numam-dpdk/lib/librte_eal/common/eal_common_memzone.c
Anatoly Burakov 23fa86e529 memzone: enable IOVA-contiguous reserving
This adds a new flag to request reserved memzone to be IOVA
contiguous. This is useful for allocating hardware resources like
NIC rings/queues etc.For now, hugepage memory is always contiguous,
but we need to prepare the drivers for the switch.

Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com>
Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com>
Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com>
Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 19:44:05 +02:00

439 lines
11 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <stdarg.h>
#include <inttypes.h>
#include <string.h>
#include <errno.h>
#include <sys/queue.h>
#include <rte_log.h>
#include <rte_memory.h>
#include <rte_memzone.h>
#include <rte_eal.h>
#include <rte_eal_memconfig.h>
#include <rte_per_lcore.h>
#include <rte_errno.h>
#include <rte_string_fns.h>
#include <rte_common.h>
#include "malloc_heap.h"
#include "malloc_elem.h"
#include "eal_private.h"
static inline const struct rte_memzone *
memzone_lookup_thread_unsafe(const char *name)
{
const struct rte_mem_config *mcfg;
const struct rte_memzone *mz;
unsigned i = 0;
/* get pointer to global configuration */
mcfg = rte_eal_get_configuration()->mem_config;
/*
* the algorithm is not optimal (linear), but there are few
* zones and this function should be called at init only
*/
for (i = 0; i < RTE_MAX_MEMZONE; i++) {
mz = &mcfg->memzone[i];
if (mz->addr != NULL && !strncmp(name, mz->name, RTE_MEMZONE_NAMESIZE))
return &mcfg->memzone[i];
}
return NULL;
}
static inline struct rte_memzone *
get_next_free_memzone(void)
{
struct rte_mem_config *mcfg;
unsigned i = 0;
/* get pointer to global configuration */
mcfg = rte_eal_get_configuration()->mem_config;
for (i = 0; i < RTE_MAX_MEMZONE; i++) {
if (mcfg->memzone[i].addr == NULL)
return &mcfg->memzone[i];
}
return NULL;
}
/* This function will return the greatest free block if a heap has been
* specified. If no heap has been specified, it will return the heap and
* length of the greatest free block available in all heaps */
static size_t
find_heap_max_free_elem(int *s, unsigned align)
{
struct rte_mem_config *mcfg;
struct rte_malloc_socket_stats stats;
int i, socket = *s;
size_t len = 0;
/* get pointer to global configuration */
mcfg = rte_eal_get_configuration()->mem_config;
for (i = 0; i < RTE_MAX_NUMA_NODES; i++) {
if ((socket != SOCKET_ID_ANY) && (socket != i))
continue;
malloc_heap_get_stats(&mcfg->malloc_heaps[i], &stats);
if (stats.greatest_free_size > len) {
len = stats.greatest_free_size;
*s = i;
}
}
if (len < MALLOC_ELEM_OVERHEAD + align)
return 0;
return len - MALLOC_ELEM_OVERHEAD - align;
}
static const struct rte_memzone *
memzone_reserve_aligned_thread_unsafe(const char *name, size_t len,
int socket_id, unsigned int flags, unsigned int align,
unsigned int bound)
{
struct rte_memzone *mz;
struct rte_mem_config *mcfg;
size_t requested_len;
int socket, i;
bool contig;
/* get pointer to global configuration */
mcfg = rte_eal_get_configuration()->mem_config;
/* no more room in config */
if (mcfg->memzone_cnt >= RTE_MAX_MEMZONE) {
RTE_LOG(ERR, EAL, "%s(): No more room in config\n", __func__);
rte_errno = ENOSPC;
return NULL;
}
if (strlen(name) > sizeof(mz->name) - 1) {
RTE_LOG(DEBUG, EAL, "%s(): memzone <%s>: name too long\n",
__func__, name);
rte_errno = ENAMETOOLONG;
return NULL;
}
/* zone already exist */
if ((memzone_lookup_thread_unsafe(name)) != NULL) {
RTE_LOG(DEBUG, EAL, "%s(): memzone <%s> already exists\n",
__func__, name);
rte_errno = EEXIST;
return NULL;
}
/* if alignment is not a power of two */
if (align && !rte_is_power_of_2(align)) {
