numam-dpdk/drivers/net/e1000/igb_ethdev.c
Ferruh Yigit 323e7b667f ethdev: make default behavior CRC strip on Rx
Removed DEV_RX_OFFLOAD_CRC_STRIP offload flag.
Without any specific Rx offload flag, default behavior by PMDs is to
strip CRC.

PMDs that support keeping CRC should advertise DEV_RX_OFFLOAD_KEEP_CRC
Rx offload capability.

Applications that require keeping CRC should check PMD capability first
and if it is supported can enable this feature by setting
DEV_RX_OFFLOAD_KEEP_CRC in Rx offload flag in rte_eth_dev_configure()

Signed-off-by: Ferruh Yigit <ferruh.yigit@intel.com>
Acked-by: Tomasz Duszynski <tdu@semihalf.com>
Acked-by: Shahaf Shuler <shahafs@mellanox.com>
Reviewed-by: Maxime Coquelin <maxime.coquelin@redhat.com>
Acked-by: Jan Remes <remes@netcope.com>
Acked-by: Jerin Jacob <jerin.jacob@caviumnetworks.com>
Acked-by: Hyong Youb Kim <hyonkim@cisco.com>
2018-09-14 20:08:41 +02:00

5693 lines
159 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2016 Intel Corporation
*/
#include <sys/queue.h>
#include <stdio.h>
#include <errno.h>
#include <stdint.h>
#include <stdarg.h>
#include <rte_common.h>
#include <rte_interrupts.h>
#include <rte_byteorder.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_pci.h>
#include <rte_bus_pci.h>
#include <rte_ether.h>
#include <rte_ethdev_driver.h>
#include <rte_ethdev_pci.h>
#include <rte_memory.h>
#include <rte_eal.h>
#include <rte_malloc.h>
#include <rte_dev.h>
#include "e1000_logs.h"
#include "base/e1000_api.h"
#include "e1000_ethdev.h"
#include "igb_regs.h"
/*
* Default values for port configuration
*/
#define IGB_DEFAULT_RX_FREE_THRESH 32
#define IGB_DEFAULT_RX_PTHRESH ((hw->mac.type == e1000_i354) ? 12 : 8)
#define IGB_DEFAULT_RX_HTHRESH 8
#define IGB_DEFAULT_RX_WTHRESH ((hw->mac.type == e1000_82576) ? 1 : 4)
#define IGB_DEFAULT_TX_PTHRESH ((hw->mac.type == e1000_i354) ? 20 : 8)
#define IGB_DEFAULT_TX_HTHRESH 1
#define IGB_DEFAULT_TX_WTHRESH ((hw->mac.type == e1000_82576) ? 1 : 16)
/* Bit shift and mask */
#define IGB_4_BIT_WIDTH (CHAR_BIT / 2)
#define IGB_4_BIT_MASK RTE_LEN2MASK(IGB_4_BIT_WIDTH, uint8_t)
#define IGB_8_BIT_WIDTH CHAR_BIT
#define IGB_8_BIT_MASK UINT8_MAX
/* Additional timesync values. */
#define E1000_CYCLECOUNTER_MASK 0xffffffffffffffffULL
#define E1000_ETQF_FILTER_1588 3
#define IGB_82576_TSYNC_SHIFT 16
#define E1000_INCPERIOD_82576 (1 << E1000_TIMINCA_16NS_SHIFT)
#define E1000_INCVALUE_82576 (16 << IGB_82576_TSYNC_SHIFT)
#define E1000_TSAUXC_DISABLE_SYSTIME 0x80000000
#define E1000_VTIVAR_MISC 0x01740
#define E1000_VTIVAR_MISC_MASK 0xFF
#define E1000_VTIVAR_VALID 0x80
#define E1000_VTIVAR_MISC_MAILBOX 0
#define E1000_VTIVAR_MISC_INTR_MASK 0x3
/* External VLAN Enable bit mask */
#define E1000_CTRL_EXT_EXT_VLAN (1 << 26)
/* External VLAN Ether Type bit mask and shift */
#define E1000_VET_VET_EXT 0xFFFF0000
#define E1000_VET_VET_EXT_SHIFT 16
static int eth_igb_configure(struct rte_eth_dev *dev);
static int eth_igb_start(struct rte_eth_dev *dev);
static void eth_igb_stop(struct rte_eth_dev *dev);
static int eth_igb_dev_set_link_up(struct rte_eth_dev *dev);
static int eth_igb_dev_set_link_down(struct rte_eth_dev *dev);
static void eth_igb_close(struct rte_eth_dev *dev);
static void eth_igb_promiscuous_enable(struct rte_eth_dev *dev);
static void eth_igb_promiscuous_disable(struct rte_eth_dev *dev);
static void eth_igb_allmulticast_enable(struct rte_eth_dev *dev);
static void eth_igb_allmulticast_disable(struct rte_eth_dev *dev);
static int eth_igb_link_update(struct rte_eth_dev *dev,
int wait_to_complete);
static int eth_igb_stats_get(struct rte_eth_dev *dev,
struct rte_eth_stats *rte_stats);
static int eth_igb_xstats_get(struct rte_eth_dev *dev,
struct rte_eth_xstat *xstats, unsigned n);
static int eth_igb_xstats_get_by_id(struct rte_eth_dev *dev,
const uint64_t *ids,
uint64_t *values, unsigned int n);
static int eth_igb_xstats_get_names(struct rte_eth_dev *dev,
struct rte_eth_xstat_name *xstats_names,
unsigned int size);
static int eth_igb_xstats_get_names_by_id(struct rte_eth_dev *dev,
struct rte_eth_xstat_name *xstats_names, const uint64_t *ids,
unsigned int limit);
static void eth_igb_stats_reset(struct rte_eth_dev *dev);
static void eth_igb_xstats_reset(struct rte_eth_dev *dev);
static int eth_igb_fw_version_get(struct rte_eth_dev *dev,
char *fw_version, size_t fw_size);
static void eth_igb_infos_get(struct rte_eth_dev *dev,
struct rte_eth_dev_info *dev_info);
static const uint32_t *eth_igb_supported_ptypes_get(struct rte_eth_dev *dev);
static void eth_igbvf_infos_get(struct rte_eth_dev *dev,
struct rte_eth_dev_info *dev_info);
static int eth_igb_flow_ctrl_get(struct rte_eth_dev *dev,
struct rte_eth_fc_conf *fc_conf);
static int eth_igb_flow_ctrl_set(struct rte_eth_dev *dev,
struct rte_eth_fc_conf *fc_conf);
static int eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev, uint8_t on);
static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev);
static int eth_igb_interrupt_get_status(struct rte_eth_dev *dev);
static int eth_igb_interrupt_action(struct rte_eth_dev *dev,
struct rte_intr_handle *handle);
static void eth_igb_interrupt_handler(void *param);
static int igb_hardware_init(struct e1000_hw *hw);
static void igb_hw_control_acquire(struct e1000_hw *hw);
static void igb_hw_control_release(struct e1000_hw *hw);
static void igb_init_manageability(struct e1000_hw *hw);
static void igb_release_manageability(struct e1000_hw *hw);
static int eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
static int eth_igb_vlan_filter_set(struct rte_eth_dev *dev,
uint16_t vlan_id, int on);
static int eth_igb_vlan_tpid_set(struct rte_eth_dev *dev,
enum rte_vlan_type vlan_type,
uint16_t tpid_id);
static int eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask);
static void igb_vlan_hw_filter_enable(struct rte_eth_dev *dev);
static void igb_vlan_hw_filter_disable(struct rte_eth_dev *dev);
static void igb_vlan_hw_strip_enable(struct rte_eth_dev *dev);
static void igb_vlan_hw_strip_disable(struct rte_eth_dev *dev);
static void igb_vlan_hw_extend_enable(struct rte_eth_dev *dev);
static void igb_vlan_hw_extend_disable(struct rte_eth_dev *dev);
static int eth_igb_led_on(struct rte_eth_dev *dev);
static int eth_igb_led_off(struct rte_eth_dev *dev);
static void igb_intr_disable(struct e1000_hw *hw);
static int igb_get_rx_buffer_size(struct e1000_hw *hw);
static int eth_igb_rar_set(struct rte_eth_dev *dev,
struct ether_addr *mac_addr,
uint32_t index, uint32_t pool);
static void eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index);
static int eth_igb_default_mac_addr_set(struct rte_eth_dev *dev,
struct ether_addr *addr);
static void igbvf_intr_disable(struct e1000_hw *hw);
static int igbvf_dev_configure(struct rte_eth_dev *dev);
static int igbvf_dev_start(struct rte_eth_dev *dev);
static void igbvf_dev_stop(struct rte_eth_dev *dev);
static void igbvf_dev_close(struct rte_eth_dev *dev);
static void igbvf_promiscuous_enable(struct rte_eth_dev *dev);
static void igbvf_promiscuous_disable(struct rte_eth_dev *dev);
static void igbvf_allmulticast_enable(struct rte_eth_dev *dev);
static void igbvf_allmulticast_disable(struct rte_eth_dev *dev);
static int eth_igbvf_link_update(struct e1000_hw *hw);
static int eth_igbvf_stats_get(struct rte_eth_dev *dev,
struct rte_eth_stats *rte_stats);
static int eth_igbvf_xstats_get(struct rte_eth_dev *dev,
struct rte_eth_xstat *xstats, unsigned n);
static int eth_igbvf_xstats_get_names(struct rte_eth_dev *dev,
struct rte_eth_xstat_name *xstats_names,
unsigned limit);
static void eth_igbvf_stats_reset(struct rte_eth_dev *dev);
static int igbvf_vlan_filter_set(struct rte_eth_dev *dev,
uint16_t vlan_id, int on);
static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on);
static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on);
static int igbvf_default_mac_addr_set(struct rte_eth_dev *dev,
struct ether_addr *addr);
static int igbvf_get_reg_length(struct rte_eth_dev *dev);
static int igbvf_get_regs(struct rte_eth_dev *dev,
struct rte_dev_reg_info *regs);
static int eth_igb_rss_reta_update(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size);
static int eth_igb_rss_reta_query(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size);
static int eth_igb_syn_filter_get(struct rte_eth_dev *dev,
struct rte_eth_syn_filter *filter);
static int eth_igb_syn_filter_handle(struct rte_eth_dev *dev,
enum rte_filter_op filter_op,
void *arg);
static int igb_add_2tuple_filter(struct rte_eth_dev *dev,
struct rte_eth_ntuple_filter *ntuple_filter);
static int igb_remove_2tuple_filter(struct rte_eth_dev *dev,
struct rte_eth_ntuple_filter *ntuple_filter);
static int eth_igb_get_flex_filter(struct rte_eth_dev *dev,
struct rte_eth_flex_filter *filter);
static int eth_igb_flex_filter_handle(struct rte_eth_dev *dev,
enum rte_filter_op filter_op,
void *arg);
static int igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
struct rte_eth_ntuple_filter *ntuple_filter);
static int igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
struct rte_eth_ntuple_filter *ntuple_filter);
static int igb_get_ntuple_filter(struct rte_eth_dev *dev,
struct rte_eth_ntuple_filter *filter);
static int igb_ntuple_filter_handle(struct rte_eth_dev *dev,
enum rte_filter_op filter_op,
void *arg);
static int igb_ethertype_filter_handle(struct rte_eth_dev *dev,
enum rte_filter_op filter_op,
void *arg);
static int igb_get_ethertype_filter(struct rte_eth_dev *dev,
struct rte_eth_ethertype_filter *filter);
static int eth_igb_filter_ctrl(struct rte_eth_dev *dev,
enum rte_filter_type filter_type,
enum rte_filter_op filter_op,
void *arg);
static int eth_igb_get_reg_length(struct rte_eth_dev *dev);
static int eth_igb_get_regs(struct rte_eth_dev *dev,
struct rte_dev_reg_info *regs);
static int eth_igb_get_eeprom_length(struct rte_eth_dev *dev);
static int eth_igb_get_eeprom(struct rte_eth_dev *dev,
struct rte_dev_eeprom_info *eeprom);
static int eth_igb_set_eeprom(struct rte_eth_dev *dev,
struct rte_dev_eeprom_info *eeprom);
static int eth_igb_get_module_info(struct rte_eth_dev *dev,
struct rte_eth_dev_module_info *modinfo);
static int eth_igb_get_module_eeprom(struct rte_eth_dev *dev,
struct rte_dev_eeprom_info *info);
static int eth_igb_set_mc_addr_list(struct rte_eth_dev *dev,
struct ether_addr *mc_addr_set,
uint32_t nb_mc_addr);
static int igb_timesync_enable(struct rte_eth_dev *dev);
static int igb_timesync_disable(struct rte_eth_dev *dev);
static int igb_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
struct timespec *timestamp,
uint32_t flags);
static int igb_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
struct timespec *timestamp);
static int igb_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta);
static int igb_timesync_read_time(struct rte_eth_dev *dev,
struct timespec *timestamp);
static int igb_timesync_write_time(struct rte_eth_dev *dev,
const struct timespec *timestamp);
static int eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev,
uint16_t queue_id);
static int eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev,
uint16_t queue_id);
static void eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction,
uint8_t queue, uint8_t msix_vector);
static void eth_igb_write_ivar(struct e1000_hw *hw, uint8_t msix_vector,
uint8_t index, uint8_t offset);
static void eth_igb_configure_msix_intr(struct rte_eth_dev *dev);
static void eth_igbvf_interrupt_handler(void *param);
static void igbvf_mbx_process(struct rte_eth_dev *dev);
static int igb_filter_restore(struct rte_eth_dev *dev);
/*
* Define VF Stats MACRO for Non "cleared on read" register
*/
#define UPDATE_VF_STAT(reg, last, cur) \
{ \
u32 latest = E1000_READ_REG(hw, reg); \
cur += (latest - last) & UINT_MAX; \
last = latest; \
}
#define IGB_FC_PAUSE_TIME 0x0680
#define IGB_LINK_UPDATE_CHECK_TIMEOUT 90 /* 9s */
#define IGB_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
#define IGBVF_PMD_NAME "rte_igbvf_pmd" /* PMD name */
static enum e1000_fc_mode igb_fc_setting = e1000_fc_full;
/*
* The set of PCI devices this driver supports
*/
static const struct rte_pci_id pci_id_igb_map[] = {
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_FIBER) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_SERDES) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_QUAD_COPPER) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_QUAD_COPPER_ET2) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_NS) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_NS_SERDES) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_SERDES_QUAD) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575EB_COPPER) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575EB_FIBER_SERDES) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575GB_QUAD_COPPER) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_COPPER) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_FIBER) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_SERDES) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_SGMII) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_COPPER_DUAL) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_QUAD_FIBER) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_COPPER) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_FIBER) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_SERDES) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_SGMII) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_DA4) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_OEM1) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_IT) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_FIBER) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SERDES) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SGMII) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_FLASHLESS) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SERDES_FLASHLESS) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I211_COPPER) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_SGMII) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SGMII) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SERDES) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_BACKPLANE) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SFP) },
{ .vendor_id = 0, /* sentinel */ },
};
/*
* The set of PCI devices this driver supports (for 82576&I350 VF)
*/
static const struct rte_pci_id pci_id_igbvf_map[] = {
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_VF) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_VF_HV) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_VF) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_VF_HV) },
{ .vendor_id = 0, /* sentinel */ },
};
static const struct rte_eth_desc_lim rx_desc_lim = {
.nb_max = E1000_MAX_RING_DESC,
.nb_min = E1000_MIN_RING_DESC,
.nb_align = IGB_RXD_ALIGN,
};
static const struct rte_eth_desc_lim tx_desc_lim = {
.nb_max = E1000_MAX_RING_DESC,
.nb_min = E1000_MIN_RING_DESC,
.nb_align = IGB_RXD_ALIGN,
.nb_seg_max = IGB_TX_MAX_SEG,
.nb_mtu_seg_max = IGB_TX_MAX_MTU_SEG,
};
static const struct eth_dev_ops eth_igb_ops = {
.dev_configure = eth_igb_configure,
.dev_start = eth_igb_start,
.dev_stop = eth_igb_stop,
.dev_set_link_up = eth_igb_dev_set_link_up,
.dev_set_link_down = eth_igb_dev_set_link_down,
.dev_close = eth_igb_close,
.promiscuous_enable = eth_igb_promiscuous_enable,
.promiscuous_disable = eth_igb_promiscuous_disable,
.allmulticast_enable = eth_igb_allmulticast_enable,
.allmulticast_disable = eth_igb_allmulticast_disable,
.link_update = eth_igb_link_update,
.stats_get = eth_igb_stats_get,
.xstats_get = eth_igb_xstats_get,
.xstats_get_by_id = eth_igb_xstats_get_by_id,
.xstats_get_names_by_id = eth_igb_xstats_get_names_by_id,
.xstats_get_names = eth_igb_xstats_get_names,
.stats_reset = eth_igb_stats_reset,
.xstats_reset = eth_igb_xstats_reset,
.fw_version_get = eth_igb_fw_version_get,
.dev_infos_get = eth_igb_infos_get,
.dev_supported_ptypes_get = eth_igb_supported_ptypes_get,
.mtu_set = eth_igb_mtu_set,
.vlan_filter_set = eth_igb_vlan_filter_set,
.vlan_tpid_set = eth_igb_vlan_tpid_set,
.vlan_offload_set = eth_igb_vlan_offload_set,
.rx_queue_setup = eth_igb_rx_queue_setup,
.rx_queue_intr_enable = eth_igb_rx_queue_intr_enable,
.rx_queue_intr_disable = eth_igb_rx_queue_intr_disable,
.rx_queue_release = eth_igb_rx_queue_release,
.rx_queue_count = eth_igb_rx_queue_count,
.rx_descriptor_done = eth_igb_rx_descriptor_done,
.rx_descriptor_status = eth_igb_rx_descriptor_status,
.tx_descriptor_status = eth_igb_tx_descriptor_status,
.tx_queue_setup = eth_igb_tx_queue_setup,
.tx_queue_release = eth_igb_tx_queue_release,
.tx_done_cleanup = eth_igb_tx_done_cleanup,
.dev_led_on = eth_igb_led_on,
.dev_led_off = eth_igb_led_off,
.flow_ctrl_get = eth_igb_flow_ctrl_get,
.flow_ctrl_set = eth_igb_flow_ctrl_set,
.mac_addr_add = eth_igb_rar_set,
.mac_addr_remove = eth_igb_rar_clear,
.mac_addr_set = eth_igb_default_mac_addr_set,
.reta_update = eth_igb_rss_reta_update,
.reta_query = eth_igb_rss_reta_query,
.rss_hash_update = eth_igb_rss_hash_update,
.rss_hash_conf_get = eth_igb_rss_hash_conf_get,
.filter_ctrl = eth_igb_filter_ctrl,
.set_mc_addr_list = eth_igb_set_mc_addr_list,
.rxq_info_get = igb_rxq_info_get,
.txq_info_get = igb_txq_info_get,
.timesync_enable = igb_timesync_enable,
.timesync_disable = igb_timesync_disable,
.timesync_read_rx_timestamp = igb_timesync_read_rx_timestamp,
.timesync_read_tx_timestamp = igb_timesync_read_tx_timestamp,
.get_reg = eth_igb_get_regs,
.get_eeprom_length = eth_igb_get_eeprom_length,
.get_eeprom = eth_igb_get_eeprom,
.set_eeprom = eth_igb_set_eeprom,
.get_module_info = eth_igb_get_module_info,
.get_module_eeprom = eth_igb_get_module_eeprom,
.timesync_adjust_time = igb_timesync_adjust_time,
.timesync_read_time = igb_timesync_read_time,
.timesync_write_time = igb_timesync_write_time,
};
/*
* dev_ops for virtual function, bare necessities for basic vf
* operation have been implemented
*/
static const struct eth_dev_ops igbvf_eth_dev_ops = {
.dev_configure = igbvf_dev_configure,
.dev_start = igbvf_dev_start,
.dev_stop = igbvf_dev_stop,
.dev_close = igbvf_dev_close,
.promiscuous_enable = igbvf_promiscuous_enable,
.promiscuous_disable = igbvf_promiscuous_disable,
.allmulticast_enable = igbvf_allmulticast_enable,
.allmulticast_disable = igbvf_allmulticast_disable,
.link_update = eth_igb_link_update,
.stats_get = eth_igbvf_stats_get,
.xstats_get = eth_igbvf_xstats_get,
.xstats_get_names = eth_igbvf_xstats_get_names,
.stats_reset = eth_igbvf_stats_reset,
.xstats_reset = eth_igbvf_stats_reset,
.vlan_filter_set = igbvf_vlan_filter_set,
.dev_infos_get = eth_igbvf_infos_get,
.dev_supported_ptypes_get = eth_igb_supported_ptypes_get,
.rx_queue_setup = eth_igb_rx_queue_setup,
.rx_queue_release = eth_igb_rx_queue_release,
.rx_descriptor_done = eth_igb_rx_descriptor_done,
.rx_descriptor_status = eth_igb_rx_descriptor_status,
.tx_descriptor_status = eth_igb_tx_descriptor_status,
.tx_queue_setup = eth_igb_tx_queue_setup,
.tx_queue_release = eth_igb_tx_queue_release,
.set_mc_addr_list = eth_igb_set_mc_addr_list,
.rxq_info_get = igb_rxq_info_get,
.txq_info_get = igb_txq_info_get,
.mac_addr_set = igbvf_default_mac_addr_set,
.get_reg = igbvf_get_regs,
};
/* store statistics names and its offset in stats structure */
struct rte_igb_xstats_name_off {
char name[RTE_ETH_XSTATS_NAME_SIZE];
unsigned offset;
};
static const struct rte_igb_xstats_name_off rte_igb_stats_strings[] = {
{"rx_crc_errors", offsetof(struct e1000_hw_stats, crcerrs)},
{"rx_align_errors", offsetof(struct e1000_hw_stats, algnerrc)},
