numam-dpdk/examples/ip_pipeline/pipeline/pipeline_routing_be.c
Jasvinder Singh 6736fe5381 examples/ip_pipeline: fix 32-bit build
error log:
ip_pipeline/pipeline/pipeline_routing_be.c:1537:
	integer constant is too large for 'long' type

Fixes: 0ae7275810 ("examples/ip_pipeline: add more functions to routing pipeline")

Signed-off-by: Jasvinder Singh <jasvinder.singh@intel.com>
Acked-by: Pablo de Lara <pablo.de.lara.guarch@intel.com>
Acked-by: John McNamara <john.mcnamara@intel.com>
2016-04-08 22:28:39 +02:00

1971 lines
52 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>
#include <rte_common.h>
#include <rte_malloc.h>
#include <rte_ip.h>
#include <rte_byteorder.h>
#include <rte_table_lpm.h>
#include <rte_table_hash.h>
#include <rte_pipeline.h>
#include "pipeline_routing_be.h"
#include "pipeline_actions_common.h"
#include "parser.h"
#include "hash_func.h"
#define MPLS_LABEL(label, exp, s, ttl) \
(((((uint64_t) (label)) & 0xFFFFFLLU) << 12) | \
((((uint64_t) (exp)) & 0x7LLU) << 9) | \
((((uint64_t) (s)) & 0x1LLU) << 8) | \
(((uint64_t) (ttl)) & 0xFFLU))
#define RTE_SCHED_PORT_HIERARCHY(subport, pipe, \
traffic_class, queue, color) \
((((uint64_t) (queue)) & 0x3) | \
((((uint64_t) (traffic_class)) & 0x3) << 2) | \
((((uint64_t) (color)) & 0x3) << 4) | \
((((uint64_t) (subport)) & 0xFFFF) << 16) | \
((((uint64_t) (pipe)) & 0xFFFFFFFF) << 32))
#define MAC_SRC_DEFAULT 0x112233445566ULL
#ifndef PIPELINE_ROUTING_LPM_TABLE_NUMBER_TABLE8s
#define PIPELINE_ROUTING_LPM_TABLE_NUMBER_TABLE8s 256
#endif
struct pipeline_routing {
struct pipeline p;
struct pipeline_routing_params params;
pipeline_msg_req_handler custom_handlers[PIPELINE_ROUTING_MSG_REQS];
} __rte_cache_aligned;
/*
* Message handlers
*/
static void *
pipeline_routing_msg_req_custom_handler(struct pipeline *p, void *msg);
static pipeline_msg_req_handler handlers[] = {
[PIPELINE_MSG_REQ_PING] =
pipeline_msg_req_ping_handler,
[PIPELINE_MSG_REQ_STATS_PORT_IN] =
pipeline_msg_req_stats_port_in_handler,
[PIPELINE_MSG_REQ_STATS_PORT_OUT] =
pipeline_msg_req_stats_port_out_handler,
[PIPELINE_MSG_REQ_STATS_TABLE] =
pipeline_msg_req_stats_table_handler,
[PIPELINE_MSG_REQ_PORT_IN_ENABLE] =
pipeline_msg_req_port_in_enable_handler,
[PIPELINE_MSG_REQ_PORT_IN_DISABLE] =
pipeline_msg_req_port_in_disable_handler,
[PIPELINE_MSG_REQ_CUSTOM] =
pipeline_routing_msg_req_custom_handler,
};
static void *
pipeline_routing_msg_req_route_add_handler(struct pipeline *p,
void *msg);
static void *
pipeline_routing_msg_req_route_del_handler(struct pipeline *p,
void *msg);
static void *
pipeline_routing_msg_req_route_add_default_handler(struct pipeline *p,
void *msg);
static void *
pipeline_routing_msg_req_route_del_default_handler(struct pipeline *p,
void *msg);
static void *
pipeline_routing_msg_req_arp_add_handler(struct pipeline *p,
void *msg);
static void *
pipeline_routing_msg_req_arp_del_handler(struct pipeline *p,
void *msg);
static void *
pipeline_routing_msg_req_arp_add_default_handler(struct pipeline *p,
void *msg);
static void *
pipeline_routing_msg_req_arp_del_default_handler(struct pipeline *p,
void *msg);
static pipeline_msg_req_handler custom_handlers[] = {
[PIPELINE_ROUTING_MSG_REQ_ROUTE_ADD] =
pipeline_routing_msg_req_route_add_handler,
[PIPELINE_ROUTING_MSG_REQ_ROUTE_DEL] =
pipeline_routing_msg_req_route_del_handler,
[PIPELINE_ROUTING_MSG_REQ_ROUTE_ADD_DEFAULT] =
pipeline_routing_msg_req_route_add_default_handler,
[PIPELINE_ROUTING_MSG_REQ_ROUTE_DEL_DEFAULT] =
pipeline_routing_msg_req_route_del_default_handler,
[PIPELINE_ROUTING_MSG_REQ_ARP_ADD] =
pipeline_routing_msg_req_arp_add_handler,
[PIPELINE_ROUTING_MSG_REQ_ARP_DEL] =
pipeline_routing_msg_req_arp_del_handler,
[PIPELINE_ROUTING_MSG_REQ_ARP_ADD_DEFAULT] =
pipeline_routing_msg_req_arp_add_default_handler,
[PIPELINE_ROUTING_MSG_REQ_ARP_DEL_DEFAULT] =
pipeline_routing_msg_req_arp_del_default_handler,
};
/*
* Routing table
*/
struct routing_table_entry {
struct rte_pipeline_table_entry head;
uint32_t flags;
uint32_t port_id; /* Output port ID */
uint32_t ip; /* Next hop IP address (only valid for remote routes) */
/* ether_l2 */
uint16_t data_offset;
uint16_t ether_l2_length;
uint64_t slab[4];
uint16_t slab_offset[4];
};
struct layout {
uint16_t a;
uint32_t b;
uint16_t c;
} __attribute__((__packed__));
#define MACADDR_DST_WRITE(slab_ptr, slab) \
{ \
struct layout *dst = (struct layout *) (slab_ptr); \
struct layout *src = (struct layout *) &(slab); \
\
dst->b = src->b; \
dst->c = src->c; \
}
static inline __attribute__((always_inline)) void
pkt_work_routing(
struct rte_mbuf *pkt,
struct rte_pipeline_table_entry *table_entry,
void *arg,
int arp,
int qinq,
int qinq_sched,
int mpls,
int mpls_color_mark)
{
struct pipeline_routing *p_rt = arg;
struct routing_table_entry *entry =
(struct routing_table_entry *) table_entry;
struct ipv4_hdr *ip = (struct ipv4_hdr *)
RTE_MBUF_METADATA_UINT8_PTR(pkt, p_rt->params.ip_hdr_offset);
enum rte_meter_color pkt_color = (enum rte_meter_color)
RTE_MBUF_METADATA_UINT32(pkt, p_rt->params.color_offset);
struct pipeline_routing_arp_key_ipv4 *arp_key =
(struct pipeline_routing_arp_key_ipv4 *)
RTE_MBUF_METADATA_UINT8_PTR(pkt, p_rt->params.arp_key_offset);
uint64_t *slab0_ptr, *slab1_ptr, *slab2_ptr, *slab3_ptr, sched;
uint32_t ip_da, nh_ip, port_id;
uint16_t total_length, data_offset, ether_l2_length;
/* Read */
total_length = rte_bswap16(ip->total_length);
ip_da = ip->dst_addr;
data_offset = entry->data_offset;
ether_l2_length = entry->ether_l2_length;
slab0_ptr = RTE_MBUF_METADATA_UINT64_PTR(pkt, entry->slab_offset[0]);
slab1_ptr = RTE_MBUF_METADATA_UINT64_PTR(pkt, entry->slab_offset[1]);
slab2_ptr = RTE_MBUF_METADATA_UINT64_PTR(pkt, entry->slab_offset[2]);
slab3_ptr = RTE_MBUF_METADATA_UINT64_PTR(pkt, entry->slab_offset[3]);
if (arp) {
port_id = entry->port_id;
nh_ip = entry->ip;
if (entry->flags & PIPELINE_ROUTING_ROUTE_LOCAL)
nh_ip = ip_da;
}
/* Compute */
total_length += ether_l2_length;
if (qinq && qinq_sched) {
uint32_t dscp = ip->type_of_service >> 2;
uint32_t svlan, cvlan, tc, tc_q;
if (qinq_sched == 1) {
uint64_t slab_qinq = rte_bswap64(entry->slab[0]);
svlan = (slab_qinq >> 48) & 0xFFF;
cvlan = (slab_qinq >> 16) & 0xFFF;
tc = (dscp >> 2) & 0x3;
