numam-dpdk/examples/ip_pipeline/hash_func.h
Jasvinder Singh b5e408acd1 examples/ip_pipeline: remove master pipeline
remove master pipeline.

Signed-off-by: Cristian Dumitrescu <cristian.dumitrescu@intel.com>
Signed-off-by: Jasvinder Singh <jasvinder.singh@intel.com>
2018-04-04 12:26:22 +02:00

358 lines
7.1 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2018 Intel Corporation
*/
#ifndef __INCLUDE_HASH_FUNC_H__
#define __INCLUDE_HASH_FUNC_H__
static inline uint64_t
hash_xor_key8(void *key, void *mask, __rte_unused uint32_t key_size,
uint64_t seed)
{
uint64_t *k = key;
uint64_t *m = mask;
uint64_t xor0;
xor0 = seed ^ (k[0] & m[0]);
return (xor0 >> 32) ^ xor0;
}
static inline uint64_t
hash_xor_key16(void *key, void *mask, __rte_unused uint32_t key_size,
uint64_t seed)
{
uint64_t *k = key;
uint64_t *m = mask;
uint64_t xor0;
xor0 = ((k[0] & m[0]) ^ seed) ^ (k[1] & m[1]);
return (xor0 >> 32) ^ xor0;
}
static inline uint64_t
hash_xor_key24(void *key, void *mask, __rte_unused uint32_t key_size,
uint64_t seed)
{
uint64_t *k = key;
uint64_t *m = mask;
uint64_t xor0;
xor0 = ((k[0] & m[0]) ^ seed) ^ (k[1] & m[1]);
xor0 ^= k[2] & m[2];
return (xor0 >> 32) ^ xor0;
}
static inline uint64_t
hash_xor_key32(void *key, void *mask, __rte_unused uint32_t key_size,
uint64_t seed)
{
uint64_t *k = key;
uint64_t *m = mask;
uint64_t xor0, xor1;
xor0 = ((k[0] & m[0]) ^ seed) ^ (k[1] & m[1]);
xor1 = (k[2] & m[2]) ^ (k[3] & m[3]);
xor0 ^= xor1;
return (xor0 >> 32) ^ xor0;
}
static inline uint64_t
hash_xor_key40(void *key, void *mask, __rte_unused uint32_t key_size,
uint64_t seed)
{
uint64_t *k = key;
uint64_t *m = mask;
uint64_t xor0, xor1;
xor0 = ((k[0] & m[0]) ^ seed) ^ (k[1] & m[1]);
xor1 = (k[2] & m[2]) ^ (k[3] & m[3]);
xor0 ^= xor1;
xor0 ^= k[4] & m[4];
return (xor0 >> 32) ^ xor0;
}
static inline uint64_t
hash_xor_key48(void *key, void *mask, __rte_unused uint32_t key_size,
uint64_t seed)
{
uint64_t *k = key;
uint64_t *m = mask;
uint64_t xor0, xor1, xor2;
xor0 = ((k[0] & m[0]) ^ seed) ^ (k[1] & m[1]);
xor1 = (k[2] & m[2]) ^ (k[3] & m[3]);
xor2 = (k[4] & m[4]) ^ (k[5] & m[5]);
xor0 ^= xor1;
xor0 ^= xor2;
return (xor0 >> 32) ^ xor0;
}
static inline uint64_t
hash_xor_key56(void *key, void *mask, __rte_unused uint32_t key_size,
uint64_t seed)
{
uint64_t *k = key;
uint64_t *m = mask;
uint64_t xor0, xor1, xor2;
xor0 = ((k[0] & m[0]) ^ seed) ^ (k[1] & m[1]);
xor1 = (k[2] & m[2]) ^ (k[3] & m[3]);
xor2 = (k[4] & m[4]) ^ (k[5] & m[5]);
