f8afd29247
gcc 10.0.1 reports:
../examples/ipsec-secgw/ipsec_process.c: In function ‘ipsec_process’:
../examples/ipsec-secgw/ipsec_process.c:132:34:
error: ‘grp.m’ may be used uninitialized in this function
[-Werror=maybe-uninitialized]
132 | grp[n].cnt = pkts + i - grp[n].m;
| ~~~~~~^~
This is a correct warning for the initial execution of the statement.
However, it is the design of the loop that grp[0].cnt will later be
written with the correct value using an initialized grp[0].m before it
is used.
In order to remove the warning, initialize grp[0].m for the initial and
unused calculation of grp[0].cnt.
Fixes: 3e5f4625dc
("examples/ipsec-secgw: make data-path to use IPsec library")
Cc: stable@dpdk.org
Suggested-by: Konstantin Ananyev <konstantin.ananyev@intel.com>
Signed-off-by: Kevin Traynor <ktraynor@redhat.com>
Acked-by: Konstantin Ananyev <konstantin.ananyev@intel.com>
420 lines
9.3 KiB
C
420 lines
9.3 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2016-2020 Intel Corporation
|
|
*/
|
|
#include <sys/types.h>
|
|
#include <netinet/in.h>
|
|
#include <netinet/ip.h>
|
|
|
|
#include <rte_branch_prediction.h>
|
|
#include <rte_log.h>
|
|
#include <rte_cryptodev.h>
|
|
#include <rte_ethdev.h>
|
|
#include <rte_mbuf.h>
|
|
|
|
#include "ipsec.h"
|
|
|
|
#define SATP_OUT_IPV4(t) \
|
|
((((t) & RTE_IPSEC_SATP_MODE_MASK) == RTE_IPSEC_SATP_MODE_TRANS && \
|
|
(((t) & RTE_IPSEC_SATP_IPV_MASK) == RTE_IPSEC_SATP_IPV4)) || \
|
|
((t) & RTE_IPSEC_SATP_MODE_MASK) == RTE_IPSEC_SATP_MODE_TUNLV4)
|
|
|
|
/* helper routine to free bulk of packets */
|
|
static inline void
|
|
free_pkts(struct rte_mbuf *mb[], uint32_t n)
|
|
{
|
|
uint32_t i;
|
|
|
|
for (i = 0; i != n; i++)
|
|
rte_pktmbuf_free(mb[i]);
|
|
}
|
|
|
|
/* helper routine to free bulk of crypto-ops and related packets */
|
|
static inline void
|
|
free_cops(struct rte_crypto_op *cop[], uint32_t n)
|
|
{
|
|
uint32_t i;
|
|
|
|
for (i = 0; i != n; i++)
|
|
rte_pktmbuf_free(cop[i]->sym->m_src);
|
|
}
|
|
|
|
/* helper routine to enqueue bulk of crypto ops */
|
|
static inline void
|
|
enqueue_cop_bulk(struct cdev_qp *cqp, struct rte_crypto_op *cop[], uint32_t num)
|
|
{
|
|
uint32_t i, k, len, n;
|
|
|
|
len = cqp->len;
|
|
|
|
/*
|
|
* if cqp is empty and we have enough ops,
|
|
* then queue them to the PMD straightway.
