Olivier Matz b37b528d95 mbuf: add new Rx flags for stripped VLAN
The behavior of PKT_RX_VLAN_PKT was not very well defined, resulting in
PMDs not advertising the same flags in similar conditions.

Following discussion in [1], introduce 2 new flags PKT_RX_VLAN_STRIPPED
and PKT_RX_QINQ_STRIPPED that are better defined:

  PKT_RX_VLAN_STRIPPED: a vlan has been stripped by the hardware and its
  tci is saved in mbuf->vlan_tci. This can only happen if vlan stripping
  is enabled in the RX configuration of the PMD.

For now, the old flag PKT_RX_VLAN_PKT is kept but marked as deprecated.
It should be removed from applications and PMDs in a future revision.

This patch also updates the drivers. For PKT_RX_VLAN_PKT:

- e1000, enic, i40e, mlx5, nfp, vmxnet3: done, PKT_RX_VLAN_PKT already
  had the same meaning than PKT_RX_VLAN_STRIPPED, minor update is
  required.
- fm10k: done, PKT_RX_VLAN_PKT already had the same meaning than
  PKT_RX_VLAN_STRIPPED, and vlan stripping is always enabled on fm10k.
- ixgbe: modification done (vector and normal), the old flag was set
  when a vlan was recognized, even if vlan stripping was disabled.
- the other drivers do not support vlan stripping.

For PKT_RX_QINQ_PKT, it was only supported on i40e, and the behavior was
already correct, so we can reuse the same bit value for
PKT_RX_QINQ_STRIPPED.

[1] http://dpdk.org/ml/archives/dev/2016-April/037837.html,

Signed-off-by: Olivier Matz <olivier.matz@6wind.com>
Acked-by: Konstantin Ananyev <konstantin.ananyev@intel.com>
2016-06-15 17:18:57 +02:00

2016 lines
58 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* Copyright 2014 6WIND S.A.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _RTE_MBUF_H_
#define _RTE_MBUF_H_
/**
* @file
* RTE Mbuf
*
* The mbuf library provides the ability to create and destroy buffers
* that may be used by the RTE application to store message
* buffers. The message buffers are stored in a mempool, using the
* RTE mempool library.
*
* This library provide an API to allocate/free packet mbufs, which are
* used to carry network packets.
*
* To understand the concepts of packet buffers or mbufs, you
* should read "TCP/IP Illustrated, Volume 2: The Implementation,
* Addison-Wesley, 1995, ISBN 0-201-63354-X from Richard Stevens"
* http://www.kohala.com/start/tcpipiv2.html
*/
#include <stdint.h>
#include <rte_common.h>
#include <rte_mempool.h>
#include <rte_memory.h>
#include <rte_atomic.h>
#include <rte_prefetch.h>
#include <rte_branch_prediction.h>
#ifdef __cplusplus
extern "C" {
#endif
/*
* Packet Offload Features Flags. It also carry packet type information.
* Critical resources. Both rx/tx shared these bits. Be cautious on any change
*
* - RX flags start at bit position zero, and get added to the left of previous
* flags.
* - The most-significant 3 bits are reserved for generic mbuf flags
* - TX flags therefore start at bit position 60 (i.e. 63-3), and new flags get
* added to the right of the previously defined flags i.e. they should count
* downwards, not upwards.
*
* Keep these flags synchronized with rte_get_rx_ol_flag_name() and
* rte_get_tx_ol_flag_name().
*/
/**
* RX packet is a 802.1q VLAN packet. This flag was set by PMDs when
* the packet is recognized as a VLAN, but the behavior between PMDs
* was not the same. This flag is kept for some time to avoid breaking
* applications and should be replaced by PKT_RX_VLAN_STRIPPED.
*/
#define PKT_RX_VLAN_PKT (1ULL << 0)
#define PKT_RX_RSS_HASH (1ULL << 1) /**< RX packet with RSS hash result. */
#define PKT_RX_FDIR (1ULL << 2) /**< RX packet with FDIR match indicate. */
#define PKT_RX_L4_CKSUM_BAD (1ULL << 3) /**< L4 cksum of RX pkt. is not OK. */
#define PKT_RX_IP_CKSUM_BAD (1ULL << 4) /**< IP cksum of RX pkt. is not OK. */
#define PKT_RX_EIP_CKSUM_BAD (1ULL << 5) /**< External IP header checksum error. */
#define PKT_RX_OVERSIZE (0ULL << 0) /**< Num of desc of an RX pkt oversize. */
#define PKT_RX_HBUF_OVERFLOW (0ULL << 0) /**< Header buffer overflow. */
#define PKT_RX_RECIP_ERR (0ULL << 0) /**< Hardware processing error. */
#define PKT_RX_MAC_ERR (0ULL << 0) /**< MAC error. */
/**
* A vlan has been stripped by the hardware and its tci is saved in
* mbuf->vlan_tci. This can only happen if vlan stripping is enabled
* in the RX configuration of the PMD.
*/
#define PKT_RX_VLAN_STRIPPED (1ULL << 6)
/* hole, some bits can be reused here */
#define PKT_RX_IEEE1588_PTP (1ULL << 9) /**< RX IEEE1588 L2 Ethernet PT Packet. */
#define PKT_RX_IEEE1588_TMST (1ULL << 10) /**< RX IEEE1588 L2/L4 timestamped packet.*/
#define PKT_RX_FDIR_ID (1ULL << 13) /**< FD id reported if FDIR match. */
#define PKT_RX_FDIR_FLX (1ULL << 14) /**< Flexible bytes reported if FDIR match. */
/**
* The 2 vlans have been stripped by the hardware and their tci are
* saved in mbuf->vlan_tci (inner) and mbuf->vlan_tci_outer (outer).
* This can only happen if vlan stripping is enabled in the RX
* configuration of the PMD. If this flag is set, PKT_RX_VLAN_STRIPPED
* must also be set.
*/
#define PKT_RX_QINQ_STRIPPED (1ULL << 15)
/**
* Deprecated.
* RX packet with double VLAN stripped.
* This flag is replaced by PKT_RX_QINQ_STRIPPED.
*/
#define PKT_RX_QINQ_PKT PKT_RX_QINQ_STRIPPED
/* add new RX flags here */
/* add new TX flags here */
/**
* Second VLAN insertion (QinQ) flag.
*/
#define PKT_TX_QINQ_PKT (1ULL << 49) /**< TX packet with double VLAN inserted. */
/**
* TCP segmentation offload. To enable this offload feature for a
* packet to be transmitted on hardware supporting TSO:
* - set the PKT_TX_TCP_SEG flag in mbuf->ol_flags (this flag implies
* PKT_TX_TCP_CKSUM)
* - set the flag PKT_TX_IPV4 or PKT_TX_IPV6
* - if it's IPv4, set the PKT_TX_IP_CKSUM flag and write the IP checksum
* to 0 in the packet
* - fill the mbuf offload information: l2_len, l3_len, l4_len, tso_segsz
* - calculate the pseudo header checksum without taking ip_len in account,
* and set it in the TCP header. Refer to rte_ipv4_phdr_cksum() and
* rte_ipv6_phdr_cksum() that can be used as helpers.
*/
#define PKT_TX_TCP_SEG (1ULL << 50)
#define PKT_TX_IEEE1588_TMST (1ULL << 51) /**< TX IEEE1588 packet to timestamp. */
/**
* Bits 52+53 used for L4 packet type with checksum enabled: 00: Reserved,
* 01: TCP checksum, 10: SCTP checksum, 11: UDP checksum. To use hardware
* L4 checksum offload, the user needs to:
* - fill l2_len and l3_len in mbuf
* - set the flags PKT_TX_TCP_CKSUM, PKT_TX_SCTP_CKSUM or PKT_TX_UDP_CKSUM
* - set the flag PKT_TX_IPV4 or PKT_TX_IPV6
* - calculate the pseudo header checksum and set it in the L4 header (only
* for TCP or UDP). See rte_ipv4_phdr_cksum() and rte_ipv6_phdr_cksum().
* For SCTP, set the crc field to 0.
*/
#define PKT_TX_L4_NO_CKSUM (0ULL << 52) /**< Disable L4 cksum of TX pkt. */
#define PKT_TX_TCP_CKSUM (1ULL << 52) /**< TCP cksum of TX pkt. computed by NIC. */
#define PKT_TX_SCTP_CKSUM (2ULL << 52) /**< SCTP cksum of TX pkt. computed by NIC. */
#define PKT_TX_UDP_CKSUM (3ULL << 52) /**< UDP cksum of TX pkt. computed by NIC. */
#define PKT_TX_L4_MASK (3ULL << 52) /**< Mask for L4 cksum offload request. */
/**
* Offload the IP checksum in the hardware. The flag PKT_TX_IPV4 should
* also be set by the application, although a PMD will only check
* PKT_TX_IP_CKSUM.