tc_q = dscp & 0x3;
} else {
uint32_t ip_src = rte_bswap32(ip->src_addr);
svlan = 0;
cvlan = (ip_src >> 16) & 0xFFF;
tc = (ip_src >> 2) & 0x3;
tc_q = ip_src & 0x3;
}
sched = RTE_SCHED_PORT_HIERARCHY(svlan,
cvlan,
tc,
tc_q,
e_RTE_METER_GREEN);
}
/* Write */
pkt->data_off = data_offset;
pkt->data_len = total_length;
pkt->pkt_len = total_length;
if ((qinq == 0) && (mpls == 0)) {
*slab0_ptr = entry->slab[0];
if (arp == 0)
MACADDR_DST_WRITE(slab1_ptr, entry->slab[1]);
}
if (qinq) {
*slab0_ptr = entry->slab[0];
*slab1_ptr = entry->slab[1];
if (arp == 0)
MACADDR_DST_WRITE(slab2_ptr, entry->slab[2]);
if (qinq_sched) {
pkt->hash.sched.lo = sched & 0xFFFFFFFF;
pkt->hash.sched.hi = sched >> 32;
}
}
if (mpls) {
if (mpls_color_mark) {
uint64_t mpls_exp = rte_bswap64(
(MPLS_LABEL(0, pkt_color, 0, 0) << 32) |
MPLS_LABEL(0, pkt_color, 0, 0));
*slab0_ptr = entry->slab[0] | mpls_exp;
*slab1_ptr = entry->slab[1] | mpls_exp;
*slab2_ptr = entry->slab[2];
} else {
*slab0_ptr = entry->slab[0];
*slab1_ptr = entry->slab[1];
*slab2_ptr = entry->slab[2];
}
if (arp == 0)
MACADDR_DST_WRITE(slab3_ptr, entry->slab[3]);
}
if (arp) {
arp_key->port_id = port_id;
arp_key->ip = nh_ip;
}
}
static inline __attribute__((always_inline)) void
pkt4_work_routing(
struct rte_mbuf **pkts,
struct rte_pipeline_table_entry **table_entries,
void *arg,
int arp,
int qinq,
int qinq_sched,
int mpls,
int mpls_color_mark)
{
struct pipeline_routing *p_rt = arg;
struct routing_table_entry *entry0 =
(struct routing_table_entry *) table_entries[0];
struct routing_table_entry *entry1 =
(struct routing_table_entry *) table_entries[1];
struct routing_table_entry *entry2 =
(struct routing_table_entry *) table_entries[2];
struct routing_table_entry *entry3 =
(struct routing_table_entry *) table_entries[3];
struct ipv4_hdr *ip0 = (struct ipv4_hdr *)
RTE_MBUF_METADATA_UINT8_PTR(pkts[0],
p_rt->params.ip_hdr_offset);
struct ipv4_hdr *ip1 = (struct ipv4_hdr *)
RTE_MBUF_METADATA_UINT8_PTR(pkts[1],
p_rt->params.ip_hdr_offset);
struct ipv4_hdr *ip2 = (struct ipv4_hdr *)
RTE_MBUF_METADATA_UINT8_PTR(pkts[2],
p_rt->params.ip_hdr_offset);
struct ipv4_hdr *ip3 = (struct ipv4_hdr *)
RTE_MBUF_METADATA_UINT8_PTR(pkts[3],
p_rt->params.ip_hdr_offset);
enum rte_meter_color pkt0_color = (enum rte_meter_color)
RTE_MBUF_METADATA_UINT32(pkts[0], p_rt->params.color_offset);
enum rte_meter_color pkt1_color = (enum rte_meter_color)
RTE_MBUF_METADATA_UINT32(pkts[1], p_rt->params.color_offset);
enum rte_meter_color pkt2_color = (enum rte_meter_color)
RTE_MBUF_METADATA_UINT32(pkts[2], p_rt->params.color_offset);
enum rte_meter_color pkt3_color = (enum rte_meter_color)
RTE_MBUF_METADATA_UINT32(pkts[3], p_rt->params.color_offset);
struct pipeline_routing_arp_key_ipv4 *arp_key0 =
(struct pipeline_routing_arp_key_ipv4 *)
RTE_MBUF_METADATA_UINT8_PTR(pkts[0],
p_rt->params.arp_key_offset);
struct pipeline_routing_arp_key_ipv4 *arp_key1 =
(struct pipeline_routing_arp_key_ipv4 *)
RTE_MBUF_METADATA_UINT8_PTR(pkts[1],
p_rt->params.arp_key_offset);
struct pipeline_routing_arp_key_ipv4 *arp_key2 =
(struct pipeline_routing_arp_key_ipv4 *)
RTE_MBUF_METADATA_UINT8_PTR(pkts[2],
p_rt->params.arp_key_offset);
struct pipeline_routing_arp_key_ipv4 *arp_key3 =
(struct pipeline_routing_arp_key_ipv4 *)
RTE_MBUF_METADATA_UINT8_PTR(pkts[3],
p_rt->params.arp_key_offset);
uint64_t *slab0_ptr0, *slab1_ptr0, *slab2_ptr0, *slab3_ptr0;
uint64_t *slab0_ptr1, *slab1_ptr1, *slab2_ptr1, *slab3_ptr1;
uint64_t *slab0_ptr2, *slab1_ptr2, *slab2_ptr2, *slab3_ptr2;
uint64_t *slab0_ptr3, *slab1_ptr3, *slab2_ptr3, *slab3_ptr3;
uint64_t sched0, sched1, sched2, sched3;
uint32_t ip_da0, nh_ip0, port_id0;
uint32_t ip_da1, nh_ip1, port_id1;
uint32_t ip_da2, nh_ip2, port_id2;
uint32_t ip_da3, nh_ip3, port_id3;
uint16_t total_length0, data_offset0, ether_l2_length0;
uint16_t total_length1, data_offset1, ether_l2_length1;
uint16_t total_length2, data_offset2, ether_l2_length2;
uint16_t total_length3, data_offset3, ether_l2_length3;
/* Read */
total_length0 = rte_bswap16(ip0->total_length);
total_length1 = rte_bswap16(ip1->total_length);
total_length2 = rte_bswap16(ip2->total_length);
total_length3 = rte_bswap16(ip3->total_length);
ip_da0 = ip0->dst_addr;
ip_da1 = ip1->dst_addr;
ip_da2 = ip2->dst_addr;
ip_da3 = ip3->dst_addr;
data_offset0 = entry0->data_offset;
data_offset1 = entry1->data_offset;
data_offset2 = entry2->data_offset;
data_offset3 = entry3->data_offset;
ether_l2_length0 = entry0->ether_l2_length;
ether_l2_length1 = entry1->ether_l2_length;
ether_l2_length2 = entry2->ether_l2_length;
ether_l2_length3 = entry3->ether_l2_length;
slab0_ptr0 = RTE_MBUF_METADATA_UINT64_PTR(pkts[0],
entry0->slab_offset[0]);
slab1_ptr0 = RTE_MBUF_METADATA_UINT64_PTR(pkts[0],
entry0->slab_offset[1]);
slab2_ptr0 = RTE_MBUF_METADATA_UINT64_PTR(pkts[0],
entry0->slab_offset[2]);
slab3_ptr0 = RTE_MBUF_METADATA_UINT64_PTR(pkts[0],
entry0->slab_offset[3]);
slab0_ptr1 = RTE_MBUF_METADATA_UINT64_PTR(pkts[1],
entry1->slab_offset[0]);
slab1_ptr1 = RTE_MBUF_METADATA_UINT64_PTR(pkts[1],
entry1->slab_offset[1]);
slab2_ptr1 = RTE_MBUF_METADATA_UINT64_PTR(pkts[1],
entry1->slab_offset[2]);
slab3_ptr1 = RTE_MBUF_METADATA_UINT64_PTR(pkts[1],
entry1->slab_offset[3]);
slab0_ptr2 = RTE_MBUF_METADATA_UINT64_PTR(pkts[2],
entry2->slab_offset[0]);
slab1_ptr2 = RTE_MBUF_METADATA_UINT64_PTR(pkts[2],
entry2->slab_offset[1]);
slab2_ptr2 = RTE_MBUF_METADATA_UINT64_PTR(pkts[2],
entry2->slab_offset[2]);
slab3_ptr2 = RTE_MBUF_METADATA_UINT64_PTR(pkts[2],
entry2->slab_offset[3]);
slab0_ptr3 = RTE_MBUF_METADATA_UINT64_PTR(pkts[3],
entry3->slab_offset[0]);
slab1_ptr3 = RTE_MBUF_METADATA_UINT64_PTR(pkts[3],
entry3->slab_offset[1]);
slab2_ptr3 = RTE_MBUF_METADATA_UINT64_PTR(pkts[3],
entry3->slab_offset[2]);
slab3_ptr3 = RTE_MBUF_METADATA_UINT64_PTR(pkts[3],
entry3->slab_offset[3]);
if (arp) {
port_id0 = entry0->port_id;
nh_ip0 = entry0->ip;
if (entry0->flags & PIPELINE_ROUTING_ROUTE_LOCAL)
nh_ip0 = ip_da0;
port_id1 = entry1->port_id;
nh_ip1 = entry1->ip;
if (entry1->flags & PIPELINE_ROUTING_ROUTE_LOCAL)
nh_ip1 = ip_da1;
port_id2 = entry2->port_id;
nh_ip2 = entry2->ip;
if (entry2->flags & PIPELINE_ROUTING_ROUTE_LOCAL)
nh_ip2 = ip_da2;
port_id3 = entry3->port_id;
nh_ip3 = entry3->ip;
