seg1 = rx_mb;
|
|
if (qede_process_sg_pkts(p_rxq, seg1, num_segs,
|
|
pkt_len - len))
|
|
goto next_cqe;
|
|
|
|
rx_alloc_count += num_segs;
|
|
rxq->rx_segs += num_segs;
|
|
}
|
|
rxq->rx_segs++; /* for the first segment */
|
|
|
|
/* Prefetch next mbuf while processing current one. */
|
|
preload_idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
|
|
rte_prefetch0(rxq->sw_rx_ring[preload_idx].mbuf);
|
|
|
|
/* Update rest of the MBUF fields */
|
|
rx_mb->data_off = offset + RTE_PKTMBUF_HEADROOM;
|
|
rx_mb->port = rxq->port_id;
|
|
rx_mb->ol_flags = ol_flags;
|
|
rx_mb->data_len = len;
|
|
rx_mb->packet_type = packet_type;
|
|
#ifdef RTE_LIBRTE_QEDE_DEBUG_RX
|
|
print_rx_bd_info(rx_mb, rxq, bitfield_val);
|
|
#endif
|
|
if (!tpa_start_flg) {
|
|
rx_mb->nb_segs = fp_cqe->bd_num;
|
|
rx_mb->pkt_len = pkt_len;
|
|
} else {
|
|
/* store ref to the updated mbuf */
|
|
tpa_info->tpa_head = rx_mb;
|
|
tpa_info->tpa_tail = tpa_info->tpa_head;
|
|
}
|
|
rte_prefetch1(rte_pktmbuf_mtod(rx_mb, void *));
|
|
tpa_end:
|
|
if (!tpa_start_flg) {
|
|
rx_pkts[rx_pkt] = rx_mb;
|
|
rx_pkt++;
|
|
}
|
|
next_cqe:
|
|
ecore_chain_recycle_consumed(&rxq->rx_comp_ring);
|
|
sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
|
|
if (rx_pkt == nb_pkts) {
|
|
PMD_RX_LOG(DEBUG, rxq,
|
|
"Budget reached nb_pkts=%u received=%u",
|
|
rx_pkt, nb_pkts);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Request number of bufferes to be allocated in next loop */
|
|
rxq->rx_alloc_count = rx_alloc_count;
|
|
|
|
rxq->rcv_pkts += rx_pkt;
|
|
|
|
PMD_RX_LOG(DEBUG, rxq, "rx_pkts=%u core=%d", rx_pkt, rte_lcore_id());
|
|
|
|
return rx_pkt;
|
|
}
|
|
|
|
uint16_t
|
|
qede_recv_pkts_cmt(void *p_fp_cmt, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
|
|
{
|
|
struct qede_fastpath_cmt *fp_cmt = p_fp_cmt;
|
|
uint16_t eng0_pkts, eng1_pkts;
|
|
|
|
eng0_pkts = nb_pkts / 2;
|
|
|
|
eng0_pkts = qede_recv_pkts(fp_cmt->fp0->rxq, rx_pkts, eng0_pkts);
|
|
|
|
eng1_pkts = nb_pkts - eng0_pkts;
|
|
|
|
eng1_pkts = qede_recv_pkts(fp_cmt->fp1->rxq, rx_pkts + eng0_pkts,
|
|
eng1_pkts);
|
|
|
|
return eng0_pkts + eng1_pkts;
|
|
}
|
|
|
|
/* Populate scatter gather buffer descriptor fields */
|
|
static inline uint16_t
|
|
qede_encode_sg_bd(struct qede_tx_queue *p_txq, struct rte_mbuf *m_seg,
|
|
struct eth_tx_2nd_bd **bd2, struct eth_tx_3rd_bd **bd3,
|
|
uint16_t start_seg)
|
|
{
|
|
struct qede_tx_queue *txq = p_txq;
|
|
struct eth_tx_bd *tx_bd = NULL;
|
|
dma_addr_t mapping;
|
|
uint16_t nb_segs = 0;
|
|
|
|
/* Check for scattered buffers */
|
|
while (m_seg) {
|
|
if (start_seg == 0) {
|
|
if (!*bd2) {
|
|
*bd2 = (struct eth_tx_2nd_bd *)
|
|
ecore_chain_produce(&txq->tx_pbl);
|
|
memset(*bd2, 0, sizeof(struct eth_tx_2nd_bd));
|
|
nb_segs++;
|
|
}
|
|
mapping = rte_mbuf_data_iova(m_seg);
|
|
QEDE_BD_SET_ADDR_LEN(*bd2, mapping, m_seg->data_len);
|
|
PMD_TX_LOG(DEBUG, txq, "BD2 len %04x", m_seg->data_len);