* - set the IP checksum field in the packet to 0
* - fill the mbuf offload information: l2_len, l3_len
*/
#define PKT_TX_IP_CKSUM (1ULL << 54)
/**
* Packet is IPv4. This flag must be set when using any offload feature
* (TSO, L3 or L4 checksum) to tell the NIC that the packet is an IPv4
* packet. If the packet is a tunneled packet, this flag is related to
* the inner headers.
*/
#define PKT_TX_IPV4 (1ULL << 55)
/**
* Packet is IPv6. This flag must be set when using an offload feature
* (TSO or L4 checksum) to tell the NIC that the packet is an IPv6
* packet. If the packet is a tunneled packet, this flag is related to
* the inner headers.
*/
#define PKT_TX_IPV6 (1ULL << 56)
#define PKT_TX_VLAN_PKT (1ULL << 57) /**< TX packet is a 802.1q VLAN packet. */
/**
* Offload the IP checksum of an external header in the hardware. The
* flag PKT_TX_OUTER_IPV4 should also be set by the application, alto ugh
* a PMD will only check PKT_TX_IP_CKSUM. The IP checksum field in the
* packet must be set to 0.
* - set the outer IP checksum field in the packet to 0
* - fill the mbuf offload information: outer_l2_len, outer_l3_len
*/
#define PKT_TX_OUTER_IP_CKSUM (1ULL << 58)
/**
* Packet outer header is IPv4. This flag must be set when using any
* outer offload feature (L3 or L4 checksum) to tell the NIC that the
* outer header of the tunneled packet is an IPv4 packet.
*/
#define PKT_TX_OUTER_IPV4 (1ULL << 59)
/**
* Packet outer header is IPv6. This flag must be set when using any
* outer offload feature (L4 checksum) to tell the NIC that the outer
* header of the tunneled packet is an IPv6 packet.
*/
#define PKT_TX_OUTER_IPV6 (1ULL << 60)
#define __RESERVED (1ULL << 61) /**< reserved for future mbuf use */
#define IND_ATTACHED_MBUF (1ULL << 62) /**< Indirect attached mbuf */
/* Use final bit of flags to indicate a control mbuf */
#define CTRL_MBUF_FLAG (1ULL << 63) /**< Mbuf contains control data */
/*
* 32 bits are divided into several fields to mark packet types. Note that
* each field is indexical.
* - Bit 3:0 is for L2 types.
* - Bit 7:4 is for L3 or outer L3 (for tunneling case) types.
* - Bit 11:8 is for L4 or outer L4 (for tunneling case) types.
* - Bit 15:12 is for tunnel types.
* - Bit 19:16 is for inner L2 types.
* - Bit 23:20 is for inner L3 types.
* - Bit 27:24 is for inner L4 types.
* - Bit 31:28 is reserved.
*
* To be compatible with Vector PMD, RTE_PTYPE_L3_IPV4, RTE_PTYPE_L3_IPV4_EXT,
* RTE_PTYPE_L3_IPV6, RTE_PTYPE_L3_IPV6_EXT, RTE_PTYPE_L4_TCP, RTE_PTYPE_L4_UDP
* and RTE_PTYPE_L4_SCTP should be kept as below in a contiguous 7 bits.
*
* Note that L3 types values are selected for checking IPV4/IPV6 header from
* performance point of view. Reading annotations of RTE_ETH_IS_IPV4_HDR and
* RTE_ETH_IS_IPV6_HDR is needed for any future changes of L3 type values.
*
* Note that the packet types of the same packet recognized by different
* hardware may be different, as different hardware may have different
* capability of packet type recognition.
*
* examples:
* <'ether type'=0x0800
* | 'version'=4, 'protocol'=0x29
* | 'version'=6, 'next header'=0x3A
* | 'ICMPv6 header'>
* will be recognized on i40e hardware as packet type combination of,
* RTE_PTYPE_L2_ETHER |
* RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
* RTE_PTYPE_TUNNEL_IP |
* RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
* RTE_PTYPE_INNER_L4_ICMP.
*
* <'ether type'=0x86DD
* | 'version'=6, 'next header'=0x2F
* | 'GRE header'
* | 'version'=6, 'next header'=0x11
* | 'UDP header'>
* will be recognized on i40e hardware as packet type combination of,
* RTE_PTYPE_L2_ETHER |
* RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
* RTE_PTYPE_TUNNEL_GRENAT |
* RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
* RTE_PTYPE_INNER_L4_UDP.
*/
#define RTE_PTYPE_UNKNOWN 0x00000000
/**
* Ethernet packet type.
* It is used for outer packet for tunneling cases.
*
* Packet format:
* <'ether type'=[0x0800|0x86DD]>
*/
#define RTE_PTYPE_L2_ETHER 0x00000001
/**
* Ethernet packet type for time sync.
*
* Packet format:
* <'ether type'=0x88F7>
*/
#define RTE_PTYPE_L2_ETHER_TIMESYNC 0x00000002
/**
* ARP (Address Resolution Protocol) packet type.
*
* Packet format:
* <'ether type'=0x0806>
*/
#define RTE_PTYPE_L2_ETHER_ARP 0x00000003
/**
* LLDP (Link Layer Discovery Protocol) packet type.
*
* Packet format:
* <'ether type'=0x88CC>
*/
#define RTE_PTYPE_L2_ETHER_LLDP 0x00000004
/**
* Mask of layer 2 packet types.
* It is used for outer packet for tunneling cases.
*/
#define RTE_PTYPE_L2_MASK 0x0000000f
/**
* IP (Internet Protocol) version 4 packet type.
* It is used for outer packet for tunneling cases, and does not contain any
* header option.
*
* Packet format:
* <'ether type'=0x0800
* | 'version'=4, 'ihl'=5>
*/
#define RTE_PTYPE_L3_IPV4 0x00000010
/**
* IP (Internet Protocol) version 4 packet type.
* It is used for outer packet for tunneling cases, and contains header
* options.
*
* Packet format:
* <'ether type'=0x0800
* | 'version'=4, 'ihl'=[6-15], 'options'>
*/
#define RTE_PTYPE_L3_IPV4_EXT 0x00000030
/**
* IP (Internet Protocol) version 6 packet type.
* It is used for outer packet for tunneling cases, and does not contain any
* extension header.
*
* Packet format:
* <'ether type'=0x86DD
* | 'version'=6, 'next header'=0x3B>
*/
#define RTE_PTYPE_L3_IPV6 0x00000040
/**
* IP (Internet Protocol) version 4 packet type.
* It is used for outer packet for tunneling cases, and may or maynot contain
* header options.
*
* Packet format:
* <'ether type'=0x0800
* | 'version'=4, 'ihl'=[5-15], <'options'>>
*/
#define RTE_PTYPE_L3_IPV4_EXT_UNKNOWN 0x00000090
/**
* IP (Internet Protocol) version 6 packet type.
* It is used for outer packet for tunneling cases, and contains extension
* headers.
*
* Packet format:
* <'ether type'=0x86DD
* | 'version'=6, 'next header'=[0x0|0x2B|0x2C|0x32|0x33|0x3C|0x87],
* 'extension headers'>
*/
#define RTE_PTYPE_L3_IPV6_EXT 0x000000c0
/**
* IP (Internet Protocol) version 6 packet type.
* It is used for outer packet for tunneling cases, and may or maynot contain
* extension headers.
*
* Packet format:
* <'ether type'=0x86DD
* | 'version'=6, 'next header'=[0x3B|0x0|0x2B|0x2C|0x32|0x33|0x3C|0x87],
* <'extension headers'>>
*/
#define RTE_PTYPE_L3_IPV6_EXT_UNKNOWN 0x000000e0
/**
* Mask of layer 3 packet types.
* It is used for outer packet for tunneling cases.
*/
#define RTE_PTYPE_L3_MASK 0x000000f0
/**
* TCP (Transmission Control Protocol) packet type.
* It is used for outer packet for tunneling cases.
*
* Packet format:
* <'ether type'=0x0800
* | 'version'=4, 'protocol'=6, 'MF'=0>
* or,
* <'ether type'=0x86DD
* | 'version'=6, 'next header'=6>
*/
#define RTE_PTYPE_L4_TCP 0x00000100
/**
* UDP (User Datagram Protocol) packet type.