{"rx_symbol_errors", offsetof(struct e1000_hw_stats, symerrs)},
{"rx_missed_packets", offsetof(struct e1000_hw_stats, mpc)},
{"tx_single_collision_packets", offsetof(struct e1000_hw_stats, scc)},
{"tx_multiple_collision_packets", offsetof(struct e1000_hw_stats, mcc)},
{"tx_excessive_collision_packets", offsetof(struct e1000_hw_stats,
ecol)},
{"tx_late_collisions", offsetof(struct e1000_hw_stats, latecol)},
{"tx_total_collisions", offsetof(struct e1000_hw_stats, colc)},
{"tx_deferred_packets", offsetof(struct e1000_hw_stats, dc)},
{"tx_no_carrier_sense_packets", offsetof(struct e1000_hw_stats, tncrs)},
{"rx_carrier_ext_errors", offsetof(struct e1000_hw_stats, cexterr)},
{"rx_length_errors", offsetof(struct e1000_hw_stats, rlec)},
{"rx_xon_packets", offsetof(struct e1000_hw_stats, xonrxc)},
{"tx_xon_packets", offsetof(struct e1000_hw_stats, xontxc)},
{"rx_xoff_packets", offsetof(struct e1000_hw_stats, xoffrxc)},
{"tx_xoff_packets", offsetof(struct e1000_hw_stats, xofftxc)},
{"rx_flow_control_unsupported_packets", offsetof(struct e1000_hw_stats,
fcruc)},
{"rx_size_64_packets", offsetof(struct e1000_hw_stats, prc64)},
{"rx_size_65_to_127_packets", offsetof(struct e1000_hw_stats, prc127)},
{"rx_size_128_to_255_packets", offsetof(struct e1000_hw_stats, prc255)},
{"rx_size_256_to_511_packets", offsetof(struct e1000_hw_stats, prc511)},
{"rx_size_512_to_1023_packets", offsetof(struct e1000_hw_stats,
prc1023)},
{"rx_size_1024_to_max_packets", offsetof(struct e1000_hw_stats,
prc1522)},
{"rx_broadcast_packets", offsetof(struct e1000_hw_stats, bprc)},
{"rx_multicast_packets", offsetof(struct e1000_hw_stats, mprc)},
{"rx_undersize_errors", offsetof(struct e1000_hw_stats, ruc)},
{"rx_fragment_errors", offsetof(struct e1000_hw_stats, rfc)},
{"rx_oversize_errors", offsetof(struct e1000_hw_stats, roc)},
{"rx_jabber_errors", offsetof(struct e1000_hw_stats, rjc)},
{"rx_management_packets", offsetof(struct e1000_hw_stats, mgprc)},
{"rx_management_dropped", offsetof(struct e1000_hw_stats, mgpdc)},
{"tx_management_packets", offsetof(struct e1000_hw_stats, mgptc)},
{"rx_total_packets", offsetof(struct e1000_hw_stats, tpr)},
{"tx_total_packets", offsetof(struct e1000_hw_stats, tpt)},
{"rx_total_bytes", offsetof(struct e1000_hw_stats, tor)},
{"tx_total_bytes", offsetof(struct e1000_hw_stats, tot)},
{"tx_size_64_packets", offsetof(struct e1000_hw_stats, ptc64)},
{"tx_size_65_to_127_packets", offsetof(struct e1000_hw_stats, ptc127)},
{"tx_size_128_to_255_packets", offsetof(struct e1000_hw_stats, ptc255)},
{"tx_size_256_to_511_packets", offsetof(struct e1000_hw_stats, ptc511)},
{"tx_size_512_to_1023_packets", offsetof(struct e1000_hw_stats,
ptc1023)},
{"tx_size_1023_to_max_packets", offsetof(struct e1000_hw_stats,
ptc1522)},
{"tx_multicast_packets", offsetof(struct e1000_hw_stats, mptc)},
{"tx_broadcast_packets", offsetof(struct e1000_hw_stats, bptc)},
{"tx_tso_packets", offsetof(struct e1000_hw_stats, tsctc)},
{"tx_tso_errors", offsetof(struct e1000_hw_stats, tsctfc)},
{"rx_sent_to_host_packets", offsetof(struct e1000_hw_stats, rpthc)},
{"tx_sent_by_host_packets", offsetof(struct e1000_hw_stats, hgptc)},
{"rx_code_violation_packets", offsetof(struct e1000_hw_stats, scvpc)},
{"interrupt_assert_count", offsetof(struct e1000_hw_stats, iac)},
};
#define IGB_NB_XSTATS (sizeof(rte_igb_stats_strings) / \
sizeof(rte_igb_stats_strings[0]))
static const struct rte_igb_xstats_name_off rte_igbvf_stats_strings[] = {
{"rx_multicast_packets", offsetof(struct e1000_vf_stats, mprc)},
{"rx_good_loopback_packets", offsetof(struct e1000_vf_stats, gprlbc)},
{"tx_good_loopback_packets", offsetof(struct e1000_vf_stats, gptlbc)},
{"rx_good_loopback_bytes", offsetof(struct e1000_vf_stats, gorlbc)},
{"tx_good_loopback_bytes", offsetof(struct e1000_vf_stats, gotlbc)},
};
#define IGBVF_NB_XSTATS (sizeof(rte_igbvf_stats_strings) / \
sizeof(rte_igbvf_stats_strings[0]))
static inline void
igb_intr_enable(struct rte_eth_dev *dev)
{
struct e1000_interrupt *intr =
E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
E1000_WRITE_REG(hw, E1000_IMS, intr->mask);
E1000_WRITE_FLUSH(hw);
}
static void
igb_intr_disable(struct e1000_hw *hw)
{
E1000_WRITE_REG(hw, E1000_IMC, ~0);
E1000_WRITE_FLUSH(hw);
}
static inline void
igbvf_intr_enable(struct rte_eth_dev *dev)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/* only for mailbox */
E1000_WRITE_REG(hw, E1000_EIAM, 1 << E1000_VTIVAR_MISC_MAILBOX);
E1000_WRITE_REG(hw, E1000_EIAC, 1 << E1000_VTIVAR_MISC_MAILBOX);
E1000_WRITE_REG(hw, E1000_EIMS, 1 << E1000_VTIVAR_MISC_MAILBOX);
E1000_WRITE_FLUSH(hw);
}
/* only for mailbox now. If RX/TX needed, should extend this function. */
static void
igbvf_set_ivar_map(struct e1000_hw *hw, uint8_t msix_vector)
{
uint32_t tmp = 0;
/* mailbox */
tmp |= (msix_vector & E1000_VTIVAR_MISC_INTR_MASK);
tmp |= E1000_VTIVAR_VALID;
E1000_WRITE_REG(hw, E1000_VTIVAR_MISC, tmp);
}
static void
eth_igbvf_configure_msix_intr(struct rte_eth_dev *dev)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/* Configure VF other cause ivar */
igbvf_set_ivar_map(hw, E1000_VTIVAR_MISC_MAILBOX);
}
static inline int32_t
igb_pf_reset_hw(struct e1000_hw *hw)
{
uint32_t ctrl_ext;
int32_t status;
status = e1000_reset_hw(hw);
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
/* Set PF Reset Done bit so PF/VF Mail Ops can work */
ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
E1000_WRITE_FLUSH(hw);
return status;
}
static void
igb_identify_hardware(struct rte_eth_dev *dev, struct rte_pci_device *pci_dev)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
hw->vendor_id = pci_dev->id.vendor_id;
hw->device_id = pci_dev->id.device_id;
hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
e1000_set_mac_type(hw);
/* need to check if it is a vf device below */
}
static int
igb_reset_swfw_lock(struct e1000_hw *hw)
{
int ret_val;
/*
* Do mac ops initialization manually here, since we will need
* some function pointers set by this call.
*/
ret_val = e1000_init_mac_params(hw);
if (ret_val)
return ret_val;
/*
* SMBI lock should not fail in this early stage. If this is the case,
* it is due to an improper exit of the application.
* So force the release of the faulty lock.
*/
if (e1000_get_hw_semaphore_generic(hw) < 0) {
PMD_DRV_LOG(DEBUG, "SMBI lock released");
}
e1000_put_hw_semaphore_generic(hw);
if (hw->mac.ops.acquire_swfw_sync != NULL) {
uint16_t mask;
/*
* Phy lock should not fail in this early stage. If this is the case,
* it is due to an improper exit of the application.
* So force the release of the faulty lock.
*/
mask = E1000_SWFW_PHY0_SM << hw->bus.func;
if (hw->bus.func > E1000_FUNC_1)
mask <<= 2;
if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
PMD_DRV_LOG(DEBUG, "SWFW phy%d lock released",
hw->bus.func);
}
hw->mac.ops.release_swfw_sync(hw, mask);
/*
* This one is more tricky since it is common to all ports; but
* swfw_sync retries last long enough (1s) to be almost sure that if
* lock can not be taken it is due to an improper lock of the
* semaphore.
*/
mask = E1000_SWFW_EEP_SM;
if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
PMD_DRV_LOG(DEBUG, "SWFW common locks released");
}
hw->mac.ops.release_swfw_sync(hw, mask);
}
return E1000_SUCCESS;
}
/* Remove all ntuple filters of the device */
static int igb_ntuple_filter_uninit(struct rte_eth_dev *eth_dev)
{
struct e1000_filter_info *filter_info =
E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
struct e1000_5tuple_filter *p_5tuple;
struct e1000_2tuple_filter *p_2tuple;
while ((p_5tuple = TAILQ_FIRST(&filter_info->fivetuple_list))) {
TAILQ_REMOVE(&filter_info->fivetuple_list,
p_5tuple, entries);
rte_free(p_5tuple);
}
filter_info->fivetuple_mask = 0;
while ((p_2tuple = TAILQ_FIRST(&filter_info->twotuple_list))) {
TAILQ_REMOVE(&filter_info->twotuple_list,
p_2tuple, entries);
rte_free(p_2tuple);
}
filter_info->twotuple_mask = 0;
return 0;
}
/* Remove all flex filters of the device */
static int igb_flex_filter_uninit(struct rte_eth_dev *eth_dev)
{
struct e1000_filter_info *filter_info =
E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
struct e1000_flex_filter *p_flex;
while ((p_flex = TAILQ_FIRST(&filter_info->flex_list))) {
TAILQ_REMOVE(&filter_info->flex_list, p_flex, entries);
rte_free(p_flex);
}
filter_info->flex_mask = 0;
return 0;
}
static int
eth_igb_dev_init(struct rte_eth_dev *eth_dev)
{
int error = 0;
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
struct e1000_vfta * shadow_vfta =
E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
struct e1000_filter_info *filter_info =
E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
struct e1000_adapter *adapter =
E1000_DEV_PRIVATE(eth_dev->data->dev_private);
uint32_t ctrl_ext;
eth_dev->dev_ops = &eth_igb_ops;
eth_dev->rx_pkt_burst = &eth_igb_recv_pkts;
eth_dev->tx_pkt_burst = &eth_igb_xmit_pkts;
eth_dev->tx_pkt_prepare = &eth_igb_prep_pkts;
/* for secondary processes, we don't initialise any further as primary
* has already done this work. Only check we don't need a different
* RX function */
if (rte_eal_process_type() != RTE_PROC_PRIMARY){
if (eth_dev->data->scattered_rx)
eth_dev->rx_pkt_burst = &eth_igb_recv_scattered_pkts;
return 0;
}
rte_eth_copy_pci_info(eth_dev, pci_dev);
hw->hw_addr= (void *)pci_dev->mem_resource[0].addr;
igb_identify_hardware(eth_dev, pci_dev);
if (e1000_setup_init_funcs(hw, FALSE) != E1000_SUCCESS) {
error = -EIO;
goto err_late;
}
e1000_get_bus_info(hw);
/* Reset any pending lock */
if (igb_reset_swfw_lock(hw) != E1000_SUCCESS) {
error = -EIO;
goto err_late;
}
/* Finish initialization */
if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS) {
error = -EIO;
goto err_late;
}
hw->mac.autoneg = 1;
hw->phy.autoneg_wait_to_complete = 0;
hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
/* Copper options */
if (hw->phy.media_type == e1000_media_type_copper) {
hw->phy.mdix = 0; /* AUTO_ALL_MODES */
hw->phy.disable_polarity_correction = 0;
hw->phy.ms_type = e1000_ms_hw_default;
}
/*
* Start from a known state, this is important in reading the nvm
* and mac from that.
*/
igb_pf_reset_hw(hw);
/* Make sure we have a good EEPROM before we read from it */
if (e1000_validate_nvm_checksum(hw) < 0) {
/*
* Some PCI-E parts fail the first check due to
* the link being in sleep state, call it again,
* if it fails a second time its a real issue.
*/
if (e1000_validate_nvm_checksum(hw) < 0) {
PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
error = -EIO;
goto err_late;
}
}
/* Read the permanent MAC address out of the EEPROM */
if (e1000_read_mac_addr(hw) != 0) {
PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
error = -EIO;
goto err_late;
}
/* Allocate memory for storing MAC addresses */
eth_dev->data->mac_addrs = rte_zmalloc("e1000",
ETHER_ADDR_LEN * hw->mac.rar_entry_count, 0);
if (eth_dev->data->mac_addrs == NULL) {
PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
"store MAC addresses",
ETHER_ADDR_LEN * hw->mac.rar_entry_count);
error = -ENOMEM;
goto err_late;
}
/* Copy the permanent MAC address */
ether_addr_copy((struct ether_addr *)hw->mac.addr, &eth_dev->data->mac_addrs[0]);
/* initialize the vfta */
memset(shadow_vfta, 0, sizeof(*shadow_vfta));
/* Now initialize the hardware */
if (igb_hardware_init(hw) != 0) {
PMD_INIT_LOG(ERR, "Hardware initialization failed");
rte_free(eth_dev->data->mac_addrs);
eth_dev->data->mac_addrs = NULL;
error = -ENODEV;
goto err_late;
}
hw->mac.get_link_status = 1;
adapter->stopped = 0;
/* Indicate SOL/IDER usage */
if (e1000_check_reset_block(hw) < 0) {
PMD_INIT_LOG(ERR, "PHY reset is blocked due to"
"SOL/IDER session");
}
/* initialize PF if max_vfs not zero */
igb_pf_host_init(eth_dev);
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
/* Set PF Reset Done bit so PF/VF Mail Ops can work */
ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
E1000_WRITE_FLUSH(hw);
PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
eth_dev->data->port_id, pci_dev->id.vendor_id,
pci_dev->id.device_id);
rte_intr_callback_register(&pci_dev->intr_handle,
eth_igb_interrupt_handler,
(void *)eth_dev);
/* enable uio/vfio intr/eventfd mapping */
rte_intr_enable(&pci_dev->intr_handle);
/* enable support intr */
igb_intr_enable(eth_dev);
/* initialize filter info */
memset(filter_info, 0,
sizeof(struct e1000_filter_info));
TAILQ_INIT(&filter_info->flex_list);
TAILQ_INIT(&filter_info->twotuple_list);
TAILQ_INIT(&filter_info->fivetuple_list);
TAILQ_INIT(&igb_filter_ntuple_list);
TAILQ_INIT(&igb_filter_ethertype_list);
TAILQ_INIT(&igb_filter_syn_list);
TAILQ_INIT(&igb_filter_flex_list);
TAILQ_INIT(&igb_filter_rss_list);
TAILQ_INIT(&igb_flow_list);
return 0;
err_late:
igb_hw_control_release(hw);
return error;
}
static int
eth_igb_dev_uninit(struct rte_eth_dev *eth_dev)
{
struct rte_pci_device *pci_dev;
struct rte_intr_handle *intr_handle;
struct e1000_hw *hw;
struct e1000_adapter *adapter =
E1000_DEV_PRIVATE(eth_dev->data->dev_private);
struct e1000_filter_info *filter_info =
E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
PMD_INIT_FUNC_TRACE();
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return -EPERM;
hw = E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
intr_handle = &pci_dev->intr_handle;
if (adapter->stopped == 0)
eth_igb_close(eth_dev);
eth_dev->dev_ops = NULL;
eth_dev->rx_pkt_burst = NULL;
eth_dev->tx_pkt_burst = NULL;
/* Reset any pending lock */
igb_reset_swfw_lock(hw);
rte_free(eth_dev->data->mac_addrs);
eth_dev->data->mac_addrs = NULL;
/* uninitialize PF if max_vfs not zero */
igb_pf_host_uninit(eth_dev);
/* disable uio intr before callback unregister */
rte_intr_disable(intr_handle);
rte_intr_callback_unregister(intr_handle,
eth_igb_interrupt_handler, eth_dev);
/* clear the SYN filter info */
filter_info->syn_info = 0;
/* clear the ethertype filters info */
filter_info->ethertype_mask = 0;
memset(filter_info->ethertype_filters, 0,
E1000_MAX_ETQF_FILTERS * sizeof(struct igb_ethertype_filter));
/* clear the rss filter info */
memset(&filter_info->rss_info, 0,
sizeof(struct igb_rte_flow_rss_conf));
/* remove all ntuple filters of the device */
igb_ntuple_filter_uninit(eth_dev);
/* remove all flex filters of the device */
igb_flex_filter_uninit(eth_dev);
/* clear all the filters list */
igb_filterlist_flush(eth_dev);
return 0;
}
/*
* Virtual Function device init
*/
static int
eth_igbvf_dev_init(struct rte_eth_dev *eth_dev)
{
struct rte_pci_device *pci_dev;
struct rte_intr_handle *intr_handle;
struct e1000_adapter *adapter =
E1000_DEV_PRIVATE(eth_dev->data->dev_private);
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
int diag;
struct ether_addr *perm_addr = (struct ether_addr *)hw->mac.perm_addr;
PMD_INIT_FUNC_TRACE();
eth_dev->dev_ops = &igbvf_eth_dev_ops;
eth_dev->rx_pkt_burst = &eth_igb_recv_pkts;
eth_dev->tx_pkt_burst = &eth_igb_xmit_pkts;
eth_dev->tx_pkt_prepare = &eth_igb_prep_pkts;
/* for secondary processes, we don't initialise any further as primary
* has already done this work. Only check we don't need a different
* RX function */
if (rte_eal_process_type() != RTE_PROC_PRIMARY){
if (eth_dev->data->scattered_rx)
eth_dev->rx_pkt_burst = &eth_igb_recv_scattered_pkts;
return 0;
}
pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
rte_eth_copy_pci_info(eth_dev, pci_dev);
hw->device_id = pci_dev->id.device_id;
hw->vendor_id = pci_dev->id.vendor_id;
hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
adapter->stopped = 0;
/* Initialize the shared code (base driver) */
diag = e1000_setup_init_funcs(hw, TRUE);
if (diag != 0) {
PMD_INIT_LOG(ERR, "Shared code init failed for igbvf: %d",
diag);
return -EIO;
}
/* init_mailbox_params */
hw->mbx.ops.init_params(hw);
/* Disable the interrupts for VF */
igbvf_intr_disable(hw);
diag = hw->mac.ops.reset_hw(hw);
/* Allocate memory for storing MAC addresses */
eth_dev->data->mac_addrs = rte_zmalloc("igbvf", ETHER_ADDR_LEN *
hw->mac.rar_entry_count, 0);
if (eth_dev->data->mac_addrs == NULL) {
PMD_INIT_LOG(ERR,
"Failed to allocate %d bytes needed to store MAC "
"addresses",
ETHER_ADDR_LEN * hw->mac.rar_entry_count);
return -ENOMEM;
}
/* Generate a random MAC address, if none was assigned by PF. */
if (is_zero_ether_addr(perm_addr)) {
eth_random_addr(perm_addr->addr_bytes);
PMD_INIT_LOG(INFO, "\tVF MAC address not assigned by Host PF");
PMD_INIT_LOG(INFO, "\tAssign randomly generated MAC address "
"%02x:%02x:%02x:%02x:%02x:%02x",
perm_addr->addr_bytes[0],
perm_addr->addr_bytes[1],
perm_addr->addr_bytes[2],
perm_addr->addr_bytes[3],
perm_addr->addr_bytes[4],
perm_addr->addr_bytes[5]);
}
diag = e1000_rar_set(hw, perm_addr->addr_bytes, 0);
if (diag) {
rte_free(eth_dev->data->mac_addrs);
eth_dev->data->mac_addrs = NULL;
return diag;
}
/* Copy the permanent MAC address */
ether_addr_copy((struct ether_addr *) hw->mac.perm_addr,
&eth_dev->data->mac_addrs[0]);
PMD_INIT_LOG(DEBUG, "port %d vendorID=0x%x deviceID=0x%x "
"mac.type=%s",
eth_dev->data->port_id, pci_dev->id.vendor_id,
pci_dev->id.device_id, "igb_mac_82576_vf");
intr_handle = &pci_dev->intr_handle;
rte_intr_callback_register(intr_handle,
eth_igbvf_interrupt_handler, eth_dev);
return 0;
}
static int
eth_igbvf_dev_uninit(struct rte_eth_dev *eth_dev)
{
struct e1000_adapter *adapter =
E1000_DEV_PRIVATE(eth_dev->data->dev_private);
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
PMD_INIT_FUNC_TRACE();
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return -EPERM;
if (adapter->stopped == 0)
igbvf_dev_close(eth_dev);
eth_dev->dev_ops = NULL;
eth_dev->rx_pkt_burst = NULL;
eth_dev->tx_pkt_burst = NULL;
rte_free(eth_dev->data->mac_addrs);
eth_dev->data->mac_addrs = NULL;
/* disable uio intr before callback unregister */
rte_intr_disable(&pci_dev->intr_handle);
rte_intr_callback_unregister(&pci_dev->intr_handle,
eth_igbvf_interrupt_handler,
(void *)eth_dev);
return 0;
}
static int eth_igb_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_probe(pci_dev,
sizeof(struct e1000_adapter), eth_igb_dev_init);
}
static int eth_igb_pci_remove(struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_remove(pci_dev, eth_igb_dev_uninit);
}
static struct rte_pci_driver rte_igb_pmd = {
.id_table = pci_id_igb_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
RTE_PCI_DRV_IOVA_AS_VA,
.probe = eth_igb_pci_probe,
.remove = eth_igb_pci_remove,
};
static int eth_igbvf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_probe(pci_dev,
sizeof(struct e1000_adapter), eth_igbvf_dev_init);
}
static int eth_igbvf_pci_remove(struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_remove(pci_dev, eth_igbvf_dev_uninit);
}
/*
* virtual function driver struct
*/
static struct rte_pci_driver rte_igbvf_pmd = {
.id_table = pci_id_igbvf_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_IOVA_AS_VA,
.probe = eth_igbvf_pci_probe,
.remove = eth_igbvf_pci_remove,
};
static void
igb_vmdq_vlan_hw_filter_enable(struct rte_eth_dev *dev)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/* RCTL: enable VLAN filter since VMDq always use VLAN filter */
uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
rctl |= E1000_RCTL_VFE;
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
}
static int
igb_check_mq_mode(struct rte_eth_dev *dev)
{
enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
uint16_t nb_rx_q = dev->data->nb_rx_queues;
uint16_t nb_tx_q = dev->data->nb_tx_queues;
if ((rx_mq_mode & ETH_MQ_RX_DCB_FLAG) ||
tx_mq_mode == ETH_MQ_TX_DCB ||
tx_mq_mode == ETH_MQ_TX_VMDQ_DCB) {
PMD_INIT_LOG(ERR, "DCB mode is not supported.");
return -EINVAL;
}
if (RTE_ETH_DEV_SRIOV(dev).active != 0) {
/* Check multi-queue mode.
