8d7d4fcdca
Currently majority of fast-path ethdev ops take pointers to internal queue data structures as an input parameter. While eth_rx_queue_count() takes a pointer to rte_eth_dev and queue index. For future work to hide rte_eth_devices[] and friends it would be plausible to unify parameters list of all fast-path ethdev ops. This patch changes eth_rx_queue_count() to accept pointer to internal queue data as input parameter. While this change is transparent to user, it still counts as an ABI change, as eth_rx_queue_count_t is used by ethdev public inline function rte_eth_rx_queue_count(). Signed-off-by: Konstantin Ananyev <konstantin.ananyev@intel.com> Reviewed-by: Andrew Rybchenko <andrew.rybchenko@oktetlabs.ru> Acked-by: Hyong Youb Kim <hyonkim@cisco.com> Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com> Tested-by: Feifei Wang <feifei.wang2@arm.com>
4292 lines
123 KiB
C
4292 lines
123 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2018 Intel Corporation
|
|
*/
|
|
|
|
#include <ethdev_driver.h>
|
|
#include <rte_net.h>
|
|
#include <rte_vect.h>
|
|
|
|
#include "rte_pmd_ice.h"
|
|
#include "ice_rxtx.h"
|
|
#include "ice_rxtx_vec_common.h"
|
|
|
|
#define ICE_TX_CKSUM_OFFLOAD_MASK ( \
|
|
PKT_TX_IP_CKSUM | \
|
|
PKT_TX_L4_MASK | \
|
|
PKT_TX_TCP_SEG | \
|
|
PKT_TX_OUTER_IP_CKSUM)
|
|
|
|
/* Offset of mbuf dynamic field for protocol extraction data */
|
|
int rte_net_ice_dynfield_proto_xtr_metadata_offs = -1;
|
|
|
|
/* Mask of mbuf dynamic flags for protocol extraction type */
|
|
uint64_t rte_net_ice_dynflag_proto_xtr_vlan_mask;
|
|
uint64_t rte_net_ice_dynflag_proto_xtr_ipv4_mask;
|
|
uint64_t rte_net_ice_dynflag_proto_xtr_ipv6_mask;
|
|
uint64_t rte_net_ice_dynflag_proto_xtr_ipv6_flow_mask;
|
|
uint64_t rte_net_ice_dynflag_proto_xtr_tcp_mask;
|
|
uint64_t rte_net_ice_dynflag_proto_xtr_ip_offset_mask;
|
|
|
|
static int
|
|
ice_monitor_callback(const uint64_t value,
|
|
const uint64_t arg[RTE_POWER_MONITOR_OPAQUE_SZ] __rte_unused)
|
|
{
|
|
const uint64_t m = rte_cpu_to_le_16(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S);
|
|
/*
|
|
* we expect the DD bit to be set to 1 if this descriptor was already
|
|
* written to.
|
|
*/
|
|
return (value & m) == m ? -1 : 0;
|
|
}
|
|
|
|
int
|
|
ice_get_monitor_addr(void *rx_queue, struct rte_power_monitor_cond *pmc)
|
|
{
|
|
volatile union ice_rx_flex_desc *rxdp;
|
|
struct ice_rx_queue *rxq = rx_queue;
|
|
uint16_t desc;
|
|
|
|
desc = rxq->rx_tail;
|
|
rxdp = &rxq->rx_ring[desc];
|
|
/* watch for changes in status bit */
|
|
pmc->addr = &rxdp->wb.status_error0;
|
|
|
|
/* comparison callback */
|
|
pmc->fn = ice_monitor_callback;
|
|
|
|
/* register is 16-bit */
|
|
pmc->size = sizeof(uint16_t);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static inline uint8_t
|
|
ice_proto_xtr_type_to_rxdid(uint8_t xtr_type)
|
|
{
|
|
static uint8_t rxdid_map[] = {
|
|
[PROTO_XTR_NONE] = ICE_RXDID_COMMS_OVS,
|
|
[PROTO_XTR_VLAN] = ICE_RXDID_COMMS_AUX_VLAN,
|
|
[PROTO_XTR_IPV4] = ICE_RXDID_COMMS_AUX_IPV4,
|
|
[PROTO_XTR_IPV6] = ICE_RXDID_COMMS_AUX_IPV6,
|
|
[PROTO_XTR_IPV6_FLOW] = ICE_RXDID_COMMS_AUX_IPV6_FLOW,
|
|
[PROTO_XTR_TCP] = ICE_RXDID_COMMS_AUX_TCP,
|
|
[PROTO_XTR_IP_OFFSET] = ICE_RXDID_COMMS_AUX_IP_OFFSET,
|
|
};
|
|
|
|
return xtr_type < RTE_DIM(rxdid_map) ?