* It is used for outer packet for tunneling cases.
*
* Packet format:
* <'ether type'=0x0800
* | 'version'=4, 'protocol'=17, 'MF'=0>
* or,
* <'ether type'=0x86DD
* | 'version'=6, 'next header'=17>
*/
#define RTE_PTYPE_L4_UDP 0x00000200
/**
* Fragmented IP (Internet Protocol) packet type.
* It is used for outer packet for tunneling cases.
*
* It refers to those packets of any IP types, which can be recognized as
* fragmented. A fragmented packet cannot be recognized as any other L4 types
* (RTE_PTYPE_L4_TCP, RTE_PTYPE_L4_UDP, RTE_PTYPE_L4_SCTP, RTE_PTYPE_L4_ICMP,
* RTE_PTYPE_L4_NONFRAG).
*
* Packet format:
* <'ether type'=0x0800
* | 'version'=4, 'MF'=1>
* or,
* <'ether type'=0x86DD
* | 'version'=6, 'next header'=44>
*/
#define RTE_PTYPE_L4_FRAG 0x00000300
/**
* SCTP (Stream Control Transmission Protocol) packet type.
* It is used for outer packet for tunneling cases.
*
* Packet format:
* <'ether type'=0x0800
* | 'version'=4, 'protocol'=132, 'MF'=0>
* or,
* <'ether type'=0x86DD
* | 'version'=6, 'next header'=132>
*/
#define RTE_PTYPE_L4_SCTP 0x00000400
/**
* ICMP (Internet Control Message Protocol) packet type.
* It is used for outer packet for tunneling cases.
*
* Packet format:
* <'ether type'=0x0800
* | 'version'=4, 'protocol'=1, 'MF'=0>
* or,
* <'ether type'=0x86DD
* | 'version'=6, 'next header'=1>
*/
#define RTE_PTYPE_L4_ICMP 0x00000500
/**
* Non-fragmented IP (Internet Protocol) packet type.
* It is used for outer packet for tunneling cases.
*
* It refers to those packets of any IP types, while cannot be recognized as
* any of above L4 types (RTE_PTYPE_L4_TCP, RTE_PTYPE_L4_UDP,
* RTE_PTYPE_L4_FRAG, RTE_PTYPE_L4_SCTP, RTE_PTYPE_L4_ICMP).
*
* Packet format:
* <'ether type'=0x0800
* | 'version'=4, 'protocol'!=[6|17|132|1], 'MF'=0>
* or,
* <'ether type'=0x86DD
* | 'version'=6, 'next header'!=[6|17|44|132|1]>
*/
#define RTE_PTYPE_L4_NONFRAG 0x00000600
/**
* Mask of layer 4 packet types.
* It is used for outer packet for tunneling cases.
*/
#define RTE_PTYPE_L4_MASK 0x00000f00
/**
* IP (Internet Protocol) in IP (Internet Protocol) tunneling packet type.
*
* Packet format:
* <'ether type'=0x0800
* | 'version'=4, 'protocol'=[4|41]>
* or,
* <'ether type'=0x86DD
* | 'version'=6, 'next header'=[4|41]>
*/
#define RTE_PTYPE_TUNNEL_IP 0x00001000
/**
* GRE (Generic Routing Encapsulation) tunneling packet type.
*
* Packet format:
* <'ether type'=0x0800
* | 'version'=4, 'protocol'=47>
* or,
* <'ether type'=0x86DD
* | 'version'=6, 'next header'=47>
*/
#define RTE_PTYPE_TUNNEL_GRE 0x00002000
/**
* VXLAN (Virtual eXtensible Local Area Network) tunneling packet type.
*
* Packet format:
* <'ether type'=0x0800
* | 'version'=4, 'protocol'=17
* | 'destination port'=4798>
* or,
* <'ether type'=0x86DD
* | 'version'=6, 'next header'=17
* | 'destination port'=4798>
*/
#define RTE_PTYPE_TUNNEL_VXLAN 0x00003000
/**
* NVGRE (Network Virtualization using Generic Routing Encapsulation) tunneling
* packet type.
*
* Packet format:
* <'ether type'=0x0800
* | 'version'=4, 'protocol'=47
* | 'protocol type'=0x6558>
* or,
* <'ether type'=0x86DD
* | 'version'=6, 'next header'=47
* | 'protocol type'=0x6558'>
*/
#define RTE_PTYPE_TUNNEL_NVGRE 0x00004000
/**
* GENEVE (Generic Network Virtualization Encapsulation) tunneling packet type.
*
* Packet format:
* <'ether type'=0x0800
* | 'version'=4, 'protocol'=17
* | 'destination port'=6081>
* or,
* <'ether type'=0x86DD
* | 'version'=6, 'next header'=17
* | 'destination port'=6081>
*/
#define RTE_PTYPE_TUNNEL_GENEVE 0x00005000
/**
* Tunneling packet type of Teredo, VXLAN (Virtual eXtensible Local Area
* Network) or GRE (Generic Routing Encapsulation) could be recognized as this
* packet type, if they can not be recognized independently as of hardware
* capability.
*/
#define RTE_PTYPE_TUNNEL_GRENAT 0x00006000
/**
* Mask of tunneling packet types.
*/
#define RTE_PTYPE_TUNNEL_MASK 0x0000f000
/**
* Ethernet packet type.
* It is used for inner packet type only.
*
* Packet format (inner only):
* <'ether type'=[0x800|0x86DD]>
*/
#define RTE_PTYPE_INNER_L2_ETHER 0x00010000
/**
* Ethernet packet type with VLAN (Virtual Local Area Network) tag.
*
* Packet format (inner only):
* <'ether type'=[0x800|0x86DD], vlan=[1-4095]>
*/
#define RTE_PTYPE_INNER_L2_ETHER_VLAN 0x00020000
/**
* Mask of inner layer 2 packet types.
*/
#define RTE_PTYPE_INNER_L2_MASK 0x000f0000
/**
* IP (Internet Protocol) version 4 packet type.
* It is used for inner packet only, and does not contain any header option.
*
* Packet format (inner only):
* <'ether type'=0x0800
* | 'version'=4, 'ihl'=5>
*/
#define RTE_PTYPE_INNER_L3_IPV4 0x00100000
/**
* IP (Internet Protocol) version 4 packet type.
* It is used for inner packet only, and contains header options.
*
* Packet format (inner only):
* <'ether type'=0x0800
* | 'version'=4, 'ihl'=[6-15], 'options'>
*/
#define RTE_PTYPE_INNER_L3_IPV4_EXT 0x00200000
/**
* IP (Internet Protocol) version 6 packet type.
* It is used for inner packet only, and does not contain any extension header.
*
* Packet format (inner only):
* <'ether type'=0x86DD
* | 'version'=6, 'next header'=0x3B>
*/
#define RTE_PTYPE_INNER_L3_IPV6 0x00300000
/**
* IP (Internet Protocol) version 4 packet type.
* It is used for inner packet only, and may or maynot contain header options.
*
* Packet format (inner only):
* <'ether type'=0x0800
* | 'version'=4, 'ihl'=[5-15], <'options'>>
*/
#define RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN 0x00400000
/**
* IP (Internet Protocol) version 6 packet type.
* It is used for inner packet only, and contains extension headers.
*
* Packet format (inner only):
* <'ether type'=0x86DD
* | 'version'=6, 'next header'=[0x0|0x2B|0x2C|0x32|0x33|0x3C|0x87],
* 'extension headers'>
*/
#define RTE_PTYPE_INNER_L3_IPV6_EXT 0x00500000
/**
* IP (Internet Protocol) version 6 packet type.
* It is used for inner packet only, and may or maynot contain extension
* headers.
*
* Packet format (inner only):
* <'ether type'=0x86DD
* | 'version'=6, 'next header'=[0x3B|0x0|0x2B|0x2C|0x32|0x33|0x3C|0x87],
* <'extension headers'>>
*/
#define RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN 0x00600000
/**
* Mask of inner layer 3 packet types.
*/
#define RTE_PTYPE_INNER_L3_MASK 0x00f00000
/**
* TCP (Transmission Control Protocol) packet type.
* It is used for inner packet only.
*
* Packet format (inner only):
* <'ether type'=0x0800
* | 'version'=4, 'protocol'=6, 'MF'=0>
* or,
* <'ether type'=0x86DD
* | 'version'=6, 'next header'=6>
*/
#define RTE_PTYPE_INNER_L4_TCP 0x01000000
/**
* UDP (User Datagram Protocol) packet type.
