numam-dpdk/drivers/net/mlx5/mlx5_flow.c
Adrien Mazarguil 8f9059ccee net/mlx5: add framework for switch flow rules
Because mlx5 switch flow rules are configured through Netlink (TC
interface) and have little in common with Verbs, this patch adds a separate
parser function to handle them.

- mlx5_nl_flow_transpose() converts a rte_flow rule to its TC equivalent
  and stores the result in a buffer.

- mlx5_nl_flow_brand() gives a unique handle to a flow rule buffer.

- mlx5_nl_flow_create() instantiates a flow rule on the device based on
  such a buffer.

- mlx5_nl_flow_destroy() performs the reverse operation.

These functions are called by the existing implementation when encountering
flow rules which must be offloaded to the switch (currently relying on the
transfer attribute).

Signed-off-by: Adrien Mazarguil <adrien.mazarguil@6wind.com>
Signed-off-by: Nelio Laranjeiro <nelio.laranjeiro@6wind.com>
Acked-by: Yongseok Koh <yskoh@mellanox.com>
2018-07-26 14:05:52 +02:00

3774 lines
107 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2016 6WIND S.A.
* Copyright 2016 Mellanox Technologies, Ltd
*/
#include <sys/queue.h>
#include <stdalign.h>
#include <stdint.h>
#include <string.h>
/* Verbs header. */
/* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
#ifdef PEDANTIC
#pragma GCC diagnostic ignored "-Wpedantic"
#endif
#include <infiniband/verbs.h>
#ifdef PEDANTIC
#pragma GCC diagnostic error "-Wpedantic"
#endif
#include <rte_common.h>
#include <rte_ether.h>
#include <rte_eth_ctrl.h>
#include <rte_ethdev_driver.h>
#include <rte_flow.h>
#include <rte_flow_driver.h>
#include <rte_malloc.h>
#include <rte_ip.h>
#include "mlx5.h"
#include "mlx5_defs.h"
#include "mlx5_prm.h"
#include "mlx5_glue.h"
/* Dev ops structure defined in mlx5.c */
extern const struct eth_dev_ops mlx5_dev_ops;
extern const struct eth_dev_ops mlx5_dev_ops_isolate;
/* Pattern outer Layer bits. */
#define MLX5_FLOW_LAYER_OUTER_L2 (1u << 0)
#define MLX5_FLOW_LAYER_OUTER_L3_IPV4 (1u << 1)
#define MLX5_FLOW_LAYER_OUTER_L3_IPV6 (1u << 2)
#define MLX5_FLOW_LAYER_OUTER_L4_UDP (1u << 3)
#define MLX5_FLOW_LAYER_OUTER_L4_TCP (1u << 4)
#define MLX5_FLOW_LAYER_OUTER_VLAN (1u << 5)
/* Pattern inner Layer bits. */
#define MLX5_FLOW_LAYER_INNER_L2 (1u << 6)
#define MLX5_FLOW_LAYER_INNER_L3_IPV4 (1u << 7)
#define MLX5_FLOW_LAYER_INNER_L3_IPV6 (1u << 8)
#define MLX5_FLOW_LAYER_INNER_L4_UDP (1u << 9)
#define MLX5_FLOW_LAYER_INNER_L4_TCP (1u << 10)
#define MLX5_FLOW_LAYER_INNER_VLAN (1u << 11)
/* Pattern tunnel Layer bits. */
#define MLX5_FLOW_LAYER_VXLAN (1u << 12)
#define MLX5_FLOW_LAYER_VXLAN_GPE (1u << 13)
#define MLX5_FLOW_LAYER_GRE (1u << 14)
#define MLX5_FLOW_LAYER_MPLS (1u << 15)
/* Outer Masks. */
#define MLX5_FLOW_LAYER_OUTER_L3 \
(MLX5_FLOW_LAYER_OUTER_L3_IPV4 | MLX5_FLOW_LAYER_OUTER_L3_IPV6)
#define MLX5_FLOW_LAYER_OUTER_L4 \
(MLX5_FLOW_LAYER_OUTER_L4_UDP | MLX5_FLOW_LAYER_OUTER_L4_TCP)
#define MLX5_FLOW_LAYER_OUTER \
(MLX5_FLOW_LAYER_OUTER_L2 | MLX5_FLOW_LAYER_OUTER_L3 | \
MLX5_FLOW_LAYER_OUTER_L4)
/* Tunnel Masks. */
#define MLX5_FLOW_LAYER_TUNNEL \
(MLX5_FLOW_LAYER_VXLAN | MLX5_FLOW_LAYER_VXLAN_GPE | \
MLX5_FLOW_LAYER_GRE | MLX5_FLOW_LAYER_MPLS)
/* Inner Masks. */
#define MLX5_FLOW_LAYER_INNER_L3 \
(MLX5_FLOW_LAYER_INNER_L3_IPV4 | MLX5_FLOW_LAYER_INNER_L3_IPV6)
#define MLX5_FLOW_LAYER_INNER_L4 \
(MLX5_FLOW_LAYER_INNER_L4_UDP | MLX5_FLOW_LAYER_INNER_L4_TCP)
#define MLX5_FLOW_LAYER_INNER \
(MLX5_FLOW_LAYER_INNER_L2 | MLX5_FLOW_LAYER_INNER_L3 | \
MLX5_FLOW_LAYER_INNER_L4)
/* Actions that modify the fate of matching traffic. */
#define MLX5_FLOW_FATE_DROP (1u << 0)
#define MLX5_FLOW_FATE_QUEUE (1u << 1)
#define MLX5_FLOW_FATE_RSS (1u << 2)
/* Modify a packet. */
#define MLX5_FLOW_MOD_FLAG (1u << 0)
#define MLX5_FLOW_MOD_MARK (1u << 1)
#define MLX5_FLOW_MOD_COUNT (1u << 2)
/* possible L3 layers protocols filtering. */
#define MLX5_IP_PROTOCOL_TCP 6
#define MLX5_IP_PROTOCOL_UDP 17
#define MLX5_IP_PROTOCOL_GRE 47
#define MLX5_IP_PROTOCOL_MPLS 147
/* Priority reserved for default flows. */
#define MLX5_FLOW_PRIO_RSVD ((uint32_t)-1)
enum mlx5_expansion {
MLX5_EXPANSION_ROOT,
MLX5_EXPANSION_ROOT_OUTER,
MLX5_EXPANSION_OUTER_ETH,
MLX5_EXPANSION_OUTER_IPV4,
MLX5_EXPANSION_OUTER_IPV4_UDP,
MLX5_EXPANSION_OUTER_IPV4_TCP,
MLX5_EXPANSION_OUTER_IPV6,
MLX5_EXPANSION_OUTER_IPV6_UDP,
MLX5_EXPANSION_OUTER_IPV6_TCP,
MLX5_EXPANSION_VXLAN,
MLX5_EXPANSION_VXLAN_GPE,
MLX5_EXPANSION_GRE,
MLX5_EXPANSION_MPLS,
MLX5_EXPANSION_ETH,
MLX5_EXPANSION_IPV4,
MLX5_EXPANSION_IPV4_UDP,
MLX5_EXPANSION_IPV4_TCP,
MLX5_EXPANSION_IPV6,
MLX5_EXPANSION_IPV6_UDP,
MLX5_EXPANSION_IPV6_TCP,
};
/** Supported expansion of items. */
static const struct rte_flow_expand_node mlx5_support_expansion[] = {
[MLX5_EXPANSION_ROOT] = {
.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
MLX5_EXPANSION_IPV4,
MLX5_EXPANSION_IPV6),
.type = RTE_FLOW_ITEM_TYPE_END,
},
[MLX5_EXPANSION_ROOT_OUTER] = {
.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH,
MLX5_EXPANSION_OUTER_IPV4,
MLX5_EXPANSION_OUTER_IPV6),
.type = RTE_FLOW_ITEM_TYPE_END,
},
[MLX5_EXPANSION_OUTER_ETH] = {
.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
MLX5_EXPANSION_OUTER_IPV6,
MLX5_EXPANSION_MPLS),
.type = RTE_FLOW_ITEM_TYPE_ETH,
.rss_types = 0,
},
[MLX5_EXPANSION_OUTER_IPV4] = {
.next = RTE_FLOW_EXPAND_RSS_NEXT
(MLX5_EXPANSION_OUTER_IPV4_UDP,
MLX5_EXPANSION_OUTER_IPV4_TCP,
MLX5_EXPANSION_GRE),
.type = RTE_FLOW_ITEM_TYPE_IPV4,
.rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
ETH_RSS_NONFRAG_IPV4_OTHER,
},
[MLX5_EXPANSION_OUTER_IPV4_UDP] = {
.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
MLX5_EXPANSION_VXLAN_GPE),
.type = RTE_FLOW_ITEM_TYPE_UDP,
.rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
},
[MLX5_EXPANSION_OUTER_IPV4_TCP] = {
.type = RTE_FLOW_ITEM_TYPE_TCP,
.rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
},
[MLX5_EXPANSION_OUTER_IPV6] = {
.next = RTE_FLOW_EXPAND_RSS_NEXT
(MLX5_EXPANSION_OUTER_IPV6_UDP,
MLX5_EXPANSION_OUTER_IPV6_TCP),
.type = RTE_FLOW_ITEM_TYPE_IPV6,
.rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
ETH_RSS_NONFRAG_IPV6_OTHER,
},
[MLX5_EXPANSION_OUTER_IPV6_UDP] = {
.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
MLX5_EXPANSION_VXLAN_GPE),
.type = RTE_FLOW_ITEM_TYPE_UDP,
.rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
},
[MLX5_EXPANSION_OUTER_IPV6_TCP] = {
.type = RTE_FLOW_ITEM_TYPE_TCP,
.rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
},
[MLX5_EXPANSION_VXLAN] = {
.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH),
.type = RTE_FLOW_ITEM_TYPE_VXLAN,
},
[MLX5_EXPANSION_VXLAN_GPE] = {
.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
MLX5_EXPANSION_IPV4,
MLX5_EXPANSION_IPV6),
.type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE,
},
[MLX5_EXPANSION_GRE] = {
.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4),
.type = RTE_FLOW_ITEM_TYPE_GRE,
},
[MLX5_EXPANSION_MPLS] = {
.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
MLX5_EXPANSION_IPV6),
.type = RTE_FLOW_ITEM_TYPE_MPLS,
},
[MLX5_EXPANSION_ETH] = {
.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
MLX5_EXPANSION_IPV6),
.type = RTE_FLOW_ITEM_TYPE_ETH,
},
[MLX5_EXPANSION_IPV4] = {
.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP,
MLX5_EXPANSION_IPV4_TCP),
.type = RTE_FLOW_ITEM_TYPE_IPV4,
.rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
ETH_RSS_NONFRAG_IPV4_OTHER,
},
[MLX5_EXPANSION_IPV4_UDP] = {
.type = RTE_FLOW_ITEM_TYPE_UDP,
.rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
},
[MLX5_EXPANSION_IPV4_TCP] = {
.type = RTE_FLOW_ITEM_TYPE_TCP,
.rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
},
[MLX5_EXPANSION_IPV6] = {
.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP,
MLX5_EXPANSION_IPV6_TCP),
.type = RTE_FLOW_ITEM_TYPE_IPV6,
.rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
ETH_RSS_NONFRAG_IPV6_OTHER,
},
[MLX5_EXPANSION_IPV6_UDP] = {
.type = RTE_FLOW_ITEM_TYPE_UDP,
.rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
},
[MLX5_EXPANSION_IPV6_TCP] = {
.type = RTE_FLOW_ITEM_TYPE_TCP,
.rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
},
};
/** Handles information leading to a drop fate. */
struct mlx5_flow_verbs {
LIST_ENTRY(mlx5_flow_verbs) next;
unsigned int size; /**< Size of the attribute. */
struct {
struct ibv_flow_attr *attr;
/**< Pointer to the Specification buffer. */
uint8_t *specs; /**< Pointer to the specifications. */
};
struct ibv_flow *flow; /**< Verbs flow pointer. */
struct mlx5_hrxq *hrxq; /**< Hash Rx queue object. */
uint64_t hash_fields; /**< Verbs hash Rx queue hash fields. */
};
/* Counters information. */
struct mlx5_flow_counter {
LIST_ENTRY(mlx5_flow_counter) next; /**< Pointer to the next counter. */
uint32_t shared:1; /**< Share counter ID with other flow rules. */
uint32_t ref_cnt:31; /**< Reference counter. */
uint32_t id; /**< Counter ID. */
struct ibv_counter_set *cs; /**< Holds the counters for the rule. */
uint64_t hits; /**< Number of packets matched by the rule. */
uint64_t bytes; /**< Number of bytes matched by the rule. */
};
/* Flow structure. */
struct rte_flow {
TAILQ_ENTRY(rte_flow) next; /**< Pointer to the next flow structure. */
struct rte_flow_attr attributes; /**< User flow attribute. */
uint32_t l3_protocol_en:1; /**< Protocol filtering requested. */
uint32_t layers;
/**< Bit-fields of present layers see MLX5_FLOW_LAYER_*. */
uint32_t modifier;
/**< Bit-fields of present modifier see MLX5_FLOW_MOD_*. */
uint32_t fate;
/**< Bit-fields of present fate see MLX5_FLOW_FATE_*. */
uint8_t l3_protocol; /**< valid when l3_protocol_en is set. */
LIST_HEAD(verbs, mlx5_flow_verbs) verbs; /**< Verbs flows list. */
struct mlx5_flow_verbs *cur_verbs;
/**< Current Verbs flow structure being filled. */
struct mlx5_flow_counter *counter; /**< Holds Verbs flow counter. */
struct rte_flow_action_rss rss;/**< RSS context. */
uint8_t key[MLX5_RSS_HASH_KEY_LEN]; /**< RSS hash key. */
uint16_t (*queue)[]; /**< Destination queues to redirect traffic to. */
void *nl_flow; /**< Netlink flow buffer if relevant. */
};
static const struct rte_flow_ops mlx5_flow_ops = {
.validate = mlx5_flow_validate,
.create = mlx5_flow_create,
.destroy = mlx5_flow_destroy,
.flush = mlx5_flow_flush,
.isolate = mlx5_flow_isolate,
.query = mlx5_flow_query,
};
/* Convert FDIR request to Generic flow. */
struct mlx5_fdir {
struct rte_flow_attr attr;
struct rte_flow_action actions[2];
struct rte_flow_item items[4];
struct rte_flow_item_eth l2;
struct rte_flow_item_eth l2_mask;
union {
struct rte_flow_item_ipv4 ipv4;
struct rte_flow_item_ipv6 ipv6;
} l3;
union {
struct rte_flow_item_ipv4 ipv4;
struct rte_flow_item_ipv6 ipv6;
} l3_mask;
union {
struct rte_flow_item_udp udp;
struct rte_flow_item_tcp tcp;
} l4;
union {
struct rte_flow_item_udp udp;
struct rte_flow_item_tcp tcp;
} l4_mask;
struct rte_flow_action_queue queue;
};
/* Verbs specification header. */
struct ibv_spec_header {
enum ibv_flow_spec_type type;
uint16_t size;
};
/*
* Number of sub priorities.
