numam-dpdk/app/test-crypto-perf/main.c
Akhil Goyal 8fd2b5a60d app/crypto-perf: support PDCP
test-crypto-perf app is updated to calculate PDCP
throughput numbers.

2 new params are added for PDCP
--pdcp-sn-sz <5/7/12/15/18>
--pdcp-domain <control/user>

./dpdk-test-crypto-perf --master-lcore 0 -l 0,1 --log-level=8 --
--devtype crypto_dpaa2_sec --optype pdcp --cipher-algo aes-ctr
--cipher-op encrypt --auth-algo null --auth-op generate  --auth-key-sz
16 --ptest throughput --total-ops 100000 --burst-sz 64 --buffer-sz
64,390,1512  --pool-sz 4096 --silent --pdcp-sn-sz 12 --pdcp-domain
control

Signed-off-by: Manish Tomar <manish.tomar@nxp.com>
Signed-off-by: Akhil Goyal <akhil.goyal@nxp.com>
Acked-by: Hemant Agrawal <hemant.agrawal@nxp.com>
2019-11-20 12:35:51 +01:00

758 lines
19 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2016-2017 Intel Corporation
*/
#include <stdio.h>
#include <unistd.h>
#include <rte_malloc.h>
#include <rte_random.h>
#include <rte_eal.h>
#include <rte_cryptodev.h>
#ifdef RTE_LIBRTE_PMD_CRYPTO_SCHEDULER
#include <rte_cryptodev_scheduler.h>
#endif
#include "cperf.h"
#include "cperf_options.h"
#include "cperf_test_vector_parsing.h"
#include "cperf_test_throughput.h"
#include "cperf_test_latency.h"
#include "cperf_test_verify.h"
#include "cperf_test_pmd_cyclecount.h"
static struct {
struct rte_mempool *sess_mp;
struct rte_mempool *priv_mp;
} session_pool_socket[RTE_MAX_NUMA_NODES];
const char *cperf_test_type_strs[] = {
[CPERF_TEST_TYPE_THROUGHPUT] = "throughput",
[CPERF_TEST_TYPE_LATENCY] = "latency",
[CPERF_TEST_TYPE_VERIFY] = "verify",
[CPERF_TEST_TYPE_PMDCC] = "pmd-cyclecount"
};
const char *cperf_op_type_strs[] = {
[CPERF_CIPHER_ONLY] = "cipher-only",
[CPERF_AUTH_ONLY] = "auth-only",
[CPERF_CIPHER_THEN_AUTH] = "cipher-then-auth",
[CPERF_AUTH_THEN_CIPHER] = "auth-then-cipher",
[CPERF_AEAD] = "aead",
[CPERF_PDCP] = "pdcp"
};
const struct cperf_test cperf_testmap[] = {
[CPERF_TEST_TYPE_THROUGHPUT] = {
cperf_throughput_test_constructor,
cperf_throughput_test_runner,
cperf_throughput_test_destructor
},
[CPERF_TEST_TYPE_LATENCY] = {
cperf_latency_test_constructor,
cperf_latency_test_runner,
cperf_latency_test_destructor
},
[CPERF_TEST_TYPE_VERIFY] = {
cperf_verify_test_constructor,
cperf_verify_test_runner,
cperf_verify_test_destructor
},
[CPERF_TEST_TYPE_PMDCC] = {
cperf_pmd_cyclecount_test_constructor,
cperf_pmd_cyclecount_test_runner,
cperf_pmd_cyclecount_test_destructor
}
};
static int
fill_session_pool_socket(int32_t socket_id, uint32_t session_priv_size,
uint32_t nb_sessions)
{
char mp_name[RTE_MEMPOOL_NAMESIZE];
struct rte_mempool *sess_mp;
if (session_pool_socket[socket_id].priv_mp == NULL) {
snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
"priv_sess_mp_%u", socket_id);
sess_mp = rte_mempool_create(mp_name,
nb_sessions,
session_priv_size,
0, 0, NULL, NULL, NULL,
NULL, socket_id,
0);
if (sess_mp == NULL) {
printf("Cannot create pool \"%s\" on socket %d\n",
mp_name, socket_id);
return -ENOMEM;
}
printf("Allocated pool \"%s\" on socket %d\n",
mp_name, socket_id);
session_pool_socket[socket_id].priv_mp = sess_mp;
}
if (session_pool_socket[socket_id].sess_mp == NULL) {
snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