* It is used for inner packet only.
*
* Packet format (inner only):
* <'ether type'=0x0800
* | 'version'=4, 'protocol'=17, 'MF'=0>
* or,
* <'ether type'=0x86DD
* | 'version'=6, 'next header'=17>
*/
#define RTE_PTYPE_INNER_L4_UDP 0x02000000
/**
* Fragmented IP (Internet Protocol) packet type.
* It is used for inner packet only, and may or maynot have layer 4 packet.
*
* Packet format (inner only):
* <'ether type'=0x0800
* | 'version'=4, 'MF'=1>
* or,
* <'ether type'=0x86DD
* | 'version'=6, 'next header'=44>
*/
#define RTE_PTYPE_INNER_L4_FRAG 0x03000000
/**
* SCTP (Stream Control Transmission Protocol) packet type.
* It is used for inner packet only.
*
* Packet format (inner only):
* <'ether type'=0x0800
* | 'version'=4, 'protocol'=132, 'MF'=0>
* or,
* <'ether type'=0x86DD
* | 'version'=6, 'next header'=132>
*/
#define RTE_PTYPE_INNER_L4_SCTP 0x04000000
/**
* ICMP (Internet Control Message Protocol) packet type.
* It is used for inner packet only.
*
* Packet format (inner only):
* <'ether type'=0x0800
* | 'version'=4, 'protocol'=1, 'MF'=0>
* or,
* <'ether type'=0x86DD
* | 'version'=6, 'next header'=1>
*/
#define RTE_PTYPE_INNER_L4_ICMP 0x05000000
/**
* Non-fragmented IP (Internet Protocol) packet type.
* It is used for inner packet only, and may or maynot have other unknown layer
* 4 packet types.
*
* Packet format (inner only):
* <'ether type'=0x0800
* | 'version'=4, 'protocol'!=[6|17|132|1], 'MF'=0>
* or,
* <'ether type'=0x86DD
* | 'version'=6, 'next header'!=[6|17|44|132|1]>
*/
#define RTE_PTYPE_INNER_L4_NONFRAG 0x06000000
/**
* Mask of inner layer 4 packet types.
*/
#define RTE_PTYPE_INNER_L4_MASK 0x0f000000
/**
* Check if the (outer) L3 header is IPv4. To avoid comparing IPv4 types one by
* one, bit 4 is selected to be used for IPv4 only. Then checking bit 4 can
* determine if it is an IPV4 packet.
*/
#define RTE_ETH_IS_IPV4_HDR(ptype) ((ptype) & RTE_PTYPE_L3_IPV4)
/**
* Check if the (outer) L3 header is IPv4. To avoid comparing IPv4 types one by
* one, bit 6 is selected to be used for IPv4 only. Then checking bit 6 can
* determine if it is an IPV4 packet.
*/
#define RTE_ETH_IS_IPV6_HDR(ptype) ((ptype) & RTE_PTYPE_L3_IPV6)
/* Check if it is a tunneling packet */
#define RTE_ETH_IS_TUNNEL_PKT(ptype) ((ptype) & (RTE_PTYPE_TUNNEL_MASK | \
RTE_PTYPE_INNER_L2_MASK | \
RTE_PTYPE_INNER_L3_MASK | \
RTE_PTYPE_INNER_L4_MASK))
/** Alignment constraint of mbuf private area. */
#define RTE_MBUF_PRIV_ALIGN 8
/**
* Get the name of a RX offload flag
*
* @param mask
* The mask describing the flag.
* @return
* The name of this flag, or NULL if it's not a valid RX flag.
*/
const char *rte_get_rx_ol_flag_name(uint64_t mask);
/**
* Get the name of a TX offload flag
*
* @param mask
* The mask describing the flag. Usually only one bit must be set.
* Several bits can be given if they belong to the same mask.
* Ex: PKT_TX_L4_MASK.
* @return
* The name of this flag, or NULL if it's not a valid TX flag.
*/
const char *rte_get_tx_ol_flag_name(uint64_t mask);
/**
* Some NICs need at least 2KB buffer to RX standard Ethernet frame without
* splitting it into multiple segments.
* So, for mbufs that planned to be involved into RX/TX, the recommended
* minimal buffer length is 2KB + RTE_PKTMBUF_HEADROOM.
*/
#define RTE_MBUF_DEFAULT_DATAROOM 2048
#define RTE_MBUF_DEFAULT_BUF_SIZE \
(RTE_MBUF_DEFAULT_DATAROOM + RTE_PKTMBUF_HEADROOM)
/* define a set of marker types that can be used to refer to set points in the
* mbuf */
typedef void *MARKER[0]; /**< generic marker for a point in a structure */
typedef uint8_t MARKER8[0]; /**< generic marker with 1B alignment */
typedef uint64_t MARKER64[0]; /**< marker that allows us to overwrite 8 bytes
* with a single assignment */
/**
* The generic rte_mbuf, containing a packet mbuf.
*/
struct rte_mbuf {
MARKER cacheline0;
void *buf_addr; /**< Virtual address of segment buffer. */
phys_addr_t buf_physaddr; /**< Physical address of segment buffer. */
uint16_t buf_len; /**< Length of segment buffer. */
/* next 6 bytes are initialised on RX descriptor rearm */
MARKER8 rearm_data;
uint16_t data_off;
/**
* 16-bit Reference counter.
* It should only be accessed using the following functions:
* rte_mbuf_refcnt_update(), rte_mbuf_refcnt_read(), and
* rte_mbuf_refcnt_set(). The functionality of these functions (atomic,
* or non-atomic) is controlled by the CONFIG_RTE_MBUF_REFCNT_ATOMIC
* config option.
*/
union {
rte_atomic16_t refcnt_atomic; /**< Atomically accessed refcnt */
uint16_t refcnt; /**< Non-atomically accessed refcnt */
};
uint8_t nb_segs; /**< Number of segments. */
uint8_t port; /**< Input port. */
uint64_t ol_flags; /**< Offload features. */
/* remaining bytes are set on RX when pulling packet from descriptor */
MARKER rx_descriptor_fields1;
/*
* The packet type, which is the combination of outer/inner L2, L3, L4
* and tunnel types. The packet_type is about data really present in the
* mbuf. Example: if vlan stripping is enabled, a received vlan packet
* would have RTE_PTYPE_L2_ETHER and not RTE_PTYPE_L2_VLAN because the
* vlan is stripped from the data.
*/
union {
uint32_t packet_type; /**< L2/L3/L4 and tunnel information. */
struct {
uint32_t l2_type:4; /**< (Outer) L2 type. */
uint32_t l3_type:4; /**< (Outer) L3 type. */
uint32_t l4_type:4; /**< (Outer) L4 type. */
uint32_t tun_type:4; /**< Tunnel type. */
uint32_t inner_l2_type:4; /**< Inner L2 type. */
uint32_t inner_l3_type:4; /**< Inner L3 type. */
uint32_t inner_l4_type:4; /**< Inner L4 type. */
};
};
uint32_t pkt_len; /**< Total pkt len: sum of all segments. */
uint16_t data_len; /**< Amount of data in segment buffer. */
/** VLAN TCI (CPU order), valid if PKT_RX_VLAN_STRIPPED is set. */
uint16_t vlan_tci;
union {
uint32_t rss; /**< RSS hash result if RSS enabled */
struct {
union {
struct {
uint16_t hash;
uint16_t id;
};
uint32_t lo;
/**< Second 4 flexible bytes */
};
uint32_t hi;
/**< First 4 flexible bytes or FD ID, dependent on
PKT_RX_FDIR_* flag in ol_flags. */
} fdir; /**< Filter identifier if FDIR enabled */
struct {
uint32_t lo;
uint32_t hi;
} sched; /**< Hierarchical scheduler */
uint32_t usr; /**< User defined tags. See rte_distributor_process() */
} hash; /**< hash information */
uint32_t seqn; /**< Sequence number. See also rte_reorder_insert() */
/** Outer VLAN TCI (CPU order), valid if PKT_RX_QINQ_STRIPPED is set. */
uint16_t vlan_tci_outer;
/* second cache line - fields only used in slow path or on TX */
MARKER cacheline1 __rte_cache_min_aligned;
union {
void *userdata; /**< Can be used for external metadata */
uint64_t udata64; /**< Allow 8-byte userdata on 32-bit */
};
struct rte_mempool *pool; /**< Pool from which mbuf was allocated. */
struct rte_mbuf *next; /**< Next segment of scattered packet. */
/* fields to support TX offloads */
union {
uint64_t tx_offload; /**< combined for easy fetch */
struct {
uint64_t l2_len:7; /**< L2 (MAC) Header Length. */
uint64_t l3_len:9; /**< L3 (IP) Header Length. */
uint64_t l4_len:8; /**< L4 (TCP/UDP) Header Length. */
uint64_t tso_segsz:16; /**< TCP TSO segment size */
/* fields for TX offloading of tunnels */
uint64_t outer_l3_len:9; /**< Outer L3 (IP) Hdr Length. */
uint64_t outer_l2_len:7; /**< Outer L2 (MAC) Hdr Length. */
/* uint64_t unused:8; */
};
};
/** Size of the application private data. In case of an indirect
* mbuf, it stores the direct mbuf private data size. */
uint16_t priv_size;
/** Timesync flags for use with IEEE1588. */
uint16_t timesync;
} __rte_cache_aligned;
/**
* Prefetch the first part of the mbuf
*
* The first 64 bytes of the mbuf corresponds to fields that are used early
* in the receive path. If the cache line of the architecture is higher than
* 64B, the second part will also be prefetched.