|
|
} else if (start_seg == 1) {
|
|
if (!*bd3) {
|
|
*bd3 = (struct eth_tx_3rd_bd *)
|
|
ecore_chain_produce(&txq->tx_pbl);
|
|
memset(*bd3, 0, sizeof(struct eth_tx_3rd_bd));
|
|
nb_segs++;
|
|
}
|
|
mapping = rte_mbuf_data_iova(m_seg);
|
|
QEDE_BD_SET_ADDR_LEN(*bd3, mapping, m_seg->data_len);
|
|
PMD_TX_LOG(DEBUG, txq, "BD3 len %04x", m_seg->data_len);
|
|
} else {
|
|
tx_bd = (struct eth_tx_bd *)
|
|
ecore_chain_produce(&txq->tx_pbl);
|
|
memset(tx_bd, 0, sizeof(*tx_bd));
|
|
nb_segs++;
|
|
mapping = rte_mbuf_data_iova(m_seg);
|
|
QEDE_BD_SET_ADDR_LEN(tx_bd, mapping, m_seg->data_len);
|
|
PMD_TX_LOG(DEBUG, txq, "BD len %04x", m_seg->data_len);
|
|
}
|
|
start_seg++;
|
|
m_seg = m_seg->next;
|
|
}
|
|
|
|
/* Return total scattered buffers */
|
|
return nb_segs;
|
|
}
|
|
|
|
#ifdef RTE_LIBRTE_QEDE_DEBUG_TX
|
|
static inline void
|
|
print_tx_bd_info(struct qede_tx_queue *txq,
|
|
struct eth_tx_1st_bd *bd1,
|
|
struct eth_tx_2nd_bd *bd2,
|
|
struct eth_tx_3rd_bd *bd3,
|
|
uint64_t tx_ol_flags)
|
|
{
|
|
char ol_buf[256] = { 0 }; /* for verbose prints */
|
|
|
|
if (bd1)
|
|
PMD_TX_LOG(INFO, txq,
|
|
"BD1: nbytes=0x%04x nbds=0x%04x bd_flags=0x%04x bf=0x%04x",
|
|
rte_cpu_to_le_16(bd1->nbytes), bd1->data.nbds,
|
|
bd1->data.bd_flags.bitfields,
|
|
rte_cpu_to_le_16(bd1->data.bitfields));
|
|
if (bd2)
|
|
PMD_TX_LOG(INFO, txq,
|
|
"BD2: nbytes=0x%04x bf1=0x%04x bf2=0x%04x tunn_ip=0x%04x\n",
|
|
rte_cpu_to_le_16(bd2->nbytes), bd2->data.bitfields1,
|
|
bd2->data.bitfields2, bd2->data.tunn_ip_size);
|
|
if (bd3)
|
|
PMD_TX_LOG(INFO, txq,
|
|
"BD3: nbytes=0x%04x bf=0x%04x MSS=0x%04x "
|
|
"tunn_l4_hdr_start_offset_w=0x%04x tunn_hdr_size=0x%04x\n",
|
|
rte_cpu_to_le_16(bd3->nbytes),
|
|
rte_cpu_to_le_16(bd3->data.bitfields),
|
|
rte_cpu_to_le_16(bd3->data.lso_mss),
|
|
bd3->data.tunn_l4_hdr_start_offset_w,
|
|
bd3->data.tunn_hdr_size_w);
|
|
|
|
rte_get_tx_ol_flag_list(tx_ol_flags, ol_buf, sizeof(ol_buf));
|
|
PMD_TX_LOG(INFO, txq, "TX offloads = %s\n", ol_buf);
|
|
}
|
|
#endif
|
|
|
|
/* TX prepare to check packets meets TX conditions */
|
|
uint16_t
|
|
#ifdef RTE_LIBRTE_QEDE_DEBUG_TX
|
|
qede_xmit_prep_pkts(void *p_txq, struct rte_mbuf **tx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
struct qede_tx_queue *txq = p_txq;
|
|
#else
|
|
qede_xmit_prep_pkts(__rte_unused void *p_txq, struct rte_mbuf **tx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
#endif
|
|
uint64_t ol_flags;
|
|
struct rte_mbuf *m;
|
|
uint16_t i;
|
|
#ifdef RTE_LIBRTE_ETHDEV_DEBUG
|
|
int ret;
|
|
#endif
|
|
|
|
for (i = 0; i < nb_pkts; i++) {
|
|
m = tx_pkts[i];
|
|
ol_flags = m->ol_flags;
|
|
if (ol_flags & PKT_TX_TCP_SEG) {
|
|
if (m->nb_segs >= ETH_TX_MAX_BDS_PER_LSO_PACKET) {
|
|
rte_errno = EINVAL;
|
|
break;
|
|
}
|
|
/* TBD: confirm its ~9700B for both ? */
|
|
if (m->tso_segsz > ETH_TX_MAX_NON_LSO_PKT_LEN) {
|
|
rte_errno = EINVAL;
|
|
break;
|
|
}
|
|
} else {
|