|
|
*/
|
|
if (num >= RTE_DIM(cqp->buf) * 3 / 4 && len == 0) {
|
|
n = rte_cryptodev_enqueue_burst(cqp->id, cqp->qp, cop, num);
|
|
cqp->in_flight += n;
|
|
free_cops(cop + n, num - n);
|
|
return;
|
|
}
|
|
|
|
k = 0;
|
|
|
|
do {
|
|
n = RTE_DIM(cqp->buf) - len;
|
|
n = RTE_MIN(num - k, n);
|
|
|
|
/* put packets into cqp */
|
|
for (i = 0; i != n; i++)
|
|
cqp->buf[len + i] = cop[k + i];
|
|
|
|
len += n;
|
|
k += n;
|
|
|
|
/* if cqp is full then, enqueue crypto-ops to PMD */
|
|
if (len == RTE_DIM(cqp->buf)) {
|
|
n = rte_cryptodev_enqueue_burst(cqp->id, cqp->qp,
|
|
cqp->buf, len);
|
|
cqp->in_flight += n;
|
|
free_cops(cqp->buf + n, len - n);
|
|
len = 0;
|
|
}
|
|
|
|
|
|
} while (k != num);
|
|
|
|
cqp->len = len;
|
|
}
|
|
|
|
static inline int
|
|
fill_ipsec_session(struct rte_ipsec_session *ss, struct ipsec_ctx *ctx,
|
|
struct ipsec_sa *sa)
|
|
{
|
|
int32_t rc;
|
|
|
|
/* setup crypto section */
|
|
if (ss->type == RTE_SECURITY_ACTION_TYPE_NONE ||
|
|
ss->type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) {
|
|
RTE_ASSERT(ss->crypto.ses == NULL);
|
|
rc = create_lookaside_session(ctx, sa, ss);
|
|
if (rc != 0)
|
|
return rc;
|
|
/* setup session action type */
|
|
} else if (ss->type == RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL) {
|
|
RTE_ASSERT(ss->security.ses == NULL);
|
|
rc = create_lookaside_session(ctx, sa, ss);
|
|
if (rc != 0)
|
|
return rc;
|
|
} else
|
|
RTE_ASSERT(0);
|
|
|
|
rc = rte_ipsec_session_prepare(ss);
|
|
if (rc != 0)
|
|
memset(ss, 0, sizeof(*ss));
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* group input packets byt the SA they belong to.
|
|
*/
|
|
static uint32_t
|
|
sa_group(void *sa_ptr[], struct rte_mbuf *pkts[],
|
|
struct rte_ipsec_group grp[], uint32_t num)
|
|
{
|
|
uint32_t i, n, spi;
|
|
void *sa;
|
|
void * const nosa = &spi;
|
|
|
|
sa = nosa;
|
|
grp[0].m = pkts;
|
|
for (i = 0, n = 0; i != num; i++) {
|
|
|
|
if (sa != sa_ptr[i]) {
|
|
grp[n].cnt = pkts + i - grp[n].m;
|
|
n += (sa != nosa);
|
|
grp[n].id.ptr = sa_ptr[i];
|
|
grp[n].m = pkts + i;
|
|
sa = sa_ptr[i];
|
|
}
|
|
}
|
|
|
|
/* terminate last group */
|
|
if (sa != nosa) {
|
|
grp[n].cnt = pkts + i - grp[n].m;
|
|
n++;
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
* helper function, splits processed packets into ipv4/ipv6 traffic.
|
|
*/
|
|
static inline void
|
|
copy_to_trf(struct ipsec_traffic *trf, uint64_t satp, struct rte_mbuf *mb[],
|
|
uint32_t num)
|
|
{
|
|
uint32_t j, ofs, s;
|
|
struct traffic_type *out;
|
|
|
|
/*
|
|
* determine traffic type(ipv4/ipv6) and offset for ACL classify
|
|
* based on SA type
|
|
*/
|
|
if ((satp & RTE_IPSEC_SATP_DIR_MASK) == RTE_IPSEC_SATP_DIR_IB) {
|
|
if ((satp & RTE_IPSEC_SATP_IPV_MASK) == RTE_IPSEC_SATP_IPV4) {
|
|
out = &trf->ip4;
|
|
ofs = offsetof(struct ip, ip_p);
|
|
} else {
|
|
out = &trf->ip6;
|
|
ofs = offsetof(struct ip6_hdr, ip6_nxt);
|
|
}
|
|
} else if (SATP_OUT_IPV4(satp)) {
|
|
out = &trf->ip4;
|
|
ofs = offsetof(struct ip, ip_p);
|
|
} else {
|
|
out = &trf->ip6;
|
|
ofs = offsetof(struct ip6_hdr, ip6_nxt);
|
|
}
|
|
|
|
for (j = 0, s = out->num; j != num; j++) {
|
|
out->data[s + j] = rte_pktmbuf_mtod_offset(mb[j],
|
|
void *, ofs);
|
|
out->pkts[s + j] = mb[j];
|
|
}
|
|
|
|
out->num += num;
|
|
}
|
|
|
|
static uint32_t
|
|
ipsec_prepare_crypto_group(struct ipsec_ctx *ctx, struct ipsec_sa *sa,
|
|
struct rte_ipsec_session *ips, struct rte_mbuf **m,
|
|
unsigned int cnt)
|
|
{
|
|
struct cdev_qp *cqp;
|
|
struct rte_crypto_op *cop[cnt];
|
|
uint32_t j, k;
|
|
struct ipsec_mbuf_metadata *priv;
|
|
|
|
cqp = &ctx->tbl[sa->cdev_id_qp];
|
|
|
|
/* for that app each mbuf has it's own crypto op */
|
|
for (j = 0; j != cnt; j++) {
|
|
priv = get_priv(m[j]);
|
|
cop[j] = &priv->cop;
|
|
/*
|
|
* this is just to satisfy inbound_sa_check()
|
|
* should be removed in future.