*
* @param m
* The pointer to the mbuf.
*/
static inline void
rte_mbuf_prefetch_part1(struct rte_mbuf *m)
{
rte_prefetch0(&m->cacheline0);
}
/**
* Prefetch the second part of the mbuf
*
* The next 64 bytes of the mbuf corresponds to fields that are used in the
* transmit path. If the cache line of the architecture is higher than 64B,
* this function does nothing as it is expected that the full mbuf is
* already in cache.
*
* @param m
* The pointer to the mbuf.
*/
static inline void
rte_mbuf_prefetch_part2(struct rte_mbuf *m)
{
#if RTE_CACHE_LINE_SIZE == 64
rte_prefetch0(&m->cacheline1);
#else
RTE_SET_USED(m);
#endif
}
static inline uint16_t rte_pktmbuf_priv_size(struct rte_mempool *mp);
/**
* Return the DMA address of the beginning of the mbuf data
*
* @param mb
* The pointer to the mbuf.
* @return
* The physical address of the beginning of the mbuf data
*/
static inline phys_addr_t
rte_mbuf_data_dma_addr(const struct rte_mbuf *mb)
{
return mb->buf_physaddr + mb->data_off;
}
/**
* Return the default DMA address of the beginning of the mbuf data
*
* This function is used by drivers in their receive function, as it
* returns the location where data should be written by the NIC, taking
* the default headroom in account.
*
* @param mb
* The pointer to the mbuf.
* @return
* The physical address of the beginning of the mbuf data
*/
static inline phys_addr_t
rte_mbuf_data_dma_addr_default(const struct rte_mbuf *mb)
{
return mb->buf_physaddr + RTE_PKTMBUF_HEADROOM;
}
/**
* Return the mbuf owning the data buffer address of an indirect mbuf.
*
* @param mi
* The pointer to the indirect mbuf.
* @return
* The address of the direct mbuf corresponding to buffer_addr.
*/
static inline struct rte_mbuf *
rte_mbuf_from_indirect(struct rte_mbuf *mi)
{
return (struct rte_mbuf *)RTE_PTR_SUB(mi->buf_addr, sizeof(*mi) + mi->priv_size);
}
/**
* Return the buffer address embedded in the given mbuf.
*
* @param md
* The pointer to the mbuf.
* @return
* The address of the data buffer owned by the mbuf.
*/
static inline char *
rte_mbuf_to_baddr(struct rte_mbuf *md)
{
char *buffer_addr;
buffer_addr = (char *)md + sizeof(*md) + rte_pktmbuf_priv_size(md->pool);
return buffer_addr;
}
/**
* Returns TRUE if given mbuf is indirect, or FALSE otherwise.
*/
#define RTE_MBUF_INDIRECT(mb) ((mb)->ol_flags & IND_ATTACHED_MBUF)
/**
* Returns TRUE if given mbuf is direct, or FALSE otherwise.
*/
#define RTE_MBUF_DIRECT(mb) (!RTE_MBUF_INDIRECT(mb))
/**
* Private data in case of pktmbuf pool.
*
* A structure that contains some pktmbuf_pool-specific data that are
* appended after the mempool structure (in private data).
*/
struct rte_pktmbuf_pool_private {
uint16_t mbuf_data_room_size; /**< Size of data space in each mbuf. */
uint16_t mbuf_priv_size; /**< Size of private area in each mbuf. */
};
#ifdef RTE_LIBRTE_MBUF_DEBUG
/** check mbuf type in debug mode */
#define __rte_mbuf_sanity_check(m, is_h) rte_mbuf_sanity_check(m, is_h)
#else /* RTE_LIBRTE_MBUF_DEBUG */
/** check mbuf type in debug mode */
#define __rte_mbuf_sanity_check(m, is_h) do { } while (0)
#endif /* RTE_LIBRTE_MBUF_DEBUG */
#ifdef RTE_MBUF_REFCNT_ATOMIC
/**
* Reads the value of an mbuf's refcnt.
* @param m
* Mbuf to read
* @return
* Reference count number.
*/
static inline uint16_t
rte_mbuf_refcnt_read(const struct rte_mbuf *m)
{
return (uint16_t)(rte_atomic16_read(&m->refcnt_atomic));
}
/**
* Sets an mbuf's refcnt to a defined value.
* @param m
* Mbuf to update
* @param new_value
* Value set
*/
static inline void
rte_mbuf_refcnt_set(struct rte_mbuf *m, uint16_t new_value)
{
rte_atomic16_set(&m->refcnt_atomic, new_value);
}
/**
* Adds given value to an mbuf's refcnt and returns its new value.
* @param m
* Mbuf to update
* @param value
* Value to add/subtract
* @return
* Updated value
*/
static inline uint16_t
rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value)
{
/*
* The atomic_add is an expensive operation, so we don't want to
* call it in the case where we know we are the uniq holder of
* this mbuf (i.e. ref_cnt == 1). Otherwise, an atomic
* operation has to be used because concurrent accesses on the
* reference counter can occur.
*/
if (likely(rte_mbuf_refcnt_read(m) == 1)) {
rte_mbuf_refcnt_set(m, 1 + value);
return 1 + value;
}
return (uint16_t)(rte_atomic16_add_return(&m->refcnt_atomic, value));
}
#else /* ! RTE_MBUF_REFCNT_ATOMIC */
/**
* Adds given value to an mbuf's refcnt and returns its new value.
*/
static inline uint16_t
rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value)
{
m->refcnt = (uint16_t)(m->refcnt + value);
return m->refcnt;
}
/**
* Reads the value of an mbuf's refcnt.
*/
static inline uint16_t
rte_mbuf_refcnt_read(const struct rte_mbuf *m)
{
return m->refcnt;
}
/**
* Sets an mbuf's refcnt to the defined value.
*/
static inline void
rte_mbuf_refcnt_set(struct rte_mbuf *m, uint16_t new_value)
{
m->refcnt = new_value;
}
#endif /* RTE_MBUF_REFCNT_ATOMIC */
/** Mbuf prefetch */
#define RTE_MBUF_PREFETCH_TO_FREE(m) do { \
if ((m) != NULL) \
rte_prefetch0(m); \
} while (0)
/**
* Sanity checks on an mbuf.
*
* Check the consistency of the given mbuf. The function will cause a
* panic if corruption is detected.
*
* @param m
* The mbuf to be checked.
* @param is_header
* True if the mbuf is a packet header, false if it is a sub-segment
* of a packet (in this case, some fields like nb_segs are not checked)
*/
void
rte_mbuf_sanity_check(const struct rte_mbuf *m, int is_header);
/**
* Allocate an unitialized mbuf from mempool *mp*.
*
* This function can be used by PMDs (especially in RX functions) to
* allocate an unitialized mbuf. The driver is responsible of
* initializing all the required fields. See rte_pktmbuf_reset().
* For standard needs, prefer rte_pktmbuf_alloc().
*
* @param mp
* The mempool from which mbuf is allocated.
* @return
* - The pointer to the new mbuf on success.
* - NULL if allocation failed.