xor0 ^= xor1;
xor2 ^= k[6] & m[6];
xor0 ^= xor2;
return (xor0 >> 32) ^ xor0;
}
static inline uint64_t
hash_xor_key64(void *key, void *mask, __rte_unused uint32_t key_size,
uint64_t seed)
{
uint64_t *k = key;
uint64_t *m = mask;
uint64_t xor0, xor1, xor2, xor3;
xor0 = ((k[0] & m[0]) ^ seed) ^ (k[1] & m[1]);
xor1 = (k[2] & m[2]) ^ (k[3] & m[3]);
xor2 = (k[4] & m[4]) ^ (k[5] & m[5]);
xor3 = (k[6] & m[6]) ^ (k[7] & m[7]);
xor0 ^= xor1;
xor2 ^= xor3;
xor0 ^= xor2;
return (xor0 >> 32) ^ xor0;
}
#if defined(RTE_ARCH_X86_64)
#include <x86intrin.h>
static inline uint64_t
hash_crc_key8(void *key, void *mask, __rte_unused uint32_t key_size,
uint64_t seed)
{
uint64_t *k = key;
uint64_t *m = mask;
uint64_t crc0;
crc0 = _mm_crc32_u64(seed, k[0] & m[0]);
return crc0;
}
static inline uint64_t
hash_crc_key16(void *key, void *mask, __rte_unused uint32_t key_size,
uint64_t seed)
{
uint64_t *k = key;
uint64_t *m = mask;
uint64_t k0, crc0, crc1;
k0 = k[0] & m[0];
crc0 = _mm_crc32_u64(k0, seed);
crc1 = _mm_crc32_u64(k0 >> 32, k[1] & m[1]);
crc0 ^= crc1;
return crc0;
}
static inline uint64_t
hash_crc_key24(void *key, void *mask, __rte_unused uint32_t key_size,
uint64_t seed)
{
uint64_t *k = key;
uint64_t *m = mask;
uint64_t k0, k2, crc0, crc1;
k0 = k[0] & m[0];
k2 = k[2] & m[2];
crc0 = _mm_crc32_u64(k0, seed);
crc1 = _mm_crc32_u64(k0 >> 32, k[1] & m[1]);
crc0 = _mm_crc32_u64(crc0, k2);
crc0 ^= crc1;
return crc0;
}
static inline uint64_t
hash_crc_key32(void *key, void *mask, __rte_unused uint32_t key_size,
uint64_t seed)
{
uint64_t *k = key;
uint64_t *m = mask;
uint64_t k0, k2, crc0, crc1, crc2, crc3;
k0 = k[0] & m[0];
k2 = k[2] & m[2];
crc0 = _mm_crc32_u64(k0, seed);
crc1 = _mm_crc32_u64(k0 >> 32, k[1] & m[1]);
crc2 = _mm_crc32_u64(k2, k[3] & m[3]);
crc3 = k2 >> 32;
crc0 = _mm_crc32_u64(crc0, crc1);
crc1 = _mm_crc32_u64(crc2, crc3);
crc0 ^= crc1;
return crc0;
}
static inline uint64_t
hash_crc_key40(void *key, void *mask, __rte_unused uint32_t key_size,
uint64_t seed)
{
uint64_t *k = key;
uint64_t *m = mask;
uint64_t k0, k2, crc0, crc1, crc2, crc3;
k0 = k[0] & m[0];
k2 = k[2] & m[2];
crc0 = _mm_crc32_u64(k0, seed);
crc1 = _mm_crc32_u64(k0 >> 32, k[1] & m[1]);
crc2 = _mm_crc32_u64(k2, k[3] & m[3]);
crc3 = _mm_crc32_u64(k2 >> 32, k[4] & m[4]);
crc0 = _mm_crc32_u64(crc0, crc1);
crc1 = _mm_crc32_u64(crc2, crc3);
crc0 ^= crc1;
return crc0;
}
static inline uint64_t
hash_crc_key48(void *key, void *mask, __rte_unused uint32_t key_size,
