numam-dpdk/drivers/net/pcap/rte_eth_pcap.c
Jianfeng Tan d4a586d29e bus/vdev: move code from EAL into a new driver
Move the vdev bus from lib/librte_eal to drivers/bus.

As the crypto vdev helper function refers to data structure
in rte_vdev.h, so we move those helper function into drivers/bus
too.

Signed-off-by: Jianfeng Tan <jianfeng.tan@intel.com>
2017-11-07 16:54:07 +01:00

1071 lines
26 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
* Copyright(c) 2014 6WIND S.A.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <time.h>
#include <net/if.h>
#include <pcap.h>
#include <rte_cycles.h>
#include <rte_ethdev.h>
#include <rte_ethdev_vdev.h>
#include <rte_kvargs.h>
#include <rte_malloc.h>
#include <rte_mbuf.h>
#include <rte_bus_vdev.h>
#define RTE_ETH_PCAP_SNAPSHOT_LEN 65535
#define RTE_ETH_PCAP_SNAPLEN ETHER_MAX_JUMBO_FRAME_LEN
#define RTE_ETH_PCAP_PROMISC 1
#define RTE_ETH_PCAP_TIMEOUT -1
#define ETH_PCAP_RX_PCAP_ARG "rx_pcap"
#define ETH_PCAP_TX_PCAP_ARG "tx_pcap"
#define ETH_PCAP_RX_IFACE_ARG "rx_iface"
#define ETH_PCAP_TX_IFACE_ARG "tx_iface"
#define ETH_PCAP_IFACE_ARG "iface"
#define ETH_PCAP_ARG_MAXLEN 64
#define RTE_PMD_PCAP_MAX_QUEUES 16
static char errbuf[PCAP_ERRBUF_SIZE];
static unsigned char tx_pcap_data[RTE_ETH_PCAP_SNAPLEN];
static struct timeval start_time;
static uint64_t start_cycles;
static uint64_t hz;
struct queue_stat {
volatile unsigned long pkts;
volatile unsigned long bytes;
volatile unsigned long err_pkts;
};
struct pcap_rx_queue {
pcap_t *pcap;
uint16_t in_port;
struct rte_mempool *mb_pool;
struct queue_stat rx_stat;
char name[PATH_MAX];
char type[ETH_PCAP_ARG_MAXLEN];
};
struct pcap_tx_queue {
pcap_dumper_t *dumper;
pcap_t *pcap;
struct queue_stat tx_stat;
char name[PATH_MAX];
char type[ETH_PCAP_ARG_MAXLEN];
};
struct pmd_internals {
struct pcap_rx_queue rx_queue[RTE_PMD_PCAP_MAX_QUEUES];
struct pcap_tx_queue tx_queue[RTE_PMD_PCAP_MAX_QUEUES];
int if_index;
int single_iface;
};
struct pmd_devargs {
unsigned int num_of_queue;
struct devargs_queue {
pcap_dumper_t *dumper;
pcap_t *pcap;
const char *name;
const char *type;
} queue[RTE_PMD_PCAP_MAX_QUEUES];
};
static const char *valid_arguments[] = {
ETH_PCAP_RX_PCAP_ARG,
ETH_PCAP_TX_PCAP_ARG,
ETH_PCAP_RX_IFACE_ARG,
ETH_PCAP_TX_IFACE_ARG,
ETH_PCAP_IFACE_ARG,
NULL
};
static struct ether_addr eth_addr = {
.addr_bytes = { 0, 0, 0, 0x1, 0x2, 0x3 }
};
static struct rte_eth_link pmd_link = {
.link_speed = ETH_SPEED_NUM_10G,
.link_duplex = ETH_LINK_FULL_DUPLEX,
.link_status = ETH_LINK_DOWN,
.link_autoneg = ETH_LINK_SPEED_FIXED,
};
static int
eth_pcap_rx_jumbo(struct rte_mempool *mb_pool, struct rte_mbuf *mbuf,
const u_char *data, uint16_t data_len)
{
/* Copy the first segment. */