* To no break software we accept ETH_MQ_RX_NONE as this might
* be used to turn off VLAN filter.
*/
if (rx_mq_mode == ETH_MQ_RX_NONE ||
rx_mq_mode == ETH_MQ_RX_VMDQ_ONLY) {
dev->data->dev_conf.rxmode.mq_mode = ETH_MQ_RX_VMDQ_ONLY;
RTE_ETH_DEV_SRIOV(dev).nb_q_per_pool = 1;
} else {
/* Only support one queue on VFs.
* RSS together with SRIOV is not supported.
*/
PMD_INIT_LOG(ERR, "SRIOV is active,"
" wrong mq_mode rx %d.",
rx_mq_mode);
return -EINVAL;
}
/* TX mode is not used here, so mode might be ignored.*/
if (tx_mq_mode != ETH_MQ_TX_VMDQ_ONLY) {
/* SRIOV only works in VMDq enable mode */
PMD_INIT_LOG(WARNING, "SRIOV is active,"
" TX mode %d is not supported. "
" Driver will behave as %d mode.",
tx_mq_mode, ETH_MQ_TX_VMDQ_ONLY);
}
/* check valid queue number */
if ((nb_rx_q > 1) || (nb_tx_q > 1)) {
PMD_INIT_LOG(ERR, "SRIOV is active,"
" only support one queue on VFs.");
return -EINVAL;
}
} else {
/* To no break software that set invalid mode, only display
* warning if invalid mode is used.
*/
if (rx_mq_mode != ETH_MQ_RX_NONE &&
rx_mq_mode != ETH_MQ_RX_VMDQ_ONLY &&
rx_mq_mode != ETH_MQ_RX_RSS) {
/* RSS together with VMDq not supported*/
PMD_INIT_LOG(ERR, "RX mode %d is not supported.",
rx_mq_mode);
return -EINVAL;
}
if (tx_mq_mode != ETH_MQ_TX_NONE &&
tx_mq_mode != ETH_MQ_TX_VMDQ_ONLY) {
PMD_INIT_LOG(WARNING, "TX mode %d is not supported."
" Due to txmode is meaningless in this"
" driver, just ignore.",
tx_mq_mode);
}
}
return 0;
}
static int
eth_igb_configure(struct rte_eth_dev *dev)
{
struct e1000_interrupt *intr =
E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
int ret;
PMD_INIT_FUNC_TRACE();
/* multipe queue mode checking */
ret = igb_check_mq_mode(dev);
if (ret != 0) {
PMD_DRV_LOG(ERR, "igb_check_mq_mode fails with %d.",
ret);
return ret;
}
intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
PMD_INIT_FUNC_TRACE();
return 0;
}
static void
eth_igb_rxtx_control(struct rte_eth_dev *dev,
bool enable)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t tctl, rctl;
tctl = E1000_READ_REG(hw, E1000_TCTL);
rctl = E1000_READ_REG(hw, E1000_RCTL);
if (enable) {
/* enable Tx/Rx */
tctl |= E1000_TCTL_EN;
rctl |= E1000_RCTL_EN;
} else {
/* disable Tx/Rx */
tctl &= ~E1000_TCTL_EN;
rctl &= ~E1000_RCTL_EN;
}
E1000_WRITE_REG(hw, E1000_TCTL, tctl);
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
E1000_WRITE_FLUSH(hw);
}
static int
eth_igb_start(struct rte_eth_dev *dev)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_adapter *adapter =
E1000_DEV_PRIVATE(dev->data->dev_private);
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
int ret, mask;
uint32_t intr_vector = 0;
uint32_t ctrl_ext;
uint32_t *speeds;
int num_speeds;
bool autoneg;
PMD_INIT_FUNC_TRACE();
/* disable uio/vfio intr/eventfd mapping */
rte_intr_disable(intr_handle);
/* Power up the phy. Needed to make the link go Up */
eth_igb_dev_set_link_up(dev);
/*
* Packet Buffer Allocation (PBA)
* Writing PBA sets the receive portion of the buffer
* the remainder is used for the transmit buffer.
*/
if (hw->mac.type == e1000_82575) {
uint32_t pba;
pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
E1000_WRITE_REG(hw, E1000_PBA, pba);
}
/* Put the address into the Receive Address Array */
e1000_rar_set(hw, hw->mac.addr, 0);
/* Initialize the hardware */
if (igb_hardware_init(hw)) {
PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
return -EIO;
}
adapter->stopped = 0;
E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN << 16 | ETHER_TYPE_VLAN);
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
/* Set PF Reset Done bit so PF/VF Mail Ops can work */
ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
E1000_WRITE_FLUSH(hw);
/* configure PF module if SRIOV enabled */
igb_pf_host_configure(dev);
/* check and configure queue intr-vector mapping */
if ((rte_intr_cap_multiple(intr_handle) ||
!RTE_ETH_DEV_SRIOV(dev).active) &&
dev->data->dev_conf.intr_conf.rxq != 0) {
intr_vector = dev->data->nb_rx_queues;
if (rte_intr_efd_enable(intr_handle, intr_vector))
return -1;
}
if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
intr_handle->intr_vec =
rte_zmalloc("intr_vec",
dev->data->nb_rx_queues * sizeof(int), 0);
if (intr_handle->intr_vec == NULL) {
PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
" intr_vec", dev->data->nb_rx_queues);
return -ENOMEM;
}
}
/* confiugre msix for rx interrupt */
eth_igb_configure_msix_intr(dev);
/* Configure for OS presence */
igb_init_manageability(hw);
eth_igb_tx_init(dev);
/* This can fail when allocating mbufs for descriptor rings */
ret = eth_igb_rx_init(dev);
if (ret) {
PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
igb_dev_clear_queues(dev);
return ret;
}
e1000_clear_hw_cntrs_base_generic(hw);
/*
* VLAN Offload Settings
*/
mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
ETH_VLAN_EXTEND_MASK;
ret = eth_igb_vlan_offload_set(dev, mask);
if (ret) {
PMD_INIT_LOG(ERR, "Unable to set vlan offload");
igb_dev_clear_queues(dev);
return ret;
}
if (dev->data->dev_conf.rxmode.mq_mode == ETH_MQ_RX_VMDQ_ONLY) {
/* Enable VLAN filter since VMDq always use VLAN filter */
igb_vmdq_vlan_hw_filter_enable(dev);
}
if ((hw->mac.type == e1000_82576) || (hw->mac.type == e1000_82580) ||
(hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i210) ||
(hw->mac.type == e1000_i211)) {
/* Configure EITR with the maximum possible value (0xFFFF) */
E1000_WRITE_REG(hw, E1000_EITR(0), 0xFFFF);
}
/* Setup link speed and duplex */
speeds = &dev->data->dev_conf.link_speeds;
if (*speeds == ETH_LINK_SPEED_AUTONEG) {
hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
hw->mac.autoneg = 1;
} else {
num_speeds = 0;
autoneg = (*speeds & ETH_LINK_SPEED_FIXED) == 0;
/* Reset */
hw->phy.autoneg_advertised = 0;
if (*speeds & ~(ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
ETH_LINK_SPEED_1G | ETH_LINK_SPEED_FIXED)) {
num_speeds = -1;
goto error_invalid_config;
}
if (*speeds & ETH_LINK_SPEED_10M_HD) {
hw->phy.autoneg_advertised |= ADVERTISE_10_HALF;
num_speeds++;
}
if (*speeds & ETH_LINK_SPEED_10M) {
hw->phy.autoneg_advertised |= ADVERTISE_10_FULL;
num_speeds++;
}
if (*speeds & ETH_LINK_SPEED_100M_HD) {
hw->phy.autoneg_advertised |= ADVERTISE_100_HALF;
num_speeds++;
}
if (*speeds & ETH_LINK_SPEED_100M) {
hw->phy.autoneg_advertised |= ADVERTISE_100_FULL;
num_speeds++;
}
if (*speeds & ETH_LINK_SPEED_1G) {
hw->phy.autoneg_advertised |= ADVERTISE_1000_FULL;
num_speeds++;
}
if (num_speeds == 0 || (!autoneg && (num_speeds > 1)))
goto error_invalid_config;
/* Set/reset the mac.autoneg based on the link speed,
* fixed or not
*/
if (!autoneg) {
hw->mac.autoneg = 0;
hw->mac.forced_speed_duplex =
hw->phy.autoneg_advertised;
} else {
hw->mac.autoneg = 1;
}
}
e1000_setup_link(hw);
if (rte_intr_allow_others(intr_handle)) {
/* check if lsc interrupt is enabled */
if (dev->data->dev_conf.intr_conf.lsc != 0)
eth_igb_lsc_interrupt_setup(dev, TRUE);
else
eth_igb_lsc_interrupt_setup(dev, FALSE);
} else {
rte_intr_callback_unregister(intr_handle,
eth_igb_interrupt_handler,
(void *)dev);
if (dev->data->dev_conf.intr_conf.lsc != 0)
PMD_INIT_LOG(INFO, "lsc won't enable because of"
" no intr multiplex");
}
/* check if rxq interrupt is enabled */
if (dev->data->dev_conf.intr_conf.rxq != 0 &&
rte_intr_dp_is_en(intr_handle))
eth_igb_rxq_interrupt_setup(dev);
/* enable uio/vfio intr/eventfd mapping */
rte_intr_enable(intr_handle);
/* resume enabled intr since hw reset */
igb_intr_enable(dev);
/* restore all types filter */
igb_filter_restore(dev);
eth_igb_rxtx_control(dev, true);
eth_igb_link_update(dev, 0);
PMD_INIT_LOG(DEBUG, "<<");
return 0;
error_invalid_config:
PMD_INIT_LOG(ERR, "Invalid advertised speeds (%u) for port %u",
dev->data->dev_conf.link_speeds, dev->data->port_id);
igb_dev_clear_queues(dev);
return -EINVAL;
}
/*********************************************************************
*
* This routine disables all traffic on the adapter by issuing a
* global reset on the MAC.
*
**********************************************************************/
static void
eth_igb_stop(struct rte_eth_dev *dev)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_eth_link link;
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
eth_igb_rxtx_control(dev, false);
igb_intr_disable(hw);
/* disable intr eventfd mapping */
rte_intr_disable(intr_handle);
igb_pf_reset_hw(hw);
E1000_WRITE_REG(hw, E1000_WUC, 0);
/* Set bit for Go Link disconnect */
if (hw->mac.type >= e1000_82580) {
uint32_t phpm_reg;
phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
phpm_reg |= E1000_82580_PM_GO_LINKD;
E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
}
/* Power down the phy. Needed to make the link go Down */
eth_igb_dev_set_link_down(dev);
igb_dev_clear_queues(dev);
/* clear the recorded link status */
memset(&link, 0, sizeof(link));
rte_eth_linkstatus_set(dev, &link);
if (!rte_intr_allow_others(intr_handle))
/* resume to the default handler */
rte_intr_callback_register(intr_handle,
eth_igb_interrupt_handler,
(void *)dev);
/* Clean datapath event and queue/vec mapping */
rte_intr_efd_disable(intr_handle);
if (intr_handle->intr_vec != NULL) {
rte_free(intr_handle->intr_vec);
intr_handle->intr_vec = NULL;
}
}
static int
eth_igb_dev_set_link_up(struct rte_eth_dev *dev)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if (hw->phy.media_type == e1000_media_type_copper)
e1000_power_up_phy(hw);
else
e1000_power_up_fiber_serdes_link(hw);
return 0;
}
static int
eth_igb_dev_set_link_down(struct rte_eth_dev *dev)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if (hw->phy.media_type == e1000_media_type_copper)
e1000_power_down_phy(hw);
else
e1000_shutdown_fiber_serdes_link(hw);
return 0;
}
static void
eth_igb_close(struct rte_eth_dev *dev)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_adapter *adapter =
E1000_DEV_PRIVATE(dev->data->dev_private);
struct rte_eth_link link;
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
eth_igb_stop(dev);
adapter->stopped = 1;
e1000_phy_hw_reset(hw);
igb_release_manageability(hw);
igb_hw_control_release(hw);
/* Clear bit for Go Link disconnect */
if (hw->mac.type >= e1000_82580) {
uint32_t phpm_reg;
phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
phpm_reg &= ~E1000_82580_PM_GO_LINKD;
E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
}
igb_dev_free_queues(dev);
if (intr_handle->intr_vec) {
rte_free(intr_handle->intr_vec);
intr_handle->intr_vec = NULL;
}
memset(&link, 0, sizeof(link));
rte_eth_linkstatus_set(dev, &link);
}
static int
igb_get_rx_buffer_size(struct e1000_hw *hw)
{
uint32_t rx_buf_size;
if (hw->mac.type == e1000_82576) {
rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xffff) << 10;
} else if (hw->mac.type == e1000_82580 || hw->mac.type == e1000_i350) {
/* PBS needs to be translated according to a lookup table */
rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xf);
rx_buf_size = (uint32_t) e1000_rxpbs_adjust_82580(rx_buf_size);
rx_buf_size = (rx_buf_size << 10);
} else if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0x3f) << 10;
} else {
rx_buf_size = (E1000_READ_REG(hw, E1000_PBA) & 0xffff) << 10;
}
return rx_buf_size;
}
/*********************************************************************
*
* Initialize the hardware
*
**********************************************************************/
static int
igb_hardware_init(struct e1000_hw *hw)
{
uint32_t rx_buf_size;
int diag;
/* Let the firmware know the OS is in control */
igb_hw_control_acquire(hw);
/*
* These parameters control the automatic generation (Tx) and
* response (Rx) to Ethernet PAUSE frames.
* - High water mark should allow for at least two standard size (1518)
* frames to be received after sending an XOFF.
* - Low water mark works best when it is very near the high water mark.
* This allows the receiver to restart by sending XON when it has
* drained a bit. Here we use an arbitrary value of 1500 which will
* restart after one full frame is pulled from the buffer. There
* could be several smaller frames in the buffer and if so they will
* not trigger the XON until their total number reduces the buffer
* by 1500.
* - The pause time is fairly large at 1000 x 512ns = 512 usec.
*/
rx_buf_size = igb_get_rx_buffer_size(hw);
hw->fc.high_water = rx_buf_size - (ETHER_MAX_LEN * 2);
hw->fc.low_water = hw->fc.high_water - 1500;
hw->fc.pause_time = IGB_FC_PAUSE_TIME;
hw->fc.send_xon = 1;
/* Set Flow control, use the tunable location if sane */
if ((igb_fc_setting != e1000_fc_none) && (igb_fc_setting < 4))
hw->fc.requested_mode = igb_fc_setting;
else
hw->fc.requested_mode = e1000_fc_none;
/* Issue a global reset */
igb_pf_reset_hw(hw);
E1000_WRITE_REG(hw, E1000_WUC, 0);
diag = e1000_init_hw(hw);
if (diag < 0)
return diag;
E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN << 16 | ETHER_TYPE_VLAN);
e1000_get_phy_info(hw);
e1000_check_for_link(hw);
return 0;
}
/* This function is based on igb_update_stats_counters() in igb/if_igb.c */
static void
igb_read_stats_registers(struct e1000_hw *hw, struct e1000_hw_stats *stats)
{
int pause_frames;
uint64_t old_gprc = stats->gprc;
uint64_t old_gptc = stats->gptc;
uint64_t old_tpr = stats->tpr;
uint64_t old_tpt = stats->tpt;
uint64_t old_rpthc = stats->rpthc;
uint64_t old_hgptc = stats->hgptc;
if(hw->phy.media_type == e1000_media_type_copper ||
(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
stats->symerrs +=
E1000_READ_REG(hw,E1000_SYMERRS);
stats->sec += E1000_READ_REG(hw, E1000_SEC);
}
stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
stats->mpc += E1000_READ_REG(hw, E1000_MPC);
stats->scc += E1000_READ_REG(hw, E1000_SCC);
stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
stats->mcc += E1000_READ_REG(hw, E1000_MCC);
stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
stats->colc += E1000_READ_REG(hw, E1000_COLC);
stats->dc += E1000_READ_REG(hw, E1000_DC);
stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
/*
** For watchdog management we need to know if we have been
** paused during the last interval, so capture that here.
*/
pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
stats->xoffrxc += pause_frames;
stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
/* For the 64-bit byte counters the low dword must be read first. */
/* Both registers clear on the read of the high dword */
/* Workaround CRC bytes included in size, take away 4 bytes/packet */
stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
stats->gorc -= (stats->gprc - old_gprc) * ETHER_CRC_LEN;
stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
stats->gotc -= (stats->gptc - old_gptc) * ETHER_CRC_LEN;
stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
stats->ruc += E1000_READ_REG(hw, E1000_RUC);
stats->rfc += E1000_READ_REG(hw, E1000_RFC);
stats->roc += E1000_READ_REG(hw, E1000_ROC);
stats->rjc += E1000_READ_REG(hw, E1000_RJC);
stats->tpr += E1000_READ_REG(hw, E1000_TPR);
stats->tpt += E1000_READ_REG(hw, E1000_TPT);
stats->tor += E1000_READ_REG(hw, E1000_TORL);
stats->tor += ((uint64_t)E1000_READ_REG(hw, E1000_TORH) << 32);
stats->tor -= (stats->tpr - old_tpr) * ETHER_CRC_LEN;
stats->tot += E1000_READ_REG(hw, E1000_TOTL);
stats->tot += ((uint64_t)E1000_READ_REG(hw, E1000_TOTH) << 32);
stats->tot -= (stats->tpt - old_tpt) * ETHER_CRC_LEN;
stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
/* Interrupt Counts */
stats->iac += E1000_READ_REG(hw, E1000_IAC);
stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
/* Host to Card Statistics */
stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
stats->hgorc += E1000_READ_REG(hw, E1000_HGORCL);
stats->hgorc += ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32);
stats->hgorc -= (stats->rpthc - old_rpthc) * ETHER_CRC_LEN;
stats->hgotc += E1000_READ_REG(hw, E1000_HGOTCL);
stats->hgotc += ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32);
stats->hgotc -= (stats->hgptc - old_hgptc) * ETHER_CRC_LEN;
stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
}
static int
eth_igb_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_hw_stats *stats =
E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
igb_read_stats_registers(hw, stats);
if (rte_stats == NULL)
return -EINVAL;
/* Rx Errors */
rte_stats->imissed = stats->mpc;
rte_stats->ierrors = stats->crcerrs +
stats->rlec + stats->ruc + stats->roc +
stats->rxerrc + stats->algnerrc + stats->cexterr;
/* Tx Errors */
rte_stats->oerrors = stats->ecol + stats->latecol;
rte_stats->ipackets = stats->gprc;
rte_stats->opackets = stats->gptc;
rte_stats->ibytes = stats->gorc;
rte_stats->obytes = stats->gotc;
return 0;
}
static void
eth_igb_stats_reset(struct rte_eth_dev *dev)
{
struct e1000_hw_stats *hw_stats =
E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
/* HW registers are cleared on read */
eth_igb_stats_get(dev, NULL);
/* Reset software totals */
memset(hw_stats, 0, sizeof(*hw_stats));
}
static void
eth_igb_xstats_reset(struct rte_eth_dev *dev)
{
struct e1000_hw_stats *stats =
E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
/* HW registers are cleared on read */
eth_igb_xstats_get(dev, NULL, IGB_NB_XSTATS);
/* Reset software totals */
memset(stats, 0, sizeof(*stats));
}
static int eth_igb_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
struct rte_eth_xstat_name *xstats_names,
__rte_unused unsigned int size)
{
unsigned i;
if (xstats_names == NULL)
return IGB_NB_XSTATS;
/* Note: limit checked in rte_eth_xstats_names() */
for (i = 0; i < IGB_NB_XSTATS; i++) {
snprintf(xstats_names[i].name, sizeof(xstats_names[i].name),
"%s", rte_igb_stats_strings[i].name);
}
return IGB_NB_XSTATS;
}
static int eth_igb_xstats_get_names_by_id(struct rte_eth_dev *dev,
struct rte_eth_xstat_name *xstats_names, const uint64_t *ids,
unsigned int limit)
{
unsigned int i;
if (!ids) {
if (xstats_names == NULL)
return IGB_NB_XSTATS;
for (i = 0; i < IGB_NB_XSTATS; i++)
snprintf(xstats_names[i].name,
sizeof(xstats_names[i].name),
"%s", rte_igb_stats_strings[i].name);
return IGB_NB_XSTATS;
} else {
struct rte_eth_xstat_name xstats_names_copy[IGB_NB_XSTATS];
eth_igb_xstats_get_names_by_id(dev, xstats_names_copy, NULL,
IGB_NB_XSTATS);
for (i = 0; i < limit; i++) {
if (ids[i] >= IGB_NB_XSTATS) {
PMD_INIT_LOG(ERR, "id value isn't valid");
return -1;
}
strcpy(xstats_names[i].name,
xstats_names_copy[ids[i]].name);
}
return limit;
}
}
static int
eth_igb_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
unsigned n)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_hw_stats *hw_stats =
E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
unsigned i;
if (n < IGB_NB_XSTATS)
return IGB_NB_XSTATS;
igb_read_stats_registers(hw, hw_stats);
/* If this is a reset xstats is NULL, and we have cleared the
* registers by reading them.