* For each kind of pattern matching i.e. L2, L3, L4 to have a correct
* matching on the NIC (firmware dependent) L4 most have the higher priority
* followed by L3 and ending with L2.
*/
#define MLX5_PRIORITY_MAP_L2 2
#define MLX5_PRIORITY_MAP_L3 1
#define MLX5_PRIORITY_MAP_L4 0
#define MLX5_PRIORITY_MAP_MAX 3
/* Map of Verbs to Flow priority with 8 Verbs priorities. */
static const uint32_t priority_map_3[][MLX5_PRIORITY_MAP_MAX] = {
{ 0, 1, 2 }, { 2, 3, 4 }, { 5, 6, 7 },
};
/* Map of Verbs to Flow priority with 16 Verbs priorities. */
static const uint32_t priority_map_5[][MLX5_PRIORITY_MAP_MAX] = {
{ 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 },
{ 9, 10, 11 }, { 12, 13, 14 },
};
/* Tunnel information. */
struct mlx5_flow_tunnel_info {
uint32_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */
uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */
};
static struct mlx5_flow_tunnel_info tunnels_info[] = {
{
.tunnel = MLX5_FLOW_LAYER_VXLAN,
.ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP,
},
{
.tunnel = MLX5_FLOW_LAYER_VXLAN_GPE,
.ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP,
},
{
.tunnel = MLX5_FLOW_LAYER_GRE,
.ptype = RTE_PTYPE_TUNNEL_GRE,
},
{
.tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP,
.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE | RTE_PTYPE_L4_UDP,
},
{
.tunnel = MLX5_FLOW_LAYER_MPLS,
.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE,
},
};
/**
* Discover the maximum number of priority available.
*
* @param[in] dev
* Pointer to Ethernet device.
*
* @return
* number of supported flow priority on success, a negative errno
* value otherwise and rte_errno is set.
*/
int
mlx5_flow_discover_priorities(struct rte_eth_dev *dev)
{
struct {
struct ibv_flow_attr attr;
struct ibv_flow_spec_eth eth;
struct ibv_flow_spec_action_drop drop;
} flow_attr = {
.attr = {
.num_of_specs = 2,
},
.eth = {
.type = IBV_FLOW_SPEC_ETH,
.size = sizeof(struct ibv_flow_spec_eth),
},
.drop = {
.size = sizeof(struct ibv_flow_spec_action_drop),
.type = IBV_FLOW_SPEC_ACTION_DROP,
},
};
struct ibv_flow *flow;
struct mlx5_hrxq *drop = mlx5_hrxq_drop_new(dev);
uint16_t vprio[] = { 8, 16 };
int i;
int priority = 0;
if (!drop) {
rte_errno = ENOTSUP;
return -rte_errno;
}
for (i = 0; i != RTE_DIM(vprio); i++) {
flow_attr.attr.priority = vprio[i] - 1;
flow = mlx5_glue->create_flow(drop->qp, &flow_attr.attr);
if (!flow)
break;
claim_zero(mlx5_glue->destroy_flow(flow));
priority = vprio[i];
}
switch (priority) {
case 8:
priority = RTE_DIM(priority_map_3);
break;
case 16:
priority = RTE_DIM(priority_map_5);
break;
default:
rte_errno = ENOTSUP;
DRV_LOG(ERR,
"port %u verbs maximum priority: %d expected 8/16",
dev->data->port_id, vprio[i]);
return -rte_errno;
}
mlx5_hrxq_drop_release(dev);
DRV_LOG(INFO, "port %u flow maximum priority: %d",
dev->data->port_id, priority);
return priority;
}
/**
* Adjust flow priority.
*
* @param dev
* Pointer to Ethernet device.
* @param flow
* Pointer to an rte flow.
*/
static void
mlx5_flow_adjust_priority(struct rte_eth_dev *dev, struct rte_flow *flow)
{
struct priv *priv = dev->data->dev_private;
uint32_t priority = flow->attributes.priority;
uint32_t subpriority = flow->cur_verbs->attr->priority;
switch (priv->config.flow_prio) {
case RTE_DIM(priority_map_3):
priority = priority_map_3[priority][subpriority];
break;
case RTE_DIM(priority_map_5):
priority = priority_map_5[priority][subpriority];
break;
}
flow->cur_verbs->attr->priority = priority;
}
/**
* Get a flow counter.
*
* @param[in] dev
* Pointer to Ethernet device.
* @param[in] shared
* Indicate if this counter is shared with other flows.
* @param[in] id
* Counter identifier.
*
* @return
* A pointer to the counter, NULL otherwise and rte_errno is set.
*/
static struct mlx5_flow_counter *
mlx5_flow_counter_new(struct rte_eth_dev *dev, uint32_t shared, uint32_t id)
{
struct priv *priv = dev->data->dev_private;
struct mlx5_flow_counter *cnt;
LIST_FOREACH(cnt, &priv->flow_counters, next) {
if (cnt->shared != shared)
continue;
if (cnt->id != id)
continue;
cnt->ref_cnt++;
return cnt;
}
#ifdef HAVE_IBV_DEVICE_COUNTERS_SET_SUPPORT
struct mlx5_flow_counter tmpl = {
.shared = shared,
.id = id,
.cs = mlx5_glue->create_counter_set
(priv->ctx,
&(struct ibv_counter_set_init_attr){
.counter_set_id = id,
}),
.hits = 0,
.bytes = 0,
};
if (!tmpl.cs) {
rte_errno = errno;
return NULL;
}
cnt = rte_calloc(__func__, 1, sizeof(*cnt), 0);
if (!cnt) {
rte_errno = ENOMEM;
return NULL;
}
*cnt = tmpl;
LIST_INSERT_HEAD(&priv->flow_counters, cnt, next);
return cnt;
#endif
rte_errno = ENOTSUP;
return NULL;
}
/**
* Release a flow counter.
*
* @param[in] counter
* Pointer to the counter handler.
*/
static void
mlx5_flow_counter_release(struct mlx5_flow_counter *counter)
{
if (--counter->ref_cnt == 0) {
claim_zero(mlx5_glue->destroy_counter_set(counter->cs));
LIST_REMOVE(counter, next);
rte_free(counter);
}
}
/**
* Verify the @p attributes will be correctly understood by the NIC and store
* them in the @p flow if everything is correct.
*
* @param[in] dev
* Pointer to Ethernet device.
* @param[in] attributes
* Pointer to flow attributes
* @param[in, out] flow
* Pointer to the rte_flow structure.
* @param[out] error
* Pointer to error structure.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
static int
mlx5_flow_attributes(struct rte_eth_dev *dev,
const struct rte_flow_attr *attributes,
struct rte_flow *flow,
struct rte_flow_error *error)
{
uint32_t priority_max =
((struct priv *)dev->data->dev_private)->config.flow_prio - 1;
if (attributes->group)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
NULL,
"groups is not supported");
if (attributes->priority != MLX5_FLOW_PRIO_RSVD &&
attributes->priority >= priority_max)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
NULL,
"priority out of range");
if (attributes->egress)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_EGRESS,
NULL,
"egress is not supported");
if (attributes->transfer)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
NULL,
"transfer is not supported");
if (!attributes->ingress)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
NULL,
"ingress attribute is mandatory");
flow->attributes = *attributes;
if (attributes->priority == MLX5_FLOW_PRIO_RSVD)
flow->attributes.priority = priority_max;
return 0;
}
/**
* Verify the @p item specifications (spec, last, mask) are compatible with the
* NIC capabilities.
*
* @param[in] item
* Item specification.
* @param[in] mask
* @p item->mask or flow default bit-masks.
* @param[in] nic_mask
* Bit-masks covering supported fields by the NIC to compare with user mask.
* @param[in] size
* Bit-masks size in bytes.
* @param[out] error
* Pointer to error structure.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
static int
mlx5_flow_item_acceptable(const struct rte_flow_item *item,
const uint8_t *mask,
const uint8_t *nic_mask,
unsigned int size,
struct rte_flow_error *error)
{
unsigned int i;
assert(nic_mask);
for (i = 0; i < size; ++i)
if ((nic_mask[i] | mask[i]) != nic_mask[i])
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"mask enables non supported"
" bits");
if (!item->spec && (item->mask || item->last))
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"mask/last without a spec is not"
" supported");
if (item->spec && item->last) {
uint8_t spec[size];
uint8_t last[size];
unsigned int i;
int ret;
for (i = 0; i < size; ++i) {
spec[i] = ((const uint8_t *)item->spec)[i] & mask[i];
last[i] = ((const uint8_t *)item->last)[i] & mask[i];
}
ret = memcmp(spec, last, size);
if (ret != 0)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"range is not supported");
}
return 0;
}
/**
* Add a verbs item specification into @p flow.
*
* @param[in, out] flow
* Pointer to flow structure.
* @param[in] src
* Create specification.
* @param[in] size
* Size in bytes of the specification to copy.
*/
static void
mlx5_flow_spec_verbs_add(struct rte_flow *flow, void *src, unsigned int size)
{
struct mlx5_flow_verbs *verbs = flow->cur_verbs;
if (verbs->specs) {
void *dst;
dst = (void *)(verbs->specs + verbs->size);
memcpy(dst, src, size);
++verbs->attr->num_of_specs;
}
verbs->size += size;
}
/**
* Adjust verbs hash fields according to the @p flow information.
*
* @param[in, out] flow.
* Pointer to flow structure.
* @param[in] tunnel
* 1 when the hash field is for a tunnel item.
* @param[in] layer_types
* ETH_RSS_* types.
* @param[in] hash_fields
* Item hash fields.
*/
static void
mlx5_flow_verbs_hashfields_adjust(struct rte_flow *flow,
int tunnel __rte_unused,
uint32_t layer_types, uint64_t hash_fields)
{
#ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
hash_fields |= (tunnel ? IBV_RX_HASH_INNER : 0);
if (flow->rss.level == 2 && !tunnel)
hash_fields = 0;
else if (flow->rss.level < 2 && tunnel)
hash_fields = 0;
#endif
if (!(flow->rss.types & layer_types))
hash_fields = 0;
flow->cur_verbs->hash_fields |= hash_fields;
}
/**
* Convert the @p item into a Verbs specification after ensuring the NIC
* will understand and process it correctly.
* If the necessary size for the conversion is greater than the @p flow_size,
* nothing is written in @p flow, the validation is still performed.
*
* @param[in] item
* Item specification.
* @param[in, out] flow
* Pointer to flow structure.
* @param[in] flow_size
* Size in bytes of the available space in @p flow, if too small, nothing is
* written.
* @param[out] error
* Pointer to error structure.
*
* @return
* On success the number of bytes consumed/necessary, if the returned value
* is lesser or equal to @p flow_size, the @p item has fully been converted,
* otherwise another call with this returned memory size should be done.
* On error, a negative errno value is returned and rte_errno is set.
*/
static int
mlx5_flow_item_eth(const struct rte_flow_item *item, struct rte_flow *flow,
const size_t flow_size, struct rte_flow_error *error)
{
const struct rte_flow_item_eth *spec = item->spec;
const struct rte_flow_item_eth *mask = item->mask;
const struct rte_flow_item_eth nic_mask = {
.dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
.src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
.type = RTE_BE16(0xffff),
};
const int tunnel = !!(flow->layers & MLX5_FLOW_LAYER_TUNNEL);
const unsigned int size = sizeof(struct ibv_flow_spec_eth);
struct ibv_flow_spec_eth eth = {
.type = IBV_FLOW_SPEC_ETH | (tunnel ? IBV_FLOW_SPEC_INNER : 0),
.size = size,
};
int ret;
if (flow->layers & (tunnel ? MLX5_FLOW_LAYER_INNER_L2 :
MLX5_FLOW_LAYER_OUTER_L2))
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"L2 layers already configured");
if (!mask)
mask = &rte_flow_item_eth_mask;
ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
(const uint8_t *)&nic_mask,
sizeof(struct rte_flow_item_eth),
error);
if (ret)
return ret;
flow->layers |= tunnel ? MLX5_FLOW_LAYER_INNER_L2 :
MLX5_FLOW_LAYER_OUTER_L2;
if (size > flow_size)
return size;
if (spec) {
unsigned int i;
memcpy(&eth.val.dst_mac, spec->dst.addr_bytes, ETHER_ADDR_LEN);
memcpy(&eth.val.src_mac, spec->src.addr_bytes, ETHER_ADDR_LEN);
eth.val.ether_type = spec->type;
memcpy(&eth.mask.dst_mac, mask->dst.addr_bytes, ETHER_ADDR_LEN);
memcpy(&eth.mask.src_mac, mask->src.addr_bytes, ETHER_ADDR_LEN);
eth.mask.ether_type = mask->type;
/* Remove unwanted bits from values. */
for (i = 0; i < ETHER_ADDR_LEN; ++i) {
eth.val.dst_mac[i] &= eth.mask.dst_mac[i];
eth.val.src_mac[i] &= eth.mask.src_mac[i];
}
eth.val.ether_type &= eth.mask.ether_type;
}
flow->cur_verbs->attr->priority = MLX5_PRIORITY_MAP_L2;
mlx5_flow_spec_verbs_add(flow, &eth, size);
return size;
}
/**
* Update the VLAN tag in the Verbs Ethernet specification.
*
* @param[in, out] attr
* Pointer to Verbs attributes structure.
* @param[in] eth
* Verbs structure containing the VLAN information to copy.
*/
static void
mlx5_flow_item_vlan_update(struct ibv_flow_attr *attr,
struct ibv_flow_spec_eth *eth)
{
unsigned int i;
const enum ibv_flow_spec_type search = eth->type;
struct ibv_spec_header *hdr = (struct ibv_spec_header *)
((uint8_t *)attr + sizeof(struct ibv_flow_attr));
for (i = 0; i != attr->num_of_specs; ++i) {
if (hdr->type == search) {
struct ibv_flow_spec_eth *e =
(struct ibv_flow_spec_eth *)hdr;
e->val.vlan_tag = eth->val.vlan_tag;
e->mask.vlan_tag = eth->mask.vlan_tag;
e->val.ether_type = eth->val.ether_type;
e->mask.ether_type = eth->mask.ether_type;
break;
}
hdr = (struct ibv_spec_header *)((uint8_t *)hdr + hdr->size);
}
}
/**
* Convert the @p item into @p flow (or by updating the already present
* Ethernet Verbs) specification after ensuring the NIC will understand and
* process it correctly.
* If the necessary size for the conversion is greater than the @p flow_size,
* nothing is written in @p flow, the validation is still performed.
*
* @param[in] item
* Item specification.
* @param[in, out] flow
* Pointer to flow structure.
* @param[in] flow_size
* Size in bytes of the available space in @p flow, if too small, nothing is
* written.