uint16_t len = rte_pktmbuf_tailroom(mbuf);
struct rte_mbuf *m = mbuf;
rte_memcpy(rte_pktmbuf_append(mbuf, len), data, len);
data_len -= len;
data += len;
while (data_len > 0) {
/* Allocate next mbuf and point to that. */
m->next = rte_pktmbuf_alloc(mb_pool);
if (unlikely(!m->next))
return -1;
m = m->next;
/* Headroom is not needed in chained mbufs. */
rte_pktmbuf_prepend(m, rte_pktmbuf_headroom(m));
m->pkt_len = 0;
m->data_len = 0;
/* Copy next segment. */
len = RTE_MIN(rte_pktmbuf_tailroom(m), data_len);
rte_memcpy(rte_pktmbuf_append(m, len), data, len);
mbuf->nb_segs++;
data_len -= len;
data += len;
}
return mbuf->nb_segs;
}
/* Copy data from mbuf chain to a buffer suitable for writing to a PCAP file. */
static void
eth_pcap_gather_data(unsigned char *data, struct rte_mbuf *mbuf)
{
uint16_t data_len = 0;
while (mbuf) {
rte_memcpy(data + data_len, rte_pktmbuf_mtod(mbuf, void *),
mbuf->data_len);
data_len += mbuf->data_len;
mbuf = mbuf->next;
}
}
static uint16_t
eth_pcap_rx(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
{
unsigned int i;
struct pcap_pkthdr header;
const u_char *packet;
struct rte_mbuf *mbuf;
struct pcap_rx_queue *pcap_q = queue;
uint16_t num_rx = 0;
uint16_t buf_size;
uint32_t rx_bytes = 0;
if (unlikely(pcap_q->pcap == NULL || nb_pkts == 0))
return 0;
/* Reads the given number of packets from the pcap file one by one
* and copies the packet data into a newly allocated mbuf to return.
*/
for (i = 0; i < nb_pkts; i++) {
/* Get the next PCAP packet */
packet = pcap_next(pcap_q->pcap, &header);
if (unlikely(packet == NULL))
break;
mbuf = rte_pktmbuf_alloc(pcap_q->mb_pool);
if (unlikely(mbuf == NULL))
break;
/* Now get the space available for data in the mbuf */
buf_size = rte_pktmbuf_data_room_size(pcap_q->mb_pool) -
RTE_PKTMBUF_HEADROOM;
if (header.caplen <= buf_size) {
/* pcap packet will fit in the mbuf, can copy it */
rte_memcpy(rte_pktmbuf_mtod(mbuf, void *), packet,
header.caplen);
mbuf->data_len = (uint16_t)header.caplen;
} else {
/* Try read jumbo frame into multi mbufs. */
if (unlikely(eth_pcap_rx_jumbo(pcap_q->mb_pool,
mbuf,
packet,
header.caplen) == -1)) {
rte_pktmbuf_free(mbuf);
break;
}
}
mbuf->pkt_len = (uint16_t)header.caplen;
mbuf->port = pcap_q->in_port;
bufs[num_rx] = mbuf;
num_rx++;
rx_bytes += header.caplen;
}
pcap_q->rx_stat.pkts += num_rx;
pcap_q->rx_stat.bytes += rx_bytes;
return num_rx;
}
static inline void
calculate_timestamp(struct timeval *ts) {
uint64_t cycles;
struct timeval cur_time;
cycles = rte_get_timer_cycles() - start_cycles;
cur_time.tv_sec = cycles / hz;
cur_time.tv_usec = (cycles % hz) * 1e6 / hz;
timeradd(&start_time, &cur_time, ts);
}
/*
* Callback to handle writing packets to a pcap file.