|
if (m->nb_segs >= ETH_TX_MAX_BDS_PER_NON_LSO_PACKET) {
|
|
rte_errno = EINVAL;
|
|
break;
|
|
}
|
|
}
|
|
if (ol_flags & QEDE_TX_OFFLOAD_NOTSUP_MASK) {
|
|
/* We support only limited tunnel protocols */
|
|
if (ol_flags & PKT_TX_TUNNEL_MASK) {
|
|
uint64_t temp;
|
|
|
|
temp = ol_flags & PKT_TX_TUNNEL_MASK;
|
|
if (temp == PKT_TX_TUNNEL_VXLAN ||
|
|
temp == PKT_TX_TUNNEL_GENEVE ||
|
|
temp == PKT_TX_TUNNEL_MPLSINUDP ||
|
|
temp == PKT_TX_TUNNEL_GRE)
|
|
continue;
|
|
}
|
|
|
|
rte_errno = ENOTSUP;
|
|
break;
|
|
}
|
|
|
|
#ifdef RTE_LIBRTE_ETHDEV_DEBUG
|
|
ret = rte_validate_tx_offload(m);
|
|
if (ret != 0) {
|
|
rte_errno = -ret;
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef RTE_LIBRTE_QEDE_DEBUG_TX
|
|
if (unlikely(i != nb_pkts))
|
|
PMD_TX_LOG(ERR, txq, "TX prepare failed for %u\n",
|
|
nb_pkts - i);
|
|
#endif
|
|
return i;
|
|
}
|
|
|
|
#define MPLSINUDP_HDR_SIZE (12)
|
|
|
|
#ifdef RTE_LIBRTE_QEDE_DEBUG_TX
|
|
static inline void
|
|
qede_mpls_tunn_tx_sanity_check(struct rte_mbuf *mbuf,
|
|
struct qede_tx_queue *txq)
|
|
{
|
|
if (((mbuf->outer_l2_len + mbuf->outer_l3_len) / 2) > 0xff)
|
|
PMD_TX_LOG(ERR, txq, "tunn_l4_hdr_start_offset overflow\n");
|
|
if (((mbuf->outer_l2_len + mbuf->outer_l3_len +
|
|
MPLSINUDP_HDR_SIZE) / 2) > 0xff)
|
|
PMD_TX_LOG(ERR, txq, "tunn_hdr_size overflow\n");
|
|
if (((mbuf->l2_len - MPLSINUDP_HDR_SIZE) / 2) >
|
|
ETH_TX_DATA_2ND_BD_TUNN_INNER_L2_HDR_SIZE_W_MASK)
|
|
PMD_TX_LOG(ERR, txq, "inner_l2_hdr_size overflow\n");
|
|
if (((mbuf->l2_len - MPLSINUDP_HDR_SIZE + mbuf->l3_len) / 2) >
|
|
ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
|
|
PMD_TX_LOG(ERR, txq, "inner_l2_hdr_size overflow\n");
|
|
}
|
|
#endif
|
|
|
|
uint16_t
|
|
qede_xmit_pkts_regular(void *p_txq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
|
|
{
|
|
struct qede_tx_queue *txq = p_txq;
|
|
struct qede_dev *qdev = txq->qdev;
|
|
struct ecore_dev *edev = &qdev->edev;
|
|
struct eth_tx_1st_bd *bd1;
|
|
struct eth_tx_2nd_bd *bd2;
|
|
struct eth_tx_3rd_bd *bd3;
|
|
struct rte_mbuf *m_seg = NULL;
|
|
struct rte_mbuf *mbuf;
|
|
struct qede_tx_entry *sw_tx_ring;
|
|
uint16_t nb_tx_pkts;
|
|
uint16_t bd_prod;
|
|
uint16_t idx;
|
|
uint16_t nb_frags = 0;
|
|
uint16_t nb_pkt_sent = 0;
|
|
uint8_t nbds;
|
|
uint64_t tx_ol_flags;
|
|
/* BD1 */
|
|
uint16_t bd1_bf;
|
|
uint8_t bd1_bd_flags_bf;
|
|
|
|
if (unlikely(txq->nb_tx_avail < txq->tx_free_thresh)) {
|
|
PMD_TX_LOG(DEBUG, txq, "send=%u avail=%u free_thresh=%u",
|
|
nb_pkts, txq->nb_tx_avail, txq->tx_free_thresh);
|
|
qede_process_tx_compl(edev, txq);
|
|
}
|
|
|
|
nb_tx_pkts = nb_pkts;
|
|
bd_prod = rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl));
|
|
sw_tx_ring = txq->sw_tx_ring;
|
|
|
|
while (nb_tx_pkts--) {
|
|
/* Init flags/values */
|
|
nbds = 0;
|
|
bd1 = NULL;
|
|
bd2 = NULL;
|
|
bd3 = NULL;
|
|
bd1_bf = 0;
|
|
bd1_bd_flags_bf = 0;
|
|
nb_frags = 0;
|
|
|
|
mbuf = *tx_pkts++;