"sess_mp_%u", socket_id);
sess_mp = rte_cryptodev_sym_session_pool_create(mp_name,
nb_sessions, 0, 0, 0, socket_id);
if (sess_mp == NULL) {
printf("Cannot create pool \"%s\" on socket %d\n",
mp_name, socket_id);
return -ENOMEM;
}
printf("Allocated pool \"%s\" on socket %d\n",
mp_name, socket_id);
session_pool_socket[socket_id].sess_mp = sess_mp;
}
return 0;
}
static int
cperf_initialize_cryptodev(struct cperf_options *opts, uint8_t *enabled_cdevs)
{
uint8_t enabled_cdev_count = 0, nb_lcores, cdev_id;
uint32_t sessions_needed = 0;
unsigned int i, j;
int ret;
enabled_cdev_count = rte_cryptodev_devices_get(opts->device_type,
enabled_cdevs, RTE_CRYPTO_MAX_DEVS);
if (enabled_cdev_count == 0) {
printf("No crypto devices type %s available\n",
opts->device_type);
return -EINVAL;
}
nb_lcores = rte_lcore_count() - 1;
if (nb_lcores < 1) {
RTE_LOG(ERR, USER1,
"Number of enabled cores need to be higher than 1\n");
return -EINVAL;
}
/*
* Use less number of devices,
* if there are more available than cores.
*/
if (enabled_cdev_count > nb_lcores)
enabled_cdev_count = nb_lcores;
/* Create a mempool shared by all the devices */
uint32_t max_sess_size = 0, sess_size;
for (cdev_id = 0; cdev_id < rte_cryptodev_count(); cdev_id++) {
sess_size = rte_cryptodev_sym_get_private_session_size(cdev_id);
if (sess_size > max_sess_size)
max_sess_size = sess_size;
}
/*
* Calculate number of needed queue pairs, based on the amount
* of available number of logical cores and crypto devices.
* For instance, if there are 4 cores and 2 crypto devices,
* 2 queue pairs will be set up per device.
*/
opts->nb_qps = (nb_lcores % enabled_cdev_count) ?
(nb_lcores / enabled_cdev_count) + 1 :
nb_lcores / enabled_cdev_count;
for (i = 0; i < enabled_cdev_count &&
i < RTE_CRYPTO_MAX_DEVS; i++) {
cdev_id = enabled_cdevs[i];
#ifdef RTE_LIBRTE_PMD_CRYPTO_SCHEDULER
/*
* If multi-core scheduler is used, limit the number
* of queue pairs to 1, as there is no way to know
* how many cores are being used by the PMD, and
* how many will be available for the application.
*/
if (!strcmp((const char *)opts->device_type, "crypto_scheduler") &&
rte_cryptodev_scheduler_mode_get(cdev_id) ==
CDEV_SCHED_MODE_MULTICORE)
opts->nb_qps = 1;
#endif
struct rte_cryptodev_info cdev_info;
uint8_t socket_id = rte_cryptodev_socket_id(cdev_id);
/* range check the socket_id - negative values become big
* positive ones due to use of unsigned value
*/
if (socket_id >= RTE_MAX_NUMA_NODES)
socket_id = 0;
rte_cryptodev_info_get(cdev_id, &cdev_info);
if (opts->nb_qps > cdev_info.max_nb_queue_pairs) {
printf("Number of needed queue pairs is higher "
"than the maximum number of queue pairs "
"per device.\n");
printf("Lower the number of cores or increase "
"the number of crypto devices\n");
return -EINVAL;
}
struct rte_cryptodev_config conf = {
.nb_queue_pairs = opts->nb_qps,
.socket_id = socket_id,
.ff_disable = RTE_CRYPTODEV_FF_SECURITY |
RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO,
};
struct rte_cryptodev_qp_conf qp_conf = {
.nb_descriptors = opts->nb_descriptors
};
/**
* Device info specifies the min headroom and tailroom
* requirement for the crypto PMD. This need to be honoured
* by the application, while creating mbuf.