*/
static inline struct rte_mbuf *rte_mbuf_raw_alloc(struct rte_mempool *mp)
{
struct rte_mbuf *m;
void *mb = NULL;
if (rte_mempool_get(mp, &mb) < 0)
return NULL;
m = (struct rte_mbuf *)mb;
RTE_ASSERT(rte_mbuf_refcnt_read(m) == 0);
rte_mbuf_refcnt_set(m, 1);
__rte_mbuf_sanity_check(m, 0);
return m;
}
/* compat with older versions */
__rte_deprecated static inline struct rte_mbuf *
__rte_mbuf_raw_alloc(struct rte_mempool *mp)
{
return rte_mbuf_raw_alloc(mp);
}
/**
* @internal Put mbuf back into its original mempool.
* The use of that function is reserved for RTE internal needs.
* Please use rte_pktmbuf_free().
*
* @param m
* The mbuf to be freed.
*/
static inline void __attribute__((always_inline))
__rte_mbuf_raw_free(struct rte_mbuf *m)
{
RTE_ASSERT(rte_mbuf_refcnt_read(m) == 0);
rte_mempool_put(m->pool, m);
}
/* Operations on ctrl mbuf */
/**
* The control mbuf constructor.
*
* This function initializes some fields in an mbuf structure that are
* not modified by the user once created (mbuf type, origin pool, buffer
* start address, and so on). This function is given as a callback function
* to rte_mempool_create() at pool creation time.
*
* @param mp
* The mempool from which the mbuf is allocated.
* @param opaque_arg
* A pointer that can be used by the user to retrieve useful information
* for mbuf initialization. This pointer comes from the ``init_arg``
* parameter of rte_mempool_create().
* @param m
* The mbuf to initialize.
* @param i
* The index of the mbuf in the pool table.
*/
void rte_ctrlmbuf_init(struct rte_mempool *mp, void *opaque_arg,
void *m, unsigned i);
/**
* Allocate a new mbuf (type is ctrl) from mempool *mp*.
*
* This new mbuf is initialized with data pointing to the beginning of
* buffer, and with a length of zero.
*
* @param mp
* The mempool from which the mbuf is allocated.
* @return
* - The pointer to the new mbuf on success.
* - NULL if allocation failed.
*/
#define rte_ctrlmbuf_alloc(mp) rte_pktmbuf_alloc(mp)
/**
* Free a control mbuf back into its original mempool.
*
* @param m
* The control mbuf to be freed.
*/
#define rte_ctrlmbuf_free(m) rte_pktmbuf_free(m)
/**
* A macro that returns the pointer to the carried data.
*
* The value that can be read or assigned.
*
* @param m
* The control mbuf.
*/
#define rte_ctrlmbuf_data(m) ((char *)((m)->buf_addr) + (m)->data_off)
/**
* A macro that returns the length of the carried data.
*
* The value that can be read or assigned.
*
* @param m
* The control mbuf.
*/
#define rte_ctrlmbuf_len(m) rte_pktmbuf_data_len(m)
/**
* Tests if an mbuf is a control mbuf
*
* @param m
* The mbuf to be tested
* @return
* - True (1) if the mbuf is a control mbuf
* - False(0) otherwise
*/
static inline int
rte_is_ctrlmbuf(struct rte_mbuf *m)
{
return !!(m->ol_flags & CTRL_MBUF_FLAG);
}
/* Operations on pkt mbuf */
/**
* The packet mbuf constructor.
*
* This function initializes some fields in the mbuf structure that are
* not modified by the user once created (origin pool, buffer start
* address, and so on). This function is given as a callback function to
* rte_mempool_create() at pool creation time.
*
* @param mp
* The mempool from which mbufs originate.
* @param opaque_arg
* A pointer that can be used by the user to retrieve useful information
* for mbuf initialization. This pointer comes from the ``init_arg``
* parameter of rte_mempool_create().
* @param m
* The mbuf to initialize.
* @param i
* The index of the mbuf in the pool table.
*/
void rte_pktmbuf_init(struct rte_mempool *mp, void *opaque_arg,
void *m, unsigned i);
/**
* A packet mbuf pool constructor.
*
* This function initializes the mempool private data in the case of a
* pktmbuf pool. This private data is needed by the driver. The
* function is given as a callback function to rte_mempool_create() at
* pool creation. It can be extended by the user, for example, to
* provide another packet size.
*
* @param mp
* The mempool from which mbufs originate.
* @param opaque_arg
* A pointer that can be used by the user to retrieve useful information
* for mbuf initialization. This pointer comes from the ``init_arg``
* parameter of rte_mempool_create().
*/
void rte_pktmbuf_pool_init(struct rte_mempool *mp, void *opaque_arg);
/**
* Create a mbuf pool.
*
* This function creates and initializes a packet mbuf pool. It is
* a wrapper to rte_mempool_create() with the proper packet constructor
* and mempool constructor.
*
* @param name
* The name of the mbuf pool.
* @param n
* The number of elements in the mbuf pool. The optimum size (in terms
* of memory usage) for a mempool is when n is a power of two minus one:
* n = (2^q - 1).
* @param cache_size
* Size of the per-core object cache. See rte_mempool_create() for
* details.
* @param priv_size
* Size of application private are between the rte_mbuf structure
* and the data buffer. This value must be aligned to RTE_MBUF_PRIV_ALIGN.
* @param data_room_size
* Size of data buffer in each mbuf, including RTE_PKTMBUF_HEADROOM.
* @param socket_id
* The socket identifier where the memory should be allocated. The
* value can be *SOCKET_ID_ANY* if there is no NUMA constraint for the
* reserved zone.
* @return
* The pointer to the new allocated mempool, on success. NULL on error
* with rte_errno set appropriately. Possible rte_errno values include:
* - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure
* - E_RTE_SECONDARY - function was called from a secondary process instance
* - EINVAL - cache size provided is too large, or priv_size is not aligned.
* - ENOSPC - the maximum number of memzones has already been allocated
* - EEXIST - a memzone with the same name already exists
* - ENOMEM - no appropriate memory area found in which to create memzone
*/
struct rte_mempool *
rte_pktmbuf_pool_create(const char *name, unsigned n,
unsigned cache_size, uint16_t priv_size, uint16_t data_room_size,
int socket_id);
/**
* Get the data room size of mbufs stored in a pktmbuf_pool
*
* The data room size is the amount of data that can be stored in a
* mbuf including the headroom (RTE_PKTMBUF_HEADROOM).
*
* @param mp
* The packet mbuf pool.
* @return
* The data room size of mbufs stored in this mempool.
*/
static inline uint16_t
rte_pktmbuf_data_room_size(struct rte_mempool *mp)
{
struct rte_pktmbuf_pool_private *mbp_priv;
mbp_priv = (struct rte_pktmbuf_pool_private *)rte_mempool_get_priv(mp);
return mbp_priv->mbuf_data_room_size;
}
/**
* Get the application private size of mbufs stored in a pktmbuf_pool
*
* The private size of mbuf is a zone located between the rte_mbuf
* structure and the data buffer where an application can store data
* associated to a packet.
*
* @param mp
* The packet mbuf pool.
* @return
* The private size of mbufs stored in this mempool.
*/
static inline uint16_t
rte_pktmbuf_priv_size(struct rte_mempool *mp)
{
struct rte_pktmbuf_pool_private *mbp_priv;
mbp_priv = (struct rte_pktmbuf_pool_private *)rte_mempool_get_priv(mp);
return mbp_priv->mbuf_priv_size;
}
/**
* Reset the fields of a packet mbuf to their default values.
*
* The given mbuf must have only one segment.
*
* @param m
* The packet mbuf to be resetted.
*/
static inline void rte_pktmbuf_reset(struct rte_mbuf *m)
{
m->next = NULL;
m->pkt_len = 0;
m->tx_offload = 0;
m->vlan_tci = 0;
m->vlan_tci_outer = 0;
m->nb_segs = 1;
m->port = 0xff;
m->ol_flags = 0;
m->packet_type = 0;
m->data_off = (RTE_PKTMBUF_HEADROOM <= m->buf_len) ?
RTE_PKTMBUF_HEADROOM : m->buf_len;
m->data_len = 0;
__rte_mbuf_sanity_check(m, 1);
}
/**
* Allocate a new mbuf from a mempool.
*
* This new mbuf contains one segment, which has a length of 0. The pointer
* to data is initialized to have some bytes of headroom in the buffer
* (if buffer size allows).
*
* @param mp
* The mempool from which the mbuf is allocated.
* @return
* - The pointer to the new mbuf on success.
* - NULL if allocation failed.