|
|
rxdid_map[xtr_type] : ICE_RXDID_COMMS_OVS;
|
|
}
|
|
|
|
static inline void
|
|
ice_rxd_to_pkt_fields_by_comms_generic(__rte_unused struct ice_rx_queue *rxq,
|
|
struct rte_mbuf *mb,
|
|
volatile union ice_rx_flex_desc *rxdp)
|
|
{
|
|
volatile struct ice_32b_rx_flex_desc_comms *desc =
|
|
(volatile struct ice_32b_rx_flex_desc_comms *)rxdp;
|
|
uint16_t stat_err = rte_le_to_cpu_16(desc->status_error0);
|
|
|
|
if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
|
|
mb->ol_flags |= PKT_RX_RSS_HASH;
|
|
mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
|
|
}
|
|
|
|
#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
|
|
if (desc->flow_id != 0xFFFFFFFF) {
|
|
mb->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
|
|
mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static inline void
|
|
ice_rxd_to_pkt_fields_by_comms_ovs(__rte_unused struct ice_rx_queue *rxq,
|
|
struct rte_mbuf *mb,
|
|
volatile union ice_rx_flex_desc *rxdp)
|
|
{
|
|
volatile struct ice_32b_rx_flex_desc_comms_ovs *desc =
|
|
(volatile struct ice_32b_rx_flex_desc_comms_ovs *)rxdp;
|
|
#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
|
|
uint16_t stat_err;
|
|
#endif
|
|
|
|
if (desc->flow_id != 0xFFFFFFFF) {
|
|
mb->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
|
|
mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
|
|
}
|
|
|
|
#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
|
|
stat_err = rte_le_to_cpu_16(desc->status_error0);
|
|
if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
|
|
mb->ol_flags |= PKT_RX_RSS_HASH;
|
|
mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static inline void
|
|
ice_rxd_to_pkt_fields_by_comms_aux_v1(struct ice_rx_queue *rxq,
|
|
struct rte_mbuf *mb,
|
|
volatile union ice_rx_flex_desc *rxdp)
|
|
{
|
|
volatile struct ice_32b_rx_flex_desc_comms *desc =
|
|
(volatile struct ice_32b_rx_flex_desc_comms *)rxdp;
|
|
uint16_t stat_err;
|
|
|
|
stat_err = rte_le_to_cpu_16(desc->status_error0);
|
|
if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
|
|
mb->ol_flags |= PKT_RX_RSS_HASH;
|
|
mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
|
|
}
|
|
|
|
#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
|
|
if (desc->flow_id != 0xFFFFFFFF) {
|
|
mb->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
|
|
mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
|
|
}
|
|
|
|
if (rxq->xtr_ol_flag) {
|
|
uint32_t metadata = 0;
|
|
|
|
stat_err = rte_le_to_cpu_16(desc->status_error1);
|
|
|
|
if (stat_err & (1 << ICE_RX_FLEX_DESC_STATUS1_XTRMD4_VALID_S))
|
|
metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
|
|
|
|
if (stat_err & (1 << ICE_RX_FLEX_DESC_STATUS1_XTRMD5_VALID_S))
|
|
metadata |=
|
|
rte_le_to_cpu_16(desc->flex_ts.flex.aux1) << 16;
|
|
|
|
if (metadata) {
|
|
mb->ol_flags |= rxq->xtr_ol_flag;
|
|
|
|
*RTE_NET_ICE_DYNF_PROTO_XTR_METADATA(mb) = metadata;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static inline void
|
|
ice_rxd_to_pkt_fields_by_comms_aux_v2(struct ice_rx_queue *rxq,
|
|
struct rte_mbuf *mb,
|
|
volatile union ice_rx_flex_desc *rxdp)
|
|
{
|
|
volatile struct ice_32b_rx_flex_desc_comms *desc =
|
|
(volatile struct ice_32b_rx_flex_desc_comms *)rxdp;
|
|
uint16_t stat_err;
|
|
|
|
stat_err = rte_le_to_cpu_16(desc->status_error0);
|
|
if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
|
|
mb->ol_flags |= PKT_RX_RSS_HASH;
|
|
mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
|
|
}
|
|
|
|
#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
|
|
if (desc->flow_id != 0xFFFFFFFF) {
|
|
mb->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
|
|
mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
|
|
}
|
|
|
|
if (rxq->xtr_ol_flag) {
|
|
uint32_t metadata = 0;
|
|
|
|
if (desc->flex_ts.flex.aux0 != 0xFFFF)
|
|
metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
|
|
else if (desc->flex_ts.flex.aux1 != 0xFFFF)
|
|
metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux1);
|
|
|
|
if (metadata) {
|
|
mb->ol_flags |= rxq->xtr_ol_flag;
|
|
|
|
*RTE_NET_ICE_DYNF_PROTO_XTR_METADATA(mb) = metadata;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
ice_select_rxd_to_pkt_fields_handler(struct ice_rx_queue *rxq, uint32_t rxdid)
|
|
{
|
|
switch (rxdid) {
|
|
case ICE_RXDID_COMMS_AUX_VLAN:
|
|
rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_vlan_mask;
|
|
rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_aux_v1;
|
|
break;
|
|
|
|
case ICE_RXDID_COMMS_AUX_IPV4:
|
|
rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_ipv4_mask;
|
|
rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_aux_v1;
|
|
break;
|
|
|
|
case ICE_RXDID_COMMS_AUX_IPV6:
|
|
rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_ipv6_mask;
|
|
rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_aux_v1;
|
|
break;
|
|
|
|
case ICE_RXDID_COMMS_AUX_IPV6_FLOW:
|
|
rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_ipv6_flow_mask;
|
|
rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_aux_v1;
|
|
break;
|
|
|
|
case ICE_RXDID_COMMS_AUX_TCP:
|
|
rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_tcp_mask;
|
|
rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_aux_v1;
|
|
break;
|
|
|
|
case ICE_RXDID_COMMS_AUX_IP_OFFSET:
|
|
rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_ip_offset_mask;
|
|
rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_aux_v2;
|
|
break;
|
|
|
|
case ICE_RXDID_COMMS_GENERIC:
|
|
rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_generic;
|
|
break;
|
|
|
|
case ICE_RXDID_COMMS_OVS:
|
|
rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_ovs;
|
|
break;
|
|
|
|
default:
|
|
/* update this according to the RXDID for PROTO_XTR_NONE */
|
|
rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_ovs;
|
|
break;
|
|
}
|
|
|
|
if (!rte_net_ice_dynf_proto_xtr_metadata_avail())
|
|
rxq->xtr_ol_flag = 0;
|
|
}
|
|
|
|
static enum ice_status
|
|
ice_program_hw_rx_queue(struct ice_rx_queue *rxq)
|
|
{
|
|
struct ice_vsi *vsi = rxq->vsi;
|
|
struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
|
|
struct ice_pf *pf = ICE_VSI_TO_PF(vsi);
|
|
struct rte_eth_dev_data *dev_data = rxq->vsi->adapter->pf.dev_data;
|
|
struct ice_rlan_ctx rx_ctx;
|
|
enum ice_status err;
|
|
uint16_t buf_size;
|
|
struct rte_eth_rxmode *rxmode = &dev_data->dev_conf.rxmode;
|
|
uint32_t rxdid = ICE_RXDID_COMMS_OVS;
|
|
uint32_t regval;
|
|
struct ice_adapter *ad = rxq->vsi->adapter;
|
|
|
|
/* Set buffer size as the head split is disabled. */
|
|
buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
|
|
RTE_PKTMBUF_HEADROOM);
|
|
rxq->rx_hdr_len = 0;
|
|
rxq->rx_buf_len = RTE_ALIGN(buf_size, (1 << ICE_RLAN_CTX_DBUF_S));
|
|
rxq->max_pkt_len = RTE_MIN((uint32_t)
|
|
ICE_SUPPORT_CHAIN_NUM * rxq->rx_buf_len,
|
|
dev_data->dev_conf.rxmode.max_rx_pkt_len);
|
|
|
|
if (rxmode->offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
|
|
if (rxq->max_pkt_len <= ICE_ETH_MAX_LEN ||
|
|
rxq->max_pkt_len > ICE_FRAME_SIZE_MAX) {
|
|
PMD_DRV_LOG(ERR, "maximum packet length must "
|
|
"be larger than %u and smaller than %u,"
|
|
"as jumbo frame is enabled",
|
|
(uint32_t)ICE_ETH_MAX_LEN,
|
|
(uint32_t)ICE_FRAME_SIZE_MAX);
|
|
return -EINVAL;
|
|
}
|
|
} else {
|
|
if (rxq->max_pkt_len < RTE_ETHER_MIN_LEN ||
|
|
rxq->max_pkt_len > ICE_ETH_MAX_LEN) {
|
|
PMD_DRV_LOG(ERR, "maximum packet length must be "
|
|
"larger than %u and smaller than %u, "
|
|
"as jumbo frame is disabled",
|
|
(uint32_t)RTE_ETHER_MIN_LEN,
|
|
(uint32_t)ICE_ETH_MAX_LEN);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
if (rxq->offloads & DEV_RX_OFFLOAD_TIMESTAMP) {
|
|
/* Register mbuf field and flag for Rx timestamp */
|
|
err = rte_mbuf_dyn_rx_timestamp_register(
|
|
&ice_timestamp_dynfield_offset,
|
|
&ice_timestamp_dynflag);
|
|
if (err) {
|
|
PMD_DRV_LOG(ERR,
|
|
"Cannot register mbuf field/flag for timestamp");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
memset(&rx_ctx, 0, sizeof(rx_ctx));
|
|
|
|
rx_ctx.base = rxq->rx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
|
|
rx_ctx.qlen = rxq->nb_rx_desc;
|
|
rx_ctx.dbuf = rxq->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
|
|
rx_ctx.hbuf = rxq->rx_hdr_len >> ICE_RLAN_CTX_HBUF_S;
|
|
rx_ctx.dtype = 0; /* No Header Split mode */
|
|
#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
|
|
rx_ctx.dsize = 1; /* 32B descriptors */
|
|
#endif
|
|
rx_ctx.rxmax = rxq->max_pkt_len;
|
|
/* TPH: Transaction Layer Packet (TLP) processing hints */
|
|
rx_ctx.tphrdesc_ena = 1;
|
|
rx_ctx.tphwdesc_ena = 1;
|
|
rx_ctx.tphdata_ena = 1;
|
|
rx_ctx.tphhead_ena = 1;
|
|
/* Low Receive Queue Threshold defined in 64 descriptors units.
|
|
* When the number of free descriptors goes below the lrxqthresh,
|
|
* an immediate interrupt is triggered.