*/
static uint16_t
eth_pcap_tx_dumper(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
{
unsigned int i;
struct rte_mbuf *mbuf;
struct pcap_tx_queue *dumper_q = queue;
uint16_t num_tx = 0;
uint32_t tx_bytes = 0;
struct pcap_pkthdr header;
if (dumper_q->dumper == NULL || nb_pkts == 0)
return 0;
/* writes the nb_pkts packets to the previously opened pcap file
* dumper */
for (i = 0; i < nb_pkts; i++) {
mbuf = bufs[i];
calculate_timestamp(&header.ts);
header.len = mbuf->pkt_len;
header.caplen = header.len;
if (likely(mbuf->nb_segs == 1)) {
pcap_dump((u_char *)dumper_q->dumper, &header,
rte_pktmbuf_mtod(mbuf, void*));
} else {
if (mbuf->pkt_len <= ETHER_MAX_JUMBO_FRAME_LEN) {
eth_pcap_gather_data(tx_pcap_data, mbuf);
pcap_dump((u_char *)dumper_q->dumper, &header,
tx_pcap_data);
} else {
RTE_LOG(ERR, PMD,
"Dropping PCAP packet. Size (%d) > max jumbo size (%d).\n",
mbuf->pkt_len,
ETHER_MAX_JUMBO_FRAME_LEN);
rte_pktmbuf_free(mbuf);
break;
}
}
num_tx++;
tx_bytes += mbuf->pkt_len;
rte_pktmbuf_free(mbuf);
}
/*
* Since there's no place to hook a callback when the forwarding
* process stops and to make sure the pcap file is actually written,
* we flush the pcap dumper within each burst.
*/
pcap_dump_flush(dumper_q->dumper);
dumper_q->tx_stat.pkts += num_tx;
dumper_q->tx_stat.bytes += tx_bytes;
dumper_q->tx_stat.err_pkts += nb_pkts - num_tx;
return num_tx;
}
/*
* Callback to handle sending packets through a real NIC.
*/
static uint16_t
eth_pcap_tx(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
{
unsigned int i;
int ret;
struct rte_mbuf *mbuf;
struct pcap_tx_queue *tx_queue = queue;
uint16_t num_tx = 0;
uint32_t tx_bytes = 0;
if (unlikely(nb_pkts == 0 || tx_queue->pcap == NULL))
return 0;
for (i = 0; i < nb_pkts; i++) {
mbuf = bufs[i];
if (likely(mbuf->nb_segs == 1)) {
ret = pcap_sendpacket(tx_queue->pcap,
rte_pktmbuf_mtod(mbuf, u_char *),
mbuf->pkt_len);
} else {
if (mbuf->pkt_len <= ETHER_MAX_JUMBO_FRAME_LEN) {
eth_pcap_gather_data(tx_pcap_data, mbuf);
ret = pcap_sendpacket(tx_queue->pcap,
tx_pcap_data, mbuf->pkt_len);
} else {
RTE_LOG(ERR, PMD,
"Dropping PCAP packet. Size (%d) > max jumbo size (%d).\n",
mbuf->pkt_len,
ETHER_MAX_JUMBO_FRAME_LEN);
rte_pktmbuf_free(mbuf);
break;
}
}
if (unlikely(ret != 0))
break;
num_tx++;
tx_bytes += mbuf->pkt_len;
rte_pktmbuf_free(mbuf);
}
tx_queue->tx_stat.pkts += num_tx;
tx_queue->tx_stat.bytes += tx_bytes;
tx_queue->tx_stat.err_pkts += nb_pkts - num_tx;
return num_tx;
}
/*
* pcap_open_live wrapper function
*/
static inline int
open_iface_live(const char *iface, pcap_t **pcap) {
*pcap = pcap_open_live(iface, RTE_ETH_PCAP_SNAPLEN,
RTE_ETH_PCAP_PROMISC, RTE_ETH_PCAP_TIMEOUT, errbuf);
if (*pcap == NULL) {
RTE_LOG(ERR, PMD, "Couldn't open %s: %s\n", iface, errbuf);
return -1;
}
return 0;
}
static int
open_single_iface(const char *iface, pcap_t **pcap)
{
if (open_iface_live(iface, pcap) < 0) {
RTE_LOG(ERR, PMD, "Couldn't open interface %s\n", iface);
return -1;
}
return 0;
}
static int
open_single_tx_pcap(const char *pcap_filename, pcap_dumper_t **dumper)
{
pcap_t *tx_pcap;
/*
* We need to create a dummy empty pcap_t to use it
* with pcap_dump_open(). We create big enough an Ethernet
* pcap holder.