|
|
assert(mbuf);
|
|
|
|
|
|
/* Check minimum TX BDS availability against available BDs */
|
|
if (unlikely(txq->nb_tx_avail < mbuf->nb_segs))
|
|
break;
|
|
|
|
tx_ol_flags = mbuf->ol_flags;
|
|
bd1_bd_flags_bf |= 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
|
|
|
|
if (unlikely(txq->nb_tx_avail <
|
|
ETH_TX_MIN_BDS_PER_NON_LSO_PKT))
|
|
break;
|
|
bd1_bf |=
|
|
(mbuf->pkt_len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK)
|
|
<< ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
|
|
|
|
/* Offload the IP checksum in the hardware */
|
|
if (tx_ol_flags & PKT_TX_IP_CKSUM)
|
|
bd1_bd_flags_bf |=
|
|
1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
|
|
|
|
/* L4 checksum offload (tcp or udp) */
|
|
if ((tx_ol_flags & (PKT_TX_IPV4 | PKT_TX_IPV6)) &&
|
|
(tx_ol_flags & (PKT_TX_UDP_CKSUM | PKT_TX_TCP_CKSUM)))
|
|
bd1_bd_flags_bf |=
|
|
1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
|
|
|
|
/* Fill the entry in the SW ring and the BDs in the FW ring */
|
|
idx = TX_PROD(txq);
|
|
sw_tx_ring[idx].mbuf = mbuf;
|
|
|
|
/* BD1 */
|
|
bd1 = (struct eth_tx_1st_bd *)ecore_chain_produce(&txq->tx_pbl);
|
|
memset(bd1, 0, sizeof(struct eth_tx_1st_bd));
|
|
nbds++;
|
|
|
|
/* Map MBUF linear data for DMA and set in the BD1 */
|
|
QEDE_BD_SET_ADDR_LEN(bd1, rte_mbuf_data_iova(mbuf),
|
|
mbuf->data_len);
|
|
bd1->data.bitfields = rte_cpu_to_le_16(bd1_bf);
|
|
bd1->data.bd_flags.bitfields = bd1_bd_flags_bf;
|
|
|
|
/* Handle fragmented MBUF */
|
|
if (unlikely(mbuf->nb_segs > 1)) {
|
|
m_seg = mbuf->next;
|
|
|
|
/* Encode scatter gather buffer descriptors */
|
|
nb_frags = qede_encode_sg_bd(txq, m_seg, &bd2, &bd3,
|
|
nbds - 1);
|
|
}
|
|
|
|
bd1->data.nbds = nbds + nb_frags;
|
|
|
|
txq->nb_tx_avail -= bd1->data.nbds;
|
|
txq->sw_tx_prod++;
|
|
bd_prod =
|
|
rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl));
|
|
#ifdef RTE_LIBRTE_QEDE_DEBUG_TX
|
|
print_tx_bd_info(txq, bd1, bd2, bd3, tx_ol_flags);
|
|
#endif
|
|
nb_pkt_sent++;
|
|
txq->xmit_pkts++;
|
|
}
|
|
|
|
/* Write value of prod idx into bd_prod */
|
|
txq->tx_db.data.bd_prod = bd_prod;
|
|
rte_wmb();
|
|
rte_compiler_barrier();
|
|
DIRECT_REG_WR_RELAXED(edev, txq->doorbell_addr, txq->tx_db.raw);
|
|
rte_wmb();
|
|
|
|
/* Check again for Tx completions */
|
|
qede_process_tx_compl(edev, txq);
|
|
|
|
PMD_TX_LOG(DEBUG, txq, "to_send=%u sent=%u bd_prod=%u core=%d",
|
|
nb_pkts, nb_pkt_sent, TX_PROD(txq), rte_lcore_id());
|
|
|
|
return nb_pkt_sent;
|
|
}
|
|
|
|
uint16_t
|
|
qede_xmit_pkts(void *p_txq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
|
|
{
|
|
struct qede_tx_queue *txq = p_txq;
|
|
struct qede_dev *qdev = txq->qdev;
|
|
struct ecore_dev *edev = &qdev->edev;
|
|
struct rte_mbuf *mbuf;
|
|
struct rte_mbuf *m_seg = NULL;
|
|
uint16_t nb_tx_pkts;
|
|
uint16_t bd_prod;
|
|
uint16_t idx;
|
|
uint16_t nb_frags;
|
|
uint16_t nb_pkt_sent = 0;
|
|
uint8_t nbds;