*/
if (opts->headroom_sz < cdev_info.min_mbuf_headroom_req) {
/* Update headroom */
opts->headroom_sz = cdev_info.min_mbuf_headroom_req;
}
if (opts->tailroom_sz < cdev_info.min_mbuf_tailroom_req) {
/* Update tailroom */
opts->tailroom_sz = cdev_info.min_mbuf_tailroom_req;
}
/* Update segment size to include headroom & tailroom */
opts->segment_sz += (opts->headroom_sz + opts->tailroom_sz);
uint32_t dev_max_nb_sess = cdev_info.sym.max_nb_sessions;
/*
* Two sessions objects are required for each session
* (one for the header, one for the private data)
*/
if (!strcmp((const char *)opts->device_type,
"crypto_scheduler")) {
#ifdef RTE_LIBRTE_PMD_CRYPTO_SCHEDULER
uint32_t nb_slaves =
rte_cryptodev_scheduler_slaves_get(cdev_id,
NULL);
sessions_needed = enabled_cdev_count *
opts->nb_qps * nb_slaves;
#endif
} else
sessions_needed = enabled_cdev_count *
opts->nb_qps;
/*
* A single session is required per queue pair
* in each device
*/
if (dev_max_nb_sess != 0 && dev_max_nb_sess < opts->nb_qps) {
RTE_LOG(ERR, USER1,
"Device does not support at least "
"%u sessions\n", opts->nb_qps);
return -ENOTSUP;
}
ret = fill_session_pool_socket(socket_id, max_sess_size,
sessions_needed);
if (ret < 0)
return ret;
qp_conf.mp_session = session_pool_socket[socket_id].sess_mp;
qp_conf.mp_session_private =
session_pool_socket[socket_id].priv_mp;
ret = rte_cryptodev_configure(cdev_id, &conf);
if (ret < 0) {
printf("Failed to configure cryptodev %u", cdev_id);
return -EINVAL;
}
for (j = 0; j < opts->nb_qps; j++) {
ret = rte_cryptodev_queue_pair_setup(cdev_id, j,
&qp_conf, socket_id);
if (ret < 0) {
printf("Failed to setup queue pair %u on "
"cryptodev %u", j, cdev_id);
return -EINVAL;
}
}
ret = rte_cryptodev_start(cdev_id);
if (ret < 0) {
printf("Failed to start device %u: error %d\n",
cdev_id, ret);
return -EPERM;
}
}
return enabled_cdev_count;
}
static int
cperf_verify_devices_capabilities(struct cperf_options *opts,
uint8_t *enabled_cdevs, uint8_t nb_cryptodevs)
{
struct rte_cryptodev_sym_capability_idx cap_idx;
const struct rte_cryptodev_symmetric_capability *capability;
uint8_t i, cdev_id;
int ret;
for (i = 0; i < nb_cryptodevs; i++) {
cdev_id = enabled_cdevs[i];
if (opts->op_type == CPERF_AUTH_ONLY ||
opts->op_type == CPERF_CIPHER_THEN_AUTH ||
opts->op_type == CPERF_AUTH_THEN_CIPHER) {
cap_idx.type = RTE_CRYPTO_SYM_XFORM_AUTH;
cap_idx.algo.auth = opts->auth_algo;
capability = rte_cryptodev_sym_capability_get(cdev_id,
&cap_idx);
if (capability == NULL)
return -1;
ret = rte_cryptodev_sym_capability_check_auth(
capability,
opts->auth_key_sz,
opts->digest_sz,
opts->auth_iv_sz);
if (ret != 0)
return ret;
}
if (opts->op_type == CPERF_CIPHER_ONLY ||
opts->op_type == CPERF_CIPHER_THEN_AUTH ||
opts->op_type == CPERF_AUTH_THEN_CIPHER) {
cap_idx.type = RTE_CRYPTO_SYM_XFORM_CIPHER;
cap_idx.algo.cipher = opts->cipher_algo;
capability = rte_cryptodev_sym_capability_get(cdev_id,
&cap_idx);
if (capability == NULL)
return -1;
ret = rte_cryptodev_sym_capability_check_cipher(
capability,
opts->cipher_key_sz,
opts->cipher_iv_sz);
if (ret != 0)
return ret;
}
if (opts->op_type == CPERF_AEAD) {