|
|
*/
|
|
rx_ctx.lrxqthresh = 2;
|
|
/*default use 32 byte descriptor, vlan tag extract to L2TAG2(1st)*/
|
|
rx_ctx.l2tsel = 1;
|
|
rx_ctx.showiv = 0;
|
|
rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
|
|
|
|
rxdid = ice_proto_xtr_type_to_rxdid(rxq->proto_xtr);
|
|
|
|
PMD_DRV_LOG(DEBUG, "Port (%u) - Rx queue (%u) is set with RXDID : %u",
|
|
rxq->port_id, rxq->queue_id, rxdid);
|
|
|
|
if (!(pf->supported_rxdid & BIT(rxdid))) {
|
|
PMD_DRV_LOG(ERR, "currently package doesn't support RXDID (%u)",
|
|
rxdid);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ice_select_rxd_to_pkt_fields_handler(rxq, rxdid);
|
|
|
|
/* Enable Flexible Descriptors in the queue context which
|
|
* allows this driver to select a specific receive descriptor format
|
|
*/
|
|
regval = (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
|
|
QRXFLXP_CNTXT_RXDID_IDX_M;
|
|
|
|
/* increasing context priority to pick up profile ID;
|
|
* default is 0x01; setting to 0x03 to ensure profile
|
|
* is programming if prev context is of same priority
|
|
*/
|
|
regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
|
|
QRXFLXP_CNTXT_RXDID_PRIO_M;
|
|
|
|
if (ad->ptp_ena || rxq->offloads & DEV_RX_OFFLOAD_TIMESTAMP)
|
|
regval |= QRXFLXP_CNTXT_TS_M;
|
|
|
|
ICE_WRITE_REG(hw, QRXFLXP_CNTXT(rxq->reg_idx), regval);
|
|
|
|
err = ice_clear_rxq_ctx(hw, rxq->reg_idx);
|
|
if (err) {
|
|
PMD_DRV_LOG(ERR, "Failed to clear Lan Rx queue (%u) context",
|
|
rxq->queue_id);
|
|
return -EINVAL;
|
|
}
|
|
err = ice_write_rxq_ctx(hw, &rx_ctx, rxq->reg_idx);
|
|
if (err) {
|
|
PMD_DRV_LOG(ERR, "Failed to write Lan Rx queue (%u) context",
|
|
rxq->queue_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
|
|
RTE_PKTMBUF_HEADROOM);
|
|
|
|
/* Check if scattered RX needs to be used. */
|
|
if (rxq->max_pkt_len > buf_size)
|
|
dev_data->scattered_rx = 1;
|
|
|
|
rxq->qrx_tail = hw->hw_addr + QRX_TAIL(rxq->reg_idx);
|
|
|
|
/* Init the Rx tail register*/
|
|
ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Allocate mbufs for all descriptors in rx queue */
|
|
static int
|
|
ice_alloc_rx_queue_mbufs(struct ice_rx_queue *rxq)
|
|
{
|
|
struct ice_rx_entry *rxe = rxq->sw_ring;
|
|
uint64_t dma_addr;
|
|
uint16_t i;
|
|
|
|
for (i = 0; i < rxq->nb_rx_desc; i++) {
|
|
volatile union ice_rx_flex_desc *rxd;
|
|
struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mp);
|
|
|
|
if (unlikely(!mbuf)) {
|
|
PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
rte_mbuf_refcnt_set(mbuf, 1);
|
|
mbuf->next = NULL;
|
|
mbuf->data_off = RTE_PKTMBUF_HEADROOM;
|
|
mbuf->nb_segs = 1;
|
|
mbuf->port = rxq->port_id;
|
|
|
|
dma_addr =
|
|
rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
|
|
|
|
rxd = &rxq->rx_ring[i];
|
|
rxd->read.pkt_addr = dma_addr;
|
|
rxd->read.hdr_addr = 0;
|
|
#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
|
|
rxd->read.rsvd1 = 0;
|
|
rxd->read.rsvd2 = 0;
|
|
#endif
|
|
rxe[i].mbuf = mbuf;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Free all mbufs for descriptors in rx queue */
|
|
static void
|
|
_ice_rx_queue_release_mbufs(struct ice_rx_queue *rxq)
|
|
{
|
|
uint16_t i;
|
|
|
|
if (!rxq || !rxq->sw_ring) {
|
|
PMD_DRV_LOG(DEBUG, "Pointer to sw_ring is NULL");
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < rxq->nb_rx_desc; i++) {
|
|
if (rxq->sw_ring[i].mbuf) {
|
|
rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
|
|
rxq->sw_ring[i].mbuf = NULL;
|
|
}
|
|
}
|
|
if (rxq->rx_nb_avail == 0)
|
|
return;
|
|
for (i = 0; i < rxq->rx_nb_avail; i++)
|
|
rte_pktmbuf_free_seg(rxq->rx_stage[rxq->rx_next_avail + i]);
|
|
|
|
rxq->rx_nb_avail = 0;
|
|
}
|
|
|
|
/* turn on or off rx queue
|
|
* @q_idx: queue index in pf scope
|
|
* @on: turn on or off the queue
|
|
*/
|
|
static int
|
|
ice_switch_rx_queue(struct ice_hw *hw, uint16_t q_idx, bool on)
|
|
{
|
|
uint32_t reg;
|
|
uint16_t j;
|
|
|
|
/* QRX_CTRL = QRX_ENA */
|
|
reg = ICE_READ_REG(hw, QRX_CTRL(q_idx));
|
|
|
|
if (on) {
|
|
if (reg & QRX_CTRL_QENA_STAT_M)
|
|
return 0; /* Already on, skip */
|
|
reg |= QRX_CTRL_QENA_REQ_M;
|
|
} else {
|
|
if (!(reg & QRX_CTRL_QENA_STAT_M))
|
|
return 0; /* Already off, skip */
|
|
reg &= ~QRX_CTRL_QENA_REQ_M;
|
|
}
|
|
|
|
/* Write the register */
|
|
ICE_WRITE_REG(hw, QRX_CTRL(q_idx), reg);
|
|
/* Check the result. It is said that QENA_STAT
|
|
* follows the QENA_REQ not more than 10 use.