if (entry3->flags & PIPELINE_ROUTING_ROUTE_LOCAL)
nh_ip3 = ip_da3;
}
/* Compute */
total_length0 += ether_l2_length0;
total_length1 += ether_l2_length1;
total_length2 += ether_l2_length2;
total_length3 += ether_l2_length3;
if (qinq && qinq_sched) {
uint32_t dscp0 = ip0->type_of_service >> 2;
uint32_t dscp1 = ip1->type_of_service >> 2;
uint32_t dscp2 = ip2->type_of_service >> 2;
uint32_t dscp3 = ip3->type_of_service >> 2;
uint32_t svlan0, cvlan0, tc0, tc_q0;
uint32_t svlan1, cvlan1, tc1, tc_q1;
uint32_t svlan2, cvlan2, tc2, tc_q2;
uint32_t svlan3, cvlan3, tc3, tc_q3;
if (qinq_sched == 1) {
uint64_t slab_qinq0 = rte_bswap64(entry0->slab[0]);
uint64_t slab_qinq1 = rte_bswap64(entry1->slab[0]);
uint64_t slab_qinq2 = rte_bswap64(entry2->slab[0]);
uint64_t slab_qinq3 = rte_bswap64(entry3->slab[0]);
svlan0 = (slab_qinq0 >> 48) & 0xFFF;
svlan1 = (slab_qinq1 >> 48) & 0xFFF;
svlan2 = (slab_qinq2 >> 48) & 0xFFF;
svlan3 = (slab_qinq3 >> 48) & 0xFFF;
cvlan0 = (slab_qinq0 >> 16) & 0xFFF;
cvlan1 = (slab_qinq1 >> 16) & 0xFFF;
cvlan2 = (slab_qinq2 >> 16) & 0xFFF;
cvlan3 = (slab_qinq3 >> 16) & 0xFFF;
tc0 = (dscp0 >> 2) & 0x3;
tc1 = (dscp1 >> 2) & 0x3;
tc2 = (dscp2 >> 2) & 0x3;
tc3 = (dscp3 >> 2) & 0x3;
tc_q0 = dscp0 & 0x3;
tc_q1 = dscp1 & 0x3;
tc_q2 = dscp2 & 0x3;
tc_q3 = dscp3 & 0x3;
} else {
uint32_t ip_src0 = rte_bswap32(ip0->src_addr);
uint32_t ip_src1 = rte_bswap32(ip1->src_addr);
uint32_t ip_src2 = rte_bswap32(ip2->src_addr);
uint32_t ip_src3 = rte_bswap32(ip3->src_addr);
svlan0 = 0;
svlan1 = 0;
svlan2 = 0;
svlan3 = 0;
cvlan0 = (ip_src0 >> 16) & 0xFFF;
cvlan1 = (ip_src1 >> 16) & 0xFFF;
cvlan2 = (ip_src2 >> 16) & 0xFFF;
cvlan3 = (ip_src3 >> 16) & 0xFFF;
tc0 = (ip_src0 >> 2) & 0x3;
tc1 = (ip_src1 >> 2) & 0x3;
tc2 = (ip_src2 >> 2) & 0x3;
tc3 = (ip_src3 >> 2) & 0x3;
tc_q0 = ip_src0 & 0x3;
tc_q1 = ip_src1 & 0x3;
tc_q2 = ip_src2 & 0x3;
tc_q3 = ip_src3 & 0x3;
}
sched0 = RTE_SCHED_PORT_HIERARCHY(svlan0,
cvlan0,
tc0,
tc_q0,
e_RTE_METER_GREEN);
sched1 = RTE_SCHED_PORT_HIERARCHY(svlan1,
cvlan1,
tc1,
tc_q1,
e_RTE_METER_GREEN);
sched2 = RTE_SCHED_PORT_HIERARCHY(svlan2,
cvlan2,
tc2,
tc_q2,
e_RTE_METER_GREEN);
sched3 = RTE_SCHED_PORT_HIERARCHY(svlan3,
cvlan3,
tc3,
tc_q3,
e_RTE_METER_GREEN);
}
/* Write */
pkts[0]->data_off = data_offset0;
pkts[1]->data_off = data_offset1;
pkts[2]->data_off = data_offset2;
pkts[3]->data_off = data_offset3;
pkts[0]->data_len = total_length0;
pkts[1]->data_len = total_length1;
pkts[2]->data_len = total_length2;
pkts[3]->data_len = total_length3;
pkts[0]->pkt_len = total_length0;
pkts[1]->pkt_len = total_length1;
pkts[2]->pkt_len = total_length2;
pkts[3]->pkt_len = total_length3;
if ((qinq == 0) && (mpls == 0)) {
*slab0_ptr0 = entry0->slab[0];
*slab0_ptr1 = entry1->slab[0];
*slab0_ptr2 = entry2->slab[0];
*slab0_ptr3 = entry3->slab[0];
if (arp == 0) {
MACADDR_DST_WRITE(slab1_ptr0, entry0->slab[1]);
MACADDR_DST_WRITE(slab1_ptr1, entry1->slab[1]);
MACADDR_DST_WRITE(slab1_ptr2, entry2->slab[1]);
MACADDR_DST_WRITE(slab1_ptr3, entry3->slab[1]);
}
}
if (qinq) {
*slab0_ptr0 = entry0->slab[0];
*slab0_ptr1 = entry1->slab[0];
*slab0_ptr2 = entry2->slab[0];
*slab0_ptr3 = entry3->slab[0];
*slab1_ptr0 = entry0->slab[1];
*slab1_ptr1 = entry1->slab[1];
*slab1_ptr2 = entry2->slab[1];
*slab1_ptr3 = entry3->slab[1];
if (arp == 0) {
MACADDR_DST_WRITE(slab2_ptr0, entry0->slab[2]);
MACADDR_DST_WRITE(slab2_ptr1, entry1->slab[2]);
MACADDR_DST_WRITE(slab2_ptr2, entry2->slab[2]);
MACADDR_DST_WRITE(slab2_ptr3, entry3->slab[2]);
}
if (qinq_sched) {
pkts[0]->hash.sched.lo = sched0 & 0xFFFFFFFF;
pkts[0]->hash.sched.hi = sched0 >> 32;
pkts[1]->hash.sched.lo = sched1 & 0xFFFFFFFF;
pkts[1]->hash.sched.hi = sched1 >> 32;
pkts[2]->hash.sched.lo = sched2 & 0xFFFFFFFF;
pkts[2]->hash.sched.hi = sched2 >> 32;
pkts[3]->hash.sched.lo = sched3 & 0xFFFFFFFF;
pkts[3]->hash.sched.hi = sched3 >> 32;
}
}
if (mpls) {
if (mpls_color_mark) {
uint64_t mpls_exp0 = rte_bswap64(
(MPLS_LABEL(0, pkt0_color, 0, 0) << 32) |
MPLS_LABEL(0, pkt0_color, 0, 0));
uint64_t mpls_exp1 = rte_bswap64(
(MPLS_LABEL(0, pkt1_color, 0, 0) << 32) |
MPLS_LABEL(0, pkt1_color, 0, 0));
uint64_t mpls_exp2 = rte_bswap64(
(MPLS_LABEL(0, pkt2_color, 0, 0) << 32) |
MPLS_LABEL(0, pkt2_color, 0, 0));
uint64_t mpls_exp3 = rte_bswap64(
(MPLS_LABEL(0, pkt3_color, 0, 0) << 32) |
MPLS_LABEL(0, pkt3_color, 0, 0));
*slab0_ptr0 = entry0->slab[0] | mpls_exp0;
*slab0_ptr1 = entry1->slab[0] | mpls_exp1;
*slab0_ptr2 = entry2->slab[0] | mpls_exp2;
*slab0_ptr3 = entry3->slab[0] | mpls_exp3;
*slab1_ptr0 = entry0->slab[1] | mpls_exp0;
*slab1_ptr1 = entry1->slab[1] | mpls_exp1;
*slab1_ptr2 = entry2->slab[1] | mpls_exp2;
*slab1_ptr3 = entry3->slab[1] | mpls_exp3;
*slab2_ptr0 = entry0->slab[2];
*slab2_ptr1 = entry1->slab[2];
*slab2_ptr2 = entry2->slab[2];
*slab2_ptr3 = entry3->slab[2];
} else {
*slab0_ptr0 = entry0->slab[0];
*slab0_ptr1 = entry1->slab[0];
*slab0_ptr2 = entry2->slab[0];
*slab0_ptr3 = entry3->slab[0];
*slab1_ptr0 = entry0->slab[1];
*slab1_ptr1 = entry1->slab[1];
*slab1_ptr2 = entry2->slab[1];
*slab1_ptr3 = entry3->slab[1];
*slab2_ptr0 = entry0->slab[2];
*slab2_ptr1 = entry1->slab[2];
*slab2_ptr2 = entry2->slab[2];
*slab2_ptr3 = entry3->slab[2];
}
if (arp == 0) {
MACADDR_DST_WRITE(slab3_ptr0, entry0->slab[3]);
MACADDR_DST_WRITE(slab3_ptr1, entry1->slab[3]);
MACADDR_DST_WRITE(slab3_ptr2, entry2->slab[3]);
MACADDR_DST_WRITE(slab3_ptr3, entry3->slab[3]);
}
}
if (arp) {
arp_key0->port_id = port_id0;
arp_key1->port_id = port_id1;
arp_key2->port_id = port_id2;
arp_key3->port_id = port_id3;
arp_key0->ip = nh_ip0;
arp_key1->ip = nh_ip1;
arp_key2->ip = nh_ip2;
arp_key3->ip = nh_ip3;
}
}
#define PKT_WORK_ROUTING_ETHERNET(arp) \
static inline void \
pkt_work_routing_ether_arp##arp( \
struct rte_mbuf *pkt, \
struct rte_pipeline_table_entry *table_entry, \
void *arg) \
{ \
pkt_work_routing(pkt, table_entry, arg, arp, 0, 0, 0, 0);\
}
#define PKT4_WORK_ROUTING_ETHERNET(arp) \
static inline void \
pkt4_work_routing_ether_arp##arp( \
struct rte_mbuf **pkts, \
struct rte_pipeline_table_entry **table_entries, \
void *arg) \
{ \
pkt4_work_routing(pkts, table_entries, arg, arp, 0, 0, 0, 0);\
}
#define routing_table_ah_hit_ether(arp) \
PKT_WORK_ROUTING_ETHERNET(arp) \