|
|
*/
|
|
priv->sa = sa;
|
|
}
|
|
|
|
/* prepare and enqueue crypto ops */
|
|
k = rte_ipsec_pkt_crypto_prepare(ips, m, cop, cnt);
|
|
if (k != 0)
|
|
enqueue_cop_bulk(cqp, cop, k);
|
|
|
|
return k;
|
|
}
|
|
|
|
/*
|
|
* helper routine for inline and cpu(synchronous) processing
|
|
* this is just to satisfy inbound_sa_check() and get_hop_for_offload_pkt().
|
|
* Should be removed in future.
|
|
*/
|
|
static inline void
|
|
prep_process_group(void *sa, struct rte_mbuf *mb[], uint32_t cnt)
|
|
{
|
|
uint32_t j;
|
|
struct ipsec_mbuf_metadata *priv;
|
|
|
|
for (j = 0; j != cnt; j++) {
|
|
priv = get_priv(mb[j]);
|
|
priv->sa = sa;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* finish processing of packets successfully decrypted by an inline processor
|
|
*/
|
|
static uint32_t
|
|
ipsec_process_inline_group(struct rte_ipsec_session *ips, void *sa,
|
|
struct ipsec_traffic *trf, struct rte_mbuf *mb[], uint32_t cnt)
|
|
{
|
|
uint64_t satp;
|
|
uint32_t k;
|
|
|
|
/* get SA type */
|
|
satp = rte_ipsec_sa_type(ips->sa);
|
|
prep_process_group(sa, mb, cnt);
|
|
|
|
k = rte_ipsec_pkt_process(ips, mb, cnt);
|
|
copy_to_trf(trf, satp, mb, k);
|
|
return k;
|
|
}
|
|
|
|
/*
|
|
* process packets synchronously
|
|
*/
|
|
static uint32_t
|
|
ipsec_process_cpu_group(struct rte_ipsec_session *ips, void *sa,
|
|
struct ipsec_traffic *trf, struct rte_mbuf *mb[], uint32_t cnt)
|
|
{
|
|
uint64_t satp;
|
|
uint32_t k;
|
|
|
|
/* get SA type */
|
|
satp = rte_ipsec_sa_type(ips->sa);
|
|
prep_process_group(sa, mb, cnt);
|
|
|
|
k = rte_ipsec_pkt_cpu_prepare(ips, mb, cnt);
|
|
k = rte_ipsec_pkt_process(ips, mb, k);
|
|
copy_to_trf(trf, satp, mb, k);
|
|
return k;
|
|
}
|
|
|
|
/*
|
|
* Process ipsec packets.
|
|
* If packet belong to SA that is subject of inline-crypto,
|
|
* then process it immediately.
|
|
* Otherwise do necessary preparations and queue it to related
|
|
* crypto-dev queue.
|
|
*/
|
|
void
|
|
ipsec_process(struct ipsec_ctx *ctx, struct ipsec_traffic *trf)
|
|
{
|
|
uint32_t i, k, n;
|
|
struct ipsec_sa *sa;
|
|
struct rte_ipsec_group *pg;
|
|
struct rte_ipsec_session *ips;
|
|
struct rte_ipsec_group grp[RTE_DIM(trf->ipsec.pkts)];
|
|
|
|
n = sa_group(trf->ipsec.saptr, trf->ipsec.pkts, grp, trf->ipsec.num);
|
|
|
|
for (i = 0; i != n; i++) {
|
|
|
|
pg = grp + i;
|
|
sa = ipsec_mask_saptr(pg->id.ptr);
|
|
|
|
/* fallback to cryptodev with RX packets which inline
|
|
* processor was unable to process
|
|
*/
|
|
if (sa != NULL)
|
|
ips = (pg->id.val & IPSEC_SA_OFFLOAD_FALLBACK_FLAG) ?
