numam-dpdk/drivers/net/failsafe/failsafe_ether.c
Ivan Ilchenko 97742c7b0a net/failsafe: check stop call status
rte_eth_dev_stop() return value was changed from void to int,
so this patch modify usage of this function across net/failsafe
according to new return type.

Signed-off-by: Ivan Ilchenko <ivan.ilchenko@oktetlabs.ru>
Signed-off-by: Andrew Rybchenko <arybchenko@solarflare.com>
2020-10-16 22:26:41 +02:00

654 lines
16 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2017 6WIND S.A.
* Copyright 2017 Mellanox Technologies, Ltd
*/
#include <unistd.h>
#include <rte_flow.h>
#include <rte_flow_driver.h>
#include <rte_cycles.h>
#include "failsafe_private.h"
/** Print a message out of a flow error. */
static int
fs_flow_complain(struct rte_flow_error *error)
{
static const char *const errstrlist[] = {
[RTE_FLOW_ERROR_TYPE_NONE] = "no error",
[RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified",
[RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)",
[RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field",
[RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field",
[RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field",
[RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field",
[RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure",
[RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length",
[RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item",
[RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions",
[RTE_FLOW_ERROR_TYPE_ACTION] = "specific action",
};
const char *errstr;
char buf[32];
int err = rte_errno;
if ((unsigned int)error->type >= RTE_DIM(errstrlist) ||
!errstrlist[error->type])
errstr = "unknown type";
else
errstr = errstrlist[error->type];
ERROR("Caught error type %d (%s): %s%s\n",
error->type, errstr,
error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ",
error->cause), buf) : "",
error->message ? error->message : "(no stated reason)");
return -err;
}
static int
eth_dev_flow_isolate_set(struct rte_eth_dev *dev,
struct sub_device *sdev)
{
struct rte_flow_error ferror;
int ret;
if (!PRIV(dev)->flow_isolated) {
DEBUG("Flow isolation already disabled");
} else {
DEBUG("Enabling flow isolation");
ret = rte_flow_isolate(PORT_ID(sdev),
PRIV(dev)->flow_isolated,
&ferror);
if (ret) {
fs_flow_complain(&ferror);
return ret;
}
}
return 0;
}
static int
fs_eth_dev_conf_apply(struct rte_eth_dev *dev,
struct sub_device *sdev)
{
struct rte_eth_dev *edev;
struct rte_vlan_filter_conf *vfc1;
struct rte_vlan_filter_conf *vfc2;
struct rte_flow *flow;
struct rte_flow_error ferror;
uint32_t i;
int ret;
edev = ETH(sdev);
/* RX queue setup */
for (i = 0; i < dev->data->nb_rx_queues; i++) {
struct rxq *rxq;
rxq = dev->data->rx_queues[i];
ret = rte_eth_rx_queue_setup(PORT_ID(sdev), i,
rxq->info.nb_desc, rxq->socket_id,
&rxq->info.conf, rxq->info.mp);
if (ret) {
ERROR("rx_queue_setup failed");
return ret;
}
}
/* TX queue setup */
for (i = 0; i < dev->data->nb_tx_queues; i++) {
struct txq *txq;
txq = dev->data->tx_queues[i];
ret = rte_eth_tx_queue_setup(PORT_ID(sdev), i,
txq->info.nb_desc, txq->socket_id,
&txq->info.conf);
if (ret) {
ERROR("tx_queue_setup failed");
return ret;
}
}
/* dev_link.link_status */
if (dev->data->dev_link.link_status !=