* @param[out] error
* Pointer to error structure.
*
* @return
* On success the number of bytes consumed/necessary, if the returned value
* is lesser or equal to @p flow_size, the @p item has fully been converted,
* otherwise another call with this returned memory size should be done.
* On error, a negative errno value is returned and rte_errno is set.
*/
static int
mlx5_flow_item_vlan(const struct rte_flow_item *item, struct rte_flow *flow,
const size_t flow_size, struct rte_flow_error *error)
{
const struct rte_flow_item_vlan *spec = item->spec;
const struct rte_flow_item_vlan *mask = item->mask;
const struct rte_flow_item_vlan nic_mask = {
.tci = RTE_BE16(0x0fff),
.inner_type = RTE_BE16(0xffff),
};
unsigned int size = sizeof(struct ibv_flow_spec_eth);
const int tunnel = !!(flow->layers & MLX5_FLOW_LAYER_TUNNEL);
struct ibv_flow_spec_eth eth = {
.type = IBV_FLOW_SPEC_ETH | (tunnel ? IBV_FLOW_SPEC_INNER : 0),
.size = size,
};
int ret;
const uint32_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 |
MLX5_FLOW_LAYER_INNER_L4) :
(MLX5_FLOW_LAYER_OUTER_L3 | MLX5_FLOW_LAYER_OUTER_L4);
const uint32_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN :
MLX5_FLOW_LAYER_OUTER_VLAN;
const uint32_t l2m = tunnel ? MLX5_FLOW_LAYER_INNER_L2 :
MLX5_FLOW_LAYER_OUTER_L2;
if (flow->layers & vlanm)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"VLAN layer already configured");
else if ((flow->layers & l34m) != 0)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"L2 layer cannot follow L3/L4 layer");
if (!mask)
mask = &rte_flow_item_vlan_mask;
ret = mlx5_flow_item_acceptable
(item, (const uint8_t *)mask,
(const uint8_t *)&nic_mask,
sizeof(struct rte_flow_item_vlan), error);
if (ret)
return ret;
if (spec) {
eth.val.vlan_tag = spec->tci;
eth.mask.vlan_tag = mask->tci;
eth.val.vlan_tag &= eth.mask.vlan_tag;
eth.val.ether_type = spec->inner_type;
eth.mask.ether_type = mask->inner_type;
eth.val.ether_type &= eth.mask.ether_type;
}
/*
* From verbs perspective an empty VLAN is equivalent
* to a packet without VLAN layer.
*/
if (!eth.mask.vlan_tag)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
item->spec,
"VLAN cannot be empty");
if (!(flow->layers & l2m)) {
if (size <= flow_size) {
flow->cur_verbs->attr->priority = MLX5_PRIORITY_MAP_L2;
mlx5_flow_spec_verbs_add(flow, &eth, size);
}
} else {
if (flow->cur_verbs)
mlx5_flow_item_vlan_update(flow->cur_verbs->attr,
&eth);
size = 0; /* Only an update is done in eth specification. */
}
flow->layers |= tunnel ?
(MLX5_FLOW_LAYER_INNER_L2 | MLX5_FLOW_LAYER_INNER_VLAN) :
(MLX5_FLOW_LAYER_OUTER_L2 | MLX5_FLOW_LAYER_OUTER_VLAN);
return size;
}
/**
* Convert the @p item into a Verbs specification after ensuring the NIC
* will understand and process it correctly.
* If the necessary size for the conversion is greater than the @p flow_size,
* nothing is written in @p flow, the validation is still performed.
*
* @param[in] item
* Item specification.
* @param[in, out] flow
* Pointer to flow structure.
* @param[in] flow_size
* Size in bytes of the available space in @p flow, if too small, nothing is
* written.
* @param[out] error
* Pointer to error structure.
*
* @return
* On success the number of bytes consumed/necessary, if the returned value
* is lesser or equal to @p flow_size, the @p item has fully been converted,
* otherwise another call with this returned memory size should be done.
* On error, a negative errno value is returned and rte_errno is set.
*/
static int
mlx5_flow_item_ipv4(const struct rte_flow_item *item, struct rte_flow *flow,
const size_t flow_size, struct rte_flow_error *error)
{
const struct rte_flow_item_ipv4 *spec = item->spec;
const struct rte_flow_item_ipv4 *mask = item->mask;
const struct rte_flow_item_ipv4 nic_mask = {
.hdr = {
.src_addr = RTE_BE32(0xffffffff),
.dst_addr = RTE_BE32(0xffffffff),
.type_of_service = 0xff,
.next_proto_id = 0xff,
},
};
const int tunnel = !!(flow->layers & MLX5_FLOW_LAYER_TUNNEL);
unsigned int size = sizeof(struct ibv_flow_spec_ipv4_ext);
struct ibv_flow_spec_ipv4_ext ipv4 = {
.type = IBV_FLOW_SPEC_IPV4_EXT |
(tunnel ? IBV_FLOW_SPEC_INNER : 0),
.size = size,
};
int ret;
if (flow->layers & (tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
MLX5_FLOW_LAYER_OUTER_L3))
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"multiple L3 layers not supported");
else if (flow->layers & (tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
MLX5_FLOW_LAYER_OUTER_L4))
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"L3 cannot follow an L4 layer.");
if (!mask)
mask = &rte_flow_item_ipv4_mask;
ret = mlx5_flow_item_acceptable
(item, (const uint8_t *)mask,
(const uint8_t *)&nic_mask,
sizeof(struct rte_flow_item_ipv4), error);
if (ret < 0)
return ret;
flow->layers |= tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV4 :
MLX5_FLOW_LAYER_OUTER_L3_IPV4;
if (spec) {
ipv4.val = (struct ibv_flow_ipv4_ext_filter){
.src_ip = spec->hdr.src_addr,
.dst_ip = spec->hdr.dst_addr,
.proto = spec->hdr.next_proto_id,
.tos = spec->hdr.type_of_service,
};
ipv4.mask = (struct ibv_flow_ipv4_ext_filter){
.src_ip = mask->hdr.src_addr,
.dst_ip = mask->hdr.dst_addr,
.proto = mask->hdr.next_proto_id,
.tos = mask->hdr.type_of_service,
};
/* Remove unwanted bits from values. */
ipv4.val.src_ip &= ipv4.mask.src_ip;
ipv4.val.dst_ip &= ipv4.mask.dst_ip;
ipv4.val.proto &= ipv4.mask.proto;
ipv4.val.tos &= ipv4.mask.tos;
}
flow->l3_protocol_en = !!ipv4.mask.proto;
flow->l3_protocol = ipv4.val.proto;
if (size <= flow_size) {
mlx5_flow_verbs_hashfields_adjust
(flow, tunnel,
(ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
ETH_RSS_NONFRAG_IPV4_OTHER),
(IBV_RX_HASH_SRC_IPV4 | IBV_RX_HASH_DST_IPV4));
flow->cur_verbs->attr->priority = MLX5_PRIORITY_MAP_L3;
mlx5_flow_spec_verbs_add(flow, &ipv4, size);
}
return size;
}
/**
* Convert the @p item into a Verbs specification after ensuring the NIC
* will understand and process it correctly.
* If the necessary size for the conversion is greater than the @p flow_size,
* nothing is written in @p flow, the validation is still performed.
*
* @param[in] item
* Item specification.
* @param[in, out] flow
* Pointer to flow structure.
* @param[in] flow_size
* Size in bytes of the available space in @p flow, if too small, nothing is
* written.
* @param[out] error
* Pointer to error structure.
*
* @return
* On success the number of bytes consumed/necessary, if the returned value
* is lesser or equal to @p flow_size, the @p item has fully been converted,
* otherwise another call with this returned memory size should be done.
* On error, a negative errno value is returned and rte_errno is set.
*/
static int
mlx5_flow_item_ipv6(const struct rte_flow_item *item, struct rte_flow *flow,
const size_t flow_size, struct rte_flow_error *error)
{
const struct rte_flow_item_ipv6 *spec = item->spec;
const struct rte_flow_item_ipv6 *mask = item->mask;
const struct rte_flow_item_ipv6 nic_mask = {
.hdr = {
.src_addr =
"\xff\xff\xff\xff\xff\xff\xff\xff"
"\xff\xff\xff\xff\xff\xff\xff\xff",
.dst_addr =
"\xff\xff\xff\xff\xff\xff\xff\xff"
"\xff\xff\xff\xff\xff\xff\xff\xff",
.vtc_flow = RTE_BE32(0xffffffff),
.proto = 0xff,
.hop_limits = 0xff,
},
};
const int tunnel = !!(flow->layers & MLX5_FLOW_LAYER_TUNNEL);
unsigned int size = sizeof(struct ibv_flow_spec_ipv6);
struct ibv_flow_spec_ipv6 ipv6 = {
.type = IBV_FLOW_SPEC_IPV6 | (tunnel ? IBV_FLOW_SPEC_INNER : 0),
.size = size,
};
int ret;
if (flow->layers & (tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
MLX5_FLOW_LAYER_OUTER_L3))
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"multiple L3 layers not supported");
else if (flow->layers & (tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
MLX5_FLOW_LAYER_OUTER_L4))
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"L3 cannot follow an L4 layer.");
/*
* IPv6 is not recognised by the NIC inside a GRE tunnel.
* Such support has to be disabled as the rule will be
* accepted. Issue reproduced with Mellanox OFED 4.3-3.0.2.1 and
* Mellanox OFED 4.4-1.0.0.0.
*/
if (tunnel && flow->layers & MLX5_FLOW_LAYER_GRE)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"IPv6 inside a GRE tunnel is"
" not recognised.");
if (!mask)
mask = &rte_flow_item_ipv6_mask;
ret = mlx5_flow_item_acceptable
(item, (const uint8_t *)mask,
(const uint8_t *)&nic_mask,
sizeof(struct rte_flow_item_ipv6), error);
if (ret < 0)
return ret;
flow->layers |= tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV6 :
MLX5_FLOW_LAYER_OUTER_L3_IPV6;
if (spec) {
unsigned int i;
uint32_t vtc_flow_val;
uint32_t vtc_flow_mask;
memcpy(&ipv6.val.src_ip, spec->hdr.src_addr,
RTE_DIM(ipv6.val.src_ip));
memcpy(&ipv6.val.dst_ip, spec->hdr.dst_addr,
RTE_DIM(ipv6.val.dst_ip));
memcpy(&ipv6.mask.src_ip, mask->hdr.src_addr,
RTE_DIM(ipv6.mask.src_ip));
memcpy(&ipv6.mask.dst_ip, mask->hdr.dst_addr,
RTE_DIM(ipv6.mask.dst_ip));
vtc_flow_val = rte_be_to_cpu_32(spec->hdr.vtc_flow);
vtc_flow_mask = rte_be_to_cpu_32(mask->hdr.vtc_flow);
ipv6.val.flow_label =
rte_cpu_to_be_32((vtc_flow_val & IPV6_HDR_FL_MASK) >>
IPV6_HDR_FL_SHIFT);
ipv6.val.traffic_class = (vtc_flow_val & IPV6_HDR_TC_MASK) >>
IPV6_HDR_TC_SHIFT;
ipv6.val.next_hdr = spec->hdr.proto;
ipv6.val.hop_limit = spec->hdr.hop_limits;
ipv6.mask.flow_label =
rte_cpu_to_be_32((vtc_flow_mask & IPV6_HDR_FL_MASK) >>
IPV6_HDR_FL_SHIFT);
ipv6.mask.traffic_class = (vtc_flow_mask & IPV6_HDR_TC_MASK) >>
IPV6_HDR_TC_SHIFT;
ipv6.mask.next_hdr = mask->hdr.proto;
ipv6.mask.hop_limit = mask->hdr.hop_limits;
/* Remove unwanted bits from values. */
for (i = 0; i < RTE_DIM(ipv6.val.src_ip); ++i) {
ipv6.val.src_ip[i] &= ipv6.mask.src_ip[i];
ipv6.val.dst_ip[i] &= ipv6.mask.dst_ip[i];
}
ipv6.val.flow_label &= ipv6.mask.flow_label;
ipv6.val.traffic_class &= ipv6.mask.traffic_class;
ipv6.val.next_hdr &= ipv6.mask.next_hdr;
ipv6.val.hop_limit &= ipv6.mask.hop_limit;
}
flow->l3_protocol_en = !!ipv6.mask.next_hdr;
flow->l3_protocol = ipv6.val.next_hdr;
if (size <= flow_size) {
mlx5_flow_verbs_hashfields_adjust
(flow, tunnel,
(ETH_RSS_IPV6 | ETH_RSS_NONFRAG_IPV6_OTHER),
(IBV_RX_HASH_SRC_IPV6 | IBV_RX_HASH_DST_IPV6));
flow->cur_verbs->attr->priority = MLX5_PRIORITY_MAP_L3;
mlx5_flow_spec_verbs_add(flow, &ipv6, size);
}
return size;
}
/**
* Convert the @p item into a Verbs specification after ensuring the NIC
* will understand and process it correctly.
* If the necessary size for the conversion is greater than the @p flow_size,
* nothing is written in @p flow, the validation is still performed.
*
* @param[in] item
* Item specification.
* @param[in, out] flow
* Pointer to flow structure.
* @param[in] flow_size
* Size in bytes of the available space in @p flow, if too small, nothing is
* written.
* @param[out] error
* Pointer to error structure.
*
* @return
* On success the number of bytes consumed/necessary, if the returned value
* is lesser or equal to @p flow_size, the @p item has fully been converted,
* otherwise another call with this returned memory size should be done.
* On error, a negative errno value is returned and rte_errno is set.
*/
static int
mlx5_flow_item_udp(const struct rte_flow_item *item, struct rte_flow *flow,
const size_t flow_size, struct rte_flow_error *error)
{
const struct rte_flow_item_udp *spec = item->spec;
const struct rte_flow_item_udp *mask = item->mask;
const int tunnel = !!(flow->layers & MLX5_FLOW_LAYER_TUNNEL);
unsigned int size = sizeof(struct ibv_flow_spec_tcp_udp);
struct ibv_flow_spec_tcp_udp udp = {
.type = IBV_FLOW_SPEC_UDP | (tunnel ? IBV_FLOW_SPEC_INNER : 0),
.size = size,
};
int ret;
if (flow->l3_protocol_en && flow->l3_protocol != MLX5_IP_PROTOCOL_UDP)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"protocol filtering not compatible"
" with UDP layer");
if (!(flow->layers & (tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
MLX5_FLOW_LAYER_OUTER_L3)))
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"L3 is mandatory to filter"
" on L4");
if (flow->layers & (tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
MLX5_FLOW_LAYER_OUTER_L4))
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"L4 layer is already"
" present");
if (!mask)
mask = &rte_flow_item_udp_mask;
ret = mlx5_flow_item_acceptable
(item, (const uint8_t *)mask,
(const uint8_t *)&rte_flow_item_udp_mask,
sizeof(struct rte_flow_item_udp), error);
if (ret < 0)
return ret;
flow->layers |= tunnel ? MLX5_FLOW_LAYER_INNER_L4_UDP :
MLX5_FLOW_LAYER_OUTER_L4_UDP;
if (spec) {
udp.val.dst_port = spec->hdr.dst_port;
udp.val.src_port = spec->hdr.src_port;
udp.mask.dst_port = mask->hdr.dst_port;
udp.mask.src_port = mask->hdr.src_port;
/* Remove unwanted bits from values. */
udp.val.src_port &= udp.mask.src_port;
udp.val.dst_port &= udp.mask.dst_port;
}
if (size <= flow_size) {
mlx5_flow_verbs_hashfields_adjust(flow, tunnel, ETH_RSS_UDP,
(IBV_RX_HASH_SRC_PORT_UDP |
IBV_RX_HASH_DST_PORT_UDP));
flow->cur_verbs->attr->priority = MLX5_PRIORITY_MAP_L4;
mlx5_flow_spec_verbs_add(flow, &udp, size);
}
return size;
}
/**
* Convert the @p item into a Verbs specification after ensuring the NIC
* will understand and process it correctly.