|
|
ipsec_get_fallback_session(sa) :
|
|
ipsec_get_primary_session(sa);
|
|
|
|
/* no valid HW session for that SA, try to create one */
|
|
if (sa == NULL || (ips->crypto.ses == NULL &&
|
|
fill_ipsec_session(ips, ctx, sa) != 0))
|
|
k = 0;
|
|
|
|
/* process packets inline */
|
|
else {
|
|
switch (ips->type) {
|
|
/* enqueue packets to crypto dev */
|
|
case RTE_SECURITY_ACTION_TYPE_NONE:
|
|
case RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL:
|
|
k = ipsec_prepare_crypto_group(ctx, sa, ips,
|
|
pg->m, pg->cnt);
|
|
break;
|
|
case RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO:
|
|
case RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL:
|
|
k = ipsec_process_inline_group(ips, sa,
|
|
trf, pg->m, pg->cnt);
|
|
break;
|
|
case RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO:
|
|
k = ipsec_process_cpu_group(ips, sa,
|
|
trf, pg->m, pg->cnt);
|
|
break;
|
|
default:
|
|
k = 0;
|
|
}
|
|
}
|
|
|
|
/* drop packets that cannot be enqueued/processed */
|
|
if (k != pg->cnt)
|
|
free_pkts(pg->m + k, pg->cnt - k);
|
|
}
|
|
}
|
|
|
|
static inline uint32_t
|
|
cqp_dequeue(struct cdev_qp *cqp, struct rte_crypto_op *cop[], uint32_t num)
|
|
{
|
|
uint32_t n;
|
|
|
|
if (cqp->in_flight == 0)
|
|
return 0;
|
|
|
|
n = rte_cryptodev_dequeue_burst(cqp->id, cqp->qp, cop, num);
|
|
RTE_ASSERT(cqp->in_flight >= n);
|
|
cqp->in_flight -= n;
|
|
|
|
return n;
|
|
}
|
|
|
|
static inline uint32_t
|
|
ctx_dequeue(struct ipsec_ctx *ctx, struct rte_crypto_op *cop[], uint32_t num)
|
|
{
|
|
uint32_t i, n;
|
|
|
|
n = 0;
|
|
|
|
for (i = ctx->last_qp; n != num && i != ctx->nb_qps; i++)
|
|
n += cqp_dequeue(ctx->tbl + i, cop + n, num - n);
|
|
|
|
for (i = 0; n != num && i != ctx->last_qp; i++)
|
|
n += cqp_dequeue(ctx->tbl + i, cop + n, num - n);
|
|
|
|
ctx->last_qp = i;
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
* dequeue packets from crypto-queues and finalize processing.
|
|
*/
|
|
void
|
|
ipsec_cqp_process(struct ipsec_ctx *ctx, struct ipsec_traffic *trf)
|
|
{
|
|
uint64_t satp;
|
|
uint32_t i, k, n, ng;
|
|
struct rte_ipsec_session *ss;
|
|
struct traffic_type *out;
|
|
struct rte_ipsec_group *pg;
|
|
struct rte_crypto_op *cop[RTE_DIM(trf->ipsec.pkts)];
|
|
struct rte_ipsec_group grp[RTE_DIM(trf->ipsec.pkts)];
|
|
|
|
trf->ip4.num = 0;
|
|
trf->ip6.num = 0;
|
|
|
|
out = &trf->ipsec;
|
|
|
|
/* dequeue completed crypto-ops */
|
|
n = ctx_dequeue(ctx, cop, RTE_DIM(cop));
|
|
if (n == 0)
|
|
return;
|
|
|
|
/* group them by ipsec session */
|
|
ng = rte_ipsec_pkt_crypto_group((const struct rte_crypto_op **)
|
|
(uintptr_t)cop, out->pkts, grp, n);
|
|
|
|
/* process each group of packets */
|
|
for (i = 0; i != ng; i++) {
|
|
|
|
pg = grp + i;
|
|
ss = pg->id.ptr;
|
|
satp = rte_ipsec_sa_type(ss->sa);
|
|
|
|
k = rte_ipsec_pkt_process(ss, pg->m, pg->cnt);
|
|
copy_to_trf(trf, satp, pg->m, k);
|
|
|
|
/* free bad packets, if any */
|
|
free_pkts(pg->m + k, pg->cnt - k);
|
|
|
|
n -= pg->cnt;
|
|
}
|
|
|
|
/* we should never have packet with unknown SA here */
|
|
RTE_VERIFY(n == 0);
|
|
}
|