|
|
bool lso_flg;
|
|
bool mplsoudp_flg;
|
|
__rte_unused bool tunn_flg;
|
|
bool tunn_ipv6_ext_flg;
|
|
struct eth_tx_1st_bd *bd1;
|
|
struct eth_tx_2nd_bd *bd2;
|
|
struct eth_tx_3rd_bd *bd3;
|
|
uint64_t tx_ol_flags;
|
|
uint16_t hdr_size;
|
|
/* BD1 */
|
|
uint16_t bd1_bf;
|
|
uint8_t bd1_bd_flags_bf;
|
|
uint16_t vlan;
|
|
/* BD2 */
|
|
uint16_t bd2_bf1;
|
|
uint16_t bd2_bf2;
|
|
/* BD3 */
|
|
uint16_t mss;
|
|
uint16_t bd3_bf;
|
|
|
|
uint8_t tunn_l4_hdr_start_offset;
|
|
uint8_t tunn_hdr_size;
|
|
uint8_t inner_l2_hdr_size;
|
|
uint16_t inner_l4_hdr_offset;
|
|
|
|
if (unlikely(txq->nb_tx_avail < txq->tx_free_thresh)) {
|
|
PMD_TX_LOG(DEBUG, txq, "send=%u avail=%u free_thresh=%u",
|
|
nb_pkts, txq->nb_tx_avail, txq->tx_free_thresh);
|
|
qede_process_tx_compl(edev, txq);
|
|
}
|
|
|
|
nb_tx_pkts = nb_pkts;
|
|
bd_prod = rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl));
|
|
while (nb_tx_pkts--) {
|
|
/* Init flags/values */
|
|
tunn_flg = false;
|
|
lso_flg = false;
|
|
nbds = 0;
|
|
vlan = 0;
|
|
bd1 = NULL;
|
|
bd2 = NULL;
|
|
bd3 = NULL;
|
|
hdr_size = 0;
|
|
bd1_bf = 0;
|
|
bd1_bd_flags_bf = 0;
|
|
bd2_bf1 = 0;
|
|
bd2_bf2 = 0;
|
|
mss = 0;
|
|
bd3_bf = 0;
|
|
mplsoudp_flg = false;
|
|
tunn_ipv6_ext_flg = false;
|
|
tunn_hdr_size = 0;
|
|
tunn_l4_hdr_start_offset = 0;
|
|
|
|
mbuf = *tx_pkts++;
|
|
assert(mbuf);
|
|
|
|
/* Check minimum TX BDS availability against available BDs */
|
|
if (unlikely(txq->nb_tx_avail < mbuf->nb_segs))
|
|
break;
|
|
|
|
tx_ol_flags = mbuf->ol_flags;
|
|
bd1_bd_flags_bf |= 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
|
|
|
|
/* TX prepare would have already checked supported tunnel Tx
|
|
* offloads. Don't rely on pkt_type marked by Rx, instead use
|
|
* tx_ol_flags to decide.
|
|
*/
|
|
tunn_flg = !!(tx_ol_flags & PKT_TX_TUNNEL_MASK);
|
|
|
|
if (tunn_flg) {
|
|
/* Check against max which is Tunnel IPv6 + ext */
|
|
if (unlikely(txq->nb_tx_avail <
|
|
ETH_TX_MIN_BDS_PER_TUNN_IPV6_WITH_EXT_PKT))
|
|
break;
|
|
|
|
/* First indicate its a tunnel pkt */
|
|
bd1_bf |= ETH_TX_DATA_1ST_BD_TUNN_FLAG_MASK <<
|
|
ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
|
|
/* Legacy FW had flipped behavior in regard to this bit
|
|
* i.e. it needed to set to prevent FW from touching
|
|
* encapsulated packets when it didn't need to.
|
|
*/
|
|
if (unlikely(txq->is_legacy)) {
|
|
bd1_bf ^= 1 <<
|
|
ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
|
|
}
|
|
|
|
/* Outer IP checksum offload */
|
|
if (tx_ol_flags & (PKT_TX_OUTER_IP_CKSUM |
|
|
PKT_TX_OUTER_IPV4)) {
|
|
bd1_bd_flags_bf |=
|
|
ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_MASK <<
|
|
ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
|
|
}
|
|
|
|
/**
|
|
* Currently, only inner checksum offload in MPLS-in-UDP
|
|
* tunnel with one MPLS label is supported. Both outer
|
|
* and inner layers lengths need to be provided in
|
|
* mbuf.