* If the necessary size for the conversion is greater than the @p flow_size,
* nothing is written in @p flow, the validation is still performed.
*
* @param[in] item
* Item specification.
* @param[in, out] flow
* Pointer to flow structure.
* @param[in] flow_size
* Size in bytes of the available space in @p flow, if too small, nothing is
* written.
* @param[out] error
* Pointer to error structure.
*
* @return
* On success the number of bytes consumed/necessary, if the returned value
* is lesser or equal to @p flow_size, the @p item has fully been converted,
* otherwise another call with this returned memory size should be done.
* On error, a negative errno value is returned and rte_errno is set.
*/
static int
mlx5_flow_item_tcp(const struct rte_flow_item *item, struct rte_flow *flow,
const size_t flow_size, struct rte_flow_error *error)
{
const struct rte_flow_item_tcp *spec = item->spec;
const struct rte_flow_item_tcp *mask = item->mask;
const int tunnel = !!(flow->layers & MLX5_FLOW_LAYER_TUNNEL);
unsigned int size = sizeof(struct ibv_flow_spec_tcp_udp);
struct ibv_flow_spec_tcp_udp tcp = {
.type = IBV_FLOW_SPEC_TCP | (tunnel ? IBV_FLOW_SPEC_INNER : 0),
.size = size,
};
int ret;
if (flow->l3_protocol_en && flow->l3_protocol != MLX5_IP_PROTOCOL_TCP)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"protocol filtering not compatible"
" with TCP layer");
if (!(flow->layers & (tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
MLX5_FLOW_LAYER_OUTER_L3)))
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"L3 is mandatory to filter on L4");
if (flow->layers & (tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
MLX5_FLOW_LAYER_OUTER_L4))
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"L4 layer is already present");
if (!mask)
mask = &rte_flow_item_tcp_mask;
ret = mlx5_flow_item_acceptable
(item, (const uint8_t *)mask,
(const uint8_t *)&rte_flow_item_tcp_mask,
sizeof(struct rte_flow_item_tcp), error);
if (ret < 0)
return ret;
flow->layers |= tunnel ? MLX5_FLOW_LAYER_INNER_L4_TCP :
MLX5_FLOW_LAYER_OUTER_L4_TCP;
if (spec) {
tcp.val.dst_port = spec->hdr.dst_port;
tcp.val.src_port = spec->hdr.src_port;
tcp.mask.dst_port = mask->hdr.dst_port;
tcp.mask.src_port = mask->hdr.src_port;
/* Remove unwanted bits from values. */
tcp.val.src_port &= tcp.mask.src_port;
tcp.val.dst_port &= tcp.mask.dst_port;
}
if (size <= flow_size) {
mlx5_flow_verbs_hashfields_adjust(flow, tunnel, ETH_RSS_TCP,
(IBV_RX_HASH_SRC_PORT_TCP |
IBV_RX_HASH_DST_PORT_TCP));
flow->cur_verbs->attr->priority = MLX5_PRIORITY_MAP_L4;
mlx5_flow_spec_verbs_add(flow, &tcp, size);
}
return size;
}
/**
* Convert the @p item into a Verbs specification after ensuring the NIC
* will understand and process it correctly.
* If the necessary size for the conversion is greater than the @p flow_size,
* nothing is written in @p flow, the validation is still performed.
*
* @param[in] item
* Item specification.
* @param[in, out] flow
* Pointer to flow structure.
* @param[in] flow_size
* Size in bytes of the available space in @p flow, if too small, nothing is
* written.
* @param[out] error
* Pointer to error structure.
*
* @return
* On success the number of bytes consumed/necessary, if the returned value
* is lesser or equal to @p flow_size, the @p item has fully been converted,
* otherwise another call with this returned memory size should be done.
* On error, a negative errno value is returned and rte_errno is set.
*/
static int
mlx5_flow_item_vxlan(const struct rte_flow_item *item, struct rte_flow *flow,
const size_t flow_size, struct rte_flow_error *error)
{
const struct rte_flow_item_vxlan *spec = item->spec;
const struct rte_flow_item_vxlan *mask = item->mask;
unsigned int size = sizeof(struct ibv_flow_spec_tunnel);
struct ibv_flow_spec_tunnel vxlan = {
.type = IBV_FLOW_SPEC_VXLAN_TUNNEL,
.size = size,
};
int ret;
union vni {
uint32_t vlan_id;
uint8_t vni[4];
} id = { .vlan_id = 0, };
if (flow->layers & MLX5_FLOW_LAYER_TUNNEL)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"a tunnel is already present");
/*
* Verify only UDPv4 is present as defined in
* https://tools.ietf.org/html/rfc7348
*/
if (!(flow->layers & MLX5_FLOW_LAYER_OUTER_L4_UDP))
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"no outer UDP layer found");
if (!mask)
mask = &rte_flow_item_vxlan_mask;
ret = mlx5_flow_item_acceptable
(item, (const uint8_t *)mask,
(const uint8_t *)&rte_flow_item_vxlan_mask,
sizeof(struct rte_flow_item_vxlan), error);
if (ret < 0)
return ret;
if (spec) {
memcpy(&id.vni[1], spec->vni, 3);
vxlan.val.tunnel_id = id.vlan_id;
memcpy(&id.vni[1], mask->vni, 3);
vxlan.mask.tunnel_id = id.vlan_id;
/* Remove unwanted bits from values. */
vxlan.val.tunnel_id &= vxlan.mask.tunnel_id;
}
/*
* Tunnel id 0 is equivalent as not adding a VXLAN layer, if
* only this layer is defined in the Verbs specification it is
* interpreted as wildcard and all packets will match this
* rule, if it follows a full stack layer (ex: eth / ipv4 /
* udp), all packets matching the layers before will also
* match this rule. To avoid such situation, VNI 0 is
* currently refused.
*/
if (!vxlan.val.tunnel_id)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"VXLAN vni cannot be 0");
if (!(flow->layers & MLX5_FLOW_LAYER_OUTER))
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"VXLAN tunnel must be fully defined");
if (size <= flow_size) {
mlx5_flow_spec_verbs_add(flow, &vxlan, size);
flow->cur_verbs->attr->priority = MLX5_PRIORITY_MAP_L2;
}
flow->layers |= MLX5_FLOW_LAYER_VXLAN;
return size;
}
/**
* Convert the @p item into a Verbs specification after ensuring the NIC
* will understand and process it correctly.
* If the necessary size for the conversion is greater than the @p flow_size,
* nothing is written in @p flow, the validation is still performed.
*
* @param dev
* Pointer to Ethernet device.
* @param[in] item
* Item specification.
* @param[in, out] flow
* Pointer to flow structure.
* @param[in] flow_size
* Size in bytes of the available space in @p flow, if too small, nothing is
* written.
* @param[out] error
* Pointer to error structure.
*
* @return
* On success the number of bytes consumed/necessary, if the returned value
* is lesser or equal to @p flow_size, the @p item has fully been converted,
* otherwise another call with this returned memory size should be done.
* On error, a negative errno value is returned and rte_errno is set.
*/
static int
mlx5_flow_item_vxlan_gpe(struct rte_eth_dev *dev,
const struct rte_flow_item *item,
struct rte_flow *flow, const size_t flow_size,
struct rte_flow_error *error)
{
const struct rte_flow_item_vxlan_gpe *spec = item->spec;
const struct rte_flow_item_vxlan_gpe *mask = item->mask;
unsigned int size = sizeof(struct ibv_flow_spec_tunnel);
struct ibv_flow_spec_tunnel vxlan_gpe = {
.type = IBV_FLOW_SPEC_VXLAN_TUNNEL,
.size = size,
};
int ret;
union vni {
uint32_t vlan_id;
uint8_t vni[4];
} id = { .vlan_id = 0, };
if (!((struct priv *)dev->data->dev_private)->config.l3_vxlan_en)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"L3 VXLAN is not enabled by device"
" parameter and/or not configured in"
" firmware");
if (flow->layers & MLX5_FLOW_LAYER_TUNNEL)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"a tunnel is already present");
/*
* Verify only UDPv4 is present as defined in
* https://tools.ietf.org/html/rfc7348
*/
if (!(flow->layers & MLX5_FLOW_LAYER_OUTER_L4_UDP))
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"no outer UDP layer found");
if (!mask)
mask = &rte_flow_item_vxlan_gpe_mask;
ret = mlx5_flow_item_acceptable
(item, (const uint8_t *)mask,
(const uint8_t *)&rte_flow_item_vxlan_gpe_mask,
sizeof(struct rte_flow_item_vxlan_gpe), error);
if (ret < 0)
return ret;
if (spec) {
memcpy(&id.vni[1], spec->vni, 3);
vxlan_gpe.val.tunnel_id = id.vlan_id;
memcpy(&id.vni[1], mask->vni, 3);
vxlan_gpe.mask.tunnel_id = id.vlan_id;
if (spec->protocol)
return rte_flow_error_set
(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"VxLAN-GPE protocol not supported");
/* Remove unwanted bits from values. */
vxlan_gpe.val.tunnel_id &= vxlan_gpe.mask.tunnel_id;
}
/*
* Tunnel id 0 is equivalent as not adding a VXLAN layer, if only this
* layer is defined in the Verbs specification it is interpreted as
* wildcard and all packets will match this rule, if it follows a full
* stack layer (ex: eth / ipv4 / udp), all packets matching the layers
* before will also match this rule. To avoid such situation, VNI 0
* is currently refused.
*/
if (!vxlan_gpe.val.tunnel_id)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"VXLAN-GPE vni cannot be 0");
if (!(flow->layers & MLX5_FLOW_LAYER_OUTER))
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"VXLAN-GPE tunnel must be fully"
" defined");
if (size <= flow_size) {
mlx5_flow_spec_verbs_add(flow, &vxlan_gpe, size);
flow->cur_verbs->attr->priority = MLX5_PRIORITY_MAP_L2;
}
flow->layers |= MLX5_FLOW_LAYER_VXLAN_GPE;
return size;
}
/**
* Update the protocol in Verbs IPv4/IPv6 spec.
*
* @param[in, out] attr
* Pointer to Verbs attributes structure.
* @param[in] search
* Specification type to search in order to update the IP protocol.
* @param[in] protocol
* Protocol value to set if none is present in the specification.
*/
static void
mlx5_flow_item_gre_ip_protocol_update(struct ibv_flow_attr *attr,
enum ibv_flow_spec_type search,
uint8_t protocol)
{
unsigned int i;
struct ibv_spec_header *hdr = (struct ibv_spec_header *)
((uint8_t *)attr + sizeof(struct ibv_flow_attr));
if (!attr)
return;
for (i = 0; i != attr->num_of_specs; ++i) {
if (hdr->type == search) {
union {
struct ibv_flow_spec_ipv4_ext *ipv4;
struct ibv_flow_spec_ipv6 *ipv6;
} ip;
switch (search) {
case IBV_FLOW_SPEC_IPV4_EXT:
ip.ipv4 = (struct ibv_flow_spec_ipv4_ext *)hdr;
if (!ip.ipv4->val.proto) {
ip.ipv4->val.proto = protocol;
ip.ipv4->mask.proto = 0xff;
}
break;
case IBV_FLOW_SPEC_IPV6:
ip.ipv6 = (struct ibv_flow_spec_ipv6 *)hdr;
if (!ip.ipv6->val.next_hdr) {
ip.ipv6->val.next_hdr = protocol;
ip.ipv6->mask.next_hdr = 0xff;
}
break;
default:
break;
}
break;
}
hdr = (struct ibv_spec_header *)((uint8_t *)hdr + hdr->size);
}
}
/**
* Convert the @p item into a Verbs specification after ensuring the NIC
* will understand and process it correctly.
* It will also update the previous L3 layer with the protocol value matching
* the GRE.
* If the necessary size for the conversion is greater than the @p flow_size,
* nothing is written in @p flow, the validation is still performed.
*
* @param dev
* Pointer to Ethernet device.
* @param[in] item
* Item specification.
* @param[in, out] flow
* Pointer to flow structure.
* @param[in] flow_size
* Size in bytes of the available space in @p flow, if too small, nothing is
* written.
* @param[out] error
* Pointer to error structure.
*
* @return
* On success the number of bytes consumed/necessary, if the returned value
* is lesser or equal to @p flow_size, the @p item has fully been converted,
* otherwise another call with this returned memory size should be done.
* On error, a negative errno value is returned and rte_errno is set.