PKT4_WORK_ROUTING_ETHERNET(arp) \
PIPELINE_TABLE_AH_HIT(routing_table_ah_hit_ether_arp##arp, \
pkt_work_routing_ether_arp##arp, \
pkt4_work_routing_ether_arp##arp)
routing_table_ah_hit_ether(0)
routing_table_ah_hit_ether(1)
#define PKT_WORK_ROUTING_ETHERNET_QINQ(sched, arp) \
static inline void \
pkt_work_routing_ether_qinq_sched##sched##_arp##arp( \
struct rte_mbuf *pkt, \
struct rte_pipeline_table_entry *table_entry, \
void *arg) \
{ \
pkt_work_routing(pkt, table_entry, arg, arp, 1, sched, 0, 0);\
}
#define PKT4_WORK_ROUTING_ETHERNET_QINQ(sched, arp) \
static inline void \
pkt4_work_routing_ether_qinq_sched##sched##_arp##arp( \
struct rte_mbuf **pkts, \
struct rte_pipeline_table_entry **table_entries, \
void *arg) \
{ \
pkt4_work_routing(pkts, table_entries, arg, arp, 1, sched, 0, 0);\
}
#define routing_table_ah_hit_ether_qinq(sched, arp) \
PKT_WORK_ROUTING_ETHERNET_QINQ(sched, arp) \
PKT4_WORK_ROUTING_ETHERNET_QINQ(sched, arp) \
PIPELINE_TABLE_AH_HIT(routing_table_ah_hit_ether_qinq_sched##sched##_arp##arp,\
pkt_work_routing_ether_qinq_sched##sched##_arp##arp, \
pkt4_work_routing_ether_qinq_sched##sched##_arp##arp)
routing_table_ah_hit_ether_qinq(0, 0)
routing_table_ah_hit_ether_qinq(1, 0)
routing_table_ah_hit_ether_qinq(2, 0)
routing_table_ah_hit_ether_qinq(0, 1)
routing_table_ah_hit_ether_qinq(1, 1)
routing_table_ah_hit_ether_qinq(2, 1)
#define PKT_WORK_ROUTING_ETHERNET_MPLS(color, arp) \
static inline void \
pkt_work_routing_ether_mpls_color##color##_arp##arp( \
struct rte_mbuf *pkt, \
struct rte_pipeline_table_entry *table_entry, \
void *arg) \
{ \
pkt_work_routing(pkt, table_entry, arg, arp, 0, 0, 1, color);\
}
#define PKT4_WORK_ROUTING_ETHERNET_MPLS(color, arp) \
static inline void \
pkt4_work_routing_ether_mpls_color##color##_arp##arp( \
struct rte_mbuf **pkts, \
struct rte_pipeline_table_entry **table_entries, \
void *arg) \
{ \
pkt4_work_routing(pkts, table_entries, arg, arp, 0, 0, 1, color);\
}
#define routing_table_ah_hit_ether_mpls(color, arp) \
PKT_WORK_ROUTING_ETHERNET_MPLS(color, arp) \
PKT4_WORK_ROUTING_ETHERNET_MPLS(color, arp) \
PIPELINE_TABLE_AH_HIT(routing_table_ah_hit_ether_mpls_color##color##_arp##arp,\
pkt_work_routing_ether_mpls_color##color##_arp##arp, \
pkt4_work_routing_ether_mpls_color##color##_arp##arp)
routing_table_ah_hit_ether_mpls(0, 0)
routing_table_ah_hit_ether_mpls(1, 0)
routing_table_ah_hit_ether_mpls(0, 1)
routing_table_ah_hit_ether_mpls(1, 1)
static rte_pipeline_table_action_handler_hit
get_routing_table_ah_hit(struct pipeline_routing *p)
{
if (p->params.dbg_ah_disable)
return NULL;
switch (p->params.encap) {
case PIPELINE_ROUTING_ENCAP_ETHERNET:
return (p->params.n_arp_entries) ?
routing_table_ah_hit_ether_arp1 :
routing_table_ah_hit_ether_arp0;
case PIPELINE_ROUTING_ENCAP_ETHERNET_QINQ:
if (p->params.n_arp_entries)
switch (p->params.qinq_sched) {
case 0:
return routing_table_ah_hit_ether_qinq_sched0_arp1;
case 1:
return routing_table_ah_hit_ether_qinq_sched1_arp1;
case 2:
return routing_table_ah_hit_ether_qinq_sched2_arp1;
default:
return NULL;
}
else
switch (p->params.qinq_sched) {
case 0:
return routing_table_ah_hit_ether_qinq_sched0_arp0;
case 1:
return routing_table_ah_hit_ether_qinq_sched1_arp0;
case 2:
return routing_table_ah_hit_ether_qinq_sched2_arp0;
default:
return NULL;
}
case PIPELINE_ROUTING_ENCAP_ETHERNET_MPLS:
if (p->params.n_arp_entries)
if (p->params.mpls_color_mark)
return routing_table_ah_hit_ether_mpls_color1_arp1;
else
return routing_table_ah_hit_ether_mpls_color0_arp1;
else
if (p->params.mpls_color_mark)
return routing_table_ah_hit_ether_mpls_color1_arp0;
else
return routing_table_ah_hit_ether_mpls_color0_arp0;
default:
return NULL;
}
}
/*
* ARP table
*/
struct arp_table_entry {
struct rte_pipeline_table_entry head;
uint64_t macaddr;
};
/**
* ARP table AH
*/
static inline void
pkt_work_arp(
struct rte_mbuf *pkt,
struct rte_pipeline_table_entry *table_entry,
__rte_unused void *arg)
{
struct arp_table_entry *entry = (struct arp_table_entry *) table_entry;
/* Read */
uint64_t macaddr_dst = entry->macaddr;
uint64_t *slab_ptr = (uint64_t *) ((char *) pkt->buf_addr +
(pkt->data_off - 2));
/* Compute */
/* Write */
MACADDR_DST_WRITE(slab_ptr, macaddr_dst);
}
static inline void
pkt4_work_arp(
struct rte_mbuf **pkts,
struct rte_pipeline_table_entry **table_entries,
__rte_unused void *arg)
{
struct arp_table_entry *entry0 =
(struct arp_table_entry *) table_entries[0];
struct arp_table_entry *entry1 =
(struct arp_table_entry *) table_entries[1];
struct arp_table_entry *entry2 =
(struct arp_table_entry *) table_entries[2];
struct arp_table_entry *entry3 =
(struct arp_table_entry *) table_entries[3];
/* Read */
uint64_t macaddr_dst0 = entry0->macaddr;
uint64_t macaddr_dst1 = entry1->macaddr;
uint64_t macaddr_dst2 = entry2->macaddr;
uint64_t macaddr_dst3 = entry3->macaddr;
uint64_t *slab_ptr0 = (uint64_t *) ((char *) pkts[0]->buf_addr +
(pkts[0]->data_off - 2));
uint64_t *slab_ptr1 = (uint64_t *) ((char *) pkts[1]->buf_addr +
(pkts[1]->data_off - 2));
uint64_t *slab_ptr2 = (uint64_t *) ((char *) pkts[2]->buf_addr +
(pkts[2]->data_off - 2));
uint64_t *slab_ptr3 = (uint64_t *) ((char *) pkts[3]->buf_addr +
(pkts[3]->data_off - 2));
/* Compute */
/* Write */
MACADDR_DST_WRITE(slab_ptr0, macaddr_dst0);
MACADDR_DST_WRITE(slab_ptr1, macaddr_dst1);
MACADDR_DST_WRITE(slab_ptr2, macaddr_dst2);
MACADDR_DST_WRITE(slab_ptr3, macaddr_dst3);
}
PIPELINE_TABLE_AH_HIT(arp_table_ah_hit,
pkt_work_arp,
pkt4_work_arp);
static rte_pipeline_table_action_handler_hit
get_arp_table_ah_hit(struct pipeline_routing *p)
{
if (p->params.dbg_ah_disable)
return NULL;
return arp_table_ah_hit;
}
/*
* Argument parsing
*/
int
pipeline_routing_parse_args(struct pipeline_routing_params *p,
struct pipeline_params *params)
{
uint32_t n_routes_present = 0;
uint32_t encap_present = 0;
uint32_t qinq_sched_present = 0;
uint32_t mpls_color_mark_present = 0;
uint32_t n_arp_entries_present = 0;
uint32_t ip_hdr_offset_present = 0;
uint32_t arp_key_offset_present = 0;
uint32_t color_offset_present = 0;
uint32_t dbg_ah_disable_present = 0;
uint32_t i;
/* default values */
p->n_routes = PIPELINE_ROUTING_N_ROUTES_DEFAULT;
p->encap = PIPELINE_ROUTING_ENCAP_ETHERNET;
p->qinq_sched = 0;
p->mpls_color_mark = 0;