|
|
*/
|
|
if ((tx_ol_flags & PKT_TX_TUNNEL_MASK) ==
|
|
PKT_TX_TUNNEL_MPLSINUDP) {
|
|
mplsoudp_flg = true;
|
|
#ifdef RTE_LIBRTE_QEDE_DEBUG_TX
|
|
qede_mpls_tunn_tx_sanity_check(mbuf, txq);
|
|
#endif
|
|
/* Outer L4 offset in two byte words */
|
|
tunn_l4_hdr_start_offset =
|
|
(mbuf->outer_l2_len + mbuf->outer_l3_len) / 2;
|
|
/* Tunnel header size in two byte words */
|
|
tunn_hdr_size = (mbuf->outer_l2_len +
|
|
mbuf->outer_l3_len +
|
|
MPLSINUDP_HDR_SIZE) / 2;
|
|
/* Inner L2 header size in two byte words */
|
|
inner_l2_hdr_size = (mbuf->l2_len -
|
|
MPLSINUDP_HDR_SIZE) / 2;
|
|
/* Inner L4 header offset from the beggining
|
|
* of inner packet in two byte words
|
|
*/
|
|
inner_l4_hdr_offset = (mbuf->l2_len -
|
|
MPLSINUDP_HDR_SIZE + mbuf->l3_len) / 2;
|
|
|
|
/* Inner L2 size and address type */
|
|
bd2_bf1 |= (inner_l2_hdr_size &
|
|
ETH_TX_DATA_2ND_BD_TUNN_INNER_L2_HDR_SIZE_W_MASK) <<
|
|
ETH_TX_DATA_2ND_BD_TUNN_INNER_L2_HDR_SIZE_W_SHIFT;
|
|
bd2_bf1 |= (UNICAST_ADDRESS &
|
|
ETH_TX_DATA_2ND_BD_TUNN_INNER_ETH_TYPE_MASK) <<
|
|
ETH_TX_DATA_2ND_BD_TUNN_INNER_ETH_TYPE_SHIFT;
|
|
/* Treated as IPv6+Ext */
|
|
bd2_bf1 |=
|
|
1 << ETH_TX_DATA_2ND_BD_TUNN_IPV6_EXT_SHIFT;
|
|
|
|
/* Mark inner IPv6 if present */
|
|
if (tx_ol_flags & PKT_TX_IPV6)
|
|
bd2_bf1 |=
|
|
1 << ETH_TX_DATA_2ND_BD_TUNN_INNER_IPV6_SHIFT;
|
|
|
|
/* Inner L4 offsets */
|
|
if ((tx_ol_flags & (PKT_TX_IPV4 | PKT_TX_IPV6)) &&
|
|
(tx_ol_flags & (PKT_TX_UDP_CKSUM |
|
|
PKT_TX_TCP_CKSUM))) {
|
|
/* Determines if BD3 is needed */
|
|
tunn_ipv6_ext_flg = true;
|
|
if ((tx_ol_flags & PKT_TX_L4_MASK) ==
|
|
PKT_TX_UDP_CKSUM) {
|
|
bd2_bf1 |=
|
|
1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
|
|
}
|
|
|
|
/* TODO other pseudo checksum modes are
|
|
* not supported
|
|
*/
|
|
bd2_bf1 |=
|
|
ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
|
|
ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT;
|
|
bd2_bf2 |= (inner_l4_hdr_offset &
|
|
ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK) <<
|
|
ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
|
|
}
|
|
} /* End MPLSoUDP */
|
|
} /* End Tunnel handling */
|
|
|
|
if (tx_ol_flags & PKT_TX_TCP_SEG) {
|
|
lso_flg = true;
|
|
if (unlikely(txq->nb_tx_avail <
|
|
ETH_TX_MIN_BDS_PER_LSO_PKT))
|
|
break;
|
|
/* For LSO, packet header and payload must reside on
|
|
* buffers pointed by different BDs. Using BD1 for HDR
|
|
* and BD2 onwards for data.
|
|
*/
|
|
hdr_size = mbuf->l2_len + mbuf->l3_len + mbuf->l4_len;
|
|
if (tunn_flg)
|
|
hdr_size += mbuf->outer_l2_len +
|
|
mbuf->outer_l3_len;
|
|
|
|
bd1_bd_flags_bf |= 1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT;
|
|
bd1_bd_flags_bf |=
|
|
1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
|
|
/* PKT_TX_TCP_SEG implies PKT_TX_TCP_CKSUM */
|
|
bd1_bd_flags_bf |=
|
|
1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
|
|
mss = rte_cpu_to_le_16(mbuf->tso_segsz);
|
|
/* Using one header BD */
|
|
bd3_bf |= rte_cpu_to_le_16(1 <<
|
|
ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT);
|
|
} else {
|
|
if (unlikely(txq->nb_tx_avail <
|
|
ETH_TX_MIN_BDS_PER_NON_LSO_PKT))
|
|
break;
|
|
bd1_bf |=
|
|
(mbuf->pkt_len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK)
|
|
<< ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
|
|
}
|
|
|
|
/* Descriptor based VLAN insertion */
|
|
if (tx_ol_flags & PKT_TX_VLAN_PKT) {
|
|
vlan = rte_cpu_to_le_16(mbuf->vlan_tci);
|
|
bd1_bd_flags_bf |=
|
|
1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
|
|
}
|
|
|
|
/* Offload the IP checksum in the hardware */
|
|
if (tx_ol_flags & PKT_TX_IP_CKSUM) {
|
|
bd1_bd_flags_bf |=
|
|
1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
|
|
/* There's no DPDK flag to request outer-L4 csum
|
|
* offload. But in the case of tunnel if inner L3 or L4
|
|
* csum offload is requested then we need to force
|
|
* recalculation of L4 tunnel header csum also.