|
|
* TODO: need to change the wait counter later
|
|
*/
|
|
for (j = 0; j < ICE_CHK_Q_ENA_COUNT; j++) {
|
|
rte_delay_us(ICE_CHK_Q_ENA_INTERVAL_US);
|
|
reg = ICE_READ_REG(hw, QRX_CTRL(q_idx));
|
|
if (on) {
|
|
if ((reg & QRX_CTRL_QENA_REQ_M) &&
|
|
(reg & QRX_CTRL_QENA_STAT_M))
|
|
break;
|
|
} else {
|
|
if (!(reg & QRX_CTRL_QENA_REQ_M) &&
|
|
!(reg & QRX_CTRL_QENA_STAT_M))
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Check if it is timeout */
|
|
if (j >= ICE_CHK_Q_ENA_COUNT) {
|
|
PMD_DRV_LOG(ERR, "Failed to %s rx queue[%u]",
|
|
(on ? "enable" : "disable"), q_idx);
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int
|
|
ice_check_rx_burst_bulk_alloc_preconditions(struct ice_rx_queue *rxq)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (!(rxq->rx_free_thresh >= ICE_RX_MAX_BURST)) {
|
|
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
|
|
"rxq->rx_free_thresh=%d, "
|
|
"ICE_RX_MAX_BURST=%d",
|
|
rxq->rx_free_thresh, ICE_RX_MAX_BURST);
|
|
ret = -EINVAL;
|
|
} else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
|
|
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
|
|
"rxq->rx_free_thresh=%d, "
|
|
"rxq->nb_rx_desc=%d",
|
|
rxq->rx_free_thresh, rxq->nb_rx_desc);
|
|
ret = -EINVAL;
|
|
} else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
|
|
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
|
|
"rxq->nb_rx_desc=%d, "
|
|
"rxq->rx_free_thresh=%d",
|
|
rxq->nb_rx_desc, rxq->rx_free_thresh);
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* reset fields in ice_rx_queue back to default */
|
|
static void
|
|
ice_reset_rx_queue(struct ice_rx_queue *rxq)
|
|
{
|
|
unsigned int i;
|
|
uint16_t len;
|
|
|
|
if (!rxq) {
|
|
PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
|
|
return;
|
|
}
|
|
|
|
len = (uint16_t)(rxq->nb_rx_desc + ICE_RX_MAX_BURST);
|
|
|
|
for (i = 0; i < len * sizeof(union ice_rx_flex_desc); i++)
|
|
((volatile char *)rxq->rx_ring)[i] = 0;
|
|
|
|
memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
|
|
for (i = 0; i < ICE_RX_MAX_BURST; ++i)
|
|
rxq->sw_ring[rxq->nb_rx_desc + i].mbuf = &rxq->fake_mbuf;
|
|
|
|
rxq->rx_nb_avail = 0;
|
|
rxq->rx_next_avail = 0;
|
|
rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
|
|
|
|
rxq->rx_tail = 0;
|
|
rxq->nb_rx_hold = 0;
|
|
rxq->pkt_first_seg = NULL;
|
|
rxq->pkt_last_seg = NULL;
|
|
|
|
rxq->rxrearm_start = 0;
|
|
rxq->rxrearm_nb = 0;
|
|
}
|
|
|
|
int
|
|
ice_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
|
|
{
|
|
struct ice_rx_queue *rxq;
|
|
int err;
|
|
struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
if (rx_queue_id >= dev->data->nb_rx_queues) {
|
|
PMD_DRV_LOG(ERR, "RX queue %u is out of range %u",
|
|
rx_queue_id, dev->data->nb_rx_queues);
|
|
return -EINVAL;
|
|
}
|
|
|
|
rxq = dev->data->rx_queues[rx_queue_id];
|
|
if (!rxq || !rxq->q_set) {
|
|
PMD_DRV_LOG(ERR, "RX queue %u not available or setup",
|
|
rx_queue_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
err = ice_program_hw_rx_queue(rxq);
|
|
if (err) {
|
|
PMD_DRV_LOG(ERR, "fail to program RX queue %u",
|
|
rx_queue_id);
|
|
return -EIO;
|
|
}
|
|
|
|
err = ice_alloc_rx_queue_mbufs(rxq);
|
|
if (err) {
|
|
PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Init the RX tail register. */
|
|
ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
|
|
|
|
err = ice_switch_rx_queue(hw, rxq->reg_idx, true);
|
|
if (err) {
|
|
PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
|
|
rx_queue_id);
|
|
|
|
rxq->rx_rel_mbufs(rxq);
|
|
ice_reset_rx_queue(rxq);
|
|
return -EINVAL;
|
|
}
|
|
|
|
dev->data->rx_queue_state[rx_queue_id] =
|
|
RTE_ETH_QUEUE_STATE_STARTED;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
ice_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
|
|
{
|
|
struct ice_rx_queue *rxq;
|
|
int err;
|
|
struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
if (rx_queue_id < dev->data->nb_rx_queues) {
|
|
rxq = dev->data->rx_queues[rx_queue_id];
|
|
|
|
err = ice_switch_rx_queue(hw, rxq->reg_idx, false);
|
|
if (err) {
|
|
PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
|
|
rx_queue_id);
|
|
return -EINVAL;
|
|
}
|
|
rxq->rx_rel_mbufs(rxq);
|
|
ice_reset_rx_queue(rxq);
|
|
dev->data->rx_queue_state[rx_queue_id] =
|
|
RTE_ETH_QUEUE_STATE_STOPPED;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
ice_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
|
|
{
|
|
struct ice_tx_queue *txq;
|
|
int err;
|
|
struct ice_vsi *vsi;
|
|
struct ice_hw *hw;
|
|
struct ice_aqc_add_tx_qgrp *txq_elem;
|
|
struct ice_tlan_ctx tx_ctx;
|
|
int buf_len;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
if (tx_queue_id >= dev->data->nb_tx_queues) {
|
|
PMD_DRV_LOG(ERR, "TX queue %u is out of range %u",
|
|
tx_queue_id, dev->data->nb_tx_queues);
|
|
return -EINVAL;
|
|
}
|
|
|
|
txq = dev->data->tx_queues[tx_queue_id];
|
|
if (!txq || !txq->q_set) {
|
|
PMD_DRV_LOG(ERR, "TX queue %u is not available or setup",
|
|
tx_queue_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
buf_len = ice_struct_size(txq_elem, txqs, 1);
|
|
txq_elem = ice_malloc(hw, buf_len);
|
|
if (!txq_elem)
|
|
return -ENOMEM;
|
|
|
|
vsi = txq->vsi;
|
|
hw = ICE_VSI_TO_HW(vsi);
|
|
|
|
memset(&tx_ctx, 0, sizeof(tx_ctx));
|
|
txq_elem->num_txqs = 1;
|
|
txq_elem->txqs[0].txq_id = rte_cpu_to_le_16(txq->reg_idx);
|
|
|
|
tx_ctx.base = txq->tx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
|
|
tx_ctx.qlen = txq->nb_tx_desc;
|
|
tx_ctx.pf_num = hw->pf_id;
|
|
tx_ctx.vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
|
|
tx_ctx.src_vsi = vsi->vsi_id;
|
|
tx_ctx.port_num = hw->port_info->lport;
|
|
tx_ctx.tso_ena = 1; /* tso enable */
|
|
tx_ctx.tso_qnum = txq->reg_idx; /* index for tso state structure */
|
|
tx_ctx.legacy_int = 1; /* Legacy or Advanced Host Interface */
|
|
tx_ctx.tsyn_ena = 1;
|
|
|
|
ice_set_ctx(hw, (uint8_t *)&tx_ctx, txq_elem->txqs[0].txq_ctx,
|
|
ice_tlan_ctx_info);
|
|
|
|
txq->qtx_tail = hw->hw_addr + QTX_COMM_DBELL(txq->reg_idx);
|
|
|
|
/* Init the Tx tail register*/
|
|
ICE_PCI_REG_WRITE(txq->qtx_tail, 0);
|
|
|
|
/* Fix me, we assume TC always 0 here */
|
|
err = ice_ena_vsi_txq(hw->port_info, vsi->idx, 0, tx_queue_id, 1,
|
|
txq_elem, buf_len, NULL);
|
|
if (err) {
|
|
PMD_DRV_LOG(ERR, "Failed to add lan txq");
|
|
rte_free(txq_elem);
|
|
return -EIO;
|
|
}
|
|
/* store the schedule node id */
|
|
txq->q_teid = txq_elem->txqs[0].q_teid;
|
|
|
|
dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
|
|
|
|
rte_free(txq_elem);
|
|
return 0;
|
|
}
|
|
|
|
static enum ice_status
|
|
ice_fdir_program_hw_rx_queue(struct ice_rx_queue *rxq)
|
|
{
|
|
struct ice_vsi *vsi = rxq->vsi;
|
|
struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
|
|
uint32_t rxdid = ICE_RXDID_LEGACY_1;
|
|
struct ice_rlan_ctx rx_ctx;
|
|
enum ice_status err;
|
|
uint32_t regval;
|
|
|
|
rxq->rx_hdr_len = 0;
|
|
rxq->rx_buf_len = 1024;
|
|
|
|
memset(&rx_ctx, 0, sizeof(rx_ctx));
|
|
|
|
rx_ctx.base = rxq->rx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
|
|
rx_ctx.qlen = rxq->nb_rx_desc;
|
|
rx_ctx.dbuf = rxq->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
|
|
rx_ctx.hbuf = rxq->rx_hdr_len >> ICE_RLAN_CTX_HBUF_S;
|
|
rx_ctx.dtype = 0; /* No Header Split mode */
|
|
rx_ctx.dsize = 1; /* 32B descriptors */
|
|
rx_ctx.rxmax = ICE_ETH_MAX_LEN;
|
|
/* TPH: Transaction Layer Packet (TLP) processing hints */
|
|
rx_ctx.tphrdesc_ena = 1;
|
|
rx_ctx.tphwdesc_ena = 1;
|
|
rx_ctx.tphdata_ena = 1;
|
|
rx_ctx.tphhead_ena = 1;
|
|
/* Low Receive Queue Threshold defined in 64 descriptors units.
|
|
* When the number of free descriptors goes below the lrxqthresh,
|
|
* an immediate interrupt is triggered.