p->n_arp_entries = 0;
p->dbg_ah_disable = 0;
for (i = 0; i < params->n_args; i++) {
char *arg_name = params->args_name[i];
char *arg_value = params->args_value[i];
/* n_routes */
if (strcmp(arg_name, "n_routes") == 0) {
int status;
PIPELINE_PARSE_ERR_DUPLICATE(
n_routes_present == 0, params->name,
arg_name);
n_routes_present = 1;
status = parser_read_uint32(&p->n_routes,
arg_value);
PIPELINE_PARSE_ERR_INV_VAL(((status != -EINVAL) &&
(p->n_routes != 0)), params->name,
arg_name, arg_value);
PIPELINE_PARSE_ERR_OUT_RNG((status != -ERANGE),
params->name, arg_name, arg_value);
continue;
}
/* encap */
if (strcmp(arg_name, "encap") == 0) {
PIPELINE_PARSE_ERR_DUPLICATE(encap_present == 0,
params->name, arg_name);
encap_present = 1;
/* ethernet */
if (strcmp(arg_value, "ethernet") == 0) {
p->encap = PIPELINE_ROUTING_ENCAP_ETHERNET;
continue;
}
/* ethernet_qinq */
if (strcmp(arg_value, "ethernet_qinq") == 0) {
p->encap = PIPELINE_ROUTING_ENCAP_ETHERNET_QINQ;
continue;
}
/* ethernet_mpls */
if (strcmp(arg_value, "ethernet_mpls") == 0) {
p->encap = PIPELINE_ROUTING_ENCAP_ETHERNET_MPLS;
continue;
}
/* any other */
PIPELINE_PARSE_ERR_INV_VAL(0, params->name,
arg_name, arg_value);
}
/* qinq_sched */
if (strcmp(arg_name, "qinq_sched") == 0) {
int status;
PIPELINE_PARSE_ERR_DUPLICATE(
qinq_sched_present == 0, params->name,
arg_name);
qinq_sched_present = 1;
status = parser_read_arg_bool(arg_value);
if (status == -EINVAL) {
if (strcmp(arg_value, "test") == 0) {
p->qinq_sched = 2;
continue;
}
} else {
p->qinq_sched = status;
continue;
}
PIPELINE_PARSE_ERR_INV_VAL(0, params->name,
arg_name, arg_value);
}
/* mpls_color_mark */
if (strcmp(arg_name, "mpls_color_mark") == 0) {
int status;
PIPELINE_PARSE_ERR_DUPLICATE(
mpls_color_mark_present == 0,
params->name, arg_name);
mpls_color_mark_present = 1;
status = parser_read_arg_bool(arg_value);
if (status >= 0) {
p->mpls_color_mark = status;
continue;
}
PIPELINE_PARSE_ERR_INV_VAL(0, params->name,
arg_name, arg_value);
}
/* n_arp_entries */
if (strcmp(arg_name, "n_arp_entries") == 0) {
int status;
PIPELINE_PARSE_ERR_DUPLICATE(
n_arp_entries_present == 0, params->name,
arg_name);
n_arp_entries_present = 1;
status = parser_read_uint32(&p->n_arp_entries,
arg_value);
PIPELINE_PARSE_ERR_INV_VAL((status != -EINVAL),
params->name, arg_name, arg_value);
PIPELINE_PARSE_ERR_OUT_RNG((status != -ERANGE),
params->name, arg_name, arg_value);
continue;
}
/* ip_hdr_offset */
if (strcmp(arg_name, "ip_hdr_offset") == 0) {
int status;
PIPELINE_PARSE_ERR_DUPLICATE(
ip_hdr_offset_present == 0, params->name,
arg_name);
ip_hdr_offset_present = 1;
status = parser_read_uint32(&p->ip_hdr_offset,
arg_value);
PIPELINE_PARSE_ERR_INV_VAL((status != -EINVAL),
params->name, arg_name, arg_value);
PIPELINE_PARSE_ERR_OUT_RNG((status != -ERANGE),
params->name, arg_name, arg_value);
continue;
}
/* arp_key_offset */
if (strcmp(arg_name, "arp_key_offset") == 0) {
int status;
PIPELINE_PARSE_ERR_DUPLICATE(
arp_key_offset_present == 0, params->name,
arg_name);
arp_key_offset_present = 1;
status = parser_read_uint32(&p->arp_key_offset,
arg_value);
PIPELINE_PARSE_ERR_INV_VAL((status != -EINVAL),
params->name, arg_name, arg_value);
PIPELINE_PARSE_ERR_OUT_RNG((status != -ERANGE),
params->name, arg_name, arg_value);
continue;
}
/* color_offset */
if (strcmp(arg_name, "color_offset") == 0) {
int status;
PIPELINE_PARSE_ERR_DUPLICATE(
color_offset_present == 0, params->name,
arg_name);
color_offset_present = 1;
status = parser_read_uint32(&p->color_offset,
arg_value);
PIPELINE_PARSE_ERR_INV_VAL((status != -EINVAL),
params->name, arg_name, arg_value);
PIPELINE_PARSE_ERR_OUT_RNG((status != -ERANGE),
params->name, arg_name, arg_value);
continue;
}
/* debug */
if (strcmp(arg_name, "dbg_ah_disable") == 0) {
int status;
PIPELINE_PARSE_ERR_DUPLICATE(
dbg_ah_disable_present == 0, params->name,
arg_name);
dbg_ah_disable_present = 1;
status = parser_read_arg_bool(arg_value);
if (status >= 0) {
p->dbg_ah_disable = status;
continue;
}
PIPELINE_PARSE_ERR_INV_VAL(0, params->name,
arg_name, arg_value);
continue;
}
/* any other */
PIPELINE_PARSE_ERR_INV_ENT(0, params->name, arg_name);
}
/* Check that mandatory arguments are present */
PIPELINE_PARSE_ERR_MANDATORY(ip_hdr_offset_present, params->name,
"ip_hdr_offset");
/* Check relations between arguments */
switch (p->encap) {
case PIPELINE_ROUTING_ENCAP_ETHERNET:
PIPELINE_ARG_CHECK((!p->qinq_sched), "Parse error in "
"section \"%s\": encap = ethernet, therefore "
"qinq_sched = yes/test is not allowed",
params->name);
PIPELINE_ARG_CHECK((!p->mpls_color_mark), "Parse error "
"in section \"%s\": encap = ethernet, therefore "
"mpls_color_mark = yes is not allowed",
params->name);
PIPELINE_ARG_CHECK((!color_offset_present), "Parse error "
"in section \"%s\": encap = ethernet, therefore "
"color_offset is not allowed",
params->name);
break;
case PIPELINE_ROUTING_ENCAP_ETHERNET_QINQ:
PIPELINE_ARG_CHECK((!p->mpls_color_mark), "Parse error "
"in section \"%s\": encap = ethernet_qinq, "
"therefore mpls_color_mark = yes is not allowed",
params->name);
PIPELINE_ARG_CHECK((!color_offset_present), "Parse error "
"in section \"%s\": encap = ethernet_qinq, "
"therefore color_offset is not allowed",
params->name);
break;
case PIPELINE_ROUTING_ENCAP_ETHERNET_MPLS:
PIPELINE_ARG_CHECK((!p->qinq_sched), "Parse error in "
"section \"%s\": encap = ethernet_mpls, therefore "
"qinq_sched = yes/test is not allowed",
params->name);
break;
}
PIPELINE_ARG_CHECK((!(p->n_arp_entries &&
(!arp_key_offset_present))), "Parse error in section "
"\"%s\": n_arp_entries is set while "
"arp_key_offset is not set", params->name);
PIPELINE_ARG_CHECK((!((p->n_arp_entries == 0) &&
arp_key_offset_present)), "Parse error in section "
"\"%s\": arp_key_offset present while "
"n_arp_entries is not set", params->name);
return 0;
}
static void *
pipeline_routing_init(struct pipeline_params *params,
__rte_unused void *arg)
{
struct pipeline *p;
struct pipeline_routing *p_rt;
uint32_t size, i;
/* Check input arguments */
if ((params == NULL) ||
(params->n_ports_in == 0) ||
(params->n_ports_out == 0))
return NULL;
/* Memory allocation */
size = RTE_CACHE_LINE_ROUNDUP(sizeof(struct pipeline_routing));