RTE_LOG(ERR, EAL, "%s(): Invalid alignment: %u\n", __func__,
align);
rte_errno = EINVAL;
return NULL;
}
/* alignment less than cache size is not allowed */
if (align < RTE_CACHE_LINE_SIZE)
align = RTE_CACHE_LINE_SIZE;
/* align length on cache boundary. Check for overflow before doing so */
if (len > SIZE_MAX - RTE_CACHE_LINE_MASK) {
rte_errno = EINVAL; /* requested size too big */
return NULL;
}
len += RTE_CACHE_LINE_MASK;
len &= ~((size_t) RTE_CACHE_LINE_MASK);
/* save minimal requested length */
requested_len = RTE_MAX((size_t)RTE_CACHE_LINE_SIZE, len);
/* check that boundary condition is valid */
if (bound != 0 && (requested_len > bound || !rte_is_power_of_2(bound))) {
rte_errno = EINVAL;
return NULL;
}
if ((socket_id != SOCKET_ID_ANY) &&
(socket_id >= RTE_MAX_NUMA_NODES || socket_id < 0)) {
rte_errno = EINVAL;
return NULL;
}
if (!rte_eal_has_hugepages())
socket_id = SOCKET_ID_ANY;
contig = (flags & RTE_MEMZONE_IOVA_CONTIG) != 0;
/* malloc only cares about size flags, remove contig flag from flags */
flags &= ~RTE_MEMZONE_IOVA_CONTIG;
if (len == 0) {
/* len == 0 is only allowed for non-contiguous zones */
if (contig) {
RTE_LOG(DEBUG, EAL, "Reserving zero-length contiguous memzones is not supported\n");
rte_errno = EINVAL;
return NULL;
}
if (bound != 0)
requested_len = bound;
else {
requested_len = find_heap_max_free_elem(&socket_id, align);
if (requested_len == 0) {
rte_errno = ENOMEM;
return NULL;
}
}
}
if (socket_id == SOCKET_ID_ANY)
socket = malloc_get_numa_socket();
else
socket = socket_id;
/* allocate memory on heap */
void *mz_addr = malloc_heap_alloc(&mcfg->malloc_heaps[socket], NULL,
requested_len, flags, align, bound, contig);
if ((mz_addr == NULL) && (socket_id == SOCKET_ID_ANY)) {
/* try other heaps */
for (i = 0; i < RTE_MAX_NUMA_NODES; i++) {
if (socket == i)
continue;
mz_addr = malloc_heap_alloc(&mcfg->malloc_heaps[i],
NULL, requested_len, flags, align,
bound, contig);
if (mz_addr != NULL)
break;
}
}
if (mz_addr == NULL) {
rte_errno = ENOMEM;
return NULL;
}
struct malloc_elem *elem = malloc_elem_from_data(mz_addr);
/* fill the zone in config */
mz = get_next_free_memzone();
if (mz == NULL) {
RTE_LOG(ERR, EAL, "%s(): Cannot find free memzone but there is room "
"in config!\n", __func__);
malloc_elem_free(elem);
rte_errno = ENOSPC;
return NULL;
}
mcfg->memzone_cnt++;
snprintf(mz->name, sizeof(mz->name), "%s", name);
mz->iova = rte_malloc_virt2iova(mz_addr);
mz->addr = mz_addr;
mz->len = (requested_len == 0 ? elem->size : requested_len);
mz->hugepage_sz = elem->ms->hugepage_sz;
mz->socket_id = elem->ms->socket_id;
mz->flags = 0;
mz->memseg_id = elem->ms - rte_eal_get_configuration()->mem_config->memseg;
return mz;
}
static const struct rte_memzone *
rte_memzone_reserve_thread_safe(const char *name, size_t len, int socket_id,
unsigned int flags, unsigned int align, unsigned int bound)
{
struct rte_mem_config *mcfg;
const struct rte_memzone *mz = NULL;
/* get pointer to global configuration */
mcfg = rte_eal_get_configuration()->mem_config;
rte_rwlock_write_lock(&mcfg->mlock);
mz = memzone_reserve_aligned_thread_unsafe(
name, len, socket_id, flags, align, bound);
rte_rwlock_write_unlock(&mcfg->mlock);
return mz;
}
/*
* Return a pointer to a correctly filled memzone descriptor (with a
* specified alignment and boundary). If the allocation cannot be done,
* return NULL.
*/
const struct rte_memzone *
rte_memzone_reserve_bounded(const char *name, size_t len, int socket_id,
unsigned flags, unsigned align, unsigned bound)
{
return rte_memzone_reserve_thread_safe(name, len, socket_id, flags,
align, bound);
}
/*
* Return a pointer to a correctly filled memzone descriptor (with a
* specified alignment). If the allocation cannot be done, return NULL.