|
|
*/
|
|
if (tunn_flg && ((tx_ol_flags & PKT_TX_TUNNEL_MASK) !=
|
|
PKT_TX_TUNNEL_GRE)) {
|
|
bd1_bd_flags_bf |=
|
|
ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_MASK <<
|
|
ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
|
|
}
|
|
}
|
|
|
|
/* L4 checksum offload (tcp or udp) */
|
|
if ((tx_ol_flags & (PKT_TX_IPV4 | PKT_TX_IPV6)) &&
|
|
(tx_ol_flags & (PKT_TX_UDP_CKSUM | PKT_TX_TCP_CKSUM))) {
|
|
bd1_bd_flags_bf |=
|
|
1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
|
|
/* There's no DPDK flag to request outer-L4 csum
|
|
* offload. But in the case of tunnel if inner L3 or L4
|
|
* csum offload is requested then we need to force
|
|
* recalculation of L4 tunnel header csum also.
|
|
*/
|
|
if (tunn_flg) {
|
|
bd1_bd_flags_bf |=
|
|
ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_MASK <<
|
|
ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
|
|
}
|
|
}
|
|
|
|
/* Fill the entry in the SW ring and the BDs in the FW ring */
|
|
idx = TX_PROD(txq);
|
|
txq->sw_tx_ring[idx].mbuf = mbuf;
|
|
|
|
/* BD1 */
|
|
bd1 = (struct eth_tx_1st_bd *)ecore_chain_produce(&txq->tx_pbl);
|
|
memset(bd1, 0, sizeof(struct eth_tx_1st_bd));
|
|
nbds++;
|
|
|
|
/* Map MBUF linear data for DMA and set in the BD1 */
|
|
QEDE_BD_SET_ADDR_LEN(bd1, rte_mbuf_data_iova(mbuf),
|
|
mbuf->data_len);
|
|
bd1->data.bitfields = rte_cpu_to_le_16(bd1_bf);
|
|
bd1->data.bd_flags.bitfields = bd1_bd_flags_bf;
|
|
bd1->data.vlan = vlan;
|
|
|
|
if (lso_flg || mplsoudp_flg) {
|
|
bd2 = (struct eth_tx_2nd_bd *)ecore_chain_produce
|
|
(&txq->tx_pbl);
|
|
memset(bd2, 0, sizeof(struct eth_tx_2nd_bd));
|
|
nbds++;
|
|
|
|
/* BD1 */
|
|
QEDE_BD_SET_ADDR_LEN(bd1, rte_mbuf_data_iova(mbuf),
|
|
hdr_size);
|
|
/* BD2 */
|
|
QEDE_BD_SET_ADDR_LEN(bd2, (hdr_size +
|
|
rte_mbuf_data_iova(mbuf)),
|
|
mbuf->data_len - hdr_size);
|
|
bd2->data.bitfields1 = rte_cpu_to_le_16(bd2_bf1);
|
|
if (mplsoudp_flg) {
|
|
bd2->data.bitfields2 =
|
|
rte_cpu_to_le_16(bd2_bf2);
|
|
/* Outer L3 size */
|
|
bd2->data.tunn_ip_size =
|
|
rte_cpu_to_le_16(mbuf->outer_l3_len);
|
|
}
|
|
/* BD3 */
|
|
if (lso_flg || (mplsoudp_flg && tunn_ipv6_ext_flg)) {
|
|
bd3 = (struct eth_tx_3rd_bd *)
|
|
ecore_chain_produce(&txq->tx_pbl);
|
|
memset(bd3, 0, sizeof(struct eth_tx_3rd_bd));
|
|
nbds++;
|
|
bd3->data.bitfields = rte_cpu_to_le_16(bd3_bf);
|
|
if (lso_flg)
|
|
bd3->data.lso_mss = mss;
|
|
if (mplsoudp_flg) {
|
|
bd3->data.tunn_l4_hdr_start_offset_w =
|
|
tunn_l4_hdr_start_offset;
|
|
bd3->data.tunn_hdr_size_w =
|
|
tunn_hdr_size;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Handle fragmented MBUF */
|
|
m_seg = mbuf->next;
|
|
|
|
/* Encode scatter gather buffer descriptors if required */
|
|
nb_frags = qede_encode_sg_bd(txq, m_seg, &bd2, &bd3, nbds - 1);
|
|
bd1->data.nbds = nbds + nb_frags;
|
|
|
|
txq->nb_tx_avail -= bd1->data.nbds;
|
|
txq->sw_tx_prod++;
|
|
bd_prod =
|
|
rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl));
|
|
#ifdef RTE_LIBRTE_QEDE_DEBUG_TX
|
|
print_tx_bd_info(txq, bd1, bd2, bd3, tx_ol_flags);
|
|
#endif
|
|
nb_pkt_sent++;
|
|
txq->xmit_pkts++;
|
|
}
|
|
|
|
/* Write value of prod idx into bd_prod */
|
|
txq->tx_db.data.bd_prod = bd_prod;
|
|
rte_wmb();
|
|
rte_compiler_barrier();
|
|