*/
if (!xstats)
return 0;
/* Extended stats */
for (i = 0; i < IGB_NB_XSTATS; i++) {
xstats[i].id = i;
xstats[i].value = *(uint64_t *)(((char *)hw_stats) +
rte_igb_stats_strings[i].offset);
}
return IGB_NB_XSTATS;
}
static int
eth_igb_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
uint64_t *values, unsigned int n)
{
unsigned int i;
if (!ids) {
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_hw_stats *hw_stats =
E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
if (n < IGB_NB_XSTATS)
return IGB_NB_XSTATS;
igb_read_stats_registers(hw, hw_stats);
/* If this is a reset xstats is NULL, and we have cleared the
* registers by reading them.
*/
if (!values)
return 0;
/* Extended stats */
for (i = 0; i < IGB_NB_XSTATS; i++)
values[i] = *(uint64_t *)(((char *)hw_stats) +
rte_igb_stats_strings[i].offset);
return IGB_NB_XSTATS;
} else {
uint64_t values_copy[IGB_NB_XSTATS];
eth_igb_xstats_get_by_id(dev, NULL, values_copy,
IGB_NB_XSTATS);
for (i = 0; i < n; i++) {
if (ids[i] >= IGB_NB_XSTATS) {
PMD_INIT_LOG(ERR, "id value isn't valid");
return -1;
}
values[i] = values_copy[ids[i]];
}
return n;
}
}
static void
igbvf_read_stats_registers(struct e1000_hw *hw, struct e1000_vf_stats *hw_stats)
{
/* Good Rx packets, include VF loopback */
UPDATE_VF_STAT(E1000_VFGPRC,
hw_stats->last_gprc, hw_stats->gprc);
/* Good Rx octets, include VF loopback */
UPDATE_VF_STAT(E1000_VFGORC,
hw_stats->last_gorc, hw_stats->gorc);
/* Good Tx packets, include VF loopback */
UPDATE_VF_STAT(E1000_VFGPTC,
hw_stats->last_gptc, hw_stats->gptc);
/* Good Tx octets, include VF loopback */
UPDATE_VF_STAT(E1000_VFGOTC,
hw_stats->last_gotc, hw_stats->gotc);
/* Rx Multicst packets */
UPDATE_VF_STAT(E1000_VFMPRC,
hw_stats->last_mprc, hw_stats->mprc);
/* Good Rx loopback packets */
UPDATE_VF_STAT(E1000_VFGPRLBC,
hw_stats->last_gprlbc, hw_stats->gprlbc);
/* Good Rx loopback octets */
UPDATE_VF_STAT(E1000_VFGORLBC,
hw_stats->last_gorlbc, hw_stats->gorlbc);
/* Good Tx loopback packets */
UPDATE_VF_STAT(E1000_VFGPTLBC,
hw_stats->last_gptlbc, hw_stats->gptlbc);
/* Good Tx loopback octets */
UPDATE_VF_STAT(E1000_VFGOTLBC,
hw_stats->last_gotlbc, hw_stats->gotlbc);
}
static int eth_igbvf_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
struct rte_eth_xstat_name *xstats_names,
__rte_unused unsigned limit)
{
unsigned i;
if (xstats_names != NULL)
for (i = 0; i < IGBVF_NB_XSTATS; i++) {
snprintf(xstats_names[i].name,
sizeof(xstats_names[i].name), "%s",
rte_igbvf_stats_strings[i].name);
}
return IGBVF_NB_XSTATS;
}
static int
eth_igbvf_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
unsigned n)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats *)
E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
unsigned i;
if (n < IGBVF_NB_XSTATS)
return IGBVF_NB_XSTATS;
igbvf_read_stats_registers(hw, hw_stats);
if (!xstats)
return 0;
for (i = 0; i < IGBVF_NB_XSTATS; i++) {
xstats[i].id = i;
xstats[i].value = *(uint64_t *)(((char *)hw_stats) +
rte_igbvf_stats_strings[i].offset);
}
return IGBVF_NB_XSTATS;
}
static int
eth_igbvf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats *)
E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
igbvf_read_stats_registers(hw, hw_stats);
if (rte_stats == NULL)
return -EINVAL;
rte_stats->ipackets = hw_stats->gprc;
rte_stats->ibytes = hw_stats->gorc;
rte_stats->opackets = hw_stats->gptc;
rte_stats->obytes = hw_stats->gotc;
return 0;
}
static void
eth_igbvf_stats_reset(struct rte_eth_dev *dev)
{
struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats*)
E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
/* Sync HW register to the last stats */
eth_igbvf_stats_get(dev, NULL);
/* reset HW current stats*/
memset(&hw_stats->gprc, 0, sizeof(*hw_stats) -
offsetof(struct e1000_vf_stats, gprc));
}
static int
eth_igb_fw_version_get(struct rte_eth_dev *dev, char *fw_version,
size_t fw_size)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_fw_version fw;
int ret;
e1000_get_fw_version(hw, &fw);
switch (hw->mac.type) {
case e1000_i210:
case e1000_i211:
if (!(e1000_get_flash_presence_i210(hw))) {
ret = snprintf(fw_version, fw_size,
"%2d.%2d-%d",
fw.invm_major, fw.invm_minor,
fw.invm_img_type);
break;
}
/* fall through */
default:
/* if option rom is valid, display its version too */
if (fw.or_valid) {
ret = snprintf(fw_version, fw_size,
"%d.%d, 0x%08x, %d.%d.%d",
fw.eep_major, fw.eep_minor, fw.etrack_id,
fw.or_major, fw.or_build, fw.or_patch);
/* no option rom */
} else {
if (fw.etrack_id != 0X0000) {
ret = snprintf(fw_version, fw_size,
"%d.%d, 0x%08x",
fw.eep_major, fw.eep_minor,
fw.etrack_id);
} else {
ret = snprintf(fw_version, fw_size,
"%d.%d.%d",
fw.eep_major, fw.eep_minor,
fw.eep_build);
}
}
break;
}
ret += 1; /* add the size of '\0' */
if (fw_size < (u32)ret)
return ret;
else
return 0;
}
static void
eth_igb_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
dev_info->max_rx_pktlen = 0x3FFF; /* See RLPML register. */
dev_info->max_mac_addrs = hw->mac.rar_entry_count;
dev_info->rx_queue_offload_capa = igb_get_rx_queue_offloads_capa(dev);
dev_info->rx_offload_capa = igb_get_rx_port_offloads_capa(dev) |
dev_info->rx_queue_offload_capa;
dev_info->tx_queue_offload_capa = igb_get_tx_queue_offloads_capa(dev);
dev_info->tx_offload_capa = igb_get_tx_port_offloads_capa(dev) |
dev_info->tx_queue_offload_capa;
switch (hw->mac.type) {
case e1000_82575:
dev_info->max_rx_queues = 4;
dev_info->max_tx_queues = 4;
dev_info->max_vmdq_pools = 0;
break;
case e1000_82576:
dev_info->max_rx_queues = 16;
dev_info->max_tx_queues = 16;
dev_info->max_vmdq_pools = ETH_8_POOLS;
dev_info->vmdq_queue_num = 16;
break;
case e1000_82580:
dev_info->max_rx_queues = 8;
dev_info->max_tx_queues = 8;
dev_info->max_vmdq_pools = ETH_8_POOLS;
dev_info->vmdq_queue_num = 8;
break;
case e1000_i350:
dev_info->max_rx_queues = 8;
dev_info->max_tx_queues = 8;
dev_info->max_vmdq_pools = ETH_8_POOLS;
dev_info->vmdq_queue_num = 8;
break;
case e1000_i354:
dev_info->max_rx_queues = 8;
dev_info->max_tx_queues = 8;
break;
case e1000_i210:
dev_info->max_rx_queues = 4;
dev_info->max_tx_queues = 4;
dev_info->max_vmdq_pools = 0;
break;
case e1000_i211:
dev_info->max_rx_queues = 2;
dev_info->max_tx_queues = 2;
dev_info->max_vmdq_pools = 0;
break;
default:
/* Should not happen */
break;
}
dev_info->hash_key_size = IGB_HKEY_MAX_INDEX * sizeof(uint32_t);
dev_info->reta_size = ETH_RSS_RETA_SIZE_128;
dev_info->flow_type_rss_offloads = IGB_RSS_OFFLOAD_ALL;
dev_info->default_rxconf = (struct rte_eth_rxconf) {
.rx_thresh = {
.pthresh = IGB_DEFAULT_RX_PTHRESH,
.hthresh = IGB_DEFAULT_RX_HTHRESH,
.wthresh = IGB_DEFAULT_RX_WTHRESH,
},
.rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
.rx_drop_en = 0,
.offloads = 0,
};
dev_info->default_txconf = (struct rte_eth_txconf) {
.tx_thresh = {
.pthresh = IGB_DEFAULT_TX_PTHRESH,
.hthresh = IGB_DEFAULT_TX_HTHRESH,
.wthresh = IGB_DEFAULT_TX_WTHRESH,
},
.offloads = 0,
};
dev_info->rx_desc_lim = rx_desc_lim;
dev_info->tx_desc_lim = tx_desc_lim;
dev_info->speed_capa = ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
ETH_LINK_SPEED_1G;
}
static const uint32_t *
eth_igb_supported_ptypes_get(struct rte_eth_dev *dev)
{
static const uint32_t ptypes[] = {
/* refers to igb_rxd_pkt_info_to_pkt_type() */
RTE_PTYPE_L2_ETHER,
RTE_PTYPE_L3_IPV4,
RTE_PTYPE_L3_IPV4_EXT,
RTE_PTYPE_L3_IPV6,
RTE_PTYPE_L3_IPV6_EXT,
RTE_PTYPE_L4_TCP,
RTE_PTYPE_L4_UDP,
RTE_PTYPE_L4_SCTP,
RTE_PTYPE_TUNNEL_IP,
RTE_PTYPE_INNER_L3_IPV6,
RTE_PTYPE_INNER_L3_IPV6_EXT,
RTE_PTYPE_INNER_L4_TCP,
RTE_PTYPE_INNER_L4_UDP,
RTE_PTYPE_UNKNOWN
};
if (dev->rx_pkt_burst == eth_igb_recv_pkts ||
dev->rx_pkt_burst == eth_igb_recv_scattered_pkts)
return ptypes;
return NULL;
}
static void
eth_igbvf_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
dev_info->max_rx_pktlen = 0x3FFF; /* See RLPML register. */
dev_info->max_mac_addrs = hw->mac.rar_entry_count;
dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT |
DEV_TX_OFFLOAD_IPV4_CKSUM |
DEV_TX_OFFLOAD_UDP_CKSUM |
DEV_TX_OFFLOAD_TCP_CKSUM |
DEV_TX_OFFLOAD_SCTP_CKSUM |
DEV_TX_OFFLOAD_TCP_TSO;
switch (hw->mac.type) {
case e1000_vfadapt:
dev_info->max_rx_queues = 2;
dev_info->max_tx_queues = 2;
break;
case e1000_vfadapt_i350:
dev_info->max_rx_queues = 1;
dev_info->max_tx_queues = 1;
break;
default:
/* Should not happen */
break;
}
dev_info->rx_queue_offload_capa = igb_get_rx_queue_offloads_capa(dev);
dev_info->rx_offload_capa = igb_get_rx_port_offloads_capa(dev) |
dev_info->rx_queue_offload_capa;
dev_info->tx_queue_offload_capa = igb_get_tx_queue_offloads_capa(dev);
dev_info->tx_offload_capa = igb_get_tx_port_offloads_capa(dev) |
dev_info->tx_queue_offload_capa;
dev_info->default_rxconf = (struct rte_eth_rxconf) {
.rx_thresh = {
.pthresh = IGB_DEFAULT_RX_PTHRESH,
.hthresh = IGB_DEFAULT_RX_HTHRESH,
.wthresh = IGB_DEFAULT_RX_WTHRESH,
},
.rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
.rx_drop_en = 0,
.offloads = 0,
};
dev_info->default_txconf = (struct rte_eth_txconf) {
.tx_thresh = {
.pthresh = IGB_DEFAULT_TX_PTHRESH,
.hthresh = IGB_DEFAULT_TX_HTHRESH,
.wthresh = IGB_DEFAULT_TX_WTHRESH,
},
.offloads = 0,
};
dev_info->rx_desc_lim = rx_desc_lim;
dev_info->tx_desc_lim = tx_desc_lim;
}
/* return 0 means link status changed, -1 means not changed */
static int
eth_igb_link_update(struct rte_eth_dev *dev, int wait_to_complete)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_eth_link link;
int link_check, count;
link_check = 0;
hw->mac.get_link_status = 1;
/* possible wait-to-complete in up to 9 seconds */
for (count = 0; count < IGB_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
/* Read the real link status */
switch (hw->phy.media_type) {
case e1000_media_type_copper:
/* Do the work to read phy */
e1000_check_for_link(hw);
link_check = !hw->mac.get_link_status;
break;
case e1000_media_type_fiber:
e1000_check_for_link(hw);
link_check = (E1000_READ_REG(hw, E1000_STATUS) &
E1000_STATUS_LU);
break;
case e1000_media_type_internal_serdes:
e1000_check_for_link(hw);
link_check = hw->mac.serdes_has_link;
break;
/* VF device is type_unknown */
case e1000_media_type_unknown:
eth_igbvf_link_update(hw);
link_check = !hw->mac.get_link_status;
break;
default:
break;
}
if (link_check || wait_to_complete == 0)
break;
rte_delay_ms(IGB_LINK_UPDATE_CHECK_INTERVAL);
}
memset(&link, 0, sizeof(link));
/* Now we check if a transition has happened */
if (link_check) {
uint16_t duplex, speed;
hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
link.link_duplex = (duplex == FULL_DUPLEX) ?
ETH_LINK_FULL_DUPLEX :
ETH_LINK_HALF_DUPLEX;
link.link_speed = speed;
link.link_status = ETH_LINK_UP;
link.link_autoneg = !(dev->data->dev_conf.link_speeds &
ETH_LINK_SPEED_FIXED);
} else if (!link_check) {
link.link_speed = 0;
link.link_duplex = ETH_LINK_HALF_DUPLEX;
link.link_status = ETH_LINK_DOWN;
link.link_autoneg = ETH_LINK_FIXED;
}
return rte_eth_linkstatus_set(dev, &link);
}
/*
* igb_hw_control_acquire sets CTRL_EXT:DRV_LOAD bit.
* For ASF and Pass Through versions of f/w this means
* that the driver is loaded.
*/
static void
igb_hw_control_acquire(struct e1000_hw *hw)
{
uint32_t ctrl_ext;
/* Let firmware know the driver has taken over */
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
}
/*
* igb_hw_control_release resets CTRL_EXT:DRV_LOAD bit.
* For ASF and Pass Through versions of f/w this means that the
* driver is no longer loaded.
*/
static void
igb_hw_control_release(struct e1000_hw *hw)
{
uint32_t ctrl_ext;
/* Let firmware taken over control of h/w */
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
E1000_WRITE_REG(hw, E1000_CTRL_EXT,
ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
}
/*
* Bit of a misnomer, what this really means is
* to enable OS management of the system... aka
* to disable special hardware management features.
*/
static void
igb_init_manageability(struct e1000_hw *hw)
{
if (e1000_enable_mng_pass_thru(hw)) {
uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
/* disable hardware interception of ARP */
manc &= ~(E1000_MANC_ARP_EN);
/* enable receiving management packets to the host */
manc |= E1000_MANC_EN_MNG2HOST;
manc2h |= 1 << 5; /* Mng Port 623 */
manc2h |= 1 << 6; /* Mng Port 664 */
E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
E1000_WRITE_REG(hw, E1000_MANC, manc);
}
}
static void
igb_release_manageability(struct e1000_hw *hw)
{
if (e1000_enable_mng_pass_thru(hw)) {
uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
manc |= E1000_MANC_ARP_EN;
manc &= ~E1000_MANC_EN_MNG2HOST;
E1000_WRITE_REG(hw, E1000_MANC, manc);
}
}
static void
eth_igb_promiscuous_enable(struct rte_eth_dev *dev)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t rctl;
rctl = E1000_READ_REG(hw, E1000_RCTL);
rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
}
static void
eth_igb_promiscuous_disable(struct rte_eth_dev *dev)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t rctl;
rctl = E1000_READ_REG(hw, E1000_RCTL);
rctl &= (~E1000_RCTL_UPE);
if (dev->data->all_multicast == 1)
rctl |= E1000_RCTL_MPE;
else
rctl &= (~E1000_RCTL_MPE);
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
}
static void
eth_igb_allmulticast_enable(struct rte_eth_dev *dev)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t rctl;
rctl = E1000_READ_REG(hw, E1000_RCTL);
rctl |= E1000_RCTL_MPE;
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
}
static void
eth_igb_allmulticast_disable(struct rte_eth_dev *dev)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t rctl;
if (dev->data->promiscuous == 1)
return; /* must remain in all_multicast mode */
rctl = E1000_READ_REG(hw, E1000_RCTL);
rctl &= (~E1000_RCTL_MPE);
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
}
static int
eth_igb_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_vfta * shadow_vfta =
E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
uint32_t vfta;
uint32_t vid_idx;
uint32_t vid_bit;
vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
E1000_VFTA_ENTRY_MASK);
vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
if (on)
vfta |= vid_bit;
else
vfta &= ~vid_bit;
E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
/* update local VFTA copy */
shadow_vfta->vfta[vid_idx] = vfta;
return 0;
}
static int
eth_igb_vlan_tpid_set(struct rte_eth_dev *dev,
enum rte_vlan_type vlan_type,
uint16_t tpid)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t reg, qinq;
qinq = E1000_READ_REG(hw, E1000_CTRL_EXT);
qinq &= E1000_CTRL_EXT_EXT_VLAN;
/* only outer TPID of double VLAN can be configured*/
if (qinq && vlan_type == ETH_VLAN_TYPE_OUTER) {
reg = E1000_READ_REG(hw, E1000_VET);
reg = (reg & (~E1000_VET_VET_EXT)) |
((uint32_t)tpid << E1000_VET_VET_EXT_SHIFT);
E1000_WRITE_REG(hw, E1000_VET, reg);
return 0;
}
/* all other TPID values are read-only*/
PMD_DRV_LOG(ERR, "Not supported");
return -ENOTSUP;
}
static void
igb_vlan_hw_filter_disable(struct rte_eth_dev *dev)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t reg;
/* Filter Table Disable */
reg = E1000_READ_REG(hw, E1000_RCTL);
reg &= ~E1000_RCTL_CFIEN;
reg &= ~E1000_RCTL_VFE;
E1000_WRITE_REG(hw, E1000_RCTL, reg);
}
static void
igb_vlan_hw_filter_enable(struct rte_eth_dev *dev)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_vfta * shadow_vfta =
E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
uint32_t reg;
int i;
/* Filter Table Enable, CFI not used for packet acceptance */
reg = E1000_READ_REG(hw, E1000_RCTL);
reg &= ~E1000_RCTL_CFIEN;
reg |= E1000_RCTL_VFE;
E1000_WRITE_REG(hw, E1000_RCTL, reg);
/* restore VFTA table */
for (i = 0; i < IGB_VFTA_SIZE; i++)
E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
}
static void
igb_vlan_hw_strip_disable(struct rte_eth_dev *dev)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t reg;
/* VLAN Mode Disable */
reg = E1000_READ_REG(hw, E1000_CTRL);
reg &= ~E1000_CTRL_VME;
E1000_WRITE_REG(hw, E1000_CTRL, reg);
}
static void
igb_vlan_hw_strip_enable(struct rte_eth_dev *dev)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t reg;
/* VLAN Mode Enable */
reg = E1000_READ_REG(hw, E1000_CTRL);
reg |= E1000_CTRL_VME;
E1000_WRITE_REG(hw, E1000_CTRL, reg);
}
static void
igb_vlan_hw_extend_disable(struct rte_eth_dev *dev)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t reg;
/* CTRL_EXT: Extended VLAN */
reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
reg &= ~E1000_CTRL_EXT_EXTEND_VLAN;
E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
/* Update maximum packet length */
if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME)
E1000_WRITE_REG(hw, E1000_RLPML,
dev->data->dev_conf.rxmode.max_rx_pkt_len +
VLAN_TAG_SIZE);
}
static void
igb_vlan_hw_extend_enable(struct rte_eth_dev *dev)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t reg;
/* CTRL_EXT: Extended VLAN */
reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
reg |= E1000_CTRL_EXT_EXTEND_VLAN;
E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
/* Update maximum packet length */
if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME)
E1000_WRITE_REG(hw, E1000_RLPML,
dev->data->dev_conf.rxmode.max_rx_pkt_len +
2 * VLAN_TAG_SIZE);
}
static int
eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask)
{
struct rte_eth_rxmode *rxmode;
rxmode = &dev->data->dev_conf.rxmode;
if(mask & ETH_VLAN_STRIP_MASK){
if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
igb_vlan_hw_strip_enable(dev);
else
igb_vlan_hw_strip_disable(dev);
}
if(mask & ETH_VLAN_FILTER_MASK){
if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
igb_vlan_hw_filter_enable(dev);
else
igb_vlan_hw_filter_disable(dev);
}
if(mask & ETH_VLAN_EXTEND_MASK){
if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_EXTEND)
igb_vlan_hw_extend_enable(dev);
else
igb_vlan_hw_extend_disable(dev);
}
return 0;
}
/**
* It enables the interrupt mask and then enable the interrupt.