p = rte_zmalloc(NULL, size, RTE_CACHE_LINE_SIZE);
p_rt = (struct pipeline_routing *) p;
if (p == NULL)
return NULL;
strcpy(p->name, params->name);
p->log_level = params->log_level;
PLOG(p, HIGH, "Routing");
/* Parse arguments */
if (pipeline_routing_parse_args(&p_rt->params, params))
return NULL;
/* Pipeline */
{
struct rte_pipeline_params pipeline_params = {
.name = params->name,
.socket_id = params->socket_id,
.offset_port_id = 0,
};
p->p = rte_pipeline_create(&pipeline_params);
if (p->p == NULL) {
rte_free(p);
return NULL;
}
}
/* Input ports */
p->n_ports_in = params->n_ports_in;
for (i = 0; i < p->n_ports_in; i++) {
struct rte_pipeline_port_in_params port_params = {
.ops = pipeline_port_in_params_get_ops(
&params->port_in[i]),
.arg_create = pipeline_port_in_params_convert(
&params->port_in[i]),
.f_action = NULL,
.arg_ah = NULL,
.burst_size = params->port_in[i].burst_size,
};
int status = rte_pipeline_port_in_create(p->p,
&port_params,
&p->port_in_id[i]);
if (status) {
rte_pipeline_free(p->p);
rte_free(p);
return NULL;
}
}
/* Output ports */
p->n_ports_out = params->n_ports_out;
for (i = 0; i < p->n_ports_out; i++) {
struct rte_pipeline_port_out_params port_params = {
.ops = pipeline_port_out_params_get_ops(
&params->port_out[i]),
.arg_create = pipeline_port_out_params_convert(
&params->port_out[i]),
.f_action = NULL,
.arg_ah = NULL,
};
int status = rte_pipeline_port_out_create(p->p,
&port_params,
&p->port_out_id[i]);
if (status) {
rte_pipeline_free(p->p);
rte_free(p);
return NULL;
}
}
/* Routing table */
p->n_tables = 1;
{
struct rte_table_lpm_params table_lpm_params = {
.name = p->name,
.n_rules = p_rt->params.n_routes,
.number_tbl8s = PIPELINE_ROUTING_LPM_TABLE_NUMBER_TABLE8s,
.flags = 0,
.entry_unique_size = sizeof(struct routing_table_entry),
.offset = p_rt->params.ip_hdr_offset +
__builtin_offsetof(struct ipv4_hdr, dst_addr),
};
struct rte_pipeline_table_params table_params = {
.ops = &rte_table_lpm_ops,
.arg_create = &table_lpm_params,
.f_action_hit = get_routing_table_ah_hit(p_rt),
.f_action_miss = NULL,
.arg_ah = p_rt,
.action_data_size =
sizeof(struct routing_table_entry) -
sizeof(struct rte_pipeline_table_entry),
};
int status;
status = rte_pipeline_table_create(p->p,
&table_params,
&p->table_id[0]);
if (status) {
rte_pipeline_free(p->p);
rte_free(p);
return NULL;
}
}
/* ARP table configuration */
if (p_rt->params.n_arp_entries) {
struct rte_table_hash_key8_ext_params table_arp_params = {
.n_entries = p_rt->params.n_arp_entries,
.n_entries_ext = p_rt->params.n_arp_entries,
.f_hash = hash_default_key8,
.seed = 0,
.signature_offset = 0, /* Unused */
.key_offset = p_rt->params.arp_key_offset,
};
struct rte_pipeline_table_params table_params = {
.ops = &rte_table_hash_key8_ext_dosig_ops,
.arg_create = &table_arp_params,
.f_action_hit = get_arp_table_ah_hit(p_rt),
.f_action_miss = NULL,
.arg_ah = p_rt,
.action_data_size = sizeof(struct arp_table_entry) -
sizeof(struct rte_pipeline_table_entry),
};
int status;
status = rte_pipeline_table_create(p->p,
&table_params,
&p->table_id[1]);
if (status) {
rte_pipeline_free(p->p);
rte_free(p);
return NULL;
}
p->n_tables++;
}
/* Connecting input ports to tables */
for (i = 0; i < p->n_ports_in; i++) {
int status = rte_pipeline_port_in_connect_to_table(p->p,
p->port_in_id[i],
p->table_id[0]);
if (status) {
rte_pipeline_free(p->p);
rte_free(p);
return NULL;
}
}
/* Enable input ports */
for (i = 0; i < p->n_ports_in; i++) {
int status = rte_pipeline_port_in_enable(p->p,
p->port_in_id[i]);
if (status) {
rte_pipeline_free(p->p);
rte_free(p);
return NULL;
}
}
/* Check pipeline consistency */
if (rte_pipeline_check(p->p) < 0) {
rte_pipeline_free(p->p);
rte_free(p);
return NULL;
}
/* Message queues */
p->n_msgq = params->n_msgq;
for (i = 0; i < p->n_msgq; i++)
p->msgq_in[i] = params->msgq_in[i];
for (i = 0; i < p->n_msgq; i++)
p->msgq_out[i] = params->msgq_out[i];
/* Message handlers */
memcpy(p->handlers, handlers, sizeof(p->handlers));
memcpy(p_rt->custom_handlers,
custom_handlers,
sizeof(p_rt->custom_handlers));
return p;
}
static int
pipeline_routing_free(void *pipeline)
{
struct pipeline *p = (struct pipeline *) pipeline;
/* Check input arguments */
if (p == NULL)
return -1;
/* Free resources */
rte_pipeline_free(p->p);
rte_free(p);
return 0;
}
static int
pipeline_routing_track(void *pipeline,
__rte_unused uint32_t port_in,
uint32_t *port_out)
{
struct pipeline *p = (struct pipeline *) pipeline;
/* Check input arguments */
if ((p == NULL) ||
(port_in >= p->n_ports_in) ||
(port_out == NULL))
return -1;
if (p->n_ports_in == 1) {
*port_out = 0;
return 0;
}
return -1;
}
static int
pipeline_routing_timer(void *pipeline)
{
struct pipeline *p = (struct pipeline *) pipeline;
pipeline_msg_req_handle(p);
rte_pipeline_flush(p->p);
return 0;
}
void *
pipeline_routing_msg_req_custom_handler(struct pipeline *p,
void *msg)
{
struct pipeline_routing *p_rt = (struct pipeline_routing *) p;
struct pipeline_custom_msg_req *req = msg;
pipeline_msg_req_handler f_handle;
f_handle = (req->subtype < PIPELINE_ROUTING_MSG_REQS) ?
p_rt->custom_handlers[req->subtype] :
pipeline_msg_req_invalid_handler;
if (f_handle == NULL)
f_handle = pipeline_msg_req_invalid_handler;
return f_handle(p, req);
}
void *
pipeline_routing_msg_req_route_add_handler(struct pipeline *p, void *msg)
{
struct pipeline_routing *p_rt = (struct pipeline_routing *) p;
struct pipeline_routing_route_add_msg_req *req = msg;
struct pipeline_routing_route_add_msg_rsp *rsp = msg;
struct rte_table_lpm_key key = {
.ip = req->key.key.ipv4.ip,
.depth = req->key.key.ipv4.depth,
};
struct routing_table_entry entry_arp0 = {
.head = {
.action = RTE_PIPELINE_ACTION_PORT,
{.port_id = p->port_out_id[req->data.port_id]},
},
.flags = req->data.flags,
.port_id = req->data.port_id,
.ip = 0,
.data_offset = 0,
.ether_l2_length = 0,
.slab = {0},
.slab_offset = {0},
};
struct routing_table_entry entry_arp1 = {
.head = {
.action = RTE_PIPELINE_ACTION_TABLE,
{.table_id = p->table_id[1]},
},
.flags = req->data.flags,
.port_id = req->data.port_id,
.ip = rte_bswap32(req->data.ethernet.ip),
.data_offset = 0,
.ether_l2_length = 0,
.slab = {0},
.slab_offset = {0},
};
struct rte_pipeline_table_entry *entry = (p_rt->params.n_arp_entries) ?