edev->data->dev_link.link_status) {
DEBUG("Configuring link_status");
if (dev->data->dev_link.link_status)
ret = rte_eth_dev_set_link_up(PORT_ID(sdev));
else
ret = rte_eth_dev_set_link_down(PORT_ID(sdev));
if (ret) {
ERROR("Failed to apply link_status");
return ret;
}
} else {
DEBUG("link_status already set");
}
/* promiscuous */
if (dev->data->promiscuous != edev->data->promiscuous) {
DEBUG("Configuring promiscuous");
if (dev->data->promiscuous)
ret = rte_eth_promiscuous_enable(PORT_ID(sdev));
else
ret = rte_eth_promiscuous_disable(PORT_ID(sdev));
if (ret != 0) {
ERROR("Failed to apply promiscuous mode");
return ret;
}
} else {
DEBUG("promiscuous already set");
}
/* all_multicast */
if (dev->data->all_multicast != edev->data->all_multicast) {
DEBUG("Configuring all_multicast");
if (dev->data->all_multicast)
ret = rte_eth_allmulticast_enable(PORT_ID(sdev));
else
ret = rte_eth_allmulticast_disable(PORT_ID(sdev));
if (ret != 0) {
ERROR("Failed to apply allmulticast mode");
return ret;
}
} else {
DEBUG("all_multicast already set");
}
/* MTU */
if (dev->data->mtu != edev->data->mtu) {
DEBUG("Configuring MTU");
ret = rte_eth_dev_set_mtu(PORT_ID(sdev), dev->data->mtu);
if (ret) {
ERROR("Failed to apply MTU");
return ret;
}
} else {
DEBUG("MTU already set");
}
/* default MAC */
DEBUG("Configuring default MAC address");
ret = rte_eth_dev_default_mac_addr_set(PORT_ID(sdev),
&dev->data->mac_addrs[0]);
if (ret) {
ERROR("Setting default MAC address failed");
return ret;
}
/* additional MAC */
if (PRIV(dev)->nb_mac_addr > 1)
DEBUG("Configure additional MAC address%s",
(PRIV(dev)->nb_mac_addr > 2 ? "es" : ""));
for (i = 1; i < PRIV(dev)->nb_mac_addr; i++) {
struct rte_ether_addr *ea;
ea = &dev->data->mac_addrs[i];
ret = rte_eth_dev_mac_addr_add(PORT_ID(sdev), ea,
PRIV(dev)->mac_addr_pool[i]);
if (ret) {
char ea_fmt[RTE_ETHER_ADDR_FMT_SIZE];
rte_ether_format_addr(ea_fmt,
RTE_ETHER_ADDR_FMT_SIZE, ea);
ERROR("Adding MAC address %s failed", ea_fmt);
return ret;
}
}
/*
* Propagate multicast MAC addresses to sub-devices,
* if non zero number of addresses is set.
* The condition is required to avoid breakage of failsafe
* for sub-devices which do not support the operation
* if the feature is really not used.
*/
if (PRIV(dev)->nb_mcast_addr > 0) {
DEBUG("Configuring multicast MAC addresses");
ret = rte_eth_dev_set_mc_addr_list(PORT_ID(sdev),
PRIV(dev)->mcast_addrs,
PRIV(dev)->nb_mcast_addr);
if (ret) {
ERROR("Failed to apply multicast MAC addresses");
return ret;
}
}
/* VLAN filter */
vfc1 = &dev->data->vlan_filter_conf;
vfc2 = &edev->data->vlan_filter_conf;
if (memcmp(vfc1, vfc2, sizeof(struct rte_vlan_filter_conf))) {
uint64_t vbit;
uint64_t ids;
size_t i;
uint16_t vlan_id;
DEBUG("Configuring VLAN filter");
for (i = 0; i < RTE_DIM(vfc1->ids); i++) {
if (vfc1->ids[i] == 0)
continue;
ids = vfc1->ids[i];
while (ids) {
vlan_id = 64 * i;
/* count trailing zeroes */
vbit = ~ids & (ids - 1);
/* clear least significant bit set */
ids ^= (ids ^ (ids - 1)) ^ vbit;
for (; vbit; vlan_id++)
vbit >>= 1;
ret = rte_eth_dev_vlan_filter(
PORT_ID(sdev), vlan_id, 1);
if (ret) {
ERROR("Failed to apply VLAN filter %hu",
vlan_id);
return ret;
}
}
}
} else {
DEBUG("VLAN filter already set");
}
/* rte_flow */
if (TAILQ_EMPTY(&PRIV(dev)->flow_list)) {