uint64_t seed)
{
uint64_t *k = key;
uint64_t *m = mask;
uint64_t k0, k2, k5, crc0, crc1, crc2, crc3;
k0 = k[0] & m[0];
k2 = k[2] & m[2];
k5 = k[5] & m[5];
crc0 = _mm_crc32_u64(k0, seed);
crc1 = _mm_crc32_u64(k0 >> 32, k[1] & m[1]);
crc2 = _mm_crc32_u64(k2, k[3] & m[3]);
crc3 = _mm_crc32_u64(k2 >> 32, k[4] & m[4]);
crc0 = _mm_crc32_u64(crc0, (crc1 << 32) ^ crc2);
crc1 = _mm_crc32_u64(crc3, k5);
crc0 ^= crc1;
return crc0;
}
static inline uint64_t
hash_crc_key56(void *key, void *mask, __rte_unused uint32_t key_size,
uint64_t seed)
{
uint64_t *k = key;
uint64_t *m = mask;
uint64_t k0, k2, k5, crc0, crc1, crc2, crc3, crc4, crc5;
k0 = k[0] & m[0];
k2 = k[2] & m[2];
k5 = k[5] & m[5];
crc0 = _mm_crc32_u64(k0, seed);
crc1 = _mm_crc32_u64(k0 >> 32, k[1] & m[1]);
crc2 = _mm_crc32_u64(k2, k[3] & m[3]);
crc3 = _mm_crc32_u64(k2 >> 32, k[4] & m[4]);
crc4 = _mm_crc32_u64(k5, k[6] & m[6]);
crc5 = k5 >> 32;
crc0 = _mm_crc32_u64(crc0, (crc1 << 32) ^ crc2);
crc1 = _mm_crc32_u64(crc3, (crc4 << 32) ^ crc5);
crc0 ^= crc1;
return crc0;
}
static inline uint64_t
hash_crc_key64(void *key, void *mask, __rte_unused uint32_t key_size,
uint64_t seed)
{
uint64_t *k = key;
uint64_t *m = mask;
uint64_t k0, k2, k5, crc0, crc1, crc2, crc3, crc4, crc5;
k0 = k[0] & m[0];
k2 = k[2] & m[2];
k5 = k[5] & m[5];
crc0 = _mm_crc32_u64(k0, seed);
crc1 = _mm_crc32_u64(k0 >> 32, k[1] & m[1]);
crc2 = _mm_crc32_u64(k2, k[3] & m[3]);
crc3 = _mm_crc32_u64(k2 >> 32, k[4] & m[4]);
crc4 = _mm_crc32_u64(k5, k[6] & m[6]);
crc5 = _mm_crc32_u64(k5 >> 32, k[7] & m[7]);
crc0 = _mm_crc32_u64(crc0, (crc1 << 32) ^ crc2);
crc1 = _mm_crc32_u64(crc3, (crc4 << 32) ^ crc5);
crc0 ^= crc1;
return crc0;
}
#define hash_default_key8 hash_crc_key8
#define hash_default_key16 hash_crc_key16
#define hash_default_key24 hash_crc_key24
#define hash_default_key32 hash_crc_key32
#define hash_default_key40 hash_crc_key40
#define hash_default_key48 hash_crc_key48
#define hash_default_key56 hash_crc_key56
#define hash_default_key64 hash_crc_key64
#elif defined(RTE_ARCH_ARM64)
#include "hash_func_arm64.h"
#else
#define hash_default_key8 hash_xor_key8
#define hash_default_key16 hash_xor_key16
#define hash_default_key24 hash_xor_key24
#define hash_default_key32 hash_xor_key32
#define hash_default_key40 hash_xor_key40
#define hash_default_key48 hash_xor_key48
#define hash_default_key56 hash_xor_key56
#define hash_default_key64 hash_xor_key64
#endif
#endif