*/
tx_pcap = pcap_open_dead(DLT_EN10MB, RTE_ETH_PCAP_SNAPSHOT_LEN);
if (tx_pcap == NULL) {
RTE_LOG(ERR, PMD, "Couldn't create dead pcap\n");
return -1;
}
/* The dumper is created using the previous pcap_t reference */
*dumper = pcap_dump_open(tx_pcap, pcap_filename);
if (*dumper == NULL) {
pcap_close(tx_pcap);
RTE_LOG(ERR, PMD, "Couldn't open %s for writing.\n",
pcap_filename);
return -1;
}
pcap_close(tx_pcap);
return 0;
}
static int
open_single_rx_pcap(const char *pcap_filename, pcap_t **pcap)
{
*pcap = pcap_open_offline(pcap_filename, errbuf);
if (*pcap == NULL) {
RTE_LOG(ERR, PMD, "Couldn't open %s: %s\n", pcap_filename,
errbuf);
return -1;
}
return 0;
}
static int
eth_dev_start(struct rte_eth_dev *dev)
{
unsigned int i;
struct pmd_internals *internals = dev->data->dev_private;
struct pcap_tx_queue *tx;
struct pcap_rx_queue *rx;
/* Special iface case. Single pcap is open and shared between tx/rx. */
if (internals->single_iface) {
tx = &internals->tx_queue[0];
rx = &internals->rx_queue[0];
if (!tx->pcap && strcmp(tx->type, ETH_PCAP_IFACE_ARG) == 0) {
if (open_single_iface(tx->name, &tx->pcap) < 0)
return -1;
rx->pcap = tx->pcap;
}
goto status_up;
}
/* If not open already, open tx pcaps/dumpers */
for (i = 0; i < dev->data->nb_tx_queues; i++) {
tx = &internals->tx_queue[i];
if (!tx->dumper &&
strcmp(tx->type, ETH_PCAP_TX_PCAP_ARG) == 0) {
if (open_single_tx_pcap(tx->name, &tx->dumper) < 0)
return -1;
} else if (!tx->pcap &&
strcmp(tx->type, ETH_PCAP_TX_IFACE_ARG) == 0) {
if (open_single_iface(tx->name, &tx->pcap) < 0)
return -1;
}
}
/* If not open already, open rx pcaps */
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rx = &internals->rx_queue[i];
if (rx->pcap != NULL)
continue;
if (strcmp(rx->type, ETH_PCAP_RX_PCAP_ARG) == 0) {
if (open_single_rx_pcap(rx->name, &rx->pcap) < 0)
return -1;
} else if (strcmp(rx->type, ETH_PCAP_RX_IFACE_ARG) == 0) {
if (open_single_iface(rx->name, &rx->pcap) < 0)
return -1;
}
}
status_up:
dev->data->dev_link.link_status = ETH_LINK_UP;
return 0;
}
/*
* This function gets called when the current port gets stopped.
* Is the only place for us to close all the tx streams dumpers.
* If not called the dumpers will be flushed within each tx burst.
*/
static void
eth_dev_stop(struct rte_eth_dev *dev)
{
unsigned int i;
struct pmd_internals *internals = dev->data->dev_private;
struct pcap_tx_queue *tx;
struct pcap_rx_queue *rx;
/* Special iface case. Single pcap is open and shared between tx/rx. */
if (internals->single_iface) {
tx = &internals->tx_queue[0];
rx = &internals->rx_queue[0];
pcap_close(tx->pcap);
tx->pcap = NULL;
rx->pcap = NULL;
goto status_down;
}
for (i = 0; i < dev->data->nb_tx_queues; i++) {
tx = &internals->tx_queue[i];
if (tx->dumper != NULL) {
pcap_dump_close(tx->dumper);
tx->dumper = NULL;
}
if (tx->pcap != NULL) {
pcap_close(tx->pcap);
tx->pcap = NULL;
}
}
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rx = &internals->rx_queue[i];
if (rx->pcap != NULL) {
pcap_close(rx->pcap);
rx->pcap = NULL;
}
}
status_down:
dev->data->dev_link.link_status = ETH_LINK_DOWN;
}
static int
eth_dev_configure(struct rte_eth_dev *dev __rte_unused)
{
return 0;
}
static void
eth_dev_info(struct rte_eth_dev *dev,
struct rte_eth_dev_info *dev_info)
{
struct pmd_internals *internals = dev->data->dev_private;
dev_info->if_index = internals->if_index;
dev_info->max_mac_addrs = 1;