DEBUG("rte_flow already set");
} else {
DEBUG("Resetting rte_flow configuration");
ret = rte_flow_flush(PORT_ID(sdev), &ferror);
if (ret) {
fs_flow_complain(&ferror);
return ret;
}
i = 0;
rte_errno = 0;
DEBUG("Configuring rte_flow");
TAILQ_FOREACH(flow, &PRIV(dev)->flow_list, next) {
DEBUG("Creating flow #%" PRIu32, i++);
flow->flows[SUB_ID(sdev)] =
rte_flow_create(PORT_ID(sdev),
flow->rule.attr,
flow->rule.pattern,
flow->rule.actions,
&ferror);
ret = rte_errno;
if (ret)
break;
}
if (ret) {
fs_flow_complain(&ferror);
return ret;
}
}
return 0;
}
static void
fs_dev_remove(struct sub_device *sdev)
{
int ret;
if (sdev == NULL)
return;
switch (sdev->state) {
case DEV_STARTED:
failsafe_rx_intr_uninstall_subdevice(sdev);
ret = rte_eth_dev_stop(PORT_ID(sdev));
if (ret < 0)
ERROR("Failed to stop sub-device %u", SUB_ID(sdev));
sdev->state = DEV_ACTIVE;
/* fallthrough */
case DEV_ACTIVE:
failsafe_eth_dev_unregister_callbacks(sdev);
ret = rte_eth_dev_close(PORT_ID(sdev));
if (ret < 0) {
ERROR("Port close failed for sub-device %u",
PORT_ID(sdev));
}
sdev->state = DEV_PROBED;
/* fallthrough */
case DEV_PROBED:
ret = rte_dev_remove(sdev->dev);
if (ret < 0) {
ERROR("Bus detach failed for sub_device %u",
SUB_ID(sdev));
} else {
rte_eth_dev_release_port(ETH(sdev));
}
sdev->state = DEV_PARSED;
/* fallthrough */
case DEV_PARSED:
case DEV_UNDEFINED:
sdev->state = DEV_UNDEFINED;
sdev->sdev_port_id = RTE_MAX_ETHPORTS;
/* the end */
break;
}
sdev->remove = 0;
failsafe_hotplug_alarm_install(fs_dev(sdev));
}
static void
fs_dev_stats_save(struct sub_device *sdev)
{
struct rte_eth_stats stats;
int err;
/* Attempt to read current stats. */
err = rte_eth_stats_get(PORT_ID(sdev), &stats);
if (err) {
uint64_t timestamp = sdev->stats_snapshot.timestamp;
WARN("Could not access latest statistics from sub-device %d.",
SUB_ID(sdev));
if (timestamp != 0)
WARN("Using latest snapshot taken before %"PRIu64" seconds.",
(rte_rdtsc() - timestamp) / rte_get_tsc_hz());
}
failsafe_stats_increment
(&PRIV(fs_dev(sdev))->stats_accumulator,
err ? &sdev->stats_snapshot.stats : &stats);
memset(&sdev->stats_snapshot, 0, sizeof(sdev->stats_snapshot));
}
static inline int
fs_rxtx_clean(struct sub_device *sdev)
{
uint16_t i;
for (i = 0; i < ETH(sdev)->data->nb_rx_queues; i++)
if (FS_ATOMIC_RX(sdev, i))
return 0;
for (i = 0; i < ETH(sdev)->data->nb_tx_queues; i++)
if (FS_ATOMIC_TX(sdev, i))
return 0;
return 1;
}
void
failsafe_eth_dev_unregister_callbacks(struct sub_device *sdev)
{
int ret;
if (sdev == NULL)
return;
if (sdev->rmv_callback) {
ret = rte_eth_dev_callback_unregister(PORT_ID(sdev),
RTE_ETH_EVENT_INTR_RMV,
failsafe_eth_rmv_event_callback,
sdev);
if (ret)
WARN("Failed to unregister RMV callback for sub_device"
" %d", SUB_ID(sdev));
sdev->rmv_callback = 0;
}
if (sdev->lsc_callback) {
ret = rte_eth_dev_callback_unregister(PORT_ID(sdev),
RTE_ETH_EVENT_INTR_LSC,
failsafe_eth_lsc_event_callback,
sdev);
if (ret)
WARN("Failed to unregister LSC callback for sub_device"
" %d", SUB_ID(sdev));
sdev->lsc_callback = 0;
}
}
void
failsafe_dev_remove(struct rte_eth_dev *dev)
{
struct sub_device *sdev;
uint8_t i;
FOREACH_SUBDEV(sdev, i, dev) {
if (!sdev->remove)
continue;
/* Active devices must have finished their burst and
* their stats must be saved.