(struct rte_pipeline_table_entry *) &entry_arp1 :
(struct rte_pipeline_table_entry *) &entry_arp0;
if ((req->key.type != PIPELINE_ROUTING_ROUTE_IPV4) ||
((p_rt->params.n_arp_entries == 0) &&
(req->data.flags & PIPELINE_ROUTING_ROUTE_ARP)) ||
(p_rt->params.n_arp_entries &&
((req->data.flags & PIPELINE_ROUTING_ROUTE_ARP) == 0)) ||
((p_rt->params.encap != PIPELINE_ROUTING_ENCAP_ETHERNET_QINQ) &&
(req->data.flags & PIPELINE_ROUTING_ROUTE_QINQ)) ||
((p_rt->params.encap == PIPELINE_ROUTING_ENCAP_ETHERNET_QINQ) &&
((req->data.flags & PIPELINE_ROUTING_ROUTE_QINQ) == 0)) ||
((p_rt->params.encap != PIPELINE_ROUTING_ENCAP_ETHERNET_MPLS) &&
(req->data.flags & PIPELINE_ROUTING_ROUTE_MPLS)) ||
((p_rt->params.encap == PIPELINE_ROUTING_ENCAP_ETHERNET_MPLS) &&
((req->data.flags & PIPELINE_ROUTING_ROUTE_MPLS) == 0))) {
rsp->status = -1;
return rsp;
}
/* Ether - ARP off */
if ((p_rt->params.encap == PIPELINE_ROUTING_ENCAP_ETHERNET) &&
(p_rt->params.n_arp_entries == 0)) {
uint64_t macaddr_src = MAC_SRC_DEFAULT;
uint64_t macaddr_dst;
uint64_t ethertype = ETHER_TYPE_IPv4;
macaddr_dst = *((uint64_t *)&(req->data.ethernet.macaddr));
macaddr_dst = rte_bswap64(macaddr_dst << 16);
entry_arp0.slab[0] =
rte_bswap64((macaddr_src << 16) | ethertype);
entry_arp0.slab_offset[0] = p_rt->params.ip_hdr_offset - 8;
entry_arp0.slab[1] = rte_bswap64(macaddr_dst);
entry_arp0.slab_offset[1] = p_rt->params.ip_hdr_offset - 2 * 8;
entry_arp0.data_offset = entry_arp0.slab_offset[1] + 2
- sizeof(struct rte_mbuf);
entry_arp0.ether_l2_length = 14;
}
/* Ether - ARP on */
if ((p_rt->params.encap == PIPELINE_ROUTING_ENCAP_ETHERNET) &&
p_rt->params.n_arp_entries) {
uint64_t macaddr_src = MAC_SRC_DEFAULT;
uint64_t ethertype = ETHER_TYPE_IPv4;
entry_arp1.slab[0] = rte_bswap64((macaddr_src << 16) |
ethertype);
entry_arp1.slab_offset[0] = p_rt->params.ip_hdr_offset - 8;
entry_arp1.data_offset = entry_arp1.slab_offset[0] - 6
- sizeof(struct rte_mbuf);
entry_arp1.ether_l2_length = 14;
}
/* Ether QinQ - ARP off */
if ((p_rt->params.encap == PIPELINE_ROUTING_ENCAP_ETHERNET_QINQ) &&
(p_rt->params.n_arp_entries == 0)) {
uint64_t macaddr_src = MAC_SRC_DEFAULT;
uint64_t macaddr_dst;
uint64_t ethertype_ipv4 = ETHER_TYPE_IPv4;
uint64_t ethertype_vlan = 0x8100;
uint64_t ethertype_qinq = 0x9100;
uint64_t svlan = req->data.l2.qinq.svlan;
uint64_t cvlan = req->data.l2.qinq.cvlan;
macaddr_dst = *((uint64_t *)&(req->data.ethernet.macaddr));
macaddr_dst = rte_bswap64(macaddr_dst << 16);
entry_arp0.slab[0] = rte_bswap64((svlan << 48) |
(ethertype_vlan << 32) |
(cvlan << 16) |
ethertype_ipv4);
entry_arp0.slab_offset[0] = p_rt->params.ip_hdr_offset - 8;
entry_arp0.slab[1] = rte_bswap64((macaddr_src << 16) |
ethertype_qinq);
entry_arp0.slab_offset[1] = p_rt->params.ip_hdr_offset - 2 * 8;
entry_arp0.slab[2] = rte_bswap64(macaddr_dst);
entry_arp0.slab_offset[2] = p_rt->params.ip_hdr_offset - 3 * 8;
entry_arp0.data_offset = entry_arp0.slab_offset[2] + 2
- sizeof(struct rte_mbuf);
entry_arp0.ether_l2_length = 22;
}
/* Ether QinQ - ARP on */
if ((p_rt->params.encap == PIPELINE_ROUTING_ENCAP_ETHERNET_QINQ) &&
p_rt->params.n_arp_entries) {
uint64_t macaddr_src = MAC_SRC_DEFAULT;
uint64_t ethertype_ipv4 = ETHER_TYPE_IPv4;
uint64_t ethertype_vlan = 0x8100;
uint64_t ethertype_qinq = 0x9100;
uint64_t svlan = req->data.l2.qinq.svlan;
uint64_t cvlan = req->data.l2.qinq.cvlan;
entry_arp1.slab[0] = rte_bswap64((svlan << 48) |
(ethertype_vlan << 32) |
(cvlan << 16) |
ethertype_ipv4);
entry_arp1.slab_offset[0] = p_rt->params.ip_hdr_offset - 8;
entry_arp1.slab[1] = rte_bswap64((macaddr_src << 16) |
ethertype_qinq);
entry_arp1.slab_offset[1] = p_rt->params.ip_hdr_offset - 2 * 8;
entry_arp1.data_offset = entry_arp1.slab_offset[1] - 6
- sizeof(struct rte_mbuf);
entry_arp1.ether_l2_length = 22;
}
/* Ether MPLS - ARP off */
if ((p_rt->params.encap == PIPELINE_ROUTING_ENCAP_ETHERNET_MPLS) &&
(p_rt->params.n_arp_entries == 0)) {
uint64_t macaddr_src = MAC_SRC_DEFAULT;
uint64_t macaddr_dst;
uint64_t ethertype_mpls = 0x8847;
uint64_t label0 = req->data.l2.mpls.labels[0];
uint64_t label1 = req->data.l2.mpls.labels[1];
uint64_t label2 = req->data.l2.mpls.labels[2];
uint64_t label3 = req->data.l2.mpls.labels[3];
uint32_t n_labels = req->data.l2.mpls.n_labels;
macaddr_dst = *((uint64_t *)&(req->data.ethernet.macaddr));
macaddr_dst = rte_bswap64(macaddr_dst << 16);
switch (n_labels) {
case 1:
entry_arp0.slab[0] = 0;
entry_arp0.slab_offset[0] =
p_rt->params.ip_hdr_offset - 8;
entry_arp0.slab[1] = rte_bswap64(
MPLS_LABEL(label0, 0, 1, 0));
entry_arp0.slab_offset[1] =
p_rt->params.ip_hdr_offset - 8;
break;
case 2:
entry_arp0.slab[0] = 0;
entry_arp0.slab_offset[0] =
p_rt->params.ip_hdr_offset - 8;
entry_arp0.slab[1] = rte_bswap64(
(MPLS_LABEL(label0, 0, 0, 0) << 32) |
MPLS_LABEL(label1, 0, 1, 0));
entry_arp0.slab_offset[1] =
p_rt->params.ip_hdr_offset - 8;
break;
case 3:
entry_arp0.slab[0] = rte_bswap64(
(MPLS_LABEL(label1, 0, 0, 0) << 32) |
MPLS_LABEL(label2, 0, 1, 0));
entry_arp0.slab_offset[0] =
p_rt->params.ip_hdr_offset - 8;
entry_arp0.slab[1] = rte_bswap64(
MPLS_LABEL(label0, 0, 0, 0));
entry_arp0.slab_offset[1] =
p_rt->params.ip_hdr_offset - 2 * 8;
break;
case 4:
entry_arp0.slab[0] = rte_bswap64(
(MPLS_LABEL(label2, 0, 0, 0) << 32) |
MPLS_LABEL(label3, 0, 1, 0));
entry_arp0.slab_offset[0] =
p_rt->params.ip_hdr_offset - 8;
entry_arp0.slab[1] = rte_bswap64(
(MPLS_LABEL(label0, 0, 0, 0) << 32) |
MPLS_LABEL(label1, 0, 0, 0));
entry_arp0.slab_offset[1] =
p_rt->params.ip_hdr_offset - 2 * 8;
break;
default:
rsp->status = -1;
return rsp;
}
entry_arp0.slab[2] = rte_bswap64((macaddr_src << 16) |
ethertype_mpls);
entry_arp0.slab_offset[2] = p_rt->params.ip_hdr_offset -
(n_labels * 4 + 8);
entry_arp0.slab[3] = rte_bswap64(macaddr_dst);
entry_arp0.slab_offset[3] = p_rt->params.ip_hdr_offset -
(n_labels * 4 + 2 * 8);
entry_arp0.data_offset = entry_arp0.slab_offset[3] + 2