dev_info->max_rx_pktlen = (uint32_t) -1;
dev_info->max_rx_queues = dev->data->nb_rx_queues;
dev_info->max_tx_queues = dev->data->nb_tx_queues;
dev_info->min_rx_bufsize = 0;
}
static int
eth_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
{
unsigned int i;
unsigned long rx_packets_total = 0, rx_bytes_total = 0;
unsigned long tx_packets_total = 0, tx_bytes_total = 0;
unsigned long tx_packets_err_total = 0;
const struct pmd_internals *internal = dev->data->dev_private;
for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS &&
i < dev->data->nb_rx_queues; i++) {
stats->q_ipackets[i] = internal->rx_queue[i].rx_stat.pkts;
stats->q_ibytes[i] = internal->rx_queue[i].rx_stat.bytes;
rx_packets_total += stats->q_ipackets[i];
rx_bytes_total += stats->q_ibytes[i];
}
for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS &&
i < dev->data->nb_tx_queues; i++) {
stats->q_opackets[i] = internal->tx_queue[i].tx_stat.pkts;
stats->q_obytes[i] = internal->tx_queue[i].tx_stat.bytes;
stats->q_errors[i] = internal->tx_queue[i].tx_stat.err_pkts;
tx_packets_total += stats->q_opackets[i];
tx_bytes_total += stats->q_obytes[i];
tx_packets_err_total += stats->q_errors[i];
}
stats->ipackets = rx_packets_total;
stats->ibytes = rx_bytes_total;
stats->opackets = tx_packets_total;
stats->obytes = tx_bytes_total;
stats->oerrors = tx_packets_err_total;
return 0;
}
static void
eth_stats_reset(struct rte_eth_dev *dev)
{
unsigned int i;
struct pmd_internals *internal = dev->data->dev_private;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
internal->rx_queue[i].rx_stat.pkts = 0;
internal->rx_queue[i].rx_stat.bytes = 0;
}
for (i = 0; i < dev->data->nb_tx_queues; i++) {
internal->tx_queue[i].tx_stat.pkts = 0;
internal->tx_queue[i].tx_stat.bytes = 0;
internal->tx_queue[i].tx_stat.err_pkts = 0;
}
}
static void
eth_dev_close(struct rte_eth_dev *dev __rte_unused)
{
}
static void
eth_queue_release(void *q __rte_unused)
{
}
static int
eth_link_update(struct rte_eth_dev *dev __rte_unused,
int wait_to_complete __rte_unused)
{
return 0;
}
static int
eth_rx_queue_setup(struct rte_eth_dev *dev,
uint16_t rx_queue_id,
uint16_t nb_rx_desc __rte_unused,
unsigned int socket_id __rte_unused,
const struct rte_eth_rxconf *rx_conf __rte_unused,
struct rte_mempool *mb_pool)
{
struct pmd_internals *internals = dev->data->dev_private;
struct pcap_rx_queue *pcap_q = &internals->rx_queue[rx_queue_id];
pcap_q->mb_pool = mb_pool;
dev->data->rx_queues[rx_queue_id] = pcap_q;
pcap_q->in_port = dev->data->port_id;
return 0;
}
static int
eth_tx_queue_setup(struct rte_eth_dev *dev,
uint16_t tx_queue_id,
uint16_t nb_tx_desc __rte_unused,
unsigned int socket_id __rte_unused,
const struct rte_eth_txconf *tx_conf __rte_unused)
{
struct pmd_internals *internals = dev->data->dev_private;
dev->data->tx_queues[tx_queue_id] = &internals->tx_queue[tx_queue_id];
return 0;
}
static const struct eth_dev_ops ops = {
.dev_start = eth_dev_start,
.dev_stop = eth_dev_stop,
.dev_close = eth_dev_close,
.dev_configure = eth_dev_configure,
.dev_infos_get = eth_dev_info,
.rx_queue_setup = eth_rx_queue_setup,
.tx_queue_setup = eth_tx_queue_setup,
.rx_queue_release = eth_queue_release,
.tx_queue_release = eth_queue_release,
.link_update = eth_link_update,
.stats_get = eth_stats_get,
.stats_reset = eth_stats_reset,
};
/*
* Function handler that opens the pcap file for reading a stores a
* reference of it for use it later on.