*/
if (sdev->state >= DEV_ACTIVE &&
fs_rxtx_clean(sdev) == 0)
continue;
if (fs_lock(dev, 1) != 0)
return;
if (sdev->state >= DEV_ACTIVE)
fs_dev_stats_save(sdev);
fs_dev_remove(sdev);
fs_unlock(dev, 1);
}
}
static int
failsafe_eth_dev_rx_queues_sync(struct rte_eth_dev *dev)
{
struct rxq *rxq;
int ret;
uint16_t i;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
if (rxq->info.conf.rx_deferred_start &&
dev->data->rx_queue_state[i] ==
RTE_ETH_QUEUE_STATE_STARTED) {
/*
* The subdevice Rx queue does not launch on device
* start if deferred start flag is set. It needs to be
* started manually in case an appropriate failsafe Rx
* queue has been started earlier.
*/
ret = dev->dev_ops->rx_queue_start(dev, i);
if (ret) {
ERROR("Could not synchronize Rx queue %d", i);
return ret;
}
} else if (dev->data->rx_queue_state[i] ==
RTE_ETH_QUEUE_STATE_STOPPED) {
/*
* The subdevice Rx queue needs to be stopped manually
* in case an appropriate failsafe Rx queue has been
* stopped earlier.
*/
ret = dev->dev_ops->rx_queue_stop(dev, i);
if (ret) {
ERROR("Could not synchronize Rx queue %d", i);
return ret;
}
}
}
return 0;
}
static int
failsafe_eth_dev_tx_queues_sync(struct rte_eth_dev *dev)
{
struct txq *txq;
int ret;
uint16_t i;
for (i = 0; i < dev->data->nb_tx_queues; i++) {
txq = dev->data->tx_queues[i];
if (txq->info.conf.tx_deferred_start &&
dev->data->tx_queue_state[i] ==
RTE_ETH_QUEUE_STATE_STARTED) {
/*
* The subdevice Tx queue does not launch on device
* start if deferred start flag is set. It needs to be
* started manually in case an appropriate failsafe Tx
* queue has been started earlier.
*/
ret = dev->dev_ops->tx_queue_start(dev, i);
if (ret) {
ERROR("Could not synchronize Tx queue %d", i);
return ret;
}
} else if (dev->data->tx_queue_state[i] ==
RTE_ETH_QUEUE_STATE_STOPPED) {
/*
* The subdevice Tx queue needs to be stopped manually
* in case an appropriate failsafe Tx queue has been
* stopped earlier.
*/
ret = dev->dev_ops->tx_queue_stop(dev, i);
if (ret) {
ERROR("Could not synchronize Tx queue %d", i);
return ret;
}
}
}
return 0;
}
int
failsafe_eth_dev_state_sync(struct rte_eth_dev *dev)
{
struct sub_device *sdev;
uint32_t inactive;
int ret;
uint8_t i;
if (PRIV(dev)->state < DEV_PARSED)
return 0;
ret = failsafe_args_parse_subs(dev);
if (ret)
goto err_remove;
if (PRIV(dev)->state < DEV_PROBED)
return 0;
ret = failsafe_eal_init(dev);
if (ret)
goto err_remove;
if (PRIV(dev)->state < DEV_ACTIVE)
return 0;
inactive = 0;
FOREACH_SUBDEV(sdev, i, dev) {
if (sdev->state == DEV_PROBED) {
inactive |= UINT32_C(1) << i;
ret = eth_dev_flow_isolate_set(dev, sdev);
if (ret) {
ERROR("Could not apply configuration to sub_device %d",
i);
goto err_remove;
}
}
}
ret = dev->dev_ops->dev_configure(dev);
if (ret)
goto err_remove;
FOREACH_SUBDEV(sdev, i, dev) {
if (inactive & (UINT32_C(1) << i)) {
ret = fs_eth_dev_conf_apply(dev, sdev);
if (ret) {
ERROR("Could not apply configuration to sub_device %d",
i);
goto err_remove;
}
}
}
/*
* If new devices have been configured, check if
* the link state has changed.