*
* @param dev
* Pointer to struct rte_eth_dev.
* @param on
* Enable or Disable
*
* @return
* - On success, zero.
* - On failure, a negative value.
*/
static int
eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev, uint8_t on)
{
struct e1000_interrupt *intr =
E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
if (on)
intr->mask |= E1000_ICR_LSC;
else
intr->mask &= ~E1000_ICR_LSC;
return 0;
}
/* It clears the interrupt causes and enables the interrupt.
* It will be called once only during nic initialized.
*
* @param dev
* Pointer to struct rte_eth_dev.
*
* @return
* - On success, zero.
* - On failure, a negative value.
*/
static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev)
{
uint32_t mask, regval;
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_eth_dev_info dev_info;
memset(&dev_info, 0, sizeof(dev_info));
eth_igb_infos_get(dev, &dev_info);
mask = 0xFFFFFFFF >> (32 - dev_info.max_rx_queues);
regval = E1000_READ_REG(hw, E1000_EIMS);
E1000_WRITE_REG(hw, E1000_EIMS, regval | mask);
return 0;
}
/*
* It reads ICR and gets interrupt causes, check it and set a bit flag
* to update link status.
*
* @param dev
* Pointer to struct rte_eth_dev.
*
* @return
* - On success, zero.
* - On failure, a negative value.
*/
static int
eth_igb_interrupt_get_status(struct rte_eth_dev *dev)
{
uint32_t icr;
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_interrupt *intr =
E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
igb_intr_disable(hw);
/* read-on-clear nic registers here */
icr = E1000_READ_REG(hw, E1000_ICR);
intr->flags = 0;
if (icr & E1000_ICR_LSC) {
intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
}
if (icr & E1000_ICR_VMMB)
intr->flags |= E1000_FLAG_MAILBOX;
return 0;
}
/*
* It executes link_update after knowing an interrupt is prsent.
*
* @param dev
* Pointer to struct rte_eth_dev.
*
* @return
* - On success, zero.
* - On failure, a negative value.
*/
static int
eth_igb_interrupt_action(struct rte_eth_dev *dev,
struct rte_intr_handle *intr_handle)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_interrupt *intr =
E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_eth_link link;
int ret;
if (intr->flags & E1000_FLAG_MAILBOX) {
igb_pf_mbx_process(dev);
intr->flags &= ~E1000_FLAG_MAILBOX;
}
igb_intr_enable(dev);
rte_intr_enable(intr_handle);
if (intr->flags & E1000_FLAG_NEED_LINK_UPDATE) {
intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
/* set get_link_status to check register later */
hw->mac.get_link_status = 1;
ret = eth_igb_link_update(dev, 0);
/* check if link has changed */
if (ret < 0)
return 0;
rte_eth_linkstatus_get(dev, &link);
if (link.link_status) {
PMD_INIT_LOG(INFO,
" Port %d: Link Up - speed %u Mbps - %s",
dev->data->port_id,
(unsigned)link.link_speed,
link.link_duplex == ETH_LINK_FULL_DUPLEX ?
"full-duplex" : "half-duplex");
} else {
PMD_INIT_LOG(INFO, " Port %d: Link Down",
dev->data->port_id);
}
PMD_INIT_LOG(DEBUG, "PCI Address: %04d:%02d:%02d:%d",
pci_dev->addr.domain,
pci_dev->addr.bus,
pci_dev->addr.devid,
pci_dev->addr.function);
_rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC,
NULL);
}
return 0;
}
/**
* Interrupt handler which shall be registered at first.
*
* @param handle
* Pointer to interrupt handle.
* @param param
* The address of parameter (struct rte_eth_dev *) regsitered before.
*
* @return
* void
*/
static void
eth_igb_interrupt_handler(void *param)
{
struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
eth_igb_interrupt_get_status(dev);
eth_igb_interrupt_action(dev, dev->intr_handle);
}
static int
eth_igbvf_interrupt_get_status(struct rte_eth_dev *dev)
{
uint32_t eicr;
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_interrupt *intr =
E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
igbvf_intr_disable(hw);
/* read-on-clear nic registers here */
eicr = E1000_READ_REG(hw, E1000_EICR);
intr->flags = 0;
if (eicr == E1000_VTIVAR_MISC_MAILBOX)
intr->flags |= E1000_FLAG_MAILBOX;
return 0;
}
void igbvf_mbx_process(struct rte_eth_dev *dev)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_mbx_info *mbx = &hw->mbx;
u32 in_msg = 0;
/* peek the message first */
in_msg = E1000_READ_REG(hw, E1000_VMBMEM(0));
/* PF reset VF event */
if (in_msg == E1000_PF_CONTROL_MSG) {
/* dummy mbx read to ack pf */
if (mbx->ops.read(hw, &in_msg, 1, 0))
return;
_rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
NULL);
}
}
static int
eth_igbvf_interrupt_action(struct rte_eth_dev *dev, struct rte_intr_handle *intr_handle)
{
struct e1000_interrupt *intr =
E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
if (intr->flags & E1000_FLAG_MAILBOX) {
igbvf_mbx_process(dev);
intr->flags &= ~E1000_FLAG_MAILBOX;
}
igbvf_intr_enable(dev);
rte_intr_enable(intr_handle);
return 0;
}
static void
eth_igbvf_interrupt_handler(void *param)
{
struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
eth_igbvf_interrupt_get_status(dev);
eth_igbvf_interrupt_action(dev, dev->intr_handle);
}
static int
eth_igb_led_on(struct rte_eth_dev *dev)
{
struct e1000_hw *hw;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
return e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
}
static int
eth_igb_led_off(struct rte_eth_dev *dev)
{
struct e1000_hw *hw;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
return e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
}
static int
eth_igb_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
{
struct e1000_hw *hw;
uint32_t ctrl;
int tx_pause;
int rx_pause;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
fc_conf->pause_time = hw->fc.pause_time;
fc_conf->high_water = hw->fc.high_water;
fc_conf->low_water = hw->fc.low_water;
fc_conf->send_xon = hw->fc.send_xon;
fc_conf->autoneg = hw->mac.autoneg;
/*
* Return rx_pause and tx_pause status according to actual setting of
* the TFCE and RFCE bits in the CTRL register.
*/
ctrl = E1000_READ_REG(hw, E1000_CTRL);
if (ctrl & E1000_CTRL_TFCE)
tx_pause = 1;
else
tx_pause = 0;
if (ctrl & E1000_CTRL_RFCE)
rx_pause = 1;
else
rx_pause = 0;
if (rx_pause && tx_pause)
fc_conf->mode = RTE_FC_FULL;
else if (rx_pause)
fc_conf->mode = RTE_FC_RX_PAUSE;
else if (tx_pause)
fc_conf->mode = RTE_FC_TX_PAUSE;
else
fc_conf->mode = RTE_FC_NONE;
return 0;
}
static int
eth_igb_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
{
struct e1000_hw *hw;
int err;
enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
e1000_fc_none,
e1000_fc_rx_pause,
e1000_fc_tx_pause,
e1000_fc_full
};
uint32_t rx_buf_size;
uint32_t max_high_water;
uint32_t rctl;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if (fc_conf->autoneg != hw->mac.autoneg)
return -ENOTSUP;
rx_buf_size = igb_get_rx_buffer_size(hw);
PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
/* At least reserve one Ethernet frame for watermark */
max_high_water = rx_buf_size - ETHER_MAX_LEN;
if ((fc_conf->high_water > max_high_water) ||
(fc_conf->high_water < fc_conf->low_water)) {
PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
PMD_INIT_LOG(ERR, "high water must <= 0x%x", max_high_water);
return -EINVAL;
}
hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
hw->fc.pause_time = fc_conf->pause_time;
hw->fc.high_water = fc_conf->high_water;
hw->fc.low_water = fc_conf->low_water;
hw->fc.send_xon = fc_conf->send_xon;
err = e1000_setup_link_generic(hw);
if (err == E1000_SUCCESS) {
/* check if we want to forward MAC frames - driver doesn't have native
* capability to do that, so we'll write the registers ourselves */
rctl = E1000_READ_REG(hw, E1000_RCTL);
/* set or clear MFLCN.PMCF bit depending on configuration */
if (fc_conf->mac_ctrl_frame_fwd != 0)
rctl |= E1000_RCTL_PMCF;
else
rctl &= ~E1000_RCTL_PMCF;
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
E1000_WRITE_FLUSH(hw);
return 0;
}
PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
return -EIO;
}
#define E1000_RAH_POOLSEL_SHIFT (18)
static int
eth_igb_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
uint32_t index, uint32_t pool)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t rah;
e1000_rar_set(hw, mac_addr->addr_bytes, index);
rah = E1000_READ_REG(hw, E1000_RAH(index));
rah |= (0x1 << (E1000_RAH_POOLSEL_SHIFT + pool));
E1000_WRITE_REG(hw, E1000_RAH(index), rah);
return 0;
}
static void
eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index)
{
uint8_t addr[ETHER_ADDR_LEN];
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
memset(addr, 0, sizeof(addr));
e1000_rar_set(hw, addr, index);
}
static int
eth_igb_default_mac_addr_set(struct rte_eth_dev *dev,
struct ether_addr *addr)
{
eth_igb_rar_clear(dev, 0);
eth_igb_rar_set(dev, (void *)addr, 0, 0);
return 0;
}
/*
* Virtual Function operations
*/
static void
igbvf_intr_disable(struct e1000_hw *hw)
{
PMD_INIT_FUNC_TRACE();
/* Clear interrupt mask to stop from interrupts being generated */
E1000_WRITE_REG(hw, E1000_EIMC, 0xFFFF);
E1000_WRITE_FLUSH(hw);
}
static void
igbvf_stop_adapter(struct rte_eth_dev *dev)
{
u32 reg_val;
u16 i;
struct rte_eth_dev_info dev_info;
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
memset(&dev_info, 0, sizeof(dev_info));
eth_igbvf_infos_get(dev, &dev_info);
/* Clear interrupt mask to stop from interrupts being generated */
igbvf_intr_disable(hw);
/* Clear any pending interrupts, flush previous writes */
E1000_READ_REG(hw, E1000_EICR);
/* Disable the transmit unit. Each queue must be disabled. */
for (i = 0; i < dev_info.max_tx_queues; i++)
E1000_WRITE_REG(hw, E1000_TXDCTL(i), E1000_TXDCTL_SWFLSH);
/* Disable the receive unit by stopping each queue */
for (i = 0; i < dev_info.max_rx_queues; i++) {
reg_val = E1000_READ_REG(hw, E1000_RXDCTL(i));
reg_val &= ~E1000_RXDCTL_QUEUE_ENABLE;
E1000_WRITE_REG(hw, E1000_RXDCTL(i), reg_val);
while (E1000_READ_REG(hw, E1000_RXDCTL(i)) & E1000_RXDCTL_QUEUE_ENABLE)
;
}
/* flush all queues disables */
E1000_WRITE_FLUSH(hw);
msec_delay(2);
}
static int eth_igbvf_link_update(struct e1000_hw *hw)
{
struct e1000_mbx_info *mbx = &hw->mbx;
struct e1000_mac_info *mac = &hw->mac;
int ret_val = E1000_SUCCESS;
PMD_INIT_LOG(DEBUG, "e1000_check_for_link_vf");
/*
* We only want to run this if there has been a rst asserted.
* in this case that could mean a link change, device reset,
* or a virtual function reset
*/
/* If we were hit with a reset or timeout drop the link */
if (!e1000_check_for_rst(hw, 0) || !mbx->timeout)
mac->get_link_status = TRUE;
if (!mac->get_link_status)
goto out;
/* if link status is down no point in checking to see if pf is up */
if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
goto out;
/* if we passed all the tests above then the link is up and we no
* longer need to check for link */
mac->get_link_status = FALSE;
out:
return ret_val;
}
static int
igbvf_dev_configure(struct rte_eth_dev *dev)
{
struct rte_eth_conf* conf = &dev->data->dev_conf;
PMD_INIT_LOG(DEBUG, "Configured Virtual Function port id: %d",
dev->data->port_id);
/*
* VF has no ability to enable/disable HW CRC
* Keep the persistent behavior the same as Host PF
*/
#ifndef RTE_LIBRTE_E1000_PF_DISABLE_STRIP_CRC
if (conf->rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC) {
PMD_INIT_LOG(NOTICE, "VF can't disable HW CRC Strip");
conf->rxmode.offloads &= ~DEV_RX_OFFLOAD_KEEP_CRC;
}
#else
if (!(conf->rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)) {
PMD_INIT_LOG(NOTICE, "VF can't enable HW CRC Strip");
conf->rxmode.offloads |= DEV_RX_OFFLOAD_KEEP_CRC;
}
#endif
return 0;
}
static int
igbvf_dev_start(struct rte_eth_dev *dev)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_adapter *adapter =
E1000_DEV_PRIVATE(dev->data->dev_private);
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
int ret;
uint32_t intr_vector = 0;
PMD_INIT_FUNC_TRACE();
hw->mac.ops.reset_hw(hw);
adapter->stopped = 0;
/* Set all vfta */
igbvf_set_vfta_all(dev,1);
eth_igbvf_tx_init(dev);
/* This can fail when allocating mbufs for descriptor rings */
ret = eth_igbvf_rx_init(dev);
if (ret) {
PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
igb_dev_clear_queues(dev);
return ret;
}
/* check and configure queue intr-vector mapping */
if (rte_intr_cap_multiple(intr_handle) &&
dev->data->dev_conf.intr_conf.rxq) {
intr_vector = dev->data->nb_rx_queues;
ret = rte_intr_efd_enable(intr_handle, intr_vector);
if (ret)
return ret;
}
if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
intr_handle->intr_vec =
rte_zmalloc("intr_vec",
dev->data->nb_rx_queues * sizeof(int), 0);
if (!intr_handle->intr_vec) {
PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
" intr_vec", dev->data->nb_rx_queues);
return -ENOMEM;
}
}
eth_igbvf_configure_msix_intr(dev);
/* enable uio/vfio intr/eventfd mapping */
rte_intr_enable(intr_handle);
/* resume enabled intr since hw reset */
igbvf_intr_enable(dev);
return 0;
}
static void
igbvf_dev_stop(struct rte_eth_dev *dev)
{
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
PMD_INIT_FUNC_TRACE();
igbvf_stop_adapter(dev);
/*
* Clear what we set, but we still keep shadow_vfta to
* restore after device starts
*/
igbvf_set_vfta_all(dev,0);
igb_dev_clear_queues(dev);
/* disable intr eventfd mapping */
rte_intr_disable(intr_handle);
/* Clean datapath event and queue/vec mapping */
rte_intr_efd_disable(intr_handle);
if (intr_handle->intr_vec) {
rte_free(intr_handle->intr_vec);
intr_handle->intr_vec = NULL;
}
}
static void
igbvf_dev_close(struct rte_eth_dev *dev)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_adapter *adapter =
E1000_DEV_PRIVATE(dev->data->dev_private);
struct ether_addr addr;
PMD_INIT_FUNC_TRACE();
e1000_reset_hw(hw);
igbvf_dev_stop(dev);
adapter->stopped = 1;
igb_dev_free_queues(dev);
/**
* reprogram the RAR with a zero mac address,
* to ensure that the VF traffic goes to the PF
* after stop, close and detach of the VF.