*/
static int
open_rx_pcap(const char *key, const char *value, void *extra_args)
{
unsigned int i;
const char *pcap_filename = value;
struct pmd_devargs *rx = extra_args;
pcap_t *pcap = NULL;
for (i = 0; i < rx->num_of_queue; i++) {
if (open_single_rx_pcap(pcap_filename, &pcap) < 0)
return -1;
rx->queue[i].pcap = pcap;
rx->queue[i].name = pcap_filename;
rx->queue[i].type = key;
}
return 0;
}
/*
* Opens a pcap file for writing and stores a reference to it
* for use it later on.
*/
static int
open_tx_pcap(const char *key, const char *value, void *extra_args)
{
unsigned int i;
const char *pcap_filename = value;
struct pmd_devargs *dumpers = extra_args;
pcap_dumper_t *dumper;
for (i = 0; i < dumpers->num_of_queue; i++) {
if (open_single_tx_pcap(pcap_filename, &dumper) < 0)
return -1;
dumpers->queue[i].dumper = dumper;
dumpers->queue[i].name = pcap_filename;
dumpers->queue[i].type = key;
}
return 0;
}
/*
* Opens an interface for reading and writing
*/
static inline int
open_rx_tx_iface(const char *key, const char *value, void *extra_args)
{
const char *iface = value;
struct pmd_devargs *tx = extra_args;
pcap_t *pcap = NULL;
if (open_single_iface(iface, &pcap) < 0)
return -1;
tx->queue[0].pcap = pcap;
tx->queue[0].name = iface;
tx->queue[0].type = key;
return 0;
}
/*
* Opens a NIC for reading packets from it
*/
static inline int
open_rx_iface(const char *key, const char *value, void *extra_args)
{
unsigned int i;
const char *iface = value;
struct pmd_devargs *rx = extra_args;
pcap_t *pcap = NULL;
for (i = 0; i < rx->num_of_queue; i++) {
if (open_single_iface(iface, &pcap) < 0)
return -1;
rx->queue[i].pcap = pcap;
rx->queue[i].name = iface;
rx->queue[i].type = key;
}
return 0;
}
/*
* Opens a NIC for writing packets to it
*/
static int
open_tx_iface(const char *key, const char *value, void *extra_args)
{
unsigned int i;
const char *iface = value;
struct pmd_devargs *tx = extra_args;
pcap_t *pcap;
for (i = 0; i < tx->num_of_queue; i++) {
if (open_single_iface(iface, &pcap) < 0)
return -1;
tx->queue[i].pcap = pcap;
tx->queue[i].name = iface;
tx->queue[i].type = key;
}
return 0;
}
static struct rte_vdev_driver pmd_pcap_drv;
static int
pmd_init_internals(struct rte_vdev_device *vdev,
const unsigned int nb_rx_queues,
const unsigned int nb_tx_queues,
struct pmd_internals **internals,
struct rte_eth_dev **eth_dev)
{
struct rte_eth_dev_data *data = NULL;
unsigned int numa_node = vdev->device.numa_node;
const char *name;
name = rte_vdev_device_name(vdev);
RTE_LOG(INFO, PMD, "Creating pcap-backed ethdev on numa socket %u\n",
numa_node);
/* now do all data allocation - for eth_dev structure
* and internal (private) data
*/
data = rte_zmalloc_socket(name, sizeof(*data), 0, numa_node);
if (data == NULL)
return -1;
/* reserve an ethdev entry */
*eth_dev = rte_eth_vdev_allocate(vdev, sizeof(**internals));
if (*eth_dev == NULL) {
rte_free(data);
return -1;
}
/* now put it all together