*/
static inline struct rte_mbuf *rte_pktmbuf_alloc(struct rte_mempool *mp)
{
struct rte_mbuf *m;
if ((m = rte_mbuf_raw_alloc(mp)) != NULL)
rte_pktmbuf_reset(m);
return m;
}
/**
* Allocate a bulk of mbufs, initialize refcnt and reset the fields to default
* values.
*
* @param pool
* The mempool from which mbufs are allocated.
* @param mbufs
* Array of pointers to mbufs
* @param count
* Array size
* @return
* - 0: Success
*/
static inline int rte_pktmbuf_alloc_bulk(struct rte_mempool *pool,
struct rte_mbuf **mbufs, unsigned count)
{
unsigned idx = 0;
int rc;
rc = rte_mempool_get_bulk(pool, (void **)mbufs, count);
if (unlikely(rc))
return rc;
/* To understand duff's device on loop unwinding optimization, see
* https://en.wikipedia.org/wiki/Duff's_device.
* Here while() loop is used rather than do() while{} to avoid extra
* check if count is zero.
*/
switch (count % 4) {
case 0:
while (idx != count) {
RTE_ASSERT(rte_mbuf_refcnt_read(mbufs[idx]) == 0);
rte_mbuf_refcnt_set(mbufs[idx], 1);
rte_pktmbuf_reset(mbufs[idx]);
idx++;
case 3:
RTE_ASSERT(rte_mbuf_refcnt_read(mbufs[idx]) == 0);
rte_mbuf_refcnt_set(mbufs[idx], 1);
rte_pktmbuf_reset(mbufs[idx]);
idx++;
case 2:
RTE_ASSERT(rte_mbuf_refcnt_read(mbufs[idx]) == 0);
rte_mbuf_refcnt_set(mbufs[idx], 1);
rte_pktmbuf_reset(mbufs[idx]);
idx++;
case 1:
RTE_ASSERT(rte_mbuf_refcnt_read(mbufs[idx]) == 0);
rte_mbuf_refcnt_set(mbufs[idx], 1);
rte_pktmbuf_reset(mbufs[idx]);
idx++;
}
}
return 0;
}
/**
* Attach packet mbuf to another packet mbuf.
*
* After attachment we refer the mbuf we attached as 'indirect',
* while mbuf we attached to as 'direct'.
* The direct mbuf's reference counter is incremented.
*
* Right now, not supported:
* - attachment for already indirect mbuf (e.g. - mi has to be direct).
* - mbuf we trying to attach (mi) is used by someone else
* e.g. it's reference counter is greater then 1.
*
* @param mi
* The indirect packet mbuf.
* @param m
* The packet mbuf we're attaching to.
*/
static inline void rte_pktmbuf_attach(struct rte_mbuf *mi, struct rte_mbuf *m)
{
struct rte_mbuf *md;
RTE_ASSERT(RTE_MBUF_DIRECT(mi) &&
rte_mbuf_refcnt_read(mi) == 1);
/* if m is not direct, get the mbuf that embeds the data */
if (RTE_MBUF_DIRECT(m))
md = m;
else
md = rte_mbuf_from_indirect(m);
rte_mbuf_refcnt_update(md, 1);
mi->priv_size = m->priv_size;
mi->buf_physaddr = m->buf_physaddr;
mi->buf_addr = m->buf_addr;
mi->buf_len = m->buf_len;
mi->next = m->next;
mi->data_off = m->data_off;
mi->data_len = m->data_len;
mi->port = m->port;
mi->vlan_tci = m->vlan_tci;
mi->vlan_tci_outer = m->vlan_tci_outer;
mi->tx_offload = m->tx_offload;
mi->hash = m->hash;
mi->next = NULL;
mi->pkt_len = mi->data_len;
mi->nb_segs = 1;
mi->ol_flags = m->ol_flags | IND_ATTACHED_MBUF;
mi->packet_type = m->packet_type;
__rte_mbuf_sanity_check(mi, 1);
__rte_mbuf_sanity_check(m, 0);
}
/**
* Detach an indirect packet mbuf.
*
* - restore original mbuf address and length values.
* - reset pktmbuf data and data_len to their default values.
* - decrement the direct mbuf's reference counter. When the
* reference counter becomes 0, the direct mbuf is freed.
*
* All other fields of the given packet mbuf will be left intact.
*
* @param m
* The indirect attached packet mbuf.
*/
static inline void rte_pktmbuf_detach(struct rte_mbuf *m)
{
struct rte_mbuf *md = rte_mbuf_from_indirect(m);
struct rte_mempool *mp = m->pool;
uint32_t mbuf_size, buf_len, priv_size;
priv_size = rte_pktmbuf_priv_size(mp);
mbuf_size = sizeof(struct rte_mbuf) + priv_size;
buf_len = rte_pktmbuf_data_room_size(mp);
m->priv_size = priv_size;
m->buf_addr = (char *)m + mbuf_size;
m->buf_physaddr = rte_mempool_virt2phy(mp, m) + mbuf_size;
m->buf_len = (uint16_t)buf_len;
m->data_off = RTE_MIN(RTE_PKTMBUF_HEADROOM, (uint16_t)m->buf_len);
m->data_len = 0;
m->ol_flags = 0;
if (rte_mbuf_refcnt_update(md, -1) == 0)
__rte_mbuf_raw_free(md);
}
static inline struct rte_mbuf* __attribute__((always_inline))
__rte_pktmbuf_prefree_seg(struct rte_mbuf *m)
{
__rte_mbuf_sanity_check(m, 0);
if (likely(rte_mbuf_refcnt_update(m, -1) == 0)) {
/* if this is an indirect mbuf, it is detached. */
if (RTE_MBUF_INDIRECT(m))
rte_pktmbuf_detach(m);
return m;
}
return NULL;
}
/**
* Free a segment of a packet mbuf into its original mempool.
*
* Free an mbuf, without parsing other segments in case of chained
* buffers.
*
* @param m
* The packet mbuf segment to be freed.
*/
static inline void __attribute__((always_inline))
rte_pktmbuf_free_seg(struct rte_mbuf *m)
{
if (likely(NULL != (m = __rte_pktmbuf_prefree_seg(m)))) {
m->next = NULL;
__rte_mbuf_raw_free(m);
}
}
/**
* Free a packet mbuf back into its original mempool.
*
* Free an mbuf, and all its segments in case of chained buffers. Each
* segment is added back into its original mempool.
*
* @param m
* The packet mbuf to be freed.
*/
static inline void rte_pktmbuf_free(struct rte_mbuf *m)
{
struct rte_mbuf *m_next;
__rte_mbuf_sanity_check(m, 1);
while (m != NULL) {
m_next = m->next;
rte_pktmbuf_free_seg(m);
m = m_next;
}
}
/**
* Creates a "clone" of the given packet mbuf.
*
* Walks through all segments of the given packet mbuf, and for each of them:
* - Creates a new packet mbuf from the given pool.
* - Attaches newly created mbuf to the segment.
* Then updates pkt_len and nb_segs of the "clone" packet mbuf to match values
* from the original packet mbuf.
*
* @param md
* The packet mbuf to be cloned.
* @param mp
* The mempool from which the "clone" mbufs are allocated.
* @return
* - The pointer to the new "clone" mbuf on success.
* - NULL if allocation fails.
*/
static inline struct rte_mbuf *rte_pktmbuf_clone(struct rte_mbuf *md,
struct rte_mempool *mp)
{
struct rte_mbuf *mc, *mi, **prev;
uint32_t pktlen;
uint8_t nseg;
if (unlikely ((mc = rte_pktmbuf_alloc(mp)) == NULL))
return NULL;
mi = mc;
prev = &mi->next;
pktlen = md->pkt_len;
nseg = 0;
do {
nseg++;
rte_pktmbuf_attach(mi, md);
*prev = mi;
prev = &mi->next;
} while ((md = md->next) != NULL &&
(mi = rte_pktmbuf_alloc(mp)) != NULL);
*prev = NULL;
mc->nb_segs = nseg;
mc->pkt_len = pktlen;
/* Allocation of new indirect segment failed */
if (unlikely (mi == NULL)) {
rte_pktmbuf_free(mc);
return NULL;
}
__rte_mbuf_sanity_check(mc, 1);
return mc;
}
/**
* Adds given value to the refcnt of all packet mbuf segments.
*
* Walks through all segments of given packet mbuf and for each of them
* invokes rte_mbuf_refcnt_update().
*
* @param m
* The packet mbuf whose refcnt to be updated.
* @param v
* The value to add to the mbuf's segments refcnt.