- sizeof(struct rte_mbuf);
entry_arp0.ether_l2_length = n_labels * 4 + 14;
}
/* Ether MPLS - ARP on */
if ((p_rt->params.encap == PIPELINE_ROUTING_ENCAP_ETHERNET_MPLS) &&
p_rt->params.n_arp_entries) {
uint64_t macaddr_src = MAC_SRC_DEFAULT;
uint64_t ethertype_mpls = 0x8847;
uint64_t label0 = req->data.l2.mpls.labels[0];
uint64_t label1 = req->data.l2.mpls.labels[1];
uint64_t label2 = req->data.l2.mpls.labels[2];
uint64_t label3 = req->data.l2.mpls.labels[3];
uint32_t n_labels = req->data.l2.mpls.n_labels;
switch (n_labels) {
case 1:
entry_arp1.slab[0] = 0;
entry_arp1.slab_offset[0] =
p_rt->params.ip_hdr_offset - 8;
entry_arp1.slab[1] = rte_bswap64(
MPLS_LABEL(label0, 0, 1, 0));
entry_arp1.slab_offset[1] =
p_rt->params.ip_hdr_offset - 8;
break;
case 2:
entry_arp1.slab[0] = 0;
entry_arp1.slab_offset[0] =
p_rt->params.ip_hdr_offset - 8;
entry_arp1.slab[1] = rte_bswap64(
(MPLS_LABEL(label0, 0, 0, 0) << 32) |
MPLS_LABEL(label1, 0, 1, 0));
entry_arp1.slab_offset[1] =
p_rt->params.ip_hdr_offset - 8;
break;
case 3:
entry_arp1.slab[0] = rte_bswap64(
(MPLS_LABEL(label1, 0, 0, 0) << 32) |
MPLS_LABEL(label2, 0, 1, 0));
entry_arp1.slab_offset[0] =
p_rt->params.ip_hdr_offset - 8;
entry_arp1.slab[1] = rte_bswap64(
MPLS_LABEL(label0, 0, 0, 0));
entry_arp1.slab_offset[1] =
p_rt->params.ip_hdr_offset - 2 * 8;
break;
case 4:
entry_arp1.slab[0] = rte_bswap64(
(MPLS_LABEL(label2, 0, 0, 0) << 32) |
MPLS_LABEL(label3, 0, 1, 0));
entry_arp1.slab_offset[0] =
p_rt->params.ip_hdr_offset - 8;
entry_arp1.slab[1] = rte_bswap64(
(MPLS_LABEL(label0, 0, 0, 0) << 32) |
MPLS_LABEL(label1, 0, 0, 0));
entry_arp1.slab_offset[1] =
p_rt->params.ip_hdr_offset - 2 * 8;
break;
default:
rsp->status = -1;
return rsp;
}
entry_arp1.slab[2] = rte_bswap64((macaddr_src << 16) |
ethertype_mpls);
entry_arp1.slab_offset[2] = p_rt->params.ip_hdr_offset -
(n_labels * 4 + 8);
entry_arp1.data_offset = entry_arp1.slab_offset[2] - 6
- sizeof(struct rte_mbuf);
entry_arp1.ether_l2_length = n_labels * 4 + 14;
}
rsp->status = rte_pipeline_table_entry_add(p->p,
p->table_id[0],
&key,
entry,
&rsp->key_found,
(struct rte_pipeline_table_entry **) &rsp->entry_ptr);
return rsp;
}
void *
pipeline_routing_msg_req_route_del_handler(struct pipeline *p, void *msg)
{
struct pipeline_routing_route_delete_msg_req *req = msg;
struct pipeline_routing_route_delete_msg_rsp *rsp = msg;
struct rte_table_lpm_key key = {
.ip = req->key.key.ipv4.ip,
.depth = req->key.key.ipv4.depth,
};
if (req->key.type != PIPELINE_ROUTING_ROUTE_IPV4) {
rsp->status = -1;
return rsp;
}
rsp->status = rte_pipeline_table_entry_delete(p->p,
p->table_id[0],
&key,
&rsp->key_found,
NULL);
return rsp;
}
void *
pipeline_routing_msg_req_route_add_default_handler(struct pipeline *p,
void *msg)
{
struct pipeline_routing_route_add_default_msg_req *req = msg;
struct pipeline_routing_route_add_default_msg_rsp *rsp = msg;
struct routing_table_entry default_entry = {
.head = {
.action = RTE_PIPELINE_ACTION_PORT,
{.port_id = p->port_out_id[req->port_id]},
},
.flags = 0,
.port_id = 0,
.ip = 0,
};
rsp->status = rte_pipeline_table_default_entry_add(p->p,
p->table_id[0],
(struct rte_pipeline_table_entry *) &default_entry,
(struct rte_pipeline_table_entry **) &rsp->entry_ptr);
return rsp;
}
void *
pipeline_routing_msg_req_route_del_default_handler(struct pipeline *p,
void *msg)
{
struct pipeline_routing_route_delete_default_msg_rsp *rsp = msg;
rsp->status = rte_pipeline_table_default_entry_delete(p->p,
p->table_id[0],
NULL);
return rsp;
}
void *
pipeline_routing_msg_req_arp_add_handler(struct pipeline *p, void *msg)
{
struct pipeline_routing_arp_add_msg_req *req = msg;
struct pipeline_routing_arp_add_msg_rsp *rsp = msg;
struct pipeline_routing_arp_key_ipv4 key = {
.port_id = req->key.key.ipv4.port_id,
.ip = rte_bswap32(req->key.key.ipv4.ip),
};
struct arp_table_entry entry = {
.head = {
.action = RTE_PIPELINE_ACTION_PORT,
{.port_id = p->port_out_id[req->key.key.ipv4.port_id]},
},
.macaddr = 0, /* set below */
};
if (req->key.type != PIPELINE_ROUTING_ARP_IPV4) {
rsp->status = -1;
return rsp;
}
entry.macaddr = *((uint64_t *)&(req->macaddr));
entry.macaddr = entry.macaddr << 16;
rsp->status = rte_pipeline_table_entry_add(p->p,
p->table_id[1],
&key,
(struct rte_pipeline_table_entry *) &entry,
&rsp->key_found,
(struct rte_pipeline_table_entry **) &rsp->entry_ptr);
return rsp;
}
void *
pipeline_routing_msg_req_arp_del_handler(struct pipeline *p, void *msg)
{
struct pipeline_routing_arp_delete_msg_req *req = msg;
struct pipeline_routing_arp_delete_msg_rsp *rsp = msg;
struct pipeline_routing_arp_key_ipv4 key = {
.port_id = req->key.key.ipv4.port_id,
.ip = rte_bswap32(req->key.key.ipv4.ip),
};
if (req->key.type != PIPELINE_ROUTING_ARP_IPV4) {
rsp->status = -1;
return rsp;
}
rsp->status = rte_pipeline_table_entry_delete(p->p,
p->table_id[1],
&key,
&rsp->key_found,
NULL);
return rsp;
}
void *
pipeline_routing_msg_req_arp_add_default_handler(struct pipeline *p, void *msg)
{
struct pipeline_routing_arp_add_default_msg_req *req = msg;
struct pipeline_routing_arp_add_default_msg_rsp *rsp = msg;
struct arp_table_entry default_entry = {
.head = {
.action = RTE_PIPELINE_ACTION_PORT,
{.port_id = p->port_out_id[req->port_id]},
},
.macaddr = 0,
};
rsp->status = rte_pipeline_table_default_entry_add(p->p,
p->table_id[1],
(struct rte_pipeline_table_entry *) &default_entry,
(struct rte_pipeline_table_entry **) &rsp->entry_ptr);
return rsp;
}
void *
pipeline_routing_msg_req_arp_del_default_handler(struct pipeline *p, void *msg)
{
struct pipeline_routing_arp_delete_default_msg_rsp *rsp = msg;
rsp->status = rte_pipeline_table_default_entry_delete(p->p,
p->table_id[1],
NULL);
return rsp;
}
struct pipeline_be_ops pipeline_routing_be_ops = {
.f_init = pipeline_routing_init,
.f_free = pipeline_routing_free,
.f_run = NULL,
.f_timer = pipeline_routing_timer,
.f_track = pipeline_routing_track,
};