numam-dpdk/lib/librte_eal/common/rte_malloc.c
Anatoly Burakov 5ea85289a9 malloc: support contiguous allocation
No major changes, just add some checks in a few key places, and
a new parameter to pass around.

Also, add a function to check malloc element for physical
contiguousness. For now, assume hugepage memory is always
contiguous, while non-hugepage memory will be checked.

Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com>
Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com>
Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com>
Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 19:43:55 +02:00

259 lines
6.0 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <stdint.h>
#include <stddef.h>
#include <stdio.h>
#include <string.h>
#include <sys/queue.h>
#include <rte_memcpy.h>
#include <rte_memory.h>
#include <rte_eal.h>
#include <rte_eal_memconfig.h>
#include <rte_branch_prediction.h>
#include <rte_debug.h>
#include <rte_launch.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_common.h>
#include <rte_spinlock.h>
#include <rte_malloc.h>
#include "malloc_elem.h"
#include "malloc_heap.h"
/* Free the memory space back to heap */
void rte_free(void *addr)
{
if (addr == NULL) return;
if (malloc_heap_free(malloc_elem_from_data(addr)) < 0)
RTE_LOG(ERR, EAL, "Error: Invalid memory\n");
}
/*
* Allocate memory on specified heap.
*/
void *
rte_malloc_socket(const char *type, size_t size, unsigned int align,
int socket_arg)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
int socket, i;
void *ret;
/* return NULL if size is 0 or alignment is not power-of-2 */
if (size == 0 || (align && !rte_is_power_of_2(align)))
return NULL;
if (!rte_eal_has_hugepages())
socket_arg = SOCKET_ID_ANY;
if (socket_arg == SOCKET_ID_ANY)
socket = malloc_get_numa_socket();
else
socket = socket_arg;
/* Check socket parameter */
if (socket >= RTE_MAX_NUMA_NODES)
return NULL;
ret = malloc_heap_alloc(&mcfg->malloc_heaps[socket], type,
size, 0, align == 0 ? 1 : align, 0, false);
if (ret != NULL || socket_arg != SOCKET_ID_ANY)
return ret;
/* try other heaps */
for (i = 0; i < RTE_MAX_NUMA_NODES; i++) {
/* we already tried this one */
if (i == socket)
continue;
ret = malloc_heap_alloc(&mcfg->malloc_heaps[i], type,
size, 0, align == 0 ? 1 : align, 0, false);
if (ret != NULL)
return ret;
}
return NULL;
}
/*
* Allocate memory on default heap.
*/
void *
rte_malloc(const char *type, size_t size, unsigned align)
{
return rte_malloc_socket(type, size, align, SOCKET_ID_ANY);
}
/*
* Allocate zero'd memory on specified heap.
*/
void *
rte_zmalloc_socket(const char *type, size_t size, unsigned align, int socket)
{
return rte_malloc_socket(type, size, align, socket);
}
/*
* Allocate zero'd memory on default heap.
*/
void *
rte_zmalloc(const char *type, size_t size, unsigned align)
{
return rte_zmalloc_socket(type, size, align, SOCKET_ID_ANY);
}
/*
* Allocate zero'd memory on specified heap.
*/
void *
rte_calloc_socket(const char *type, size_t num, size_t size, unsigned align, int socket)
{
return rte_zmalloc_socket(type, num * size, align, socket);
}
/*
* Allocate zero'd memory on default heap.
*/
void *
rte_calloc(const char *type, size_t num, size_t size, unsigned align)
{
return rte_zmalloc(type, num * size, align);
}
/*
* Resize allocated memory.
*/
void *
rte_realloc(void *ptr, size_t size, unsigned align)
{
if (ptr == NULL)
return rte_malloc(NULL, size, align);
struct malloc_elem *elem = malloc_elem_from_data(ptr);
if (elem == NULL) {
RTE_LOG(ERR, EAL, "Error: memory corruption detected\n");
return NULL;
}
size = RTE_CACHE_LINE_ROUNDUP(size), align = RTE_CACHE_LINE_ROUNDUP(align);
/* check alignment matches first, and if ok, see if we can resize block */
if (RTE_PTR_ALIGN(ptr,align) == ptr &&
malloc_heap_resize(elem, size) == 0)
return ptr;
/* either alignment is off, or we have no room to expand,
* so move data. */
void *new_ptr = rte_malloc(NULL, size, align);
if (new_ptr == NULL)
return NULL;
const unsigned old_size = elem->size - MALLOC_ELEM_OVERHEAD;
rte_memcpy(new_ptr, ptr, old_size < size ? old_size : size);
rte_free(ptr);
return new_ptr;
}
int
rte_malloc_validate(const void *ptr, size_t *size)
{
const struct malloc_elem *elem = malloc_elem_from_data(ptr);
if (!malloc_elem_cookies_ok(elem))
return -1;
if (size != NULL)
*size = elem->size - elem->pad - MALLOC_ELEM_OVERHEAD;
return 0;
}
/*
* Function to retrieve data for heap on given socket
*/
int
rte_malloc_get_socket_stats(int socket,
struct rte_malloc_socket_stats *socket_stats)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
if (socket >= RTE_MAX_NUMA_NODES || socket < 0)
return -1;
return malloc_heap_get_stats(&mcfg->malloc_heaps[socket], socket_stats);
}
/*
* Function to dump contents of all heaps
*/
void __rte_experimental
rte_malloc_dump_heaps(FILE *f)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
unsigned int idx;
for (idx = 0; idx < rte_socket_count(); idx++) {
unsigned int socket = rte_socket_id_by_idx(idx);
fprintf(f, "Heap on socket %i:\n", socket);
malloc_heap_dump(&mcfg->malloc_heaps[socket], f);
}
}
/*
* Print stats on memory type. If type is NULL, info on all types is printed
*/
void
rte_malloc_dump_stats(FILE *f, __rte_unused const char *type)
{
unsigned int socket;
struct rte_malloc_socket_stats sock_stats;
/* Iterate through all initialised heaps */
for (socket=0; socket< RTE_MAX_NUMA_NODES; socket++) {
if ((rte_malloc_get_socket_stats(socket, &sock_stats) < 0))
continue;
fprintf(f, "Socket:%u\n", socket);
fprintf(f, "\tHeap_size:%zu,\n", sock_stats.heap_totalsz_bytes);
fprintf(f, "\tFree_size:%zu,\n", sock_stats.heap_freesz_bytes);
fprintf(f, "\tAlloc_size:%zu,\n", sock_stats.heap_allocsz_bytes);
fprintf(f, "\tGreatest_free_size:%zu,\n",
sock_stats.greatest_free_size);
fprintf(f, "\tAlloc_count:%u,\n",sock_stats.alloc_count);
fprintf(f, "\tFree_count:%u,\n", sock_stats.free_count);
}
return;
}
/*
* TODO: Set limit to memory that can be allocated to memory type
*/
int
rte_malloc_set_limit(__rte_unused const char *type,
__rte_unused size_t max)
{
return 0;
}
/*
* Return the IO address of a virtual address obtained through rte_malloc
*/
rte_iova_t
rte_malloc_virt2iova(const void *addr)
{
rte_iova_t iova;
const struct malloc_elem *elem = malloc_elem_from_data(addr);
if (elem == NULL)
return RTE_BAD_IOVA;
if (elem->ms->iova == RTE_BAD_IOVA)
return RTE_BAD_IOVA;
if (rte_eal_iova_mode() == RTE_IOVA_VA)
iova = (uintptr_t)addr;
else
iova = elem->ms->iova +
RTE_PTR_DIFF(addr, elem->ms->addr);
return iova;
}