*/
static int
mlx5_flow_item_gre(const struct rte_flow_item *item,
struct rte_flow *flow, const size_t flow_size,
struct rte_flow_error *error)
{
struct mlx5_flow_verbs *verbs = flow->cur_verbs;
const struct rte_flow_item_gre *spec = item->spec;
const struct rte_flow_item_gre *mask = item->mask;
#ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
unsigned int size = sizeof(struct ibv_flow_spec_gre);
struct ibv_flow_spec_gre tunnel = {
.type = IBV_FLOW_SPEC_GRE,
.size = size,
};
#else
unsigned int size = sizeof(struct ibv_flow_spec_tunnel);
struct ibv_flow_spec_tunnel tunnel = {
.type = IBV_FLOW_SPEC_VXLAN_TUNNEL,
.size = size,
};
#endif
int ret;
if (flow->l3_protocol_en && flow->l3_protocol != MLX5_IP_PROTOCOL_GRE)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"protocol filtering not compatible"
" with this GRE layer");
if (flow->layers & MLX5_FLOW_LAYER_TUNNEL)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"a tunnel is already present");
if (!(flow->layers & MLX5_FLOW_LAYER_OUTER_L3))
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"L3 Layer is missing");
if (!mask)
mask = &rte_flow_item_gre_mask;
ret = mlx5_flow_item_acceptable
(item, (const uint8_t *)mask,
(const uint8_t *)&rte_flow_item_gre_mask,
sizeof(struct rte_flow_item_gre), error);
if (ret < 0)
return ret;
#ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
if (spec) {
tunnel.val.c_ks_res0_ver = spec->c_rsvd0_ver;
tunnel.val.protocol = spec->protocol;
tunnel.mask.c_ks_res0_ver = mask->c_rsvd0_ver;
tunnel.mask.protocol = mask->protocol;
/* Remove unwanted bits from values. */
tunnel.val.c_ks_res0_ver &= tunnel.mask.c_ks_res0_ver;
tunnel.val.protocol &= tunnel.mask.protocol;
tunnel.val.key &= tunnel.mask.key;
}
#else
if (spec && (spec->protocol & mask->protocol))
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"without MPLS support the"
" specification cannot be used for"
" filtering");
#endif /* !HAVE_IBV_DEVICE_MPLS_SUPPORT */
if (size <= flow_size) {
if (flow->layers & MLX5_FLOW_LAYER_OUTER_L3_IPV4)
mlx5_flow_item_gre_ip_protocol_update
(verbs->attr, IBV_FLOW_SPEC_IPV4_EXT,
MLX5_IP_PROTOCOL_GRE);
else
mlx5_flow_item_gre_ip_protocol_update
(verbs->attr, IBV_FLOW_SPEC_IPV6,
MLX5_IP_PROTOCOL_GRE);
mlx5_flow_spec_verbs_add(flow, &tunnel, size);
flow->cur_verbs->attr->priority = MLX5_PRIORITY_MAP_L2;
}
flow->layers |= MLX5_FLOW_LAYER_GRE;
return size;
}
/**
* Convert the @p item into a Verbs specification after ensuring the NIC
* will understand and process it correctly.
* If the necessary size for the conversion is greater than the @p flow_size,
* nothing is written in @p flow, the validation is still performed.
*
* @param[in] item
* Item specification.
* @param[in, out] flow
* Pointer to flow structure.
* @param[in] flow_size
* Size in bytes of the available space in @p flow, if too small, nothing is
* written.
* @param[out] error
* Pointer to error structure.
*
* @return
* On success the number of bytes consumed/necessary, if the returned value
* is lesser or equal to @p flow_size, the @p item has fully been converted,
* otherwise another call with this returned memory size should be done.
* On error, a negative errno value is returned and rte_errno is set.
*/
static int
mlx5_flow_item_mpls(const struct rte_flow_item *item __rte_unused,
struct rte_flow *flow __rte_unused,
const size_t flow_size __rte_unused,
struct rte_flow_error *error)
{
#ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
const struct rte_flow_item_mpls *spec = item->spec;
const struct rte_flow_item_mpls *mask = item->mask;
unsigned int size = sizeof(struct ibv_flow_spec_mpls);
struct ibv_flow_spec_mpls mpls = {
.type = IBV_FLOW_SPEC_MPLS,
.size = size,
};
int ret;
if (flow->l3_protocol_en && flow->l3_protocol != MLX5_IP_PROTOCOL_MPLS)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"protocol filtering not compatible"
" with MPLS layer");
if (flow->layers & MLX5_FLOW_LAYER_TUNNEL)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"a tunnel is already"
" present");
if (!mask)
mask = &rte_flow_item_mpls_mask;
ret = mlx5_flow_item_acceptable
(item, (const uint8_t *)mask,
(const uint8_t *)&rte_flow_item_mpls_mask,
sizeof(struct rte_flow_item_mpls), error);
if (ret < 0)
return ret;
if (spec) {
memcpy(&mpls.val.label, spec, sizeof(mpls.val.label));
memcpy(&mpls.mask.label, mask, sizeof(mpls.mask.label));
/* Remove unwanted bits from values. */
mpls.val.label &= mpls.mask.label;
}
if (size <= flow_size) {
mlx5_flow_spec_verbs_add(flow, &mpls, size);
flow->cur_verbs->attr->priority = MLX5_PRIORITY_MAP_L2;
}
flow->layers |= MLX5_FLOW_LAYER_MPLS;
return size;
#endif /* !HAVE_IBV_DEVICE_MPLS_SUPPORT */
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"MPLS is not supported by Verbs, please"
" update.");
}
/**
* Convert the @p pattern into a Verbs specifications after ensuring the NIC
* will understand and process it correctly.
* The conversion is performed item per item, each of them is written into
* the @p flow if its size is lesser or equal to @p flow_size.
* Validation and memory consumption computation are still performed until the
* end of @p pattern, unless an error is encountered.
*
* @param[in] pattern
* Flow pattern.
* @param[in, out] flow
* Pointer to the rte_flow structure.
* @param[in] flow_size
* Size in bytes of the available space in @p flow, if too small some
* garbage may be present.
* @param[out] error
* Pointer to error structure.
*
* @return
* On success the number of bytes consumed/necessary, if the returned value
* is lesser or equal to @p flow_size, the @pattern has fully been
* converted, otherwise another call with this returned memory size should
* be done.
* On error, a negative errno value is returned and rte_errno is set.
*/
static int
mlx5_flow_items(struct rte_eth_dev *dev,
const struct rte_flow_item pattern[],
struct rte_flow *flow, const size_t flow_size,
struct rte_flow_error *error)
{
int remain = flow_size;
size_t size = 0;
for (; pattern->type != RTE_FLOW_ITEM_TYPE_END; pattern++) {
int ret = 0;
switch (pattern->type) {
case RTE_FLOW_ITEM_TYPE_VOID:
break;
case RTE_FLOW_ITEM_TYPE_ETH:
ret = mlx5_flow_item_eth(pattern, flow, remain, error);
break;
case RTE_FLOW_ITEM_TYPE_VLAN:
ret = mlx5_flow_item_vlan(pattern, flow, remain, error);
break;
case RTE_FLOW_ITEM_TYPE_IPV4:
ret = mlx5_flow_item_ipv4(pattern, flow, remain, error);
break;
case RTE_FLOW_ITEM_TYPE_IPV6:
ret = mlx5_flow_item_ipv6(pattern, flow, remain, error);
break;
case RTE_FLOW_ITEM_TYPE_UDP:
ret = mlx5_flow_item_udp(pattern, flow, remain, error);
break;
case RTE_FLOW_ITEM_TYPE_TCP:
ret = mlx5_flow_item_tcp(pattern, flow, remain, error);
break;
case RTE_FLOW_ITEM_TYPE_VXLAN:
ret = mlx5_flow_item_vxlan(pattern, flow, remain,
error);
break;
case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
ret = mlx5_flow_item_vxlan_gpe(dev, pattern, flow,
remain, error);
break;
case RTE_FLOW_ITEM_TYPE_GRE:
ret = mlx5_flow_item_gre(pattern, flow, remain, error);
break;
case RTE_FLOW_ITEM_TYPE_MPLS:
ret = mlx5_flow_item_mpls(pattern, flow, remain, error);
break;
default:
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
pattern,
"item not supported");
}
if (ret < 0)
return ret;
if (remain > ret)
remain -= ret;
else
remain = 0;
size += ret;
}
if (!flow->layers) {
const struct rte_flow_item item = {
.type = RTE_FLOW_ITEM_TYPE_ETH,
};
return mlx5_flow_item_eth(&item, flow, flow_size, error);
}
return size;
}
/**
* Convert the @p action into a Verbs specification after ensuring the NIC
* will understand and process it correctly.
* If the necessary size for the conversion is greater than the @p flow_size,
* nothing is written in @p flow, the validation is still performed.
*
* @param[in] action
* Action configuration.
* @param[in, out] flow
* Pointer to flow structure.
* @param[in] flow_size
* Size in bytes of the available space in @p flow, if too small, nothing is
* written.
* @param[out] error
* Pointer to error structure.
*
* @return
* On success the number of bytes consumed/necessary, if the returned value
* is lesser or equal to @p flow_size, the @p action has fully been
* converted, otherwise another call with this returned memory size should
* be done.
* On error, a negative errno value is returned and rte_errno is set.
*/
static int
mlx5_flow_action_drop(const struct rte_flow_action *action,
struct rte_flow *flow, const size_t flow_size,
struct rte_flow_error *error)
{
unsigned int size = sizeof(struct ibv_flow_spec_action_drop);
struct ibv_flow_spec_action_drop drop = {
.type = IBV_FLOW_SPEC_ACTION_DROP,
.size = size,
};
if (flow->fate)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION,
action,
"multiple fate actions are not"
" supported");
if (flow->modifier & (MLX5_FLOW_MOD_FLAG | MLX5_FLOW_MOD_MARK))
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION,
action,
"drop is not compatible with"
" flag/mark action");
if (size < flow_size)
mlx5_flow_spec_verbs_add(flow, &drop, size);
flow->fate |= MLX5_FLOW_FATE_DROP;
return size;
}
/**
* Convert the @p action into @p flow after ensuring the NIC will understand
* and process it correctly.
*
* @param[in] dev
* Pointer to Ethernet device structure.
* @param[in] action
* Action configuration.
* @param[in, out] flow
* Pointer to flow structure.
* @param[out] error
* Pointer to error structure.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
static int
mlx5_flow_action_queue(struct rte_eth_dev *dev,
const struct rte_flow_action *action,
struct rte_flow *flow,
struct rte_flow_error *error)
{
struct priv *priv = dev->data->dev_private;
const struct rte_flow_action_queue *queue = action->conf;
if (flow->fate)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION,
action,
"multiple fate actions are not"
" supported");
if (queue->index >= priv->rxqs_n)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_CONF,
&queue->index,
"queue index out of range");
if (!(*priv->rxqs)[queue->index])
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_CONF,
&queue->index,
"queue is not configured");
if (flow->queue)
(*flow->queue)[0] = queue->index;
flow->rss.queue_num = 1;
flow->fate |= MLX5_FLOW_FATE_QUEUE;
return 0;
}
/**
* Ensure the @p action will be understood and used correctly by the NIC.
*
* @param dev
* Pointer to Ethernet device structure.
* @param action[in]
* Pointer to flow actions array.
* @param flow[in, out]
* Pointer to the rte_flow structure.
* @param error[in, out]
* Pointer to error structure.
*
* @return
* On success @p flow->queue array and @p flow->rss are filled and valid.
* On error, a negative errno value is returned and rte_errno is set.
*/
static int
mlx5_flow_action_rss(struct rte_eth_dev *dev,
const struct rte_flow_action *action,
struct rte_flow *flow,
struct rte_flow_error *error)
{
struct priv *priv = dev->data->dev_private;
const struct rte_flow_action_rss *rss = action->conf;
unsigned int i;
if (flow->fate)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION,
action,
"multiple fate actions are not"
" supported");
if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT &&
rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION_CONF,
&rss->func,
"RSS hash function not supported");
#ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
if (rss->level > 2)
#else
if (rss->level > 1)
#endif
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION_CONF,
&rss->level,
"tunnel RSS is not supported");
if (rss->key_len < MLX5_RSS_HASH_KEY_LEN)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION_CONF,
&rss->key_len,
"RSS hash key too small");
if (rss->key_len > MLX5_RSS_HASH_KEY_LEN)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION_CONF,
&rss->key_len,
"RSS hash key too large");
if (rss->queue_num > priv->config.ind_table_max_size)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION_CONF,
&rss->queue_num,
"number of queues too large");
if (rss->types & MLX5_RSS_HF_MASK)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION_CONF,
&rss->types,
"some RSS protocols are not"
" supported");
for (i = 0; i != rss->queue_num; ++i) {
if (!(*priv->rxqs)[rss->queue[i]])
return rte_flow_error_set
(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_CONF,
&rss->queue[i],
"queue is not configured");
}
if (flow->queue)
memcpy((*flow->queue), rss->queue,
rss->queue_num * sizeof(uint16_t));
flow->rss.queue_num = rss->queue_num;
memcpy(flow->key, rss->key, MLX5_RSS_HASH_KEY_LEN);
flow->rss.types = rss->types;
flow->rss.level = rss->level;
flow->fate |= MLX5_FLOW_FATE_RSS;
return 0;
}
/**
* Convert the @p action into a Verbs specification after ensuring the NIC
* will understand and process it correctly.
* If the necessary size for the conversion is greater than the @p flow_size,
* nothing is written in @p flow, the validation is still performed.
*
* @param[in] action
* Action configuration.
* @param[in, out] flow
* Pointer to flow structure.
* @param[in] flow_size
* Size in bytes of the available space in @p flow, if too small, nothing is
* written.
* @param[out] error
* Pointer to error structure.
*
* @return
* On success the number of bytes consumed/necessary, if the returned value
* is lesser or equal to @p flow_size, the @p action has fully been
* converted, otherwise another call with this returned memory size should
* be done.
* On error, a negative errno value is returned and rte_errno is set.
*/
static int
mlx5_flow_action_flag(const struct rte_flow_action *action,
struct rte_flow *flow, const size_t flow_size,
struct rte_flow_error *error)
{
unsigned int size = sizeof(struct ibv_flow_spec_action_tag);
struct ibv_flow_spec_action_tag tag = {
.type = IBV_FLOW_SPEC_ACTION_TAG,
.size = size,
.tag_id = mlx5_flow_mark_set(MLX5_FLOW_MARK_DEFAULT),
};
struct mlx5_flow_verbs *verbs = flow->cur_verbs;
if (flow->modifier & MLX5_FLOW_MOD_FLAG)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION,
action,
"flag action already present");
if (flow->fate & MLX5_FLOW_FATE_DROP)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION,
action,
"flag is not compatible with drop"
" action");
if (flow->modifier & MLX5_FLOW_MOD_MARK)
size = 0;
else if (size <= flow_size && verbs)
mlx5_flow_spec_verbs_add(flow, &tag, size);
flow->modifier |= MLX5_FLOW_MOD_FLAG;
return size;
}
/**
* Update verbs specification to modify the flag to mark.
*
* @param[in, out] verbs
* Pointer to the mlx5_flow_verbs structure.
* @param[in] mark_id
* Mark identifier to replace the flag.
*/
static void
mlx5_flow_verbs_mark_update(struct mlx5_flow_verbs *verbs, uint32_t mark_id)
{
struct ibv_spec_header *hdr;
int i;
if (!verbs)
return;
/* Update Verbs specification. */
hdr = (struct ibv_spec_header *)verbs->specs;
if (!hdr)
return;
for (i = 0; i != verbs->attr->num_of_specs; ++i) {
if (hdr->type == IBV_FLOW_SPEC_ACTION_TAG) {
struct ibv_flow_spec_action_tag *t =
(struct ibv_flow_spec_action_tag *)hdr;
t->tag_id = mlx5_flow_mark_set(mark_id);
}
hdr = (struct ibv_spec_header *)((uintptr_t)hdr + hdr->size);
}
}
/**
* Convert the @p action into @p flow (or by updating the already present
* Flag Verbs specification) after ensuring the NIC will understand and
* process it correctly.
* If the necessary size for the conversion is greater than the @p flow_size,
* nothing is written in @p flow, the validation is still performed.