|
|
*/
|
|
rx_ctx.lrxqthresh = 2;
|
|
/*default use 32 byte descriptor, vlan tag extract to L2TAG2(1st)*/
|
|
rx_ctx.l2tsel = 1;
|
|
rx_ctx.showiv = 0;
|
|
rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
|
|
|
|
/* Enable Flexible Descriptors in the queue context which
|
|
* allows this driver to select a specific receive descriptor format
|
|
*/
|
|
regval = (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
|
|
QRXFLXP_CNTXT_RXDID_IDX_M;
|
|
|
|
/* increasing context priority to pick up profile ID;
|
|
* default is 0x01; setting to 0x03 to ensure profile
|
|
* is programming if prev context is of same priority
|
|
*/
|
|
regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
|
|
QRXFLXP_CNTXT_RXDID_PRIO_M;
|
|
|
|
ICE_WRITE_REG(hw, QRXFLXP_CNTXT(rxq->reg_idx), regval);
|
|
|
|
err = ice_clear_rxq_ctx(hw, rxq->reg_idx);
|
|
if (err) {
|
|
PMD_DRV_LOG(ERR, "Failed to clear Lan Rx queue (%u) context",
|
|
rxq->queue_id);
|
|
return -EINVAL;
|
|
}
|
|
err = ice_write_rxq_ctx(hw, &rx_ctx, rxq->reg_idx);
|
|
if (err) {
|
|
PMD_DRV_LOG(ERR, "Failed to write Lan Rx queue (%u) context",
|
|
rxq->queue_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
rxq->qrx_tail = hw->hw_addr + QRX_TAIL(rxq->reg_idx);
|
|
|
|
/* Init the Rx tail register*/
|
|
ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
ice_fdir_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
|
|
{
|
|
struct ice_rx_queue *rxq;
|
|
int err;
|
|
struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
rxq = pf->fdir.rxq;
|
|
if (!rxq || !rxq->q_set) {
|
|
PMD_DRV_LOG(ERR, "FDIR RX queue %u not available or setup",
|
|
rx_queue_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
err = ice_fdir_program_hw_rx_queue(rxq);
|
|
if (err) {
|
|
PMD_DRV_LOG(ERR, "fail to program FDIR RX queue %u",
|
|
rx_queue_id);
|
|
return -EIO;
|
|
}
|
|
|
|
/* Init the RX tail register. */
|
|
ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
|
|
|
|
err = ice_switch_rx_queue(hw, rxq->reg_idx, true);
|
|
if (err) {
|
|
PMD_DRV_LOG(ERR, "Failed to switch FDIR RX queue %u on",
|
|
rx_queue_id);
|
|
|
|
ice_reset_rx_queue(rxq);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
ice_fdir_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
|
|
{
|
|
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
|
|
struct ice_tx_queue *txq;
|
|
int err;
|
|
struct ice_vsi *vsi;
|
|
struct ice_hw *hw;
|
|
struct ice_aqc_add_tx_qgrp *txq_elem;
|
|
struct ice_tlan_ctx tx_ctx;
|
|
int buf_len;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
txq = pf->fdir.txq;
|
|
if (!txq || !txq->q_set) {
|
|
PMD_DRV_LOG(ERR, "FDIR TX queue %u is not available or setup",
|
|
tx_queue_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
buf_len = ice_struct_size(txq_elem, txqs, 1);
|
|
txq_elem = ice_malloc(hw, buf_len);
|
|
if (!txq_elem)
|
|
return -ENOMEM;
|
|
|
|
vsi = txq->vsi;
|
|
hw = ICE_VSI_TO_HW(vsi);
|
|
|
|
memset(&tx_ctx, 0, sizeof(tx_ctx));
|
|
txq_elem->num_txqs = 1;
|
|
txq_elem->txqs[0].txq_id = rte_cpu_to_le_16(txq->reg_idx);
|
|
|
|
tx_ctx.base = txq->tx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
|
|
tx_ctx.qlen = txq->nb_tx_desc;
|
|
tx_ctx.pf_num = hw->pf_id;
|
|
tx_ctx.vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
|
|
tx_ctx.src_vsi = vsi->vsi_id;
|
|
tx_ctx.port_num = hw->port_info->lport;
|
|
tx_ctx.tso_ena = 1; /* tso enable */
|
|
tx_ctx.tso_qnum = txq->reg_idx; /* index for tso state structure */
|
|
tx_ctx.legacy_int = 1; /* Legacy or Advanced Host Interface */
|
|
|
|
ice_set_ctx(hw, (uint8_t *)&tx_ctx, txq_elem->txqs[0].txq_ctx,
|
|
ice_tlan_ctx_info);
|
|
|
|
txq->qtx_tail = hw->hw_addr + QTX_COMM_DBELL(txq->reg_idx);
|
|
|
|
/* Init the Tx tail register*/
|
|
ICE_PCI_REG_WRITE(txq->qtx_tail, 0);
|
|
|
|
/* Fix me, we assume TC always 0 here */
|
|
err = ice_ena_vsi_txq(hw->port_info, vsi->idx, 0, tx_queue_id, 1,
|
|
txq_elem, buf_len, NULL);
|
|
if (err) {
|
|
PMD_DRV_LOG(ERR, "Failed to add FDIR txq");
|
|
rte_free(txq_elem);
|
|
return -EIO;
|
|
}
|
|
/* store the schedule node id */
|
|
txq->q_teid = txq_elem->txqs[0].q_teid;
|
|
|
|
rte_free(txq_elem);
|
|
return 0;
|
|
}
|
|
|
|
/* Free all mbufs for descriptors in tx queue */