DIRECT_REG_WR_RELAXED(edev, txq->doorbell_addr, txq->tx_db.raw);
|
|
rte_wmb();
|
|
|
|
/* Check again for Tx completions */
|
|
qede_process_tx_compl(edev, txq);
|
|
|
|
PMD_TX_LOG(DEBUG, txq, "to_send=%u sent=%u bd_prod=%u core=%d",
|
|
nb_pkts, nb_pkt_sent, TX_PROD(txq), rte_lcore_id());
|
|
|
|
return nb_pkt_sent;
|
|
}
|
|
|
|
uint16_t
|
|
qede_xmit_pkts_cmt(void *p_fp_cmt, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
|
|
{
|
|
struct qede_fastpath_cmt *fp_cmt = p_fp_cmt;
|
|
uint16_t eng0_pkts, eng1_pkts;
|
|
|
|
eng0_pkts = nb_pkts / 2;
|
|
|
|
eng0_pkts = qede_xmit_pkts(fp_cmt->fp0->txq, tx_pkts, eng0_pkts);
|
|
|
|
eng1_pkts = nb_pkts - eng0_pkts;
|
|
|
|
eng1_pkts = qede_xmit_pkts(fp_cmt->fp1->txq, tx_pkts + eng0_pkts,
|
|
eng1_pkts);
|
|
|
|
return eng0_pkts + eng1_pkts;
|
|
}
|
|
|
|
uint16_t
|
|
qede_rxtx_pkts_dummy(__rte_unused void *p_rxq,
|
|
__rte_unused struct rte_mbuf **pkts,
|
|
__rte_unused uint16_t nb_pkts)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* this function does a fake walk through over completion queue
|
|
* to calculate number of BDs used by HW.
|
|
* At the end, it restores the state of completion queue.
|
|
*/
|
|
static uint16_t
|
|
qede_parse_fp_cqe(struct qede_rx_queue *rxq)
|
|
{
|
|
uint16_t hw_comp_cons, sw_comp_cons, bd_count = 0;
|
|
union eth_rx_cqe *cqe, *orig_cqe = NULL;
|
|
|
|
hw_comp_cons = rte_le_to_cpu_16(*rxq->hw_cons_ptr);
|
|
sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
|
|
|
|
if (hw_comp_cons == sw_comp_cons)
|
|
return 0;
|
|
|
|
/* Get the CQE from the completion ring */
|
|
cqe = (union eth_rx_cqe *)ecore_chain_consume(&rxq->rx_comp_ring);
|
|
orig_cqe = cqe;
|
|
|
|
while (sw_comp_cons != hw_comp_cons) {
|
|
switch (cqe->fast_path_regular.type) {
|
|
case ETH_RX_CQE_TYPE_REGULAR:
|
|
bd_count += cqe->fast_path_regular.bd_num;
|
|
break;
|
|
case ETH_RX_CQE_TYPE_TPA_END:
|
|
bd_count += cqe->fast_path_tpa_end.num_of_bds;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
cqe =
|
|
(union eth_rx_cqe *)ecore_chain_consume(&rxq->rx_comp_ring);
|
|
sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
|
|
}
|
|
|
|
/* revert comp_ring to original state */
|
|
ecore_chain_set_cons(&rxq->rx_comp_ring, sw_comp_cons, orig_cqe);
|
|
|
|
return bd_count;
|
|
}
|
|
|
|
int
|
|
qede_rx_descriptor_status(void *p_rxq, uint16_t offset)
|
|
{
|
|
uint16_t hw_bd_cons, sw_bd_cons, sw_bd_prod;
|
|
uint16_t produced, consumed;
|
|
struct qede_rx_queue *rxq = p_rxq;
|
|
|
|
if (offset > rxq->nb_rx_desc)
|
|
return -EINVAL;
|
|
|
|
sw_bd_cons = ecore_chain_get_cons_idx(&rxq->rx_bd_ring);
|
|
sw_bd_prod = ecore_chain_get_prod_idx(&rxq->rx_bd_ring);
|
|
|
|
/* find BDs used by HW from completion queue elements */
|
|
hw_bd_cons = sw_bd_cons + qede_parse_fp_cqe(rxq);
|
|
|
|
if (hw_bd_cons < sw_bd_cons)
|
|
/* wraparound case */
|
|
consumed = (0xffff - sw_bd_cons) + hw_bd_cons;
|
|
else
|
|
consumed = hw_bd_cons - sw_bd_cons;
|
|
|
|
if (offset <= consumed)
|
|
return RTE_ETH_RX_DESC_DONE;
|
|
|
|
if (sw_bd_prod < sw_bd_cons)
|
|
/* wraparound case */
|
|
produced = (0xffff - sw_bd_cons) + sw_bd_prod;
|
|
else
|
|
produced = sw_bd_prod - sw_bd_cons;
|
|
|
|
if (offset <= produced)
|
|
return RTE_ETH_RX_DESC_AVAIL;
|
|
|
|
return RTE_ETH_RX_DESC_UNAVAIL;
|
|
}
|