cap_idx.type = RTE_CRYPTO_SYM_XFORM_AEAD;
cap_idx.algo.aead = opts->aead_algo;
capability = rte_cryptodev_sym_capability_get(cdev_id,
&cap_idx);
if (capability == NULL)
return -1;
ret = rte_cryptodev_sym_capability_check_aead(
capability,
opts->aead_key_sz,
opts->digest_sz,
opts->aead_aad_sz,
opts->aead_iv_sz);
if (ret != 0)
return ret;
}
}
return 0;
}
static int
cperf_check_test_vector(struct cperf_options *opts,
struct cperf_test_vector *test_vec)
{
if (opts->op_type == CPERF_CIPHER_ONLY) {
if (opts->cipher_algo == RTE_CRYPTO_CIPHER_NULL) {
if (test_vec->plaintext.data == NULL)
return -1;
} else if (opts->cipher_algo != RTE_CRYPTO_CIPHER_NULL) {
if (test_vec->plaintext.data == NULL)
return -1;
if (test_vec->plaintext.length < opts->max_buffer_size)
return -1;
if (test_vec->ciphertext.data == NULL)
return -1;
if (test_vec->ciphertext.length < opts->max_buffer_size)
return -1;
/* Cipher IV is only required for some algorithms */
if (opts->cipher_iv_sz &&
test_vec->cipher_iv.data == NULL)
return -1;
if (test_vec->cipher_iv.length != opts->cipher_iv_sz)
return -1;
if (test_vec->cipher_key.data == NULL)
return -1;
if (test_vec->cipher_key.length != opts->cipher_key_sz)
return -1;
}
} else if (opts->op_type == CPERF_AUTH_ONLY) {
if (opts->auth_algo != RTE_CRYPTO_AUTH_NULL) {
if (test_vec->plaintext.data == NULL)
return -1;
if (test_vec->plaintext.length < opts->max_buffer_size)
return -1;
/* Auth key is only required for some algorithms */
if (opts->auth_key_sz &&
test_vec->auth_key.data == NULL)
return -1;
if (test_vec->auth_key.length != opts->auth_key_sz)
return -1;
if (test_vec->auth_iv.length != opts->auth_iv_sz)
return -1;
/* Auth IV is only required for some algorithms */
if (opts->auth_iv_sz && test_vec->auth_iv.data == NULL)
return -1;
if (test_vec->digest.data == NULL)
return -1;
if (test_vec->digest.length < opts->digest_sz)
return -1;
}
} else if (opts->op_type == CPERF_CIPHER_THEN_AUTH ||
opts->op_type == CPERF_AUTH_THEN_CIPHER) {
if (opts->cipher_algo == RTE_CRYPTO_CIPHER_NULL) {
if (test_vec->plaintext.data == NULL)
return -1;
if (test_vec->plaintext.length < opts->max_buffer_size)
return -1;
} else if (opts->cipher_algo != RTE_CRYPTO_CIPHER_NULL) {
if (test_vec->plaintext.data == NULL)
return -1;
if (test_vec->plaintext.length < opts->max_buffer_size)
return -1;
if (test_vec->ciphertext.data == NULL)
return -1;
if (test_vec->ciphertext.length < opts->max_buffer_size)
return -1;
if (test_vec->cipher_iv.data == NULL)
return -1;
if (test_vec->cipher_iv.length != opts->cipher_iv_sz)
return -1;
if (test_vec->cipher_key.data == NULL)
return -1;
if (test_vec->cipher_key.length != opts->cipher_key_sz)
return -1;
}
if (opts->auth_algo != RTE_CRYPTO_AUTH_NULL) {
if (test_vec->auth_key.data == NULL)
return -1;
if (test_vec->auth_key.length != opts->auth_key_sz)
return -1;
if (test_vec->auth_iv.length != opts->auth_iv_sz)
return -1;
/* Auth IV is only required for some algorithms */
if (opts->auth_iv_sz && test_vec->auth_iv.data == NULL)
return -1;
if (test_vec->digest.data == NULL)
return -1;
if (test_vec->digest.length < opts->digest_sz)
return -1;
}