*/
static inline void rte_pktmbuf_refcnt_update(struct rte_mbuf *m, int16_t v)
{
__rte_mbuf_sanity_check(m, 1);
do {
rte_mbuf_refcnt_update(m, v);
} while ((m = m->next) != NULL);
}
/**
* Get the headroom in a packet mbuf.
*
* @param m
* The packet mbuf.
* @return
* The length of the headroom.
*/
static inline uint16_t rte_pktmbuf_headroom(const struct rte_mbuf *m)
{
__rte_mbuf_sanity_check(m, 1);
return m->data_off;
}
/**
* Get the tailroom of a packet mbuf.
*
* @param m
* The packet mbuf.
* @return
* The length of the tailroom.
*/
static inline uint16_t rte_pktmbuf_tailroom(const struct rte_mbuf *m)
{
__rte_mbuf_sanity_check(m, 1);
return (uint16_t)(m->buf_len - rte_pktmbuf_headroom(m) -
m->data_len);
}
/**
* Get the last segment of the packet.
*
* @param m
* The packet mbuf.
* @return
* The last segment of the given mbuf.
*/
static inline struct rte_mbuf *rte_pktmbuf_lastseg(struct rte_mbuf *m)
{
struct rte_mbuf *m2 = (struct rte_mbuf *)m;
__rte_mbuf_sanity_check(m, 1);
while (m2->next != NULL)
m2 = m2->next;
return m2;
}
/**
* A macro that points to an offset into the data in the mbuf.
*
* The returned pointer is cast to type t. Before using this
* function, the user must ensure that the first segment is large
* enough to accommodate its data.
*
* @param m
* The packet mbuf.
* @param o
* The offset into the mbuf data.
* @param t
* The type to cast the result into.
*/
#define rte_pktmbuf_mtod_offset(m, t, o) \
((t)((char *)(m)->buf_addr + (m)->data_off + (o)))
/**
* A macro that points to the start of the data in the mbuf.
*
* The returned pointer is cast to type t. Before using this
* function, the user must ensure that the first segment is large
* enough to accommodate its data.
*
* @param m
* The packet mbuf.
* @param t
* The type to cast the result into.
*/
#define rte_pktmbuf_mtod(m, t) rte_pktmbuf_mtod_offset(m, t, 0)
/**
* A macro that returns the physical address that points to an offset of the
* start of the data in the mbuf
*
* @param m
* The packet mbuf.
* @param o
* The offset into the data to calculate address from.
*/
#define rte_pktmbuf_mtophys_offset(m, o) \
(phys_addr_t)((m)->buf_physaddr + (m)->data_off + (o))
/**
* A macro that returns the physical address that points to the start of the
* data in the mbuf
*
* @param m
* The packet mbuf.
*/
#define rte_pktmbuf_mtophys(m) rte_pktmbuf_mtophys_offset(m, 0)
/**
* A macro that returns the length of the packet.
*
* The value can be read or assigned.
*
* @param m
* The packet mbuf.
*/
#define rte_pktmbuf_pkt_len(m) ((m)->pkt_len)
/**
* A macro that returns the length of the segment.
*
* The value can be read or assigned.
*
* @param m
* The packet mbuf.
*/
#define rte_pktmbuf_data_len(m) ((m)->data_len)
/**
* Prepend len bytes to an mbuf data area.
*
* Returns a pointer to the new
* data start address. If there is not enough headroom in the first
* segment, the function will return NULL, without modifying the mbuf.
*
* @param m
* The pkt mbuf.
* @param len
* The amount of data to prepend (in bytes).
* @return
* A pointer to the start of the newly prepended data, or
* NULL if there is not enough headroom space in the first segment
*/
static inline char *rte_pktmbuf_prepend(struct rte_mbuf *m,
uint16_t len)
{
__rte_mbuf_sanity_check(m, 1);
if (unlikely(len > rte_pktmbuf_headroom(m)))
return NULL;
m->data_off -= len;
m->data_len = (uint16_t)(m->data_len + len);
m->pkt_len = (m->pkt_len + len);
return (char *)m->buf_addr + m->data_off;
}
/**
* Append len bytes to an mbuf.
*
* Append len bytes to an mbuf and return a pointer to the start address
* of the added data. If there is not enough tailroom in the last
* segment, the function will return NULL, without modifying the mbuf.
*
* @param m
* The packet mbuf.
* @param len
* The amount of data to append (in bytes).
* @return
* A pointer to the start of the newly appended data, or
* NULL if there is not enough tailroom space in the last segment
*/
static inline char *rte_pktmbuf_append(struct rte_mbuf *m, uint16_t len)
{
void *tail;
struct rte_mbuf *m_last;
__rte_mbuf_sanity_check(m, 1);
m_last = rte_pktmbuf_lastseg(m);
if (unlikely(len > rte_pktmbuf_tailroom(m_last)))
return NULL;
tail = (char *)m_last->buf_addr + m_last->data_off + m_last->data_len;
m_last->data_len = (uint16_t)(m_last->data_len + len);
m->pkt_len = (m->pkt_len + len);
return (char*) tail;
}
/**
* Remove len bytes at the beginning of an mbuf.
*
* Returns a pointer to the start address of the new data area. If the
* length is greater than the length of the first segment, then the
* function will fail and return NULL, without modifying the mbuf.
*
* @param m
* The packet mbuf.
* @param len
* The amount of data to remove (in bytes).
* @return
* A pointer to the new start of the data.
*/
static inline char *rte_pktmbuf_adj(struct rte_mbuf *m, uint16_t len)
{
__rte_mbuf_sanity_check(m, 1);
if (unlikely(len > m->data_len))
return NULL;
m->data_len = (uint16_t)(m->data_len - len);
m->data_off += len;
m->pkt_len = (m->pkt_len - len);
return (char *)m->buf_addr + m->data_off;
}
/**
* Remove len bytes of data at the end of the mbuf.
*
* If the length is greater than the length of the last segment, the
* function will fail and return -1 without modifying the mbuf.
*
* @param m
* The packet mbuf.
* @param len
* The amount of data to remove (in bytes).
* @return
* - 0: On success.
* - -1: On error.
*/
static inline int rte_pktmbuf_trim(struct rte_mbuf *m, uint16_t len)
{
struct rte_mbuf *m_last;
__rte_mbuf_sanity_check(m, 1);
m_last = rte_pktmbuf_lastseg(m);
if (unlikely(len > m_last->data_len))
return -1;
m_last->data_len = (uint16_t)(m_last->data_len - len);
m->pkt_len = (m->pkt_len - len);
return 0;
}
/**
* Test if mbuf data is contiguous.
*
* @param m
* The packet mbuf.
* @return
* - 1, if all data is contiguous (one segment).
* - 0, if there is several segments.
*/
static inline int rte_pktmbuf_is_contiguous(const struct rte_mbuf *m)
{
__rte_mbuf_sanity_check(m, 1);
return !!(m->nb_segs == 1);
}
/**
* Chain an mbuf to another, thereby creating a segmented packet.
*
* Note: The implementation will do a linear walk over the segments to find
* the tail entry. For cases when there are many segments, it's better to
* chain the entries manually.
*
* @param head
* The head of the mbuf chain (the first packet)
* @param tail
* The mbuf to put last in the chain
*
* @return
* - 0, on success.
* - -EOVERFLOW, if the chain is full (256 entries)
*/
static inline int rte_pktmbuf_chain(struct rte_mbuf *head, struct rte_mbuf *tail)
{
struct rte_mbuf *cur_tail;
/* Check for number-of-segments-overflow */
if (head->nb_segs + tail->nb_segs >= 1 << (sizeof(head->nb_segs) * 8))
return -EOVERFLOW;
/* Chain 'tail' onto the old tail */
cur_tail = rte_pktmbuf_lastseg(head);
cur_tail->next = tail;
/* accumulate number of segments and total length. */
head->nb_segs = (uint8_t)(head->nb_segs + tail->nb_segs);
head->pkt_len += tail->pkt_len;
/* pkt_len is only set in the head */
tail->pkt_len = tail->data_len;
return 0;
}
/**
* Dump an mbuf structure to the console.
*
* Dump all fields for the given packet mbuf and all its associated
* segments (in the case of a chained buffer).
*
* @param f
* A pointer to a file for output
* @param m
* The packet mbuf.
* @param dump_len
* If dump_len != 0, also dump the "dump_len" first data bytes of
* the packet.
*/
void rte_pktmbuf_dump(FILE *f, const struct rte_mbuf *m, unsigned dump_len);
#ifdef __cplusplus
}
#endif
#endif /* _RTE_MBUF_H_ */