numam-dpdk/lib/librte_malloc/malloc_heap.c
Stephen Hemminger 6f41fe75e2 eal: deprecate rte_snprintf
The function rte_snprintf serves no useful purpose. It is the
same as snprintf() for all valid inputs. Deprecate it and
replace all uses in current code.

Leave the tests for the deprecated function in place.

Signed-off-by: Stephen Hemminger <stephen@networkplumber.org>
Acked-by: Thomas Monjalon <thomas.monjalon@6wind.com>
2014-06-27 02:31:24 +02:00

211 lines
6.9 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdint.h>
#include <stddef.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <errno.h>
#include <sys/queue.h>
#include <rte_memory.h>
#include <rte_memzone.h>
#include <rte_tailq.h>
#include <rte_eal.h>
#include <rte_eal_memconfig.h>
#include <rte_launch.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_common.h>
#include <rte_string_fns.h>
#include <rte_spinlock.h>
#include <rte_memcpy.h>
#include <rte_atomic.h>
#include "malloc_elem.h"
#include "malloc_heap.h"
/* since the memzone size starts with a digit, it will appear unquoted in
* rte_config.h, so quote it so it can be passed to rte_str_to_size */
#define MALLOC_MEMZONE_SIZE RTE_STR(RTE_MALLOC_MEMZONE_SIZE)
/*
* returns the configuration setting for the memzone size as a size_t value
*/
static inline size_t
get_malloc_memzone_size(void)
{
return rte_str_to_size(MALLOC_MEMZONE_SIZE);
}
/*
* reserve an extra memory zone and make it available for use by a particular
* heap. This reserves the zone and sets a dummy malloc_elem header at the end
* to prevent overflow. The rest of the zone is added to free list as a single
* large free block
*/
static int
malloc_heap_add_memzone(struct malloc_heap *heap, size_t size, unsigned align)
{
const unsigned mz_flags = 0;
const size_t block_size = get_malloc_memzone_size();
/* ensure the data we want to allocate will fit in the memzone */
const size_t min_size = size + align + MALLOC_ELEM_OVERHEAD * 2;
const struct rte_memzone *mz = NULL;
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
unsigned numa_socket = heap - mcfg->malloc_heaps;
size_t mz_size = min_size;
if (mz_size < block_size)
mz_size = block_size;
char mz_name[RTE_MEMZONE_NAMESIZE];
snprintf(mz_name, sizeof(mz_name), "MALLOC_S%u_HEAP_%u",
numa_socket, heap->mz_count++);
/* try getting a block. if we fail and we don't need as big a block
* as given in the config, we can shrink our request and try again
*/
do {
mz = rte_memzone_reserve(mz_name, mz_size, numa_socket,
mz_flags);
if (mz == NULL)
mz_size /= 2;
} while (mz == NULL && mz_size > min_size);
if (mz == NULL)
return -1;
/* allocate the memory block headers, one at end, one at start */
struct malloc_elem *start_elem = (struct malloc_elem *)mz->addr;
struct malloc_elem *end_elem = RTE_PTR_ADD(mz->addr,
mz_size - MALLOC_ELEM_OVERHEAD);
end_elem = RTE_PTR_ALIGN_FLOOR(end_elem, CACHE_LINE_SIZE);
const unsigned elem_size = (uintptr_t)end_elem - (uintptr_t)start_elem;
malloc_elem_init(start_elem, heap, mz, elem_size);
malloc_elem_mkend(end_elem, start_elem);
malloc_elem_free_list_insert(start_elem);
/* increase heap total size by size of new memzone */
heap->total_size+=mz_size - MALLOC_ELEM_OVERHEAD;
return 0;
}
/*
* Iterates through the freelist for a heap to find a free element
* which can store data of the required size and with the requested alignment.
* Returns null on failure, or pointer to element on success.
*/
static struct malloc_elem *
find_suitable_element(struct malloc_heap *heap, size_t size, unsigned align)
{
size_t idx;
struct malloc_elem *elem;
for (idx = malloc_elem_free_list_index(size);
idx < RTE_HEAP_NUM_FREELISTS; idx++)
{
for (elem = LIST_FIRST(&heap->free_head[idx]);
!!elem; elem = LIST_NEXT(elem, free_list))
{
if (malloc_elem_can_hold(elem, size, align))
return elem;
}
}
return NULL;
}
/*
* Main function called by malloc to allocate a block of memory from the
* heap. It locks the free list, scans it, and adds a new memzone if the
* scan fails. Once the new memzone is added, it re-scans and should return
* the new element after releasing the lock.
*/
void *
malloc_heap_alloc(struct malloc_heap *heap,
const char *type __attribute__((unused)), size_t size, unsigned align)
{
size = CACHE_LINE_ROUNDUP(size);
align = CACHE_LINE_ROUNDUP(align);
rte_spinlock_lock(&heap->lock);
struct malloc_elem *elem = find_suitable_element(heap, size, align);
if (elem == NULL){
if ((malloc_heap_add_memzone(heap, size, align)) == 0)
elem = find_suitable_element(heap, size, align);
}
if (elem != NULL){
elem = malloc_elem_alloc(elem, size, align);
/* increase heap's count of allocated elements */
heap->alloc_count++;
}
rte_spinlock_unlock(&heap->lock);
return elem == NULL ? NULL : (void *)(&elem[1]);
}
/*
* Function to retrieve data for heap on given socket
*/
int
malloc_heap_get_stats(const struct malloc_heap *heap,
struct rte_malloc_socket_stats *socket_stats)
{
size_t idx;
struct malloc_elem *elem;
/* Initialise variables for heap */
socket_stats->free_count = 0;
socket_stats->heap_freesz_bytes = 0;
socket_stats->greatest_free_size = 0;
/* Iterate through free list */
for (idx = 0; idx < RTE_HEAP_NUM_FREELISTS; idx++) {
for (elem = LIST_FIRST(&heap->free_head[idx]);
!!elem; elem = LIST_NEXT(elem, free_list))
{
socket_stats->free_count++;
socket_stats->heap_freesz_bytes += elem->size;
if (elem->size > socket_stats->greatest_free_size)
socket_stats->greatest_free_size = elem->size;
}
}
/* Get stats on overall heap and allocated memory on this heap */
socket_stats->heap_totalsz_bytes = heap->total_size;
socket_stats->heap_allocsz_bytes = (socket_stats->heap_totalsz_bytes -
socket_stats->heap_freesz_bytes);
socket_stats->alloc_count = heap->alloc_count;
return 0;
}