} else if (opts->op_type == CPERF_AEAD) {
if (test_vec->plaintext.data == NULL)
return -1;
if (test_vec->plaintext.length < opts->max_buffer_size)
return -1;
if (test_vec->ciphertext.data == NULL)
return -1;
if (test_vec->ciphertext.length < opts->max_buffer_size)
return -1;
if (test_vec->aead_key.data == NULL)
return -1;
if (test_vec->aead_key.length != opts->aead_key_sz)
return -1;
if (test_vec->aead_iv.data == NULL)
return -1;
if (test_vec->aead_iv.length != opts->aead_iv_sz)
return -1;
if (test_vec->aad.data == NULL)
return -1;
if (test_vec->aad.length != opts->aead_aad_sz)
return -1;
if (test_vec->digest.data == NULL)
return -1;
if (test_vec->digest.length < opts->digest_sz)
return -1;
}
return 0;
}
int
main(int argc, char **argv)
{
struct cperf_options opts = {0};
struct cperf_test_vector *t_vec = NULL;
struct cperf_op_fns op_fns;
void *ctx[RTE_MAX_LCORE] = { };
int nb_cryptodevs = 0;
uint16_t total_nb_qps = 0;
uint8_t cdev_id, i;
uint8_t enabled_cdevs[RTE_CRYPTO_MAX_DEVS] = { 0 };
uint8_t buffer_size_idx = 0;
int ret;
uint32_t lcore_id;
/* Initialise DPDK EAL */
ret = rte_eal_init(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Invalid EAL arguments!\n");
argc -= ret;
argv += ret;
cperf_options_default(&opts);
ret = cperf_options_parse(&opts, argc, argv);
if (ret) {
RTE_LOG(ERR, USER1, "Parsing on or more user options failed\n");
goto err;
}
ret = cperf_options_check(&opts);
if (ret) {
RTE_LOG(ERR, USER1,
"Checking on or more user options failed\n");
goto err;
}
nb_cryptodevs = cperf_initialize_cryptodev(&opts, enabled_cdevs);
if (!opts.silent)
cperf_options_dump(&opts);
if (nb_cryptodevs < 1) {
RTE_LOG(ERR, USER1, "Failed to initialise requested crypto "
"device type\n");
nb_cryptodevs = 0;
goto err;
}
ret = cperf_verify_devices_capabilities(&opts, enabled_cdevs,
nb_cryptodevs);
if (ret) {
RTE_LOG(ERR, USER1, "Crypto device type does not support "
"capabilities requested\n");
goto err;
}
if (opts.test_file != NULL) {
t_vec = cperf_test_vector_get_from_file(&opts);
if (t_vec == NULL) {
RTE_LOG(ERR, USER1,
"Failed to create test vector for"
" specified file\n");
goto err;
}
if (cperf_check_test_vector(&opts, t_vec)) {
RTE_LOG(ERR, USER1, "Incomplete necessary test vectors"
"\n");
goto err;
}
} else {
t_vec = cperf_test_vector_get_dummy(&opts);
if (t_vec == NULL) {
RTE_LOG(ERR, USER1,
"Failed to create test vector for"
" specified algorithms\n");
goto err;
}
}
ret = cperf_get_op_functions(&opts, &op_fns);
if (ret) {
RTE_LOG(ERR, USER1, "Failed to find function ops set for "
"specified algorithms combination\n");
goto err;
}
if (!opts.silent)
show_test_vector(t_vec);
total_nb_qps = nb_cryptodevs * opts.nb_qps;
i = 0;
uint8_t qp_id = 0, cdev_index = 0;
RTE_LCORE_FOREACH_SLAVE(lcore_id) {
if (i == total_nb_qps)
break;
cdev_id = enabled_cdevs[cdev_index];
uint8_t socket_id = rte_cryptodev_socket_id(cdev_id);
ctx[i] = cperf_testmap[opts.test].constructor(
session_pool_socket[socket_id].sess_mp,
session_pool_socket[socket_id].priv_mp,
cdev_id, qp_id,
&opts, t_vec, &op_fns);
if (ctx[i] == NULL) {
RTE_LOG(ERR, USER1, "Test run constructor failed\n");