* - store queue data in internals,
* - store numa_node info in eth_dev
* - point eth_dev_data to internals
* - and point eth_dev structure to new eth_dev_data structure
*/
*internals = (*eth_dev)->data->dev_private;
rte_memcpy(data, (*eth_dev)->data, sizeof(*data));
data->nb_rx_queues = (uint16_t)nb_rx_queues;
data->nb_tx_queues = (uint16_t)nb_tx_queues;
data->dev_link = pmd_link;
data->mac_addrs = &eth_addr;
/*
* NOTE: we'll replace the data element, of originally allocated
* eth_dev so the rings are local per-process
*/
(*eth_dev)->data = data;
(*eth_dev)->dev_ops = &ops;
return 0;
}
static int
eth_from_pcaps_common(struct rte_vdev_device *vdev,
struct pmd_devargs *rx_queues, const unsigned int nb_rx_queues,
struct pmd_devargs *tx_queues, const unsigned int nb_tx_queues,
struct rte_kvargs *kvlist, struct pmd_internals **internals,
struct rte_eth_dev **eth_dev)
{
struct rte_kvargs_pair *pair = NULL;
unsigned int k_idx;
unsigned int i;
/* do some parameter checking */
if (rx_queues == NULL && nb_rx_queues > 0)
return -1;
if (tx_queues == NULL && nb_tx_queues > 0)
return -1;
if (pmd_init_internals(vdev, nb_rx_queues, nb_tx_queues, internals,
eth_dev) < 0)
return -1;
for (i = 0; i < nb_rx_queues; i++) {
struct pcap_rx_queue *rx = &(*internals)->rx_queue[i];
struct devargs_queue *queue = &rx_queues->queue[i];
rx->pcap = queue->pcap;
snprintf(rx->name, sizeof(rx->name), "%s", queue->name);
snprintf(rx->type, sizeof(rx->type), "%s", queue->type);
}
for (i = 0; i < nb_tx_queues; i++) {
struct pcap_tx_queue *tx = &(*internals)->tx_queue[i];
struct devargs_queue *queue = &tx_queues->queue[i];
tx->dumper = queue->dumper;
tx->pcap = queue->pcap;
snprintf(tx->name, sizeof(tx->name), "%s", queue->name);
snprintf(tx->type, sizeof(tx->type), "%s", queue->type);
}
for (k_idx = 0; k_idx < kvlist->count; k_idx++) {
pair = &kvlist->pairs[k_idx];
if (strstr(pair->key, ETH_PCAP_IFACE_ARG) != NULL)
break;
}
if (pair == NULL)
(*internals)->if_index = 0;
else
(*internals)->if_index = if_nametoindex(pair->value);
return 0;
}
static int
eth_from_pcaps(struct rte_vdev_device *vdev,
struct pmd_devargs *rx_queues, const unsigned int nb_rx_queues,
struct pmd_devargs *tx_queues, const unsigned int nb_tx_queues,
struct rte_kvargs *kvlist, int single_iface,
unsigned int using_dumpers)
{
struct pmd_internals *internals = NULL;
struct rte_eth_dev *eth_dev = NULL;
int ret;
ret = eth_from_pcaps_common(vdev, rx_queues, nb_rx_queues,
tx_queues, nb_tx_queues, kvlist, &internals, &eth_dev);
if (ret < 0)
return ret;
/* store weather we are using a single interface for rx/tx or not */
internals->single_iface = single_iface;
eth_dev->rx_pkt_burst = eth_pcap_rx;
if (using_dumpers)
eth_dev->tx_pkt_burst = eth_pcap_tx_dumper;
else
eth_dev->tx_pkt_burst = eth_pcap_tx;
return 0;
}
static int
pmd_pcap_probe(struct rte_vdev_device *dev)
{
const char *name;
unsigned int is_rx_pcap = 0, is_tx_pcap = 0;
struct rte_kvargs *kvlist;