*/
if (inactive)
dev->dev_ops->link_update(dev, 1);
if (PRIV(dev)->state < DEV_STARTED)
return 0;
ret = dev->dev_ops->dev_start(dev);
if (ret)
goto err_remove;
ret = failsafe_eth_dev_rx_queues_sync(dev);
if (ret)
goto err_remove;
ret = failsafe_eth_dev_tx_queues_sync(dev);
if (ret)
goto err_remove;
return 0;
err_remove:
FOREACH_SUBDEV(sdev, i, dev)
if (sdev->state != PRIV(dev)->state)
sdev->remove = 1;
return ret;
}
void
failsafe_stats_increment(struct rte_eth_stats *to, struct rte_eth_stats *from)
{
uint32_t i;
RTE_ASSERT(to != NULL && from != NULL);
to->ipackets += from->ipackets;
to->opackets += from->opackets;
to->ibytes += from->ibytes;
to->obytes += from->obytes;
to->imissed += from->imissed;
to->ierrors += from->ierrors;
to->oerrors += from->oerrors;
to->rx_nombuf += from->rx_nombuf;
for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
to->q_ipackets[i] += from->q_ipackets[i];
to->q_opackets[i] += from->q_opackets[i];
to->q_ibytes[i] += from->q_ibytes[i];
to->q_obytes[i] += from->q_obytes[i];
to->q_errors[i] += from->q_errors[i];
}
}
int
failsafe_eth_rmv_event_callback(uint16_t port_id __rte_unused,
enum rte_eth_event_type event __rte_unused,
void *cb_arg, void *out __rte_unused)
{
struct sub_device *sdev = cb_arg;
fs_lock(fs_dev(sdev), 0);
/* Switch as soon as possible tx_dev. */
fs_switch_dev(fs_dev(sdev), sdev);
/* Use safe bursts in any case. */
failsafe_set_burst_fn(fs_dev(sdev), 1);
/*
* Async removal, the sub-PMD will try to unregister
* the callback at the source of the current thread context.
*/
sdev->remove = 1;
fs_unlock(fs_dev(sdev), 0);
return 0;
}
int
failsafe_eth_lsc_event_callback(uint16_t port_id __rte_unused,
enum rte_eth_event_type event __rte_unused,
void *cb_arg, void *out __rte_unused)
{
struct rte_eth_dev *dev = cb_arg;
int ret;
ret = dev->dev_ops->link_update(dev, 0);
/* We must pass on the LSC event */
if (ret)
return rte_eth_dev_callback_process(dev,
RTE_ETH_EVENT_INTR_LSC,
NULL);
else
return 0;
}
/* Take sub-device ownership before it becomes exposed to the application. */
int
failsafe_eth_new_event_callback(uint16_t port_id,
enum rte_eth_event_type event __rte_unused,
void *cb_arg, void *out __rte_unused)
{
struct rte_eth_dev *fs_dev = cb_arg;
struct sub_device *sdev;
struct rte_eth_dev *dev = &rte_eth_devices[port_id];
uint8_t i;
FOREACH_SUBDEV_STATE(sdev, i, fs_dev, DEV_PARSED) {
if (sdev->state >= DEV_PROBED)
continue;
if (dev->device == NULL) {
WARN("Trying to probe malformed device %s.\n",
sdev->devargs.name);
continue;
}
if (strcmp(sdev->devargs.name, dev->device->name) != 0)
continue;
rte_eth_dev_owner_set(port_id, &PRIV(fs_dev)->my_owner);
/* The actual owner will be checked after the port probing. */
break;
}
return 0;
}