*/
const struct rte_memzone *
rte_memzone_reserve_aligned(const char *name, size_t len, int socket_id,
unsigned flags, unsigned align)
{
return rte_memzone_reserve_thread_safe(name, len, socket_id, flags,
align, 0);
}
/*
* Return a pointer to a correctly filled memzone descriptor. If the
* allocation cannot be done, return NULL.
*/
const struct rte_memzone *
rte_memzone_reserve(const char *name, size_t len, int socket_id,
unsigned flags)
{
return rte_memzone_reserve_thread_safe(name, len, socket_id,
flags, RTE_CACHE_LINE_SIZE, 0);
}
int
rte_memzone_free(const struct rte_memzone *mz)
{
struct rte_mem_config *mcfg;
int ret = 0;
void *addr;
unsigned idx;
if (mz == NULL)
return -EINVAL;
mcfg = rte_eal_get_configuration()->mem_config;
rte_rwlock_write_lock(&mcfg->mlock);
idx = ((uintptr_t)mz - (uintptr_t)mcfg->memzone);
idx = idx / sizeof(struct rte_memzone);
addr = mcfg->memzone[idx].addr;
if (addr == NULL)
ret = -EINVAL;
else if (mcfg->memzone_cnt == 0) {
rte_panic("%s(): memzone address not NULL but memzone_cnt is 0!\n",
__func__);
} else {
memset(&mcfg->memzone[idx], 0, sizeof(mcfg->memzone[idx]));
mcfg->memzone_cnt--;
}
rte_rwlock_write_unlock(&mcfg->mlock);
rte_free(addr);
return ret;
}
/*
* Lookup for the memzone identified by the given name
*/
const struct rte_memzone *
rte_memzone_lookup(const char *name)
{
struct rte_mem_config *mcfg;
const struct rte_memzone *memzone = NULL;
mcfg = rte_eal_get_configuration()->mem_config;
rte_rwlock_read_lock(&mcfg->mlock);
memzone = memzone_lookup_thread_unsafe(name);
rte_rwlock_read_unlock(&mcfg->mlock);
return memzone;
}
/* Dump all reserved memory zones on console */
void
rte_memzone_dump(FILE *f)
{
struct rte_mem_config *mcfg;
unsigned i = 0;
/* get pointer to global configuration */
mcfg = rte_eal_get_configuration()->mem_config;
rte_rwlock_read_lock(&mcfg->mlock);
/* dump all zones */
for (i=0; i<RTE_MAX_MEMZONE; i++) {
if (mcfg->memzone[i].addr == NULL)
break;
fprintf(f, "Zone %u: name:<%s>, IO:0x%"PRIx64", len:0x%zx"
", virt:%p, socket_id:%"PRId32", flags:%"PRIx32"\n", i,
mcfg->memzone[i].name,
mcfg->memzone[i].iova,
mcfg->memzone[i].len,
mcfg->memzone[i].addr,
mcfg->memzone[i].socket_id,
mcfg->memzone[i].flags);
}
rte_rwlock_read_unlock(&mcfg->mlock);
}
/*
* Init the memzone subsystem
*/
int
rte_eal_memzone_init(void)
{
struct rte_mem_config *mcfg;
const struct rte_memseg *memseg;
/* get pointer to global configuration */
mcfg = rte_eal_get_configuration()->mem_config;
/* secondary processes don't need to initialise anything */
if (rte_eal_process_type() == RTE_PROC_SECONDARY)
return 0;
memseg = rte_eal_get_physmem_layout();
if (memseg == NULL) {
RTE_LOG(ERR, EAL, "%s(): Cannot get physical layout\n", __func__);
return -1;
}
rte_rwlock_write_lock(&mcfg->mlock);
/* delete all zones */
mcfg->memzone_cnt = 0;
memset(mcfg->memzone, 0, sizeof(mcfg->memzone));
rte_rwlock_write_unlock(&mcfg->mlock);
return rte_eal_malloc_heap_init();
}
/* Walk all reserved memory zones */
void rte_memzone_walk(void (*func)(const struct rte_memzone *, void *),
void *arg)
{
struct rte_mem_config *mcfg;
unsigned i;
mcfg = rte_eal_get_configuration()->mem_config;
rte_rwlock_read_lock(&mcfg->mlock);
for (i=0; i<RTE_MAX_MEMZONE; i++) {
if (mcfg->memzone[i].addr != NULL)
(*func)(&mcfg->memzone[i], arg);
}
rte_rwlock_read_unlock(&mcfg->mlock);
}