*
* @param[in] action
* Action configuration.
* @param[in, out] flow
* Pointer to flow structure.
* @param[in] flow_size
* Size in bytes of the available space in @p flow, if too small, nothing is
* written.
* @param[out] error
* Pointer to error structure.
*
* @return
* On success the number of bytes consumed/necessary, if the returned value
* is lesser or equal to @p flow_size, the @p action has fully been
* converted, otherwise another call with this returned memory size should
* be done.
* On error, a negative errno value is returned and rte_errno is set.
*/
static int
mlx5_flow_action_mark(const struct rte_flow_action *action,
struct rte_flow *flow, const size_t flow_size,
struct rte_flow_error *error)
{
const struct rte_flow_action_mark *mark = action->conf;
unsigned int size = sizeof(struct ibv_flow_spec_action_tag);
struct ibv_flow_spec_action_tag tag = {
.type = IBV_FLOW_SPEC_ACTION_TAG,
.size = size,
};
struct mlx5_flow_verbs *verbs = flow->cur_verbs;
if (!mark)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
action,
"configuration cannot be null");
if (mark->id >= MLX5_FLOW_MARK_MAX)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_CONF,
&mark->id,
"mark id must in 0 <= id < "
RTE_STR(MLX5_FLOW_MARK_MAX));
if (flow->modifier & MLX5_FLOW_MOD_MARK)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION,
action,
"mark action already present");
if (flow->fate & MLX5_FLOW_FATE_DROP)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION,
action,
"mark is not compatible with drop"
" action");
if (flow->modifier & MLX5_FLOW_MOD_FLAG) {
mlx5_flow_verbs_mark_update(verbs, mark->id);
size = 0;
} else if (size <= flow_size) {
tag.tag_id = mlx5_flow_mark_set(mark->id);
mlx5_flow_spec_verbs_add(flow, &tag, size);
}
flow->modifier |= MLX5_FLOW_MOD_MARK;
return size;
}
/**
* Convert the @p action into a Verbs specification after ensuring the NIC
* will understand and process it correctly.
* If the necessary size for the conversion is greater than the @p flow_size,
* nothing is written in @p flow, the validation is still performed.
*
* @param action[in]
* Action configuration.
* @param flow[in, out]
* Pointer to flow structure.
* @param flow_size[in]
* Size in bytes of the available space in @p flow, if too small, nothing is
* written.
* @param error[int, out]
* Pointer to error structure.
*
* @return
* On success the number of bytes consumed/necessary, if the returned value
* is lesser or equal to @p flow_size, the @p action has fully been
* converted, otherwise another call with this returned memory size should
* be done.
* On error, a negative errno value is returned and rte_errno is set.
*/
static int
mlx5_flow_action_count(struct rte_eth_dev *dev,
const struct rte_flow_action *action,
struct rte_flow *flow,
const size_t flow_size __rte_unused,
struct rte_flow_error *error)
{
const struct rte_flow_action_count *count = action->conf;
#ifdef HAVE_IBV_DEVICE_COUNTERS_SET_SUPPORT
unsigned int size = sizeof(struct ibv_flow_spec_counter_action);
struct ibv_flow_spec_counter_action counter = {
.type = IBV_FLOW_SPEC_ACTION_COUNT,
.size = size,
};
#endif
if (!flow->counter) {
flow->counter = mlx5_flow_counter_new(dev, count->shared,
count->id);
if (!flow->counter)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION,
action,
"cannot get counter"
" context.");
}
if (!((struct priv *)dev->data->dev_private)->config.flow_counter_en)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION,
action,
"flow counters are not supported.");
flow->modifier |= MLX5_FLOW_MOD_COUNT;
#ifdef HAVE_IBV_DEVICE_COUNTERS_SET_SUPPORT
counter.counter_set_handle = flow->counter->cs->handle;
if (size <= flow_size)
mlx5_flow_spec_verbs_add(flow, &counter, size);
return size;
#endif
return 0;
}
/**
* Convert the @p action into @p flow after ensuring the NIC will understand
* and process it correctly.
* The conversion is performed action per action, each of them is written into
* the @p flow if its size is lesser or equal to @p flow_size.
* Validation and memory consumption computation are still performed until the
* end of @p action, unless an error is encountered.
*
* @param[in] dev
* Pointer to Ethernet device structure.
* @param[in] actions
* Pointer to flow actions array.
* @param[in, out] flow
* Pointer to the rte_flow structure.
* @param[in] flow_size
* Size in bytes of the available space in @p flow, if too small some
* garbage may be present.
* @param[out] error
* Pointer to error structure.
*
* @return
* On success the number of bytes consumed/necessary, if the returned value
* is lesser or equal to @p flow_size, the @p actions has fully been
* converted, otherwise another call with this returned memory size should
* be done.
* On error, a negative errno value is returned and rte_errno is set.
*/
static int
mlx5_flow_actions(struct rte_eth_dev *dev,
const struct rte_flow_action actions[],
struct rte_flow *flow, const size_t flow_size,
struct rte_flow_error *error)
{
size_t size = 0;
int remain = flow_size;
int ret = 0;
for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
switch (actions->type) {
case RTE_FLOW_ACTION_TYPE_VOID:
break;
case RTE_FLOW_ACTION_TYPE_FLAG:
ret = mlx5_flow_action_flag(actions, flow, remain,
error);
break;
case RTE_FLOW_ACTION_TYPE_MARK:
ret = mlx5_flow_action_mark(actions, flow, remain,
error);
break;
case RTE_FLOW_ACTION_TYPE_DROP:
ret = mlx5_flow_action_drop(actions, flow, remain,
error);
break;
case RTE_FLOW_ACTION_TYPE_QUEUE:
ret = mlx5_flow_action_queue(dev, actions, flow, error);
break;
case RTE_FLOW_ACTION_TYPE_RSS:
ret = mlx5_flow_action_rss(dev, actions, flow, error);
break;
case RTE_FLOW_ACTION_TYPE_COUNT:
ret = mlx5_flow_action_count(dev, actions, flow, remain,
error);
break;
default:
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION,
actions,
"action not supported");
}
if (ret < 0)
return ret;
if (remain > ret)
remain -= ret;
else
remain = 0;
size += ret;
}
if (!flow->fate)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL,
"no fate action found");
return size;
}
/**
* Validate flow rule and fill flow structure accordingly.
*
* @param dev
* Pointer to Ethernet device.
* @param[out] flow
* Pointer to flow structure.
* @param flow_size
* Size of allocated space for @p flow.
* @param[in] attr
* Flow rule attributes.
* @param[in] pattern
* Pattern specification (list terminated by the END pattern item).
* @param[in] actions
* Associated actions (list terminated by the END action).
* @param[out] error
* Perform verbose error reporting if not NULL.
*
* @return
* A positive value representing the size of the flow object in bytes
* regardless of @p flow_size on success, a negative errno value otherwise
* and rte_errno is set.
*/
static int
mlx5_flow_merge_switch(struct rte_eth_dev *dev,
struct rte_flow *flow,
size_t flow_size,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
unsigned int n = mlx5_dev_to_port_id(dev->device, NULL, 0);
uint16_t port_id[!n + n];
struct mlx5_nl_flow_ptoi ptoi[!n + n + 1];
size_t off = RTE_ALIGN_CEIL(sizeof(*flow), alignof(max_align_t));
unsigned int i;
unsigned int own = 0;
int ret;
/* At least one port is needed when no switch domain is present. */
if (!n) {
n = 1;
port_id[0] = dev->data->port_id;
} else {
n = RTE_MIN(mlx5_dev_to_port_id(dev->device, port_id, n), n);
}
for (i = 0; i != n; ++i) {
struct rte_eth_dev_info dev_info;
rte_eth_dev_info_get(port_id[i], &dev_info);
if (port_id[i] == dev->data->port_id)
own = i;
ptoi[i].port_id = port_id[i];
ptoi[i].ifindex = dev_info.if_index;
}
/* Ensure first entry of ptoi[] is the current device. */
if (own) {
ptoi[n] = ptoi[0];
ptoi[0] = ptoi[own];
ptoi[own] = ptoi[n];
}
/* An entry with zero ifindex terminates ptoi[]. */
ptoi[n].port_id = 0;
ptoi[n].ifindex = 0;
if (flow_size < off)
flow_size = 0;
ret = mlx5_nl_flow_transpose((uint8_t *)flow + off,
flow_size ? flow_size - off : 0,
ptoi, attr, pattern, actions, error);
if (ret < 0)
return ret;
if (flow_size) {
*flow = (struct rte_flow){
.attributes = *attr,
.nl_flow = (uint8_t *)flow + off,
};
/*
* Generate a reasonably unique handle based on the address
* of the target buffer.
*
* This is straightforward on 32-bit systems where the flow
* pointer can be used directly. Otherwise, its least
* significant part is taken after shifting it by the
* previous power of two of the pointed buffer size.
*/
if (sizeof(flow) <= 4)
mlx5_nl_flow_brand(flow->nl_flow, (uintptr_t)flow);
else
mlx5_nl_flow_brand
(flow->nl_flow,
(uintptr_t)flow >>
rte_log2_u32(rte_align32prevpow2(flow_size)));
}
return off + ret;
}
/**
* Convert the @p attributes, @p pattern, @p action, into an flow for the NIC
* after ensuring the NIC will understand and process it correctly.
* The conversion is only performed item/action per item/action, each of
* them is written into the @p flow if its size is lesser or equal to @p
* flow_size.
* Validation and memory consumption computation are still performed until the
* end, unless an error is encountered.
*
* @param[in] dev
* Pointer to Ethernet device.
* @param[in, out] flow
* Pointer to flow structure.
* @param[in] flow_size
* Size in bytes of the available space in @p flow, if too small some
* garbage may be present.
* @param[in] attributes
* Flow rule attributes.
* @param[in] pattern
* Pattern specification (list terminated by the END pattern item).
* @param[in] actions
* Associated actions (list terminated by the END action).
* @param[out] error
* Perform verbose error reporting if not NULL.
*
* @return
* On success the number of bytes consumed/necessary, if the returned value
* is lesser or equal to @p flow_size, the flow has fully been converted and
* can be applied, otherwise another call with this returned memory size
* should be done.
* On error, a negative errno value is returned and rte_errno is set.
*/
static int
mlx5_flow_merge(struct rte_eth_dev *dev, struct rte_flow *flow,
const size_t flow_size,
const struct rte_flow_attr *attributes,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
struct rte_flow local_flow = { .layers = 0, };
size_t size = sizeof(*flow);
union {
struct rte_flow_expand_rss buf;
uint8_t buffer[2048];
} expand_buffer;
struct rte_flow_expand_rss *buf = &expand_buffer.buf;
struct mlx5_flow_verbs *original_verbs = NULL;
size_t original_verbs_size = 0;
uint32_t original_layers = 0;
int expanded_pattern_idx = 0;
int ret;
uint32_t i;
if (attributes->transfer)
return mlx5_flow_merge_switch(dev, flow, flow_size,
attributes, pattern,
actions, error);
if (size > flow_size)
flow = &local_flow;
ret = mlx5_flow_attributes(dev, attributes, flow, error);
if (ret < 0)
return ret;
ret = mlx5_flow_actions(dev, actions, &local_flow, 0, error);
if (ret < 0)
return ret;
if (local_flow.rss.types) {
ret = rte_flow_expand_rss(buf, sizeof(expand_buffer.buffer),
pattern, local_flow.rss.types,
mlx5_support_expansion,
local_flow.rss.level < 2 ?
MLX5_EXPANSION_ROOT :
MLX5_EXPANSION_ROOT_OUTER);
assert(ret > 0 &&
(unsigned int)ret < sizeof(expand_buffer.buffer));
} else {
buf->entries = 1;
buf->entry[0].pattern = (void *)(uintptr_t)pattern;
}
size += RTE_ALIGN_CEIL(local_flow.rss.queue_num * sizeof(uint16_t),
sizeof(void *));
if (size <= flow_size)
flow->queue = (void *)(flow + 1);
LIST_INIT(&flow->verbs);
flow->layers = 0;
flow->modifier = 0;
flow->fate = 0;
for (i = 0; i != buf->entries; ++i) {
size_t off = size;
size_t off2;
flow->layers = original_layers;
size += sizeof(struct ibv_flow_attr) +
sizeof(struct mlx5_flow_verbs);
off2 = size;
if (size < flow_size) {
flow->cur_verbs = (void *)((uintptr_t)flow + off);
flow->cur_verbs->attr = (void *)(flow->cur_verbs + 1);
flow->cur_verbs->specs =
(void *)(flow->cur_verbs->attr + 1);
}
/* First iteration convert the pattern into Verbs. */
if (i == 0) {
/* Actions don't need to be converted several time. */
ret = mlx5_flow_actions(dev, actions, flow,
(size < flow_size) ?
flow_size - size : 0,
error);
if (ret < 0)
return ret;
size += ret;
} else {
/*
* Next iteration means the pattern has already been
* converted and an expansion is necessary to match
* the user RSS request. For that only the expanded
* items will be converted, the common part with the
* user pattern are just copied into the next buffer
* zone.
*/
size += original_verbs_size;
if (size < flow_size) {
rte_memcpy(flow->cur_verbs->attr,
original_verbs->attr,
original_verbs_size +
sizeof(struct ibv_flow_attr));
flow->cur_verbs->size = original_verbs_size;
}
}
ret = mlx5_flow_items
(dev,
(const struct rte_flow_item *)
&buf->entry[i].pattern[expanded_pattern_idx],
flow,
(size < flow_size) ? flow_size - size : 0, error);
if (ret < 0)
return ret;
size += ret;
if (size <= flow_size) {
mlx5_flow_adjust_priority(dev, flow);
LIST_INSERT_HEAD(&flow->verbs, flow->cur_verbs, next);
}
/*
* Keep a pointer of the first verbs conversion and the layers
* it has encountered.
*/
if (i == 0) {
original_verbs = flow->cur_verbs;
original_verbs_size = size - off2;
original_layers = flow->layers;
/*
* move the index of the expanded pattern to the
* first item not addressed yet.
*/
if (pattern->type == RTE_FLOW_ITEM_TYPE_END) {
expanded_pattern_idx++;
} else {
const struct rte_flow_item *item = pattern;
for (item = pattern;
item->type != RTE_FLOW_ITEM_TYPE_END;
++item)
expanded_pattern_idx++;
}
}
}
/* Restore the origin layers in the flow. */
flow->layers = original_layers;
return size;
}
/**
* Lookup and set the ptype in the data Rx part. A single Ptype can be used,
* if several tunnel rules are used on this queue, the tunnel ptype will be
* cleared.
*
* @param rxq_ctrl
* Rx queue to update.