struct pmd_devargs pcaps = {0};
struct pmd_devargs dumpers = {0};
int single_iface = 0;
int ret;
name = rte_vdev_device_name(dev);
RTE_LOG(INFO, PMD, "Initializing pmd_pcap for %s\n", name);
gettimeofday(&start_time, NULL);
start_cycles = rte_get_timer_cycles();
hz = rte_get_timer_hz();
kvlist = rte_kvargs_parse(rte_vdev_device_args(dev), valid_arguments);
if (kvlist == NULL)
return -1;
/*
* If iface argument is passed we open the NICs and use them for
* reading / writing
*/
if (rte_kvargs_count(kvlist, ETH_PCAP_IFACE_ARG) == 1) {
ret = rte_kvargs_process(kvlist, ETH_PCAP_IFACE_ARG,
&open_rx_tx_iface, &pcaps);
if (ret < 0)
goto free_kvlist;
dumpers.queue[0] = pcaps.queue[0];
single_iface = 1;
pcaps.num_of_queue = 1;
dumpers.num_of_queue = 1;
goto create_eth;
}
/*
* We check whether we want to open a RX stream from a real NIC or a
* pcap file
*/
pcaps.num_of_queue = rte_kvargs_count(kvlist, ETH_PCAP_RX_PCAP_ARG);
if (pcaps.num_of_queue)
is_rx_pcap = 1;
else
pcaps.num_of_queue = rte_kvargs_count(kvlist,
ETH_PCAP_RX_IFACE_ARG);
if (pcaps.num_of_queue > RTE_PMD_PCAP_MAX_QUEUES)
pcaps.num_of_queue = RTE_PMD_PCAP_MAX_QUEUES;
if (is_rx_pcap)
ret = rte_kvargs_process(kvlist, ETH_PCAP_RX_PCAP_ARG,
&open_rx_pcap, &pcaps);
else
ret = rte_kvargs_process(kvlist, ETH_PCAP_RX_IFACE_ARG,
&open_rx_iface, &pcaps);
if (ret < 0)
goto free_kvlist;
/*
* We check whether we want to open a TX stream to a real NIC or a
* pcap file
*/
dumpers.num_of_queue = rte_kvargs_count(kvlist, ETH_PCAP_TX_PCAP_ARG);
if (dumpers.num_of_queue)
is_tx_pcap = 1;
else
dumpers.num_of_queue = rte_kvargs_count(kvlist,
ETH_PCAP_TX_IFACE_ARG);
if (dumpers.num_of_queue > RTE_PMD_PCAP_MAX_QUEUES)
dumpers.num_of_queue = RTE_PMD_PCAP_MAX_QUEUES;
if (is_tx_pcap)
ret = rte_kvargs_process(kvlist, ETH_PCAP_TX_PCAP_ARG,
&open_tx_pcap, &dumpers);
else
ret = rte_kvargs_process(kvlist, ETH_PCAP_TX_IFACE_ARG,
&open_tx_iface, &dumpers);
if (ret < 0)
goto free_kvlist;
create_eth:
ret = eth_from_pcaps(dev, &pcaps, pcaps.num_of_queue, &dumpers,
dumpers.num_of_queue, kvlist, single_iface, is_tx_pcap);
free_kvlist:
rte_kvargs_free(kvlist);
return ret;
}
static int
pmd_pcap_remove(struct rte_vdev_device *dev)
{
struct rte_eth_dev *eth_dev = NULL;
RTE_LOG(INFO, PMD, "Closing pcap ethdev on numa socket %u\n",
rte_socket_id());
if (!dev)
return -1;
/* reserve an ethdev entry */
eth_dev = rte_eth_dev_allocated(rte_vdev_device_name(dev));
if (eth_dev == NULL)
return -1;
rte_free(eth_dev->data->dev_private);
rte_free(eth_dev->data);
rte_eth_dev_release_port(eth_dev);
return 0;
}
static struct rte_vdev_driver pmd_pcap_drv = {
.probe = pmd_pcap_probe,
.remove = pmd_pcap_remove,
};
RTE_PMD_REGISTER_VDEV(net_pcap, pmd_pcap_drv);
RTE_PMD_REGISTER_ALIAS(net_pcap, eth_pcap);
RTE_PMD_REGISTER_PARAM_STRING(net_pcap,
ETH_PCAP_RX_PCAP_ARG "=<string> "
ETH_PCAP_TX_PCAP_ARG "=<string> "
ETH_PCAP_RX_IFACE_ARG "=<ifc> "
ETH_PCAP_TX_IFACE_ARG "=<ifc> "
ETH_PCAP_IFACE_ARG "=<ifc>");