**/
memset(&addr, 0, sizeof(addr));
igbvf_default_mac_addr_set(dev, &addr);
}
static void
igbvf_promiscuous_enable(struct rte_eth_dev *dev)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/* Set both unicast and multicast promisc */
e1000_promisc_set_vf(hw, e1000_promisc_enabled);
}
static void
igbvf_promiscuous_disable(struct rte_eth_dev *dev)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/* If in allmulticast mode leave multicast promisc */
if (dev->data->all_multicast == 1)
e1000_promisc_set_vf(hw, e1000_promisc_multicast);
else
e1000_promisc_set_vf(hw, e1000_promisc_disabled);
}
static void
igbvf_allmulticast_enable(struct rte_eth_dev *dev)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/* In promiscuous mode multicast promisc already set */
if (dev->data->promiscuous == 0)
e1000_promisc_set_vf(hw, e1000_promisc_multicast);
}
static void
igbvf_allmulticast_disable(struct rte_eth_dev *dev)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/* In promiscuous mode leave multicast promisc enabled */
if (dev->data->promiscuous == 0)
e1000_promisc_set_vf(hw, e1000_promisc_disabled);
}
static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on)
{
struct e1000_mbx_info *mbx = &hw->mbx;
uint32_t msgbuf[2];
s32 err;
/* After set vlan, vlan strip will also be enabled in igb driver*/
msgbuf[0] = E1000_VF_SET_VLAN;
msgbuf[1] = vid;
/* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
if (on)
msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
err = mbx->ops.write_posted(hw, msgbuf, 2, 0);
if (err)
goto mbx_err;
err = mbx->ops.read_posted(hw, msgbuf, 2, 0);
if (err)
goto mbx_err;
msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
if (msgbuf[0] == (E1000_VF_SET_VLAN | E1000_VT_MSGTYPE_NACK))
err = -EINVAL;
mbx_err:
return err;
}
static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_vfta * shadow_vfta =
E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
int i = 0, j = 0, vfta = 0, mask = 1;
for (i = 0; i < IGB_VFTA_SIZE; i++){
vfta = shadow_vfta->vfta[i];
if(vfta){
mask = 1;
for (j = 0; j < 32; j++){
if(vfta & mask)
igbvf_set_vfta(hw,
(uint16_t)((i<<5)+j), on);
mask<<=1;
}
}
}
}
static int
igbvf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_vfta * shadow_vfta =
E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
uint32_t vid_idx = 0;
uint32_t vid_bit = 0;
int ret = 0;
PMD_INIT_FUNC_TRACE();
/*vind is not used in VF driver, set to 0, check ixgbe_set_vfta_vf*/
ret = igbvf_set_vfta(hw, vlan_id, !!on);
if(ret){
PMD_INIT_LOG(ERR, "Unable to set VF vlan");
return ret;
}
vid_idx = (uint32_t) ((vlan_id >> 5) & 0x7F);
vid_bit = (uint32_t) (1 << (vlan_id & 0x1F));
/*Save what we set and retore it after device reset*/
if (on)
shadow_vfta->vfta[vid_idx] |= vid_bit;
else
shadow_vfta->vfta[vid_idx] &= ~vid_bit;
return 0;
}
static int
igbvf_default_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *addr)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/* index is not used by rar_set() */
hw->mac.ops.rar_set(hw, (void *)addr, 0);
return 0;
}
static int
eth_igb_rss_reta_update(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
uint8_t i, j, mask;
uint32_t reta, r;
uint16_t idx, shift;
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if (reta_size != ETH_RSS_RETA_SIZE_128) {
PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
"(%d) doesn't match the number hardware can supported "
"(%d)", reta_size, ETH_RSS_RETA_SIZE_128);
return -EINVAL;
}
for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
idx = i / RTE_RETA_GROUP_SIZE;
shift = i % RTE_RETA_GROUP_SIZE;
mask = (uint8_t)((reta_conf[idx].mask >> shift) &
IGB_4_BIT_MASK);
if (!mask)
continue;
if (mask == IGB_4_BIT_MASK)
r = 0;
else
r = E1000_READ_REG(hw, E1000_RETA(i >> 2));
for (j = 0, reta = 0; j < IGB_4_BIT_WIDTH; j++) {
if (mask & (0x1 << j))
reta |= reta_conf[idx].reta[shift + j] <<
(CHAR_BIT * j);
else
reta |= r & (IGB_8_BIT_MASK << (CHAR_BIT * j));
}
E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
}
return 0;
}
static int
eth_igb_rss_reta_query(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
uint8_t i, j, mask;
uint32_t reta;
uint16_t idx, shift;
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if (reta_size != ETH_RSS_RETA_SIZE_128) {
PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
"(%d) doesn't match the number hardware can supported "
"(%d)", reta_size, ETH_RSS_RETA_SIZE_128);
return -EINVAL;
}
for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
idx = i / RTE_RETA_GROUP_SIZE;
shift = i % RTE_RETA_GROUP_SIZE;
mask = (uint8_t)((reta_conf[idx].mask >> shift) &
IGB_4_BIT_MASK);
if (!mask)
continue;
reta = E1000_READ_REG(hw, E1000_RETA(i >> 2));
for (j = 0; j < IGB_4_BIT_WIDTH; j++) {
if (mask & (0x1 << j))
reta_conf[idx].reta[shift + j] =
((reta >> (CHAR_BIT * j)) &
IGB_8_BIT_MASK);
}
}
return 0;
}
int
eth_igb_syn_filter_set(struct rte_eth_dev *dev,
struct rte_eth_syn_filter *filter,
bool add)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_filter_info *filter_info =
E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
uint32_t synqf, rfctl;
if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
return -EINVAL;
synqf = E1000_READ_REG(hw, E1000_SYNQF(0));
if (add) {
if (synqf & E1000_SYN_FILTER_ENABLE)
return -EINVAL;
synqf = (uint32_t)(((filter->queue << E1000_SYN_FILTER_QUEUE_SHIFT) &
E1000_SYN_FILTER_QUEUE) | E1000_SYN_FILTER_ENABLE);
rfctl = E1000_READ_REG(hw, E1000_RFCTL);
if (filter->hig_pri)
rfctl |= E1000_RFCTL_SYNQFP;
else
rfctl &= ~E1000_RFCTL_SYNQFP;
E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
} else {
if (!(synqf & E1000_SYN_FILTER_ENABLE))
return -ENOENT;
synqf = 0;
}
filter_info->syn_info = synqf;
E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf);
E1000_WRITE_FLUSH(hw);
return 0;
}
static int
eth_igb_syn_filter_get(struct rte_eth_dev *dev,
struct rte_eth_syn_filter *filter)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t synqf, rfctl;
synqf = E1000_READ_REG(hw, E1000_SYNQF(0));
if (synqf & E1000_SYN_FILTER_ENABLE) {
rfctl = E1000_READ_REG(hw, E1000_RFCTL);
filter->hig_pri = (rfctl & E1000_RFCTL_SYNQFP) ? 1 : 0;
filter->queue = (uint8_t)((synqf & E1000_SYN_FILTER_QUEUE) >>
E1000_SYN_FILTER_QUEUE_SHIFT);
return 0;
}
return -ENOENT;
}
static int
eth_igb_syn_filter_handle(struct rte_eth_dev *dev,
enum rte_filter_op filter_op,
void *arg)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
int ret;
MAC_TYPE_FILTER_SUP(hw->mac.type);
if (filter_op == RTE_ETH_FILTER_NOP)
return 0;
if (arg == NULL) {
PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u",
filter_op);
return -EINVAL;
}
switch (filter_op) {
case RTE_ETH_FILTER_ADD:
ret = eth_igb_syn_filter_set(dev,
(struct rte_eth_syn_filter *)arg,
TRUE);
break;
case RTE_ETH_FILTER_DELETE:
ret = eth_igb_syn_filter_set(dev,
(struct rte_eth_syn_filter *)arg,
FALSE);
break;
case RTE_ETH_FILTER_GET:
ret = eth_igb_syn_filter_get(dev,
(struct rte_eth_syn_filter *)arg);
break;
default:
PMD_DRV_LOG(ERR, "unsupported operation %u", filter_op);
ret = -EINVAL;
break;
}
return ret;
}
/* translate elements in struct rte_eth_ntuple_filter to struct e1000_2tuple_filter_info*/
static inline int
ntuple_filter_to_2tuple(struct rte_eth_ntuple_filter *filter,
struct e1000_2tuple_filter_info *filter_info)
{
if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
return -EINVAL;
if (filter->priority > E1000_2TUPLE_MAX_PRI)
return -EINVAL; /* filter index is out of range. */
if (filter->tcp_flags > TCP_FLAG_ALL)
return -EINVAL; /* flags is invalid. */
switch (filter->dst_port_mask) {
case UINT16_MAX:
filter_info->dst_port_mask = 0;
filter_info->dst_port = filter->dst_port;
break;
case 0:
filter_info->dst_port_mask = 1;
break;
default:
PMD_DRV_LOG(ERR, "invalid dst_port mask.");
return -EINVAL;
}
switch (filter->proto_mask) {
case UINT8_MAX:
filter_info->proto_mask = 0;
filter_info->proto = filter->proto;
break;
case 0:
filter_info->proto_mask = 1;
break;
default:
PMD_DRV_LOG(ERR, "invalid protocol mask.");
return -EINVAL;
}
filter_info->priority = (uint8_t)filter->priority;
if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
filter_info->tcp_flags = filter->tcp_flags;
else
filter_info->tcp_flags = 0;
return 0;
}
static inline struct e1000_2tuple_filter *
igb_2tuple_filter_lookup(struct e1000_2tuple_filter_list *filter_list,
struct e1000_2tuple_filter_info *key)
{
struct e1000_2tuple_filter *it;
TAILQ_FOREACH(it, filter_list, entries) {
if (memcmp(key, &it->filter_info,
sizeof(struct e1000_2tuple_filter_info)) == 0) {
return it;
}
}
return NULL;
}
/* inject a igb 2tuple filter to HW */
static inline void
igb_inject_2uple_filter(struct rte_eth_dev *dev,
struct e1000_2tuple_filter *filter)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t ttqf = E1000_TTQF_DISABLE_MASK;
uint32_t imir, imir_ext = E1000_IMIREXT_SIZE_BP;
int i;
i = filter->index;
imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
imir |= E1000_IMIR_PORT_BP;
else
imir &= ~E1000_IMIR_PORT_BP;
imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
ttqf |= E1000_TTQF_QUEUE_ENABLE;
ttqf |= (uint32_t)(filter->queue << E1000_TTQF_QUEUE_SHIFT);
ttqf |= (uint32_t)(filter->filter_info.proto &
E1000_TTQF_PROTOCOL_MASK);
if (filter->filter_info.proto_mask == 0)
ttqf &= ~E1000_TTQF_MASK_ENABLE;
/* tcp flags bits setting. */
if (filter->filter_info.tcp_flags & TCP_FLAG_ALL) {
if (filter->filter_info.tcp_flags & TCP_URG_FLAG)
imir_ext |= E1000_IMIREXT_CTRL_URG;
if (filter->filter_info.tcp_flags & TCP_ACK_FLAG)
imir_ext |= E1000_IMIREXT_CTRL_ACK;
if (filter->filter_info.tcp_flags & TCP_PSH_FLAG)
imir_ext |= E1000_IMIREXT_CTRL_PSH;
if (filter->filter_info.tcp_flags & TCP_RST_FLAG)
imir_ext |= E1000_IMIREXT_CTRL_RST;
if (filter->filter_info.tcp_flags & TCP_SYN_FLAG)
imir_ext |= E1000_IMIREXT_CTRL_SYN;
if (filter->filter_info.tcp_flags & TCP_FIN_FLAG)
imir_ext |= E1000_IMIREXT_CTRL_FIN;
} else {
imir_ext |= E1000_IMIREXT_CTRL_BP;
}
E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
E1000_WRITE_REG(hw, E1000_TTQF(i), ttqf);
E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
}
/*
* igb_add_2tuple_filter - add a 2tuple filter
*
* @param
* dev: Pointer to struct rte_eth_dev.
* ntuple_filter: ponter to the filter that will be added.
*
* @return
* - On success, zero.
* - On failure, a negative value.
*/
static int
igb_add_2tuple_filter(struct rte_eth_dev *dev,
struct rte_eth_ntuple_filter *ntuple_filter)
{
struct e1000_filter_info *filter_info =
E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
struct e1000_2tuple_filter *filter;
int i, ret;
filter = rte_zmalloc("e1000_2tuple_filter",
sizeof(struct e1000_2tuple_filter), 0);
if (filter == NULL)
return -ENOMEM;
ret = ntuple_filter_to_2tuple(ntuple_filter,
&filter->filter_info);
if (ret < 0) {
rte_free(filter);
return ret;
}
if (igb_2tuple_filter_lookup(&filter_info->twotuple_list,
&filter->filter_info) != NULL) {
PMD_DRV_LOG(ERR, "filter exists.");
rte_free(filter);
return -EEXIST;
}
filter->queue = ntuple_filter->queue;
/*
* look for an unused 2tuple filter index,
* and insert the filter to list.
*/
for (i = 0; i < E1000_MAX_TTQF_FILTERS; i++) {
if (!(filter_info->twotuple_mask & (1 << i))) {
filter_info->twotuple_mask |= 1 << i;
filter->index = i;
TAILQ_INSERT_TAIL(&filter_info->twotuple_list,
filter,
entries);
break;
}
}
if (i >= E1000_MAX_TTQF_FILTERS) {
PMD_DRV_LOG(ERR, "2tuple filters are full.");
rte_free(filter);
return -ENOSYS;
}
igb_inject_2uple_filter(dev, filter);
return 0;
}
int
igb_delete_2tuple_filter(struct rte_eth_dev *dev,
struct e1000_2tuple_filter *filter)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_filter_info *filter_info =
E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
filter_info->twotuple_mask &= ~(1 << filter->index);
TAILQ_REMOVE(&filter_info->twotuple_list, filter, entries);
rte_free(filter);
E1000_WRITE_REG(hw, E1000_TTQF(filter->index), E1000_TTQF_DISABLE_MASK);
E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
return 0;
}
/*
* igb_remove_2tuple_filter - remove a 2tuple filter
*
* @param
* dev: Pointer to struct rte_eth_dev.
* ntuple_filter: ponter to the filter that will be removed.
*
* @return
* - On success, zero.
* - On failure, a negative value.
*/
static int
igb_remove_2tuple_filter(struct rte_eth_dev *dev,
struct rte_eth_ntuple_filter *ntuple_filter)
{
struct e1000_filter_info *filter_info =
E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
struct e1000_2tuple_filter_info filter_2tuple;
struct e1000_2tuple_filter *filter;
int ret;
memset(&filter_2tuple, 0, sizeof(struct e1000_2tuple_filter_info));
ret = ntuple_filter_to_2tuple(ntuple_filter,
&filter_2tuple);
if (ret < 0)
return ret;
filter = igb_2tuple_filter_lookup(&filter_info->twotuple_list,
&filter_2tuple);
if (filter == NULL) {
PMD_DRV_LOG(ERR, "filter doesn't exist.");
return -ENOENT;
}
igb_delete_2tuple_filter(dev, filter);
return 0;
}
/* inject a igb flex filter to HW */
static inline void
igb_inject_flex_filter(struct rte_eth_dev *dev,
struct e1000_flex_filter *filter)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t wufc, queueing;
uint32_t reg_off;
uint8_t i, j = 0;
wufc = E1000_READ_REG(hw, E1000_WUFC);
if (filter->index < E1000_MAX_FHFT)
reg_off = E1000_FHFT(filter->index);
else
reg_off = E1000_FHFT_EXT(filter->index - E1000_MAX_FHFT);
E1000_WRITE_REG(hw, E1000_WUFC, wufc | E1000_WUFC_FLEX_HQ |
(E1000_WUFC_FLX0 << filter->index));
queueing = filter->filter_info.len |
(filter->queue << E1000_FHFT_QUEUEING_QUEUE_SHIFT) |
(filter->filter_info.priority <<
E1000_FHFT_QUEUEING_PRIO_SHIFT);
E1000_WRITE_REG(hw, reg_off + E1000_FHFT_QUEUEING_OFFSET,
queueing);
for (i = 0; i < E1000_FLEX_FILTERS_MASK_SIZE; i++) {
E1000_WRITE_REG(hw, reg_off,
filter->filter_info.dwords[j]);
reg_off += sizeof(uint32_t);
E1000_WRITE_REG(hw, reg_off,
filter->filter_info.dwords[++j]);
reg_off += sizeof(uint32_t);
E1000_WRITE_REG(hw, reg_off,
(uint32_t)filter->filter_info.mask[i]);
reg_off += sizeof(uint32_t) * 2;
++j;
}
}
static inline struct e1000_flex_filter *
eth_igb_flex_filter_lookup(struct e1000_flex_filter_list *filter_list,
struct e1000_flex_filter_info *key)
{
struct e1000_flex_filter *it;
TAILQ_FOREACH(it, filter_list, entries) {
if (memcmp(key, &it->filter_info,
sizeof(struct e1000_flex_filter_info)) == 0)
return it;
}
return NULL;
}
/* remove a flex byte filter
* @param
* dev: Pointer to struct rte_eth_dev.
* filter: the pointer of the filter will be removed.
*/
void
igb_remove_flex_filter(struct rte_eth_dev *dev,
struct e1000_flex_filter *filter)
{
struct e1000_filter_info *filter_info =
E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t wufc, i;
uint32_t reg_off;
wufc = E1000_READ_REG(hw, E1000_WUFC);
if (filter->index < E1000_MAX_FHFT)
reg_off = E1000_FHFT(filter->index);
else
reg_off = E1000_FHFT_EXT(filter->index - E1000_MAX_FHFT);
for (i = 0; i < E1000_FHFT_SIZE_IN_DWD; i++)
E1000_WRITE_REG(hw, reg_off + i * sizeof(uint32_t), 0);
E1000_WRITE_REG(hw, E1000_WUFC, wufc &
(~(E1000_WUFC_FLX0 << filter->index)));
filter_info->flex_mask &= ~(1 << filter->index);
TAILQ_REMOVE(&filter_info->flex_list, filter, entries);
rte_free(filter);
}
int
eth_igb_add_del_flex_filter(struct rte_eth_dev *dev,
struct rte_eth_flex_filter *filter,
bool add)
{
struct e1000_filter_info *filter_info =
E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
struct e1000_flex_filter *flex_filter, *it;
uint32_t mask;
uint8_t shift, i;
flex_filter = rte_zmalloc("e1000_flex_filter",
sizeof(struct e1000_flex_filter), 0);
if (flex_filter == NULL)
return -ENOMEM;
flex_filter->filter_info.len = filter->len;
flex_filter->filter_info.priority = filter->priority;
memcpy(flex_filter->filter_info.dwords, filter->bytes, filter->len);
for (i = 0; i < RTE_ALIGN(filter->len, CHAR_BIT) / CHAR_BIT; i++) {
mask = 0;
/* reverse bits in flex filter's mask*/
for (shift = 0; shift < CHAR_BIT; shift++) {
if (filter->mask[i] & (0x01 << shift))
mask |= (0x80 >> shift);
}
flex_filter->filter_info.mask[i] = mask;
}
it = eth_igb_flex_filter_lookup(&filter_info->flex_list,
&flex_filter->filter_info);
if (it == NULL && !add) {
PMD_DRV_LOG(ERR, "filter doesn't exist.");
rte_free(flex_filter);
return -ENOENT;
}
if (it != NULL && add) {
PMD_DRV_LOG(ERR, "filter exists.");
rte_free(flex_filter);
return -EEXIST;
}
if (add) {
flex_filter->queue = filter->queue;
/*
* look for an unused flex filter index
* and insert the filter into the list.
*/
for (i = 0; i < E1000_MAX_FLEX_FILTERS; i++) {
if (!(filter_info->flex_mask & (1 << i))) {
filter_info->flex_mask |= 1 << i;
flex_filter->index = i;
TAILQ_INSERT_TAIL(&filter_info->flex_list,
flex_filter,
entries);
break;
}
}
if (i >= E1000_MAX_FLEX_FILTERS) {
PMD_DRV_LOG(ERR, "flex filters are full.");
rte_free(flex_filter);
return -ENOSYS;
}
igb_inject_flex_filter(dev, flex_filter);
} else {
igb_remove_flex_filter(dev, it);
rte_free(flex_filter);
}
return 0;
}
static int
eth_igb_get_flex_filter(struct rte_eth_dev *dev,
struct rte_eth_flex_filter *filter)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_filter_info *filter_info =
E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
struct e1000_flex_filter flex_filter, *it;
uint32_t wufc, queueing, wufc_en = 0;
memset(&flex_filter, 0, sizeof(struct e1000_flex_filter));
flex_filter.filter_info.len = filter->len;
flex_filter.filter_info.priority = filter->priority;
memcpy(flex_filter.filter_info.dwords, filter->bytes, filter->len);
memcpy(flex_filter.filter_info.mask, filter->mask,
RTE_ALIGN(filter->len, CHAR_BIT) / CHAR_BIT);
it = eth_igb_flex_filter_lookup(&filter_info->flex_list,
&flex_filter.filter_info);
if (it == NULL) {
PMD_DRV_LOG(ERR, "filter doesn't exist.");
return -ENOENT;
}
wufc = E1000_READ_REG(hw, E1000_WUFC);
wufc_en = E1000_WUFC_FLEX_HQ | (E1000_WUFC_FLX0 << it->index);
if ((wufc & wufc_en) == wufc_en) {
uint32_t reg_off = 0;
if (it->index < E1000_MAX_FHFT)
reg_off = E1000_FHFT(it->index);
else
reg_off = E1000_FHFT_EXT(it->index - E1000_MAX_FHFT);
queueing = E1000_READ_REG(hw,
reg_off + E1000_FHFT_QUEUEING_OFFSET);
filter->len = queueing & E1000_FHFT_QUEUEING_LEN;
filter->priority = (queueing & E1000_FHFT_QUEUEING_PRIO) >>
E1000_FHFT_QUEUEING_PRIO_SHIFT;
filter->queue = (queueing & E1000_FHFT_QUEUEING_QUEUE) >>
E1000_FHFT_QUEUEING_QUEUE_SHIFT;
return 0;
}
return -ENOENT;
}
static int
eth_igb_flex_filter_handle(struct rte_eth_dev *dev,
enum rte_filter_op filter_op,
void *arg)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_eth_flex_filter *filter;
int ret = 0;
MAC_TYPE_FILTER_SUP_EXT(hw->mac.type);
if (filter_op == RTE_ETH_FILTER_NOP)
return ret;
if (arg == NULL) {
PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u",
filter_op);
return -EINVAL;
}
filter = (struct rte_eth_flex_filter *)arg;
if (filter->len == 0 || filter->len > E1000_MAX_FLEX_FILTER_LEN
|| filter->len % sizeof(uint64_t) != 0) {
PMD_DRV_LOG(ERR, "filter's length is out of range");
return -EINVAL;
}
if (filter->priority > E1000_MAX_FLEX_FILTER_PRI) {
PMD_DRV_LOG(ERR, "filter's priority is out of range");
return -EINVAL;
}
switch (filter_op) {
case RTE_ETH_FILTER_ADD:
ret = eth_igb_add_del_flex_filter(dev, filter, TRUE);
break;
case RTE_ETH_FILTER_DELETE:
ret = eth_igb_add_del_flex_filter(dev, filter, FALSE);
break;
case RTE_ETH_FILTER_GET:
ret = eth_igb_get_flex_filter(dev, filter);
break;
default:
PMD_DRV_LOG(ERR, "unsupported operation %u", filter_op);
ret = -EINVAL;
break;
}
return ret;
}
/* translate elements in struct rte_eth_ntuple_filter to struct e1000_5tuple_filter_info*/
static inline int
ntuple_filter_to_5tuple_82576(struct rte_eth_ntuple_filter *filter,
struct e1000_5tuple_filter_info *filter_info)
{
if (filter->queue >= IGB_MAX_RX_QUEUE_NUM_82576)
return -EINVAL;
if (filter->priority > E1000_2TUPLE_MAX_PRI)
return -EINVAL; /* filter index is out of range. */
if (filter->tcp_flags > TCP_FLAG_ALL)
return -EINVAL; /* flags is invalid. */
switch (filter->dst_ip_mask) {
case UINT32_MAX:
filter_info->dst_ip_mask = 0;
filter_info->dst_ip = filter->dst_ip;
break;
case 0:
filter_info->dst_ip_mask = 1;
break;
default:
PMD_DRV_LOG(ERR, "invalid dst_ip mask.");
return -EINVAL;
}
switch (filter->src_ip_mask) {
case UINT32_MAX:
filter_info->src_ip_mask = 0;
filter_info->src_ip = filter->src_ip;
break;
case 0:
filter_info->src_ip_mask = 1;
break;
default:
PMD_DRV_LOG(ERR, "invalid src_ip mask.");
return -EINVAL;
}
switch (filter->dst_port_mask) {
case UINT16_MAX:
filter_info->dst_port_mask = 0;
filter_info->dst_port = filter->dst_port;
break;
case 0:
filter_info->dst_port_mask = 1;
break;
default:
PMD_DRV_LOG(ERR, "invalid dst_port mask.");
return -EINVAL;
}
switch (filter->src_port_mask) {
case UINT16_MAX:
filter_info->src_port_mask = 0;
filter_info->src_port = filter->src_port;
break;
case 0:
filter_info->src_port_mask = 1;
break;
default:
PMD_DRV_LOG(ERR, "invalid src_port mask.");
return -EINVAL;
}
switch (filter->proto_mask) {
case UINT8_MAX:
filter_info->proto_mask = 0;
filter_info->proto = filter->proto;
break;
case 0:
filter_info->proto_mask = 1;
break;
default:
PMD_DRV_LOG(ERR, "invalid protocol mask.");
return -EINVAL;
}
filter_info->priority = (uint8_t)filter->priority;
if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
filter_info->tcp_flags = filter->tcp_flags;
else
filter_info->tcp_flags = 0;
return 0;
}
static inline struct e1000_5tuple_filter *
igb_5tuple_filter_lookup_82576(struct e1000_5tuple_filter_list *filter_list,
struct e1000_5tuple_filter_info *key)
{
struct e1000_5tuple_filter *it;
TAILQ_FOREACH(it, filter_list, entries) {
if (memcmp(key, &it->filter_info,
sizeof(struct e1000_5tuple_filter_info)) == 0) {
return it;
}
}
return NULL;
}
/* inject a igb 5-tuple filter to HW */
static inline void
igb_inject_5tuple_filter_82576(struct rte_eth_dev *dev,
struct e1000_5tuple_filter *filter)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t ftqf = E1000_FTQF_VF_BP | E1000_FTQF_MASK;
uint32_t spqf, imir, imir_ext = E1000_IMIREXT_SIZE_BP;
uint8_t i;
i = filter->index;
ftqf |= filter->filter_info.proto & E1000_FTQF_PROTOCOL_MASK;
if (filter->filter_info.src_ip_mask == 0) /* 0b means compare. */
ftqf &= ~E1000_FTQF_MASK_SOURCE_ADDR_BP;
if (filter->filter_info.dst_ip_mask == 0)
ftqf &= ~E1000_FTQF_MASK_DEST_ADDR_BP;
if (filter->filter_info.src_port_mask == 0)
ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
if (filter->filter_info.proto_mask == 0)
ftqf &= ~E1000_FTQF_MASK_PROTO_BP;
ftqf |= (filter->queue << E1000_FTQF_QUEUE_SHIFT) &
E1000_FTQF_QUEUE_MASK;
ftqf |= E1000_FTQF_QUEUE_ENABLE;
E1000_WRITE_REG(hw, E1000_FTQF(i), ftqf);
E1000_WRITE_REG(hw, E1000_DAQF(i), filter->filter_info.dst_ip);
E1000_WRITE_REG(hw, E1000_SAQF(i), filter->filter_info.src_ip);
spqf = filter->filter_info.src_port & E1000_SPQF_SRCPORT;
E1000_WRITE_REG(hw, E1000_SPQF(i), spqf);
imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
imir |= E1000_IMIR_PORT_BP;
else
imir &= ~E1000_IMIR_PORT_BP;
imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
/* tcp flags bits setting. */
if (filter->filter_info.tcp_flags & TCP_FLAG_ALL) {
if (filter->filter_info.tcp_flags & TCP_URG_FLAG)
imir_ext |= E1000_IMIREXT_CTRL_URG;
if (filter->filter_info.tcp_flags & TCP_ACK_FLAG)
imir_ext |= E1000_IMIREXT_CTRL_ACK;
if (filter->filter_info.tcp_flags & TCP_PSH_FLAG)
imir_ext |= E1000_IMIREXT_CTRL_PSH;
if (filter->filter_info.tcp_flags & TCP_RST_FLAG)
imir_ext |= E1000_IMIREXT_CTRL_RST;
if (filter->filter_info.tcp_flags & TCP_SYN_FLAG)
imir_ext |= E1000_IMIREXT_CTRL_SYN;
if (filter->filter_info.tcp_flags & TCP_FIN_FLAG)
imir_ext |= E1000_IMIREXT_CTRL_FIN;
} else {
imir_ext |= E1000_IMIREXT_CTRL_BP;
}
E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
}
/*
* igb_add_5tuple_filter_82576 - add a 5tuple filter
*
* @param
* dev: Pointer to struct rte_eth_dev.