*/
static void
mlx5_flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl)
{
unsigned int i;
uint32_t tunnel_ptype = 0;
/* Look up for the ptype to use. */
for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) {
if (!rxq_ctrl->flow_tunnels_n[i])
continue;
if (!tunnel_ptype) {
tunnel_ptype = tunnels_info[i].ptype;
} else {
tunnel_ptype = 0;
break;
}
}
rxq_ctrl->rxq.tunnel = tunnel_ptype;
}
/**
* Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the flow.
*
* @param[in] dev
* Pointer to Ethernet device.
* @param[in] flow
* Pointer to flow structure.
*/
static void
mlx5_flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow)
{
struct priv *priv = dev->data->dev_private;
const int mark = !!(flow->modifier &
(MLX5_FLOW_MOD_FLAG | MLX5_FLOW_MOD_MARK));
const int tunnel = !!(flow->layers & MLX5_FLOW_LAYER_TUNNEL);
unsigned int i;
for (i = 0; i != flow->rss.queue_num; ++i) {
int idx = (*flow->queue)[i];
struct mlx5_rxq_ctrl *rxq_ctrl =
container_of((*priv->rxqs)[idx],
struct mlx5_rxq_ctrl, rxq);
if (mark) {
rxq_ctrl->rxq.mark = 1;
rxq_ctrl->flow_mark_n++;
}
if (tunnel) {
unsigned int j;
/* Increase the counter matching the flow. */
for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
if ((tunnels_info[j].tunnel & flow->layers) ==
tunnels_info[j].tunnel) {
rxq_ctrl->flow_tunnels_n[j]++;
break;
}
}
mlx5_flow_rxq_tunnel_ptype_update(rxq_ctrl);
}
}
}
/**
* Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
* @p flow if no other flow uses it with the same kind of request.
*
* @param dev
* Pointer to Ethernet device.
* @param[in] flow
* Pointer to the flow.
*/
static void
mlx5_flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow)
{
struct priv *priv = dev->data->dev_private;
const int mark = !!(flow->modifier &
(MLX5_FLOW_MOD_FLAG | MLX5_FLOW_MOD_MARK));
const int tunnel = !!(flow->layers & MLX5_FLOW_LAYER_TUNNEL);
unsigned int i;
assert(dev->data->dev_started);
for (i = 0; i != flow->rss.queue_num; ++i) {
int idx = (*flow->queue)[i];
struct mlx5_rxq_ctrl *rxq_ctrl =
container_of((*priv->rxqs)[idx],
struct mlx5_rxq_ctrl, rxq);
if (mark) {
rxq_ctrl->flow_mark_n--;
rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n;
}
if (tunnel) {
unsigned int j;
/* Decrease the counter matching the flow. */
for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
if ((tunnels_info[j].tunnel & flow->layers) ==
tunnels_info[j].tunnel) {
rxq_ctrl->flow_tunnels_n[j]--;
break;
}
}
mlx5_flow_rxq_tunnel_ptype_update(rxq_ctrl);
}
}
}
/**
* Clear the Mark/Flag and Tunnel ptype information in all Rx queues.
*
* @param dev
* Pointer to Ethernet device.
*/
static void
mlx5_flow_rxq_flags_clear(struct rte_eth_dev *dev)
{
struct priv *priv = dev->data->dev_private;
unsigned int i;
unsigned int idx;
for (idx = 0, i = 0; idx != priv->rxqs_n; ++i) {
struct mlx5_rxq_ctrl *rxq_ctrl;
unsigned int j;
if (!(*priv->rxqs)[idx])
continue;
rxq_ctrl = container_of((*priv->rxqs)[idx],
struct mlx5_rxq_ctrl, rxq);
rxq_ctrl->flow_mark_n = 0;
rxq_ctrl->rxq.mark = 0;
for (j = 0; j != MLX5_FLOW_TUNNEL; ++j)
rxq_ctrl->flow_tunnels_n[j] = 0;
rxq_ctrl->rxq.tunnel = 0;
++idx;
}
}
/**
* Validate a flow supported by the NIC.
*
* @see rte_flow_validate()
* @see rte_flow_ops
*/
int
mlx5_flow_validate(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
const struct rte_flow_item items[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
int ret = mlx5_flow_merge(dev, NULL, 0, attr, items, actions, error);
if (ret < 0)
return ret;
return 0;
}
/**
* Remove the flow.
*
* @param[in] dev
* Pointer to Ethernet device.
* @param[in, out] flow
* Pointer to flow structure.
*/
static void
mlx5_flow_remove(struct rte_eth_dev *dev, struct rte_flow *flow)
{
struct priv *priv = dev->data->dev_private;
struct mlx5_flow_verbs *verbs;
if (flow->nl_flow && priv->mnl_socket)
mlx5_nl_flow_destroy(priv->mnl_socket, flow->nl_flow, NULL);
LIST_FOREACH(verbs, &flow->verbs, next) {
if (verbs->flow) {
claim_zero(mlx5_glue->destroy_flow(verbs->flow));
verbs->flow = NULL;
}
if (verbs->hrxq) {
if (flow->fate & MLX5_FLOW_FATE_DROP)
mlx5_hrxq_drop_release(dev);
else
mlx5_hrxq_release(dev, verbs->hrxq);
verbs->hrxq = NULL;
}
}
if (flow->counter) {
mlx5_flow_counter_release(flow->counter);
flow->counter = NULL;
}
}
/**
* Apply the flow.
*
* @param[in] dev
* Pointer to Ethernet device structure.
* @param[in, out] flow
* Pointer to flow structure.
* @param[out] error
* Pointer to error structure.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
static int
mlx5_flow_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
struct rte_flow_error *error)
{
struct priv *priv = dev->data->dev_private;
struct mlx5_flow_verbs *verbs;
int err;
LIST_FOREACH(verbs, &flow->verbs, next) {
if (flow->fate & MLX5_FLOW_FATE_DROP) {
verbs->hrxq = mlx5_hrxq_drop_new(dev);
if (!verbs->hrxq) {
rte_flow_error_set
(error, errno,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL,
"cannot get drop hash queue");
goto error;
}
} else {
struct mlx5_hrxq *hrxq;
hrxq = mlx5_hrxq_get(dev, flow->key,
MLX5_RSS_HASH_KEY_LEN,
verbs->hash_fields,
(*flow->queue),
flow->rss.queue_num);
if (!hrxq)
hrxq = mlx5_hrxq_new(dev, flow->key,
MLX5_RSS_HASH_KEY_LEN,
verbs->hash_fields,
(*flow->queue),
flow->rss.queue_num);
if (!hrxq) {
rte_flow_error_set
(error, rte_errno,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL,
"cannot get hash queue");
goto error;
}
verbs->hrxq = hrxq;
}
verbs->flow =
mlx5_glue->create_flow(verbs->hrxq->qp, verbs->attr);
if (!verbs->flow) {
rte_flow_error_set(error, errno,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL,
"hardware refuses to create flow");
goto error;
}
}
if (flow->nl_flow &&
priv->mnl_socket &&
mlx5_nl_flow_create(priv->mnl_socket, flow->nl_flow, error))
goto error;
return 0;
error:
err = rte_errno; /* Save rte_errno before cleanup. */
LIST_FOREACH(verbs, &flow->verbs, next) {
if (verbs->hrxq) {
if (flow->fate & MLX5_FLOW_FATE_DROP)
mlx5_hrxq_drop_release(dev);
else
mlx5_hrxq_release(dev, verbs->hrxq);
verbs->hrxq = NULL;
}
}
rte_errno = err; /* Restore rte_errno. */
return -rte_errno;
}
/**
* Create a flow and add it to @p list.
*
* @param dev
* Pointer to Ethernet device.
* @param list
* Pointer to a TAILQ flow list.
* @param[in] attr
* Flow rule attributes.
* @param[in] items
* Pattern specification (list terminated by the END pattern item).
* @param[in] actions
* Associated actions (list terminated by the END action).
* @param[out] error
* Perform verbose error reporting if not NULL.
*
* @return
* A flow on success, NULL otherwise and rte_errno is set.
*/
static struct rte_flow *
mlx5_flow_list_create(struct rte_eth_dev *dev,
struct mlx5_flows *list,
const struct rte_flow_attr *attr,
const struct rte_flow_item items[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
struct rte_flow *flow = NULL;
size_t size = 0;
int ret;
ret = mlx5_flow_merge(dev, flow, size, attr, items, actions, error);
if (ret < 0)
return NULL;
size = ret;
flow = rte_calloc(__func__, 1, size, 0);
if (!flow) {
rte_flow_error_set(error, ENOMEM,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL,
"not enough memory to create flow");
return NULL;
}
ret = mlx5_flow_merge(dev, flow, size, attr, items, actions, error);
if (ret < 0) {
rte_free(flow);
return NULL;
}
assert((size_t)ret == size);
if (dev->data->dev_started) {
ret = mlx5_flow_apply(dev, flow, error);
if (ret < 0) {
ret = rte_errno; /* Save rte_errno before cleanup. */
if (flow) {
mlx5_flow_remove(dev, flow);
rte_free(flow);
}
rte_errno = ret; /* Restore rte_errno. */
return NULL;
}
}
TAILQ_INSERT_TAIL(list, flow, next);
mlx5_flow_rxq_flags_set(dev, flow);
return flow;
}
/**
* Create a flow.
*
* @see rte_flow_create()
* @see rte_flow_ops
*/
struct rte_flow *
mlx5_flow_create(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
const struct rte_flow_item items[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
return mlx5_flow_list_create
(dev, &((struct priv *)dev->data->dev_private)->flows,
attr, items, actions, error);
}
/**
* Destroy a flow in a list.
*
* @param dev
* Pointer to Ethernet device.
* @param list
* Pointer to a TAILQ flow list.
* @param[in] flow
* Flow to destroy.
*/
static void
mlx5_flow_list_destroy(struct rte_eth_dev *dev, struct mlx5_flows *list,
struct rte_flow *flow)
{
mlx5_flow_remove(dev, flow);
TAILQ_REMOVE(list, flow, next);
/*
* Update RX queue flags only if port is started, otherwise it is
* already clean.
*/
if (dev->data->dev_started)
mlx5_flow_rxq_flags_trim(dev, flow);
rte_free(flow);
}
/**
* Destroy all flows.
*
* @param dev
* Pointer to Ethernet device.
* @param list
* Pointer to a TAILQ flow list.
*/
void
mlx5_flow_list_flush(struct rte_eth_dev *dev, struct mlx5_flows *list)
{
while (!TAILQ_EMPTY(list)) {
struct rte_flow *flow;
flow = TAILQ_FIRST(list);
mlx5_flow_list_destroy(dev, list, flow);
}
}
/**
* Remove all flows.
*
* @param dev
* Pointer to Ethernet device.
* @param list
* Pointer to a TAILQ flow list.
*/
void
mlx5_flow_stop(struct rte_eth_dev *dev, struct mlx5_flows *list)
{
struct rte_flow *flow;
TAILQ_FOREACH_REVERSE(flow, list, mlx5_flows, next)
mlx5_flow_remove(dev, flow);
mlx5_flow_rxq_flags_clear(dev);
}
/**
* Add all flows.
*
* @param dev
* Pointer to Ethernet device.
* @param list
* Pointer to a TAILQ flow list.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
int
mlx5_flow_start(struct rte_eth_dev *dev, struct mlx5_flows *list)
{
struct rte_flow *flow;
struct rte_flow_error error;
int ret = 0;
TAILQ_FOREACH(flow, list, next) {
ret = mlx5_flow_apply(dev, flow, &error);
if (ret < 0)
goto error;
mlx5_flow_rxq_flags_set(dev, flow);
}
return 0;
error:
ret = rte_errno; /* Save rte_errno before cleanup. */
mlx5_flow_stop(dev, list);
rte_errno = ret; /* Restore rte_errno. */
return -rte_errno;
}
/**
* Verify the flow list is empty
*
* @param dev
* Pointer to Ethernet device.
*
* @return the number of flows not released.
*/
int
mlx5_flow_verify(struct rte_eth_dev *dev)
{
struct priv *priv = dev->data->dev_private;
struct rte_flow *flow;
int ret = 0;
TAILQ_FOREACH(flow, &priv->flows, next) {
DRV_LOG(DEBUG, "port %u flow %p still referenced",
dev->data->port_id, (void *)flow);
++ret;
}
return ret;
}
/**
* Enable a control flow configured from the control plane.
*
* @param dev
* Pointer to Ethernet device.
* @param eth_spec
* An Ethernet flow spec to apply.
* @param eth_mask
* An Ethernet flow mask to apply.
* @param vlan_spec
* A VLAN flow spec to apply.
* @param vlan_mask
* A VLAN flow mask to apply.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
int
mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev,
struct rte_flow_item_eth *eth_spec,
struct rte_flow_item_eth *eth_mask,
struct rte_flow_item_vlan *vlan_spec,
struct rte_flow_item_vlan *vlan_mask)
{
struct priv *priv = dev->data->dev_private;
const struct rte_flow_attr attr = {
.ingress = 1,
.priority = MLX5_FLOW_PRIO_RSVD,
};
struct rte_flow_item items[] = {
{
.type = RTE_FLOW_ITEM_TYPE_ETH,
.spec = eth_spec,
.last = NULL,
.mask = eth_mask,
},
{
.type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN :
RTE_FLOW_ITEM_TYPE_END,
.spec = vlan_spec,
.last = NULL,
.mask = vlan_mask,
},
{
.type = RTE_FLOW_ITEM_TYPE_END,
},
};
uint16_t queue[priv->reta_idx_n];
struct rte_flow_action_rss action_rss = {
.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
.level = 0,
.types = priv->rss_conf.rss_hf,
.key_len = priv->rss_conf.rss_key_len,
.queue_num = priv->reta_idx_n,
.key = priv->rss_conf.rss_key,
.queue = queue,
};
struct rte_flow_action actions[] = {
{
.type = RTE_FLOW_ACTION_TYPE_RSS,
.conf = &action_rss,
},
{
.type = RTE_FLOW_ACTION_TYPE_END,
},
};
struct rte_flow *flow;
struct rte_flow_error error;
unsigned int i;
if (!priv->reta_idx_n) {
rte_errno = EINVAL;
return -rte_errno;
}
for (i = 0; i != priv->reta_idx_n; ++i)
queue[i] = (*priv->reta_idx)[i];
flow = mlx5_flow_list_create(dev, &priv->ctrl_flows, &attr, items,
actions, &error);
if (!flow)
return -rte_errno;
return 0;
}
/**
* Enable a flow control configured from the control plane.
*
* @param dev
* Pointer to Ethernet device.
* @param eth_spec
* An Ethernet flow spec to apply.
* @param eth_mask
* An Ethernet flow mask to apply.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
int
mlx5_ctrl_flow(struct rte_eth_dev *dev,
struct rte_flow_item_eth *eth_spec,
struct rte_flow_item_eth *eth_mask)
{
return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL);
}
/**
* Destroy a flow.