goto err;
}
qp_id = (qp_id + 1) % opts.nb_qps;
if (qp_id == 0)
cdev_index++;
i++;
}
if (opts.imix_distribution_count != 0) {
uint8_t buffer_size_count = opts.buffer_size_count;
uint16_t distribution_total[buffer_size_count];
uint32_t op_idx;
uint32_t test_average_size = 0;
const uint32_t *buffer_size_list = opts.buffer_size_list;
const uint32_t *imix_distribution_list = opts.imix_distribution_list;
opts.imix_buffer_sizes = rte_malloc(NULL,
sizeof(uint32_t) * opts.pool_sz,
0);
/*
* Calculate accumulated distribution of
* probabilities per packet size
*/
distribution_total[0] = imix_distribution_list[0];
for (i = 1; i < buffer_size_count; i++)
distribution_total[i] = imix_distribution_list[i] +
distribution_total[i-1];
/* Calculate a random sequence of packet sizes, based on distribution */
for (op_idx = 0; op_idx < opts.pool_sz; op_idx++) {
uint16_t random_number = rte_rand() %
distribution_total[buffer_size_count - 1];
for (i = 0; i < buffer_size_count; i++)
if (random_number < distribution_total[i])
break;
opts.imix_buffer_sizes[op_idx] = buffer_size_list[i];
}
/* Calculate average buffer size for the IMIX distribution */
for (i = 0; i < buffer_size_count; i++)
test_average_size += buffer_size_list[i] *
imix_distribution_list[i];
opts.test_buffer_size = test_average_size /
distribution_total[buffer_size_count - 1];
i = 0;
RTE_LCORE_FOREACH_SLAVE(lcore_id) {
if (i == total_nb_qps)
break;
rte_eal_remote_launch(cperf_testmap[opts.test].runner,
ctx[i], lcore_id);
i++;
}
i = 0;
RTE_LCORE_FOREACH_SLAVE(lcore_id) {
if (i == total_nb_qps)
break;
ret |= rte_eal_wait_lcore(lcore_id);
i++;
}
if (ret != EXIT_SUCCESS)
goto err;
} else {
/* Get next size from range or list */
if (opts.inc_buffer_size != 0)
opts.test_buffer_size = opts.min_buffer_size;
else
opts.test_buffer_size = opts.buffer_size_list[0];
while (opts.test_buffer_size <= opts.max_buffer_size) {
i = 0;
RTE_LCORE_FOREACH_SLAVE(lcore_id) {
if (i == total_nb_qps)
break;
rte_eal_remote_launch(cperf_testmap[opts.test].runner,
ctx[i], lcore_id);
i++;
}
i = 0;
RTE_LCORE_FOREACH_SLAVE(lcore_id) {
if (i == total_nb_qps)
break;
ret |= rte_eal_wait_lcore(lcore_id);
i++;
}
if (ret != EXIT_SUCCESS)
goto err;
/* Get next size from range or list */
if (opts.inc_buffer_size != 0)
opts.test_buffer_size += opts.inc_buffer_size;
else {
if (++buffer_size_idx == opts.buffer_size_count)
break;
opts.test_buffer_size =
opts.buffer_size_list[buffer_size_idx];
}
}
}
i = 0;
RTE_LCORE_FOREACH_SLAVE(lcore_id) {
if (i == total_nb_qps)
break;
cperf_testmap[opts.test].destructor(ctx[i]);
i++;
}
for (i = 0; i < nb_cryptodevs &&
i < RTE_CRYPTO_MAX_DEVS; i++)
rte_cryptodev_stop(enabled_cdevs[i]);
free_test_vector(t_vec, &opts);
printf("\n");
return EXIT_SUCCESS;
err:
i = 0;
RTE_LCORE_FOREACH_SLAVE(lcore_id) {
if (i == total_nb_qps)
break;
if (ctx[i] && cperf_testmap[opts.test].destructor)
cperf_testmap[opts.test].destructor(ctx[i]);
i++;
}
for (i = 0; i < nb_cryptodevs &&
i < RTE_CRYPTO_MAX_DEVS; i++)
rte_cryptodev_stop(enabled_cdevs[i]);
rte_free(opts.imix_buffer_sizes);
free_test_vector(t_vec, &opts);
printf("\n");
return EXIT_FAILURE;
}