* ntuple_filter: ponter to the filter that will be added.
*
* @return
* - On success, zero.
* - On failure, a negative value.
*/
static int
igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
struct rte_eth_ntuple_filter *ntuple_filter)
{
struct e1000_filter_info *filter_info =
E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
struct e1000_5tuple_filter *filter;
uint8_t i;
int ret;
filter = rte_zmalloc("e1000_5tuple_filter",
sizeof(struct e1000_5tuple_filter), 0);
if (filter == NULL)
return -ENOMEM;
ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
&filter->filter_info);
if (ret < 0) {
rte_free(filter);
return ret;
}
if (igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
&filter->filter_info) != NULL) {
PMD_DRV_LOG(ERR, "filter exists.");
rte_free(filter);
return -EEXIST;
}
filter->queue = ntuple_filter->queue;
/*
* look for an unused 5tuple filter index,
* and insert the filter to list.
*/
for (i = 0; i < E1000_MAX_FTQF_FILTERS; i++) {
if (!(filter_info->fivetuple_mask & (1 << i))) {
filter_info->fivetuple_mask |= 1 << i;
filter->index = i;
TAILQ_INSERT_TAIL(&filter_info->fivetuple_list,
filter,
entries);
break;
}
}
if (i >= E1000_MAX_FTQF_FILTERS) {
PMD_DRV_LOG(ERR, "5tuple filters are full.");
rte_free(filter);
return -ENOSYS;
}
igb_inject_5tuple_filter_82576(dev, filter);
return 0;
}
int
igb_delete_5tuple_filter_82576(struct rte_eth_dev *dev,
struct e1000_5tuple_filter *filter)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_filter_info *filter_info =
E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
filter_info->fivetuple_mask &= ~(1 << filter->index);
TAILQ_REMOVE(&filter_info->fivetuple_list, filter, entries);
rte_free(filter);
E1000_WRITE_REG(hw, E1000_FTQF(filter->index),
E1000_FTQF_VF_BP | E1000_FTQF_MASK);
E1000_WRITE_REG(hw, E1000_DAQF(filter->index), 0);
E1000_WRITE_REG(hw, E1000_SAQF(filter->index), 0);
E1000_WRITE_REG(hw, E1000_SPQF(filter->index), 0);
E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
return 0;
}
/*
* igb_remove_5tuple_filter_82576 - remove a 5tuple filter
*
* @param
* dev: Pointer to struct rte_eth_dev.
* ntuple_filter: ponter to the filter that will be removed.
*
* @return
* - On success, zero.
* - On failure, a negative value.
*/
static int
igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
struct rte_eth_ntuple_filter *ntuple_filter)
{
struct e1000_filter_info *filter_info =
E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
struct e1000_5tuple_filter_info filter_5tuple;
struct e1000_5tuple_filter *filter;
int ret;
memset(&filter_5tuple, 0, sizeof(struct e1000_5tuple_filter_info));
ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
&filter_5tuple);
if (ret < 0)
return ret;
filter = igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
&filter_5tuple);
if (filter == NULL) {
PMD_DRV_LOG(ERR, "filter doesn't exist.");
return -ENOENT;
}
igb_delete_5tuple_filter_82576(dev, filter);
return 0;
}
static int
eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
{
uint32_t rctl;
struct e1000_hw *hw;
struct rte_eth_dev_info dev_info;
uint32_t frame_size = mtu + (ETHER_HDR_LEN + ETHER_CRC_LEN +
VLAN_TAG_SIZE);
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
#ifdef RTE_LIBRTE_82571_SUPPORT
/* XXX: not bigger than max_rx_pktlen */
if (hw->mac.type == e1000_82571)
return -ENOTSUP;
#endif
eth_igb_infos_get(dev, &dev_info);
/* check that mtu is within the allowed range */
if ((mtu < ETHER_MIN_MTU) ||
(frame_size > dev_info.max_rx_pktlen))
return -EINVAL;
/* refuse mtu that requires the support of scattered packets when this
* feature has not been enabled before. */
if (!dev->data->scattered_rx &&
frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
return -EINVAL;
rctl = E1000_READ_REG(hw, E1000_RCTL);
/* switch to jumbo mode if needed */
if (frame_size > ETHER_MAX_LEN) {
dev->data->dev_conf.rxmode.offloads |=
DEV_RX_OFFLOAD_JUMBO_FRAME;
rctl |= E1000_RCTL_LPE;
} else {
dev->data->dev_conf.rxmode.offloads &=
~DEV_RX_OFFLOAD_JUMBO_FRAME;
rctl &= ~E1000_RCTL_LPE;
}
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
/* update max frame size */
dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
E1000_WRITE_REG(hw, E1000_RLPML,
dev->data->dev_conf.rxmode.max_rx_pkt_len);
return 0;
}
/*
* igb_add_del_ntuple_filter - add or delete a ntuple filter
*
* @param
* dev: Pointer to struct rte_eth_dev.
* ntuple_filter: Pointer to struct rte_eth_ntuple_filter
* add: if true, add filter, if false, remove filter
*
* @return
* - On success, zero.
* - On failure, a negative value.
*/
int
igb_add_del_ntuple_filter(struct rte_eth_dev *dev,
struct rte_eth_ntuple_filter *ntuple_filter,
bool add)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
int ret;
switch (ntuple_filter->flags) {
case RTE_5TUPLE_FLAGS:
case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
if (hw->mac.type != e1000_82576)
return -ENOTSUP;
if (add)
ret = igb_add_5tuple_filter_82576(dev,
ntuple_filter);
else
ret = igb_remove_5tuple_filter_82576(dev,
ntuple_filter);
break;
case RTE_2TUPLE_FLAGS:
case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350 &&
hw->mac.type != e1000_i210 &&
hw->mac.type != e1000_i211)
return -ENOTSUP;
if (add)
ret = igb_add_2tuple_filter(dev, ntuple_filter);
else
ret = igb_remove_2tuple_filter(dev, ntuple_filter);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
/*
* igb_get_ntuple_filter - get a ntuple filter
*
* @param
* dev: Pointer to struct rte_eth_dev.
* ntuple_filter: Pointer to struct rte_eth_ntuple_filter
*
* @return
* - On success, zero.
* - On failure, a negative value.
*/
static int
igb_get_ntuple_filter(struct rte_eth_dev *dev,
struct rte_eth_ntuple_filter *ntuple_filter)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_filter_info *filter_info =
E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
struct e1000_5tuple_filter_info filter_5tuple;
struct e1000_2tuple_filter_info filter_2tuple;
struct e1000_5tuple_filter *p_5tuple_filter;
struct e1000_2tuple_filter *p_2tuple_filter;
int ret;
switch (ntuple_filter->flags) {
case RTE_5TUPLE_FLAGS:
case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
if (hw->mac.type != e1000_82576)
return -ENOTSUP;
memset(&filter_5tuple,
0,
sizeof(struct e1000_5tuple_filter_info));
ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
&filter_5tuple);
if (ret < 0)
return ret;
p_5tuple_filter = igb_5tuple_filter_lookup_82576(
&filter_info->fivetuple_list,
&filter_5tuple);
if (p_5tuple_filter == NULL) {
PMD_DRV_LOG(ERR, "filter doesn't exist.");
return -ENOENT;
}
ntuple_filter->queue = p_5tuple_filter->queue;
break;
case RTE_2TUPLE_FLAGS:
case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350)
return -ENOTSUP;
memset(&filter_2tuple,
0,
sizeof(struct e1000_2tuple_filter_info));
ret = ntuple_filter_to_2tuple(ntuple_filter, &filter_2tuple);
if (ret < 0)
return ret;
p_2tuple_filter = igb_2tuple_filter_lookup(
&filter_info->twotuple_list,
&filter_2tuple);
if (p_2tuple_filter == NULL) {
PMD_DRV_LOG(ERR, "filter doesn't exist.");
return -ENOENT;
}
ntuple_filter->queue = p_2tuple_filter->queue;
break;
default:
ret = -EINVAL;
break;
}
return 0;
}
/*
* igb_ntuple_filter_handle - Handle operations for ntuple filter.
* @dev: pointer to rte_eth_dev structure
* @filter_op:operation will be taken.
* @arg: a pointer to specific structure corresponding to the filter_op
*/
static int
igb_ntuple_filter_handle(struct rte_eth_dev *dev,
enum rte_filter_op filter_op,
void *arg)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
int ret;
MAC_TYPE_FILTER_SUP(hw->mac.type);
if (filter_op == RTE_ETH_FILTER_NOP)
return 0;
if (arg == NULL) {
PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
filter_op);
return -EINVAL;
}
switch (filter_op) {
case RTE_ETH_FILTER_ADD:
ret = igb_add_del_ntuple_filter(dev,
(struct rte_eth_ntuple_filter *)arg,
TRUE);
break;
case RTE_ETH_FILTER_DELETE:
ret = igb_add_del_ntuple_filter(dev,
(struct rte_eth_ntuple_filter *)arg,
FALSE);
break;
case RTE_ETH_FILTER_GET:
ret = igb_get_ntuple_filter(dev,
(struct rte_eth_ntuple_filter *)arg);
break;
default:
PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
ret = -EINVAL;
break;
}
return ret;
}
static inline int
igb_ethertype_filter_lookup(struct e1000_filter_info *filter_info,
uint16_t ethertype)
{
int i;
for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
if (filter_info->ethertype_filters[i].ethertype == ethertype &&
(filter_info->ethertype_mask & (1 << i)))
return i;
}
return -1;
}
static inline int
igb_ethertype_filter_insert(struct e1000_filter_info *filter_info,
uint16_t ethertype, uint32_t etqf)
{
int i;
for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
if (!(filter_info->ethertype_mask & (1 << i))) {
filter_info->ethertype_mask |= 1 << i;
filter_info->ethertype_filters[i].ethertype = ethertype;
filter_info->ethertype_filters[i].etqf = etqf;
return i;
}
}
return -1;
}
int
igb_ethertype_filter_remove(struct e1000_filter_info *filter_info,
uint8_t idx)
{
if (idx >= E1000_MAX_ETQF_FILTERS)
return -1;
filter_info->ethertype_mask &= ~(1 << idx);
filter_info->ethertype_filters[idx].ethertype = 0;
filter_info->ethertype_filters[idx].etqf = 0;
return idx;
}
int
igb_add_del_ethertype_filter(struct rte_eth_dev *dev,
struct rte_eth_ethertype_filter *filter,
bool add)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_filter_info *filter_info =
E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
uint32_t etqf = 0;
int ret;
if (filter->ether_type == ETHER_TYPE_IPv4 ||
filter->ether_type == ETHER_TYPE_IPv6) {
PMD_DRV_LOG(ERR, "unsupported ether_type(0x%04x) in"
" ethertype filter.", filter->ether_type);
return -EINVAL;
}
if (filter->flags & RTE_ETHTYPE_FLAGS_MAC) {
PMD_DRV_LOG(ERR, "mac compare is unsupported.");
return -EINVAL;
}
if (filter->flags & RTE_ETHTYPE_FLAGS_DROP) {
PMD_DRV_LOG(ERR, "drop option is unsupported.");
return -EINVAL;
}
ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type);
if (ret >= 0 && add) {
PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter exists.",
filter->ether_type);
return -EEXIST;
}
if (ret < 0 && !add) {
PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.",
filter->ether_type);
return -ENOENT;
}
if (add) {
etqf |= E1000_ETQF_FILTER_ENABLE | E1000_ETQF_QUEUE_ENABLE;
etqf |= (uint32_t)(filter->ether_type & E1000_ETQF_ETHERTYPE);
etqf |= filter->queue << E1000_ETQF_QUEUE_SHIFT;
ret = igb_ethertype_filter_insert(filter_info,
filter->ether_type, etqf);
if (ret < 0) {
PMD_DRV_LOG(ERR, "ethertype filters are full.");
return -ENOSYS;
}
} else {
ret = igb_ethertype_filter_remove(filter_info, (uint8_t)ret);
if (ret < 0)
return -ENOSYS;
}
E1000_WRITE_REG(hw, E1000_ETQF(ret), etqf);
E1000_WRITE_FLUSH(hw);
return 0;
}
static int
igb_get_ethertype_filter(struct rte_eth_dev *dev,
struct rte_eth_ethertype_filter *filter)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_filter_info *filter_info =
E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
uint32_t etqf;
int ret;
ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type);
if (ret < 0) {
PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.",
filter->ether_type);
return -ENOENT;
}
etqf = E1000_READ_REG(hw, E1000_ETQF(ret));
if (etqf & E1000_ETQF_FILTER_ENABLE) {
filter->ether_type = etqf & E1000_ETQF_ETHERTYPE;
filter->flags = 0;
filter->queue = (etqf & E1000_ETQF_QUEUE) >>
E1000_ETQF_QUEUE_SHIFT;
return 0;
}
return -ENOENT;
}
/*
* igb_ethertype_filter_handle - Handle operations for ethertype filter.
* @dev: pointer to rte_eth_dev structure
* @filter_op:operation will be taken.
* @arg: a pointer to specific structure corresponding to the filter_op
*/
static int
igb_ethertype_filter_handle(struct rte_eth_dev *dev,
enum rte_filter_op filter_op,
void *arg)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
int ret;
MAC_TYPE_FILTER_SUP(hw->mac.type);
if (filter_op == RTE_ETH_FILTER_NOP)
return 0;
if (arg == NULL) {
PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
filter_op);
return -EINVAL;
}
switch (filter_op) {
case RTE_ETH_FILTER_ADD:
ret = igb_add_del_ethertype_filter(dev,
(struct rte_eth_ethertype_filter *)arg,
TRUE);
break;
case RTE_ETH_FILTER_DELETE:
ret = igb_add_del_ethertype_filter(dev,
(struct rte_eth_ethertype_filter *)arg,
FALSE);
break;
case RTE_ETH_FILTER_GET:
ret = igb_get_ethertype_filter(dev,
(struct rte_eth_ethertype_filter *)arg);
break;
default:
PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
ret = -EINVAL;
break;
}
return ret;
}
static int
eth_igb_filter_ctrl(struct rte_eth_dev *dev,
enum rte_filter_type filter_type,
enum rte_filter_op filter_op,
void *arg)
{
int ret = 0;
switch (filter_type) {
case RTE_ETH_FILTER_NTUPLE:
ret = igb_ntuple_filter_handle(dev, filter_op, arg);
break;
case RTE_ETH_FILTER_ETHERTYPE:
ret = igb_ethertype_filter_handle(dev, filter_op, arg);
break;
case RTE_ETH_FILTER_SYN:
ret = eth_igb_syn_filter_handle(dev, filter_op, arg);
break;
case RTE_ETH_FILTER_FLEXIBLE:
ret = eth_igb_flex_filter_handle(dev, filter_op, arg);
break;
case RTE_ETH_FILTER_GENERIC:
if (filter_op != RTE_ETH_FILTER_GET)
return -EINVAL;
*(const void **)arg = &igb_flow_ops;
break;
default:
PMD_DRV_LOG(WARNING, "Filter type (%d) not supported",
filter_type);
break;
}
return ret;
}
static int
eth_igb_set_mc_addr_list(struct rte_eth_dev *dev,
struct ether_addr *mc_addr_set,
uint32_t nb_mc_addr)
{
struct e1000_hw *hw;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
return 0;
}
static uint64_t
igb_read_systime_cyclecounter(struct rte_eth_dev *dev)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint64_t systime_cycles;
switch (hw->mac.type) {
case e1000_i210:
case e1000_i211:
/*
* Need to read System Time Residue Register to be able
* to read the other two registers.
*/
E1000_READ_REG(hw, E1000_SYSTIMR);
/* SYSTIMEL stores ns and SYSTIMEH stores seconds. */
systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
systime_cycles += (uint64_t)E1000_READ_REG(hw, E1000_SYSTIMH)
* NSEC_PER_SEC;
break;
case e1000_82580:
case e1000_i350:
case e1000_i354:
/*
* Need to read System Time Residue Register to be able
* to read the other two registers.
*/
E1000_READ_REG(hw, E1000_SYSTIMR);
systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
/* Only the 8 LSB are valid. */
systime_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_SYSTIMH)
& 0xff) << 32;
break;
default:
systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
systime_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_SYSTIMH)
<< 32;
break;
}
return systime_cycles;
}
static uint64_t
igb_read_rx_tstamp_cyclecounter(struct rte_eth_dev *dev)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint64_t rx_tstamp_cycles;
switch (hw->mac.type) {
case e1000_i210:
case e1000_i211:
/* RXSTMPL stores ns and RXSTMPH stores seconds. */
rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
rx_tstamp_cycles += (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPH)
* NSEC_PER_SEC;
break;
case e1000_82580:
case e1000_i350:
case e1000_i354:
rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
/* Only the 8 LSB are valid. */
rx_tstamp_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_RXSTMPH)
& 0xff) << 32;
break;
default:
rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
rx_tstamp_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPH)
<< 32;
break;
}
return rx_tstamp_cycles;
}
static uint64_t
igb_read_tx_tstamp_cyclecounter(struct rte_eth_dev *dev)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint64_t tx_tstamp_cycles;
switch (hw->mac.type) {
case e1000_i210:
case e1000_i211:
/* RXSTMPL stores ns and RXSTMPH stores seconds. */
tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
tx_tstamp_cycles += (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPH)
* NSEC_PER_SEC;
break;
case e1000_82580:
case e1000_i350:
case e1000_i354:
tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
/* Only the 8 LSB are valid. */
tx_tstamp_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_TXSTMPH)
& 0xff) << 32;
break;
default:
tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
tx_tstamp_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPH)
<< 32;
break;
}
return tx_tstamp_cycles;
}
static void
igb_start_timecounters(struct rte_eth_dev *dev)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_adapter *adapter =
(struct e1000_adapter *)dev->data->dev_private;
uint32_t incval = 1;
uint32_t shift = 0;
uint64_t mask = E1000_CYCLECOUNTER_MASK;
switch (hw->mac.type) {
case e1000_82580:
case e1000_i350:
case e1000_i354:
/* 32 LSB bits + 8 MSB bits = 40 bits */
mask = (1ULL << 40) - 1;
/* fall-through */
case e1000_i210:
case e1000_i211:
/*
* Start incrementing the register
* used to timestamp PTP packets.