*
* @see rte_flow_destroy()
* @see rte_flow_ops
*/
int
mlx5_flow_destroy(struct rte_eth_dev *dev,
struct rte_flow *flow,
struct rte_flow_error *error __rte_unused)
{
struct priv *priv = dev->data->dev_private;
mlx5_flow_list_destroy(dev, &priv->flows, flow);
return 0;
}
/**
* Destroy all flows.
*
* @see rte_flow_flush()
* @see rte_flow_ops
*/
int
mlx5_flow_flush(struct rte_eth_dev *dev,
struct rte_flow_error *error __rte_unused)
{
struct priv *priv = dev->data->dev_private;
mlx5_flow_list_flush(dev, &priv->flows);
return 0;
}
/**
* Isolated mode.
*
* @see rte_flow_isolate()
* @see rte_flow_ops
*/
int
mlx5_flow_isolate(struct rte_eth_dev *dev,
int enable,
struct rte_flow_error *error)
{
struct priv *priv = dev->data->dev_private;
if (dev->data->dev_started) {
rte_flow_error_set(error, EBUSY,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL,
"port must be stopped first");
return -rte_errno;
}
priv->isolated = !!enable;
if (enable)
dev->dev_ops = &mlx5_dev_ops_isolate;
else
dev->dev_ops = &mlx5_dev_ops;
return 0;
}
/**
* Query flow counter.
*
* @param flow
* Pointer to the flow.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
static int
mlx5_flow_query_count(struct rte_flow *flow __rte_unused,
void *data __rte_unused,
struct rte_flow_error *error)
{
#ifdef HAVE_IBV_DEVICE_COUNTERS_SET_SUPPORT
struct rte_flow_query_count *qc = data;
uint64_t counters[2] = {0, 0};
struct ibv_query_counter_set_attr query_cs_attr = {
.cs = flow->counter->cs,
.query_flags = IBV_COUNTER_SET_FORCE_UPDATE,
};
struct ibv_counter_set_data query_out = {
.out = counters,
.outlen = 2 * sizeof(uint64_t),
};
int err = mlx5_glue->query_counter_set(&query_cs_attr, &query_out);
if (err)
return rte_flow_error_set(error, err,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL,
"cannot read counter");
qc->hits_set = 1;
qc->bytes_set = 1;
qc->hits = counters[0] - flow->counter->hits;
qc->bytes = counters[1] - flow->counter->bytes;
if (qc->reset) {
flow->counter->hits = counters[0];
flow->counter->bytes = counters[1];
}
return 0;
#endif
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL,
"counters are not available");
}
/**
* Query a flows.
*
* @see rte_flow_query()
* @see rte_flow_ops
*/
int
mlx5_flow_query(struct rte_eth_dev *dev __rte_unused,
struct rte_flow *flow,
const struct rte_flow_action *actions,
void *data,
struct rte_flow_error *error)
{
int ret = 0;
for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
switch (actions->type) {
case RTE_FLOW_ACTION_TYPE_VOID:
break;
case RTE_FLOW_ACTION_TYPE_COUNT:
ret = mlx5_flow_query_count(flow, data, error);
break;
default:
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION,
actions,
"action not supported");
}
if (ret < 0)
return ret;
}
return 0;
}
/**
* Convert a flow director filter to a generic flow.
*
* @param dev
* Pointer to Ethernet device.
* @param fdir_filter
* Flow director filter to add.
* @param attributes
* Generic flow parameters structure.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
static int
mlx5_fdir_filter_convert(struct rte_eth_dev *dev,
const struct rte_eth_fdir_filter *fdir_filter,
struct mlx5_fdir *attributes)
{
struct priv *priv = dev->data->dev_private;
const struct rte_eth_fdir_input *input = &fdir_filter->input;
const struct rte_eth_fdir_masks *mask =
&dev->data->dev_conf.fdir_conf.mask;
/* Validate queue number. */
if (fdir_filter->action.rx_queue >= priv->rxqs_n) {
DRV_LOG(ERR, "port %u invalid queue number %d",
dev->data->port_id, fdir_filter->action.rx_queue);
rte_errno = EINVAL;
return -rte_errno;
}
attributes->attr.ingress = 1;
attributes->items[0] = (struct rte_flow_item) {
.type = RTE_FLOW_ITEM_TYPE_ETH,
.spec = &attributes->l2,
.mask = &attributes->l2_mask,
};
switch (fdir_filter->action.behavior) {
case RTE_ETH_FDIR_ACCEPT:
attributes->actions[0] = (struct rte_flow_action){
.type = RTE_FLOW_ACTION_TYPE_QUEUE,
.conf = &attributes->queue,
};
break;
case RTE_ETH_FDIR_REJECT:
attributes->actions[0] = (struct rte_flow_action){
.type = RTE_FLOW_ACTION_TYPE_DROP,
};
break;
default:
DRV_LOG(ERR, "port %u invalid behavior %d",
dev->data->port_id,
fdir_filter->action.behavior);
rte_errno = ENOTSUP;
return -rte_errno;
}
attributes->queue.index = fdir_filter->action.rx_queue;
/* Handle L3. */
switch (fdir_filter->input.flow_type) {
case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
attributes->l3.ipv4.hdr = (struct ipv4_hdr){
.src_addr = input->flow.ip4_flow.src_ip,
.dst_addr = input->flow.ip4_flow.dst_ip,
.time_to_live = input->flow.ip4_flow.ttl,
.type_of_service = input->flow.ip4_flow.tos,
.next_proto_id = input->flow.ip4_flow.proto,
};
attributes->l3_mask.ipv4.hdr = (struct ipv4_hdr){
.src_addr = mask->ipv4_mask.src_ip,
.dst_addr = mask->ipv4_mask.dst_ip,
.time_to_live = mask->ipv4_mask.ttl,
.type_of_service = mask->ipv4_mask.tos,
.next_proto_id = mask->ipv4_mask.proto,
};
attributes->items[1] = (struct rte_flow_item){
.type = RTE_FLOW_ITEM_TYPE_IPV4,
.spec = &attributes->l3,
.mask = &attributes->l3_mask,
};
break;
case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
attributes->l3.ipv6.hdr = (struct ipv6_hdr){
.hop_limits = input->flow.ipv6_flow.hop_limits,
.proto = input->flow.ipv6_flow.proto,
};
memcpy(attributes->l3.ipv6.hdr.src_addr,
input->flow.ipv6_flow.src_ip,
RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
memcpy(attributes->l3.ipv6.hdr.dst_addr,
input->flow.ipv6_flow.dst_ip,
RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
memcpy(attributes->l3_mask.ipv6.hdr.src_addr,
mask->ipv6_mask.src_ip,
RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
memcpy(attributes->l3_mask.ipv6.hdr.dst_addr,
mask->ipv6_mask.dst_ip,
RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
attributes->items[1] = (struct rte_flow_item){
.type = RTE_FLOW_ITEM_TYPE_IPV6,
.spec = &attributes->l3,
.mask = &attributes->l3_mask,
};
break;
default:
DRV_LOG(ERR, "port %u invalid flow type%d",
dev->data->port_id, fdir_filter->input.flow_type);
rte_errno = ENOTSUP;
return -rte_errno;
}
/* Handle L4. */
switch (fdir_filter->input.flow_type) {
case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
attributes->l4.udp.hdr = (struct udp_hdr){
.src_port = input->flow.udp4_flow.src_port,
.dst_port = input->flow.udp4_flow.dst_port,
};
attributes->l4_mask.udp.hdr = (struct udp_hdr){
.src_port = mask->src_port_mask,
.dst_port = mask->dst_port_mask,
};
attributes->items[2] = (struct rte_flow_item){
.type = RTE_FLOW_ITEM_TYPE_UDP,
.spec = &attributes->l4,
.mask = &attributes->l4_mask,
};
break;
case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
attributes->l4.tcp.hdr = (struct tcp_hdr){
.src_port = input->flow.tcp4_flow.src_port,
.dst_port = input->flow.tcp4_flow.dst_port,
};
attributes->l4_mask.tcp.hdr = (struct tcp_hdr){
.src_port = mask->src_port_mask,
.dst_port = mask->dst_port_mask,
};
attributes->items[2] = (struct rte_flow_item){
.type = RTE_FLOW_ITEM_TYPE_TCP,
.spec = &attributes->l4,
.mask = &attributes->l4_mask,
};
break;
case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
attributes->l4.udp.hdr = (struct udp_hdr){
.src_port = input->flow.udp6_flow.src_port,
.dst_port = input->flow.udp6_flow.dst_port,
};
attributes->l4_mask.udp.hdr = (struct udp_hdr){
.src_port = mask->src_port_mask,
.dst_port = mask->dst_port_mask,
};
attributes->items[2] = (struct rte_flow_item){
.type = RTE_FLOW_ITEM_TYPE_UDP,
.spec = &attributes->l4,
.mask = &attributes->l4_mask,
};
break;
case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
attributes->l4.tcp.hdr = (struct tcp_hdr){
.src_port = input->flow.tcp6_flow.src_port,
.dst_port = input->flow.tcp6_flow.dst_port,
};
attributes->l4_mask.tcp.hdr = (struct tcp_hdr){
.src_port = mask->src_port_mask,
.dst_port = mask->dst_port_mask,
};
attributes->items[2] = (struct rte_flow_item){
.type = RTE_FLOW_ITEM_TYPE_TCP,
.spec = &attributes->l4,
.mask = &attributes->l4_mask,
};
break;
case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
break;
default:
DRV_LOG(ERR, "port %u invalid flow type%d",
dev->data->port_id, fdir_filter->input.flow_type);
rte_errno = ENOTSUP;
return -rte_errno;
}
return 0;
}
/**
* Add new flow director filter and store it in list.
*
* @param dev
* Pointer to Ethernet device.
* @param fdir_filter
* Flow director filter to add.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
static int
mlx5_fdir_filter_add(struct rte_eth_dev *dev,
const struct rte_eth_fdir_filter *fdir_filter)
{
struct priv *priv = dev->data->dev_private;
struct mlx5_fdir attributes = {
.attr.group = 0,
.l2_mask = {
.dst.addr_bytes = "\x00\x00\x00\x00\x00\x00",
.src.addr_bytes = "\x00\x00\x00\x00\x00\x00",
.type = 0,
},
};
struct rte_flow_error error;
struct rte_flow *flow;
int ret;
ret = mlx5_fdir_filter_convert(dev, fdir_filter, &attributes);
if (ret)
return ret;
flow = mlx5_flow_list_create(dev, &priv->flows, &attributes.attr,
attributes.items, attributes.actions,
&error);
if (flow) {
DRV_LOG(DEBUG, "port %u FDIR created %p", dev->data->port_id,
(void *)flow);
return 0;
}
return -rte_errno;
}
/**
* Delete specific filter.
*
* @param dev
* Pointer to Ethernet device.
* @param fdir_filter
* Filter to be deleted.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
static int
mlx5_fdir_filter_delete(struct rte_eth_dev *dev __rte_unused,
const struct rte_eth_fdir_filter *fdir_filter
__rte_unused)
{
rte_errno = ENOTSUP;
return -rte_errno;
}
/**
* Update queue for specific filter.
*
* @param dev
* Pointer to Ethernet device.
* @param fdir_filter
* Filter to be updated.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
static int
mlx5_fdir_filter_update(struct rte_eth_dev *dev,
const struct rte_eth_fdir_filter *fdir_filter)
{
int ret;
ret = mlx5_fdir_filter_delete(dev, fdir_filter);
if (ret)
return ret;
return mlx5_fdir_filter_add(dev, fdir_filter);
}
/**
* Flush all filters.
*
* @param dev
* Pointer to Ethernet device.
*/
static void
mlx5_fdir_filter_flush(struct rte_eth_dev *dev)
{
struct priv *priv = dev->data->dev_private;
mlx5_flow_list_flush(dev, &priv->flows);
}
/**
* Get flow director information.
*
* @param dev
* Pointer to Ethernet device.
* @param[out] fdir_info
* Resulting flow director information.
*/
static void
mlx5_fdir_info_get(struct rte_eth_dev *dev, struct rte_eth_fdir_info *fdir_info)
{
struct rte_eth_fdir_masks *mask =
&dev->data->dev_conf.fdir_conf.mask;
fdir_info->mode = dev->data->dev_conf.fdir_conf.mode;
fdir_info->guarant_spc = 0;
rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask));
fdir_info->max_flexpayload = 0;
fdir_info->flow_types_mask[0] = 0;
fdir_info->flex_payload_unit = 0;
fdir_info->max_flex_payload_segment_num = 0;
fdir_info->flex_payload_limit = 0;
memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf));
}
/**
* Deal with flow director operations.
*
* @param dev
* Pointer to Ethernet device.
* @param filter_op
* Operation to perform.
* @param arg
* Pointer to operation-specific structure.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
static int
mlx5_fdir_ctrl_func(struct rte_eth_dev *dev, enum rte_filter_op filter_op,
void *arg)
{
enum rte_fdir_mode fdir_mode =
dev->data->dev_conf.fdir_conf.mode;
if (filter_op == RTE_ETH_FILTER_NOP)
return 0;
if (fdir_mode != RTE_FDIR_MODE_PERFECT &&
fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
DRV_LOG(ERR, "port %u flow director mode %d not supported",
dev->data->port_id, fdir_mode);
rte_errno = EINVAL;
return -rte_errno;
}
switch (filter_op) {
case RTE_ETH_FILTER_ADD:
return mlx5_fdir_filter_add(dev, arg);
case RTE_ETH_FILTER_UPDATE:
return mlx5_fdir_filter_update(dev, arg);
case RTE_ETH_FILTER_DELETE:
return mlx5_fdir_filter_delete(dev, arg);
case RTE_ETH_FILTER_FLUSH:
mlx5_fdir_filter_flush(dev);
break;
case RTE_ETH_FILTER_INFO:
mlx5_fdir_info_get(dev, arg);
break;
default:
DRV_LOG(DEBUG, "port %u unknown operation %u",
dev->data->port_id, filter_op);
rte_errno = EINVAL;
return -rte_errno;
}
return 0;
}
/**
* Manage filter operations.
*
* @param dev
* Pointer to Ethernet device structure.
* @param filter_type
* Filter type.
* @param filter_op
* Operation to perform.
* @param arg
* Pointer to operation-specific structure.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
int
mlx5_dev_filter_ctrl(struct rte_eth_dev *dev,
enum rte_filter_type filter_type,
enum rte_filter_op filter_op,
void *arg)
{
switch (filter_type) {
case RTE_ETH_FILTER_GENERIC:
if (filter_op != RTE_ETH_FILTER_GET) {
rte_errno = EINVAL;
return -rte_errno;
}
*(const void **)arg = &mlx5_flow_ops;
return 0;
case RTE_ETH_FILTER_FDIR:
return mlx5_fdir_ctrl_func(dev, filter_op, arg);
default:
DRV_LOG(ERR, "port %u filter type (%d) not supported",
dev->data->port_id, filter_type);
rte_errno = ENOTSUP;
return -rte_errno;
}
return 0;
}