*/
E1000_WRITE_REG(hw, E1000_TIMINCA, incval);
break;
case e1000_82576:
incval = E1000_INCVALUE_82576;
shift = IGB_82576_TSYNC_SHIFT;
E1000_WRITE_REG(hw, E1000_TIMINCA,
E1000_INCPERIOD_82576 | incval);
break;
default:
/* Not supported */
return;
}
memset(&adapter->systime_tc, 0, sizeof(struct rte_timecounter));
memset(&adapter->rx_tstamp_tc, 0, sizeof(struct rte_timecounter));
memset(&adapter->tx_tstamp_tc, 0, sizeof(struct rte_timecounter));
adapter->systime_tc.cc_mask = mask;
adapter->systime_tc.cc_shift = shift;
adapter->systime_tc.nsec_mask = (1ULL << shift) - 1;
adapter->rx_tstamp_tc.cc_mask = mask;
adapter->rx_tstamp_tc.cc_shift = shift;
adapter->rx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
adapter->tx_tstamp_tc.cc_mask = mask;
adapter->tx_tstamp_tc.cc_shift = shift;
adapter->tx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
}
static int
igb_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta)
{
struct e1000_adapter *adapter =
(struct e1000_adapter *)dev->data->dev_private;
adapter->systime_tc.nsec += delta;
adapter->rx_tstamp_tc.nsec += delta;
adapter->tx_tstamp_tc.nsec += delta;
return 0;
}
static int
igb_timesync_write_time(struct rte_eth_dev *dev, const struct timespec *ts)
{
uint64_t ns;
struct e1000_adapter *adapter =
(struct e1000_adapter *)dev->data->dev_private;
ns = rte_timespec_to_ns(ts);
/* Set the timecounters to a new value. */
adapter->systime_tc.nsec = ns;
adapter->rx_tstamp_tc.nsec = ns;
adapter->tx_tstamp_tc.nsec = ns;
return 0;
}
static int
igb_timesync_read_time(struct rte_eth_dev *dev, struct timespec *ts)
{
uint64_t ns, systime_cycles;
struct e1000_adapter *adapter =
(struct e1000_adapter *)dev->data->dev_private;
systime_cycles = igb_read_systime_cyclecounter(dev);
ns = rte_timecounter_update(&adapter->systime_tc, systime_cycles);
*ts = rte_ns_to_timespec(ns);
return 0;
}
static int
igb_timesync_enable(struct rte_eth_dev *dev)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t tsync_ctl;
uint32_t tsauxc;
/* Stop the timesync system time. */
E1000_WRITE_REG(hw, E1000_TIMINCA, 0x0);
/* Reset the timesync system time value. */
switch (hw->mac.type) {
case e1000_82580:
case e1000_i350:
case e1000_i354:
case e1000_i210:
case e1000_i211:
E1000_WRITE_REG(hw, E1000_SYSTIMR, 0x0);
/* fall-through */
case e1000_82576:
E1000_WRITE_REG(hw, E1000_SYSTIML, 0x0);
E1000_WRITE_REG(hw, E1000_SYSTIMH, 0x0);
break;
default:
/* Not supported. */
return -ENOTSUP;
}
/* Enable system time for it isn't on by default. */
tsauxc = E1000_READ_REG(hw, E1000_TSAUXC);
tsauxc &= ~E1000_TSAUXC_DISABLE_SYSTIME;
E1000_WRITE_REG(hw, E1000_TSAUXC, tsauxc);
igb_start_timecounters(dev);
/* Enable L2 filtering of IEEE1588/802.1AS Ethernet frame types. */
E1000_WRITE_REG(hw, E1000_ETQF(E1000_ETQF_FILTER_1588),
(ETHER_TYPE_1588 |
E1000_ETQF_FILTER_ENABLE |
E1000_ETQF_1588));
/* Enable timestamping of received PTP packets. */
tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
tsync_ctl |= E1000_TSYNCRXCTL_ENABLED;
E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, tsync_ctl);
/* Enable Timestamping of transmitted PTP packets. */
tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
tsync_ctl |= E1000_TSYNCTXCTL_ENABLED;
E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, tsync_ctl);
return 0;
}
static int
igb_timesync_disable(struct rte_eth_dev *dev)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t tsync_ctl;
/* Disable timestamping of transmitted PTP packets. */
tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
tsync_ctl &= ~E1000_TSYNCTXCTL_ENABLED;
E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, tsync_ctl);
/* Disable timestamping of received PTP packets. */
tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
tsync_ctl &= ~E1000_TSYNCRXCTL_ENABLED;
E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, tsync_ctl);
/* Disable L2 filtering of IEEE1588/802.1AS Ethernet frame types. */
E1000_WRITE_REG(hw, E1000_ETQF(E1000_ETQF_FILTER_1588), 0);
/* Stop incrementating the System Time registers. */
E1000_WRITE_REG(hw, E1000_TIMINCA, 0);
return 0;
}
static int
igb_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
struct timespec *timestamp,
uint32_t flags __rte_unused)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_adapter *adapter =
(struct e1000_adapter *)dev->data->dev_private;
uint32_t tsync_rxctl;
uint64_t rx_tstamp_cycles;
uint64_t ns;
tsync_rxctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
if ((tsync_rxctl & E1000_TSYNCRXCTL_VALID) == 0)
return -EINVAL;
rx_tstamp_cycles = igb_read_rx_tstamp_cyclecounter(dev);
ns = rte_timecounter_update(&adapter->rx_tstamp_tc, rx_tstamp_cycles);
*timestamp = rte_ns_to_timespec(ns);
return 0;
}
static int
igb_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
struct timespec *timestamp)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_adapter *adapter =
(struct e1000_adapter *)dev->data->dev_private;
uint32_t tsync_txctl;
uint64_t tx_tstamp_cycles;
uint64_t ns;
tsync_txctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
if ((tsync_txctl & E1000_TSYNCTXCTL_VALID) == 0)
return -EINVAL;
tx_tstamp_cycles = igb_read_tx_tstamp_cyclecounter(dev);
ns = rte_timecounter_update(&adapter->tx_tstamp_tc, tx_tstamp_cycles);
*timestamp = rte_ns_to_timespec(ns);
return 0;
}
static int
eth_igb_get_reg_length(struct rte_eth_dev *dev __rte_unused)
{
int count = 0;
int g_ind = 0;
const struct reg_info *reg_group;
while ((reg_group = igb_regs[g_ind++]))
count += igb_reg_group_count(reg_group);
return count;
}
static int
igbvf_get_reg_length(struct rte_eth_dev *dev __rte_unused)
{
int count = 0;
int g_ind = 0;
const struct reg_info *reg_group;
while ((reg_group = igbvf_regs[g_ind++]))
count += igb_reg_group_count(reg_group);
return count;
}
static int
eth_igb_get_regs(struct rte_eth_dev *dev,
struct rte_dev_reg_info *regs)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t *data = regs->data;
int g_ind = 0;
int count = 0;
const struct reg_info *reg_group;
if (data == NULL) {
regs->length = eth_igb_get_reg_length(dev);
regs->width = sizeof(uint32_t);
return 0;
}
/* Support only full register dump */
if ((regs->length == 0) ||
(regs->length == (uint32_t)eth_igb_get_reg_length(dev))) {
regs->version = hw->mac.type << 24 | hw->revision_id << 16 |
hw->device_id;
while ((reg_group = igb_regs[g_ind++]))
count += igb_read_regs_group(dev, &data[count],
reg_group);
return 0;
}
return -ENOTSUP;
}
static int
igbvf_get_regs(struct rte_eth_dev *dev,
struct rte_dev_reg_info *regs)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t *data = regs->data;
int g_ind = 0;
int count = 0;
const struct reg_info *reg_group;
if (data == NULL) {
regs->length = igbvf_get_reg_length(dev);
regs->width = sizeof(uint32_t);
return 0;
}
/* Support only full register dump */
if ((regs->length == 0) ||
(regs->length == (uint32_t)igbvf_get_reg_length(dev))) {
regs->version = hw->mac.type << 24 | hw->revision_id << 16 |
hw->device_id;
while ((reg_group = igbvf_regs[g_ind++]))
count += igb_read_regs_group(dev, &data[count],
reg_group);
return 0;
}
return -ENOTSUP;
}
static int
eth_igb_get_eeprom_length(struct rte_eth_dev *dev)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/* Return unit is byte count */
return hw->nvm.word_size * 2;
}
static int
eth_igb_get_eeprom(struct rte_eth_dev *dev,
struct rte_dev_eeprom_info *in_eeprom)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_nvm_info *nvm = &hw->nvm;
uint16_t *data = in_eeprom->data;
int first, length;
first = in_eeprom->offset >> 1;
length = in_eeprom->length >> 1;
if ((first >= hw->nvm.word_size) ||
((first + length) >= hw->nvm.word_size))
return -EINVAL;
in_eeprom->magic = hw->vendor_id |
((uint32_t)hw->device_id << 16);
if ((nvm->ops.read) == NULL)
return -ENOTSUP;
return nvm->ops.read(hw, first, length, data);
}
static int
eth_igb_set_eeprom(struct rte_eth_dev *dev,
struct rte_dev_eeprom_info *in_eeprom)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_nvm_info *nvm = &hw->nvm;
uint16_t *data = in_eeprom->data;
int first, length;
first = in_eeprom->offset >> 1;
length = in_eeprom->length >> 1;
if ((first >= hw->nvm.word_size) ||
((first + length) >= hw->nvm.word_size))
return -EINVAL;
in_eeprom->magic = (uint32_t)hw->vendor_id |
((uint32_t)hw->device_id << 16);
if ((nvm->ops.write) == NULL)
return -ENOTSUP;
return nvm->ops.write(hw, first, length, data);
}
static int
eth_igb_get_module_info(struct rte_eth_dev *dev,
struct rte_eth_dev_module_info *modinfo)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t status = 0;
uint16_t sff8472_rev, addr_mode;
bool page_swap = false;
if (hw->phy.media_type == e1000_media_type_copper ||
hw->phy.media_type == e1000_media_type_unknown)
return -EOPNOTSUPP;
/* Check whether we support SFF-8472 or not */
status = e1000_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
if (status)
return -EIO;
/* addressing mode is not supported */
status = e1000_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
if (status)
return -EIO;
/* addressing mode is not supported */
if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
PMD_DRV_LOG(ERR,
"Address change required to access page 0xA2, "
"but not supported. Please report the module "
"type to the driver maintainers.\n");
page_swap = true;
}
if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
/* We have an SFP, but it does not support SFF-8472 */
modinfo->type = RTE_ETH_MODULE_SFF_8079;
modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8079_LEN;
} else {
/* We have an SFP which supports a revision of SFF-8472 */
modinfo->type = RTE_ETH_MODULE_SFF_8472;
modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8472_LEN;
}
return 0;
}
static int
eth_igb_get_module_eeprom(struct rte_eth_dev *dev,
struct rte_dev_eeprom_info *info)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t status = 0;
uint16_t dataword[RTE_ETH_MODULE_SFF_8472_LEN / 2 + 1];
u16 first_word, last_word;
int i = 0;
if (info->length == 0)
return -EINVAL;
first_word = info->offset >> 1;
last_word = (info->offset + info->length - 1) >> 1;
/* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
for (i = 0; i < last_word - first_word + 1; i++) {
status = e1000_read_phy_reg_i2c(hw, (first_word + i) * 2,
&dataword[i]);
if (status) {
/* Error occurred while reading module */
return -EIO;
}
dataword[i] = rte_be_to_cpu_16(dataword[i]);
}
memcpy(info->data, (u8 *)dataword + (info->offset & 1), info->length);
return 0;
}
static int
eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
uint32_t vec = E1000_MISC_VEC_ID;
if (rte_intr_allow_others(intr_handle))
vec = E1000_RX_VEC_START;
uint32_t mask = 1 << (queue_id + vec);
E1000_WRITE_REG(hw, E1000_EIMC, mask);
E1000_WRITE_FLUSH(hw);
return 0;
}
static int
eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
uint32_t vec = E1000_MISC_VEC_ID;
if (rte_intr_allow_others(intr_handle))
vec = E1000_RX_VEC_START;
uint32_t mask = 1 << (queue_id + vec);
uint32_t regval;
regval = E1000_READ_REG(hw, E1000_EIMS);
E1000_WRITE_REG(hw, E1000_EIMS, regval | mask);
E1000_WRITE_FLUSH(hw);
rte_intr_enable(intr_handle);
return 0;
}
static void
eth_igb_write_ivar(struct e1000_hw *hw, uint8_t msix_vector,
uint8_t index, uint8_t offset)
{
uint32_t val = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
/* clear bits */
val &= ~((uint32_t)0xFF << offset);
/* write vector and valid bit */
val |= (msix_vector | E1000_IVAR_VALID) << offset;
E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, val);
}
static void
eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction,
uint8_t queue, uint8_t msix_vector)
{
uint32_t tmp = 0;
if (hw->mac.type == e1000_82575) {
if (direction == 0)
tmp = E1000_EICR_RX_QUEUE0 << queue;
else if (direction == 1)
tmp = E1000_EICR_TX_QUEUE0 << queue;
E1000_WRITE_REG(hw, E1000_MSIXBM(msix_vector), tmp);
} else if (hw->mac.type == e1000_82576) {
if ((direction == 0) || (direction == 1))
eth_igb_write_ivar(hw, msix_vector, queue & 0x7,
((queue & 0x8) << 1) +
8 * direction);
} else if ((hw->mac.type == e1000_82580) ||
(hw->mac.type == e1000_i350) ||
(hw->mac.type == e1000_i354) ||
(hw->mac.type == e1000_i210) ||
(hw->mac.type == e1000_i211)) {
if ((direction == 0) || (direction == 1))
eth_igb_write_ivar(hw, msix_vector,
queue >> 1,
((queue & 0x1) << 4) +
8 * direction);
}
}
/* Sets up the hardware to generate MSI-X interrupts properly
* @hw
* board private structure
*/
static void
eth_igb_configure_msix_intr(struct rte_eth_dev *dev)
{
int queue_id;
uint32_t tmpval, regval, intr_mask;
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t vec = E1000_MISC_VEC_ID;
uint32_t base = E1000_MISC_VEC_ID;
uint32_t misc_shift = 0;
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
/* won't configure msix register if no mapping is done
* between intr vector and event fd
*/
if (!rte_intr_dp_is_en(intr_handle))
return;
if (rte_intr_allow_others(intr_handle)) {
vec = base = E1000_RX_VEC_START;
misc_shift = 1;
}
/* set interrupt vector for other causes */
if (hw->mac.type == e1000_82575) {
tmpval = E1000_READ_REG(hw, E1000_CTRL_EXT);
/* enable MSI-X PBA support */
tmpval |= E1000_CTRL_EXT_PBA_CLR;
/* Auto-Mask interrupts upon ICR read */
tmpval |= E1000_CTRL_EXT_EIAME;
tmpval |= E1000_CTRL_EXT_IRCA;
E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmpval);
/* enable msix_other interrupt */
E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), 0, E1000_EIMS_OTHER);
regval = E1000_READ_REG(hw, E1000_EIAC);
E1000_WRITE_REG(hw, E1000_EIAC, regval | E1000_EIMS_OTHER);
regval = E1000_READ_REG(hw, E1000_EIAM);
E1000_WRITE_REG(hw, E1000_EIMS, regval | E1000_EIMS_OTHER);
} else if ((hw->mac.type == e1000_82576) ||
(hw->mac.type == e1000_82580) ||
(hw->mac.type == e1000_i350) ||
(hw->mac.type == e1000_i354) ||
(hw->mac.type == e1000_i210) ||
(hw->mac.type == e1000_i211)) {
/* turn on MSI-X capability first */
E1000_WRITE_REG(hw, E1000_GPIE, E1000_GPIE_MSIX_MODE |
E1000_GPIE_PBA | E1000_GPIE_EIAME |
E1000_GPIE_NSICR);
intr_mask = RTE_LEN2MASK(intr_handle->nb_efd, uint32_t) <<
misc_shift;
regval = E1000_READ_REG(hw, E1000_EIAC);
E1000_WRITE_REG(hw, E1000_EIAC, regval | intr_mask);
/* enable msix_other interrupt */
regval = E1000_READ_REG(hw, E1000_EIMS);
E1000_WRITE_REG(hw, E1000_EIMS, regval | intr_mask);
tmpval = (dev->data->nb_rx_queues | E1000_IVAR_VALID) << 8;
E1000_WRITE_REG(hw, E1000_IVAR_MISC, tmpval);
}
/* use EIAM to auto-mask when MSI-X interrupt
* is asserted, this saves a register write for every interrupt
*/
intr_mask = RTE_LEN2MASK(intr_handle->nb_efd, uint32_t) <<
misc_shift;
regval = E1000_READ_REG(hw, E1000_EIAM);
E1000_WRITE_REG(hw, E1000_EIAM, regval | intr_mask);
for (queue_id = 0; queue_id < dev->data->nb_rx_queues; queue_id++) {
eth_igb_assign_msix_vector(hw, 0, queue_id, vec);
intr_handle->intr_vec[queue_id] = vec;
if (vec < base + intr_handle->nb_efd - 1)
vec++;
}
E1000_WRITE_FLUSH(hw);
}
/* restore n-tuple filter */
static inline void
igb_ntuple_filter_restore(struct rte_eth_dev *dev)
{
struct e1000_filter_info *filter_info =
E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
struct e1000_5tuple_filter *p_5tuple;
struct e1000_2tuple_filter *p_2tuple;
TAILQ_FOREACH(p_5tuple, &filter_info->fivetuple_list, entries) {
igb_inject_5tuple_filter_82576(dev, p_5tuple);
}
TAILQ_FOREACH(p_2tuple, &filter_info->twotuple_list, entries) {
igb_inject_2uple_filter(dev, p_2tuple);
}
}
/* restore SYN filter */
static inline void
igb_syn_filter_restore(struct rte_eth_dev *dev)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_filter_info *filter_info =
E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
uint32_t synqf;
synqf = filter_info->syn_info;
if (synqf & E1000_SYN_FILTER_ENABLE) {
E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf);
E1000_WRITE_FLUSH(hw);
}
}
/* restore ethernet type filter */
static inline void
igb_ethertype_filter_restore(struct rte_eth_dev *dev)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_filter_info *filter_info =
E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
int i;
for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
if (filter_info->ethertype_mask & (1 << i)) {
E1000_WRITE_REG(hw, E1000_ETQF(i),
filter_info->ethertype_filters[i].etqf);
E1000_WRITE_FLUSH(hw);
}
}
}
/* restore flex byte filter */
static inline void
igb_flex_filter_restore(struct rte_eth_dev *dev)
{
struct e1000_filter_info *filter_info =
E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
struct e1000_flex_filter *flex_filter;
TAILQ_FOREACH(flex_filter, &filter_info->flex_list, entries) {
igb_inject_flex_filter(dev, flex_filter);
}
}
/* restore rss filter */
static inline void
igb_rss_filter_restore(struct rte_eth_dev *dev)
{
struct e1000_filter_info *filter_info =
E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
if (filter_info->rss_info.conf.queue_num)
igb_config_rss_filter(dev, &filter_info->rss_info, TRUE);
}
/* restore all types filter */
static int
igb_filter_restore(struct rte_eth_dev *dev)
{
igb_ntuple_filter_restore(dev);
igb_ethertype_filter_restore(dev);
igb_syn_filter_restore(dev);
igb_flex_filter_restore(dev);
igb_rss_filter_restore(dev);
return 0;
}
RTE_PMD_REGISTER_PCI(net_e1000_igb, rte_igb_pmd);
RTE_PMD_REGISTER_PCI_TABLE(net_e1000_igb, pci_id_igb_map);
RTE_PMD_REGISTER_KMOD_DEP(net_e1000_igb, "* igb_uio | uio_pci_generic | vfio-pci");
RTE_PMD_REGISTER_PCI(net_e1000_igb_vf, rte_igbvf_pmd);
RTE_PMD_REGISTER_PCI_TABLE(net_e1000_igb_vf, pci_id_igbvf_map);
RTE_PMD_REGISTER_KMOD_DEP(net_e1000_igb_vf, "* igb_uio | vfio-pci");
/* see e1000_logs.c */
RTE_INIT(e1000_init_log)
{
e1000_igb_init_log();
}