|
|
static void
|
|
_ice_tx_queue_release_mbufs(struct ice_tx_queue *txq)
|
|
{
|
|
uint16_t i;
|
|
|
|
if (!txq || !txq->sw_ring) {
|
|
PMD_DRV_LOG(DEBUG, "Pointer to txq or sw_ring is NULL");
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < txq->nb_tx_desc; i++) {
|
|
if (txq->sw_ring[i].mbuf) {
|
|
rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
|
|
txq->sw_ring[i].mbuf = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
ice_reset_tx_queue(struct ice_tx_queue *txq)
|
|
{
|
|
struct ice_tx_entry *txe;
|
|
uint16_t i, prev, size;
|
|
|
|
if (!txq) {
|
|
PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
|
|
return;
|
|
}
|
|
|
|
txe = txq->sw_ring;
|
|
size = sizeof(struct ice_tx_desc) * txq->nb_tx_desc;
|
|
for (i = 0; i < size; i++)
|
|
((volatile char *)txq->tx_ring)[i] = 0;
|
|
|
|
prev = (uint16_t)(txq->nb_tx_desc - 1);
|
|
for (i = 0; i < txq->nb_tx_desc; i++) {
|
|
volatile struct ice_tx_desc *txd = &txq->tx_ring[i];
|
|
|
|
txd->cmd_type_offset_bsz =
|
|
rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE);
|
|
txe[i].mbuf = NULL;
|
|
txe[i].last_id = i;
|
|
txe[prev].next_id = i;
|
|
prev = i;
|
|
}
|
|
|
|
txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
|
|
txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
|
|
|
|
txq->tx_tail = 0;
|
|
txq->nb_tx_used = 0;
|
|
|
|
txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
|
|
txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
|
|
}
|
|
|
|
int
|
|
ice_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
|
|
{
|
|
struct ice_tx_queue *txq;
|
|
struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
|
|
struct ice_vsi *vsi = pf->main_vsi;
|
|
enum ice_status status;
|
|
uint16_t q_ids[1];
|
|
uint32_t q_teids[1];
|
|
uint16_t q_handle = tx_queue_id;
|
|
|
|
if (tx_queue_id >= dev->data->nb_tx_queues) {
|
|
PMD_DRV_LOG(ERR, "TX queue %u is out of range %u",
|
|
tx_queue_id, dev->data->nb_tx_queues);
|
|
return -EINVAL;
|
|
}
|
|
|
|
txq = dev->data->tx_queues[tx_queue_id];
|
|
if (!txq) {
|
|
PMD_DRV_LOG(ERR, "TX queue %u is not available",
|
|
tx_queue_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
q_ids[0] = txq->reg_idx;
|
|
q_teids[0] = txq->q_teid;
|
|
|
|
/* Fix me, we assume TC always 0 here */
|
|
status = ice_dis_vsi_txq(hw->port_info, vsi->idx, 0, 1, &q_handle,
|
|
q_ids, q_teids, ICE_NO_RESET, 0, NULL);
|
|
if (status != ICE_SUCCESS) {
|
|
PMD_DRV_LOG(DEBUG, "Failed to disable Lan Tx queue");
|
|
return -EINVAL;
|
|
}
|
|
|
|
txq->tx_rel_mbufs(txq);
|
|
ice_reset_tx_queue(txq);
|
|
dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
ice_fdir_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
|
|
{
|
|
struct ice_rx_queue *rxq;
|
|
int err;
|
|
struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
|
|
|
|
rxq = pf->fdir.rxq;
|
|
|
|
err = ice_switch_rx_queue(hw, rxq->reg_idx, false);
|
|
if (err) {
|
|
PMD_DRV_LOG(ERR, "Failed to switch FDIR RX queue %u off",
|
|
rx_queue_id);
|
|
return -EINVAL;
|
|
}
|
|
rxq->rx_rel_mbufs(rxq);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
ice_fdir_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
|
|
{
|
|
struct ice_tx_queue *txq;
|
|
struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
|
|
struct ice_vsi *vsi = pf->main_vsi;
|
|
enum ice_status status;
|
|
uint16_t q_ids[1];
|
|
uint32_t q_teids[1];
|
|
uint16_t q_handle = tx_queue_id;
|
|
|
|
txq = pf->fdir.txq;
|
|
if (!txq) {
|
|
PMD_DRV_LOG(ERR, "TX queue %u is not available",
|
|
tx_queue_id);
|
|
return -EINVAL;
|
|
}
|
|
vsi = txq->vsi;
|
|
|
|
q_ids[0] = txq->reg_idx;
|
|
q_teids[0] = txq->q_teid;
|
|
|
|
/* Fix me, we assume TC always 0 here */
|
|
status = ice_dis_vsi_txq(hw->port_info, vsi->idx, 0, 1, &q_handle,
|
|
q_ids, q_teids, ICE_NO_RESET, 0, NULL);
|
|
if (status != ICE_SUCCESS) {
|
|
PMD_DRV_LOG(DEBUG, "Failed to disable Lan Tx queue");
|
|
return -EINVAL;
|
|
}
|
|
|
|
txq->tx_rel_mbufs(txq);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
ice_rx_queue_setup(struct rte_eth_dev *dev,
|
|
uint16_t queue_idx,
|
|
uint16_t nb_desc,
|
|
unsigned int socket_id,
|
|
const struct rte_eth_rxconf *rx_conf,
|
|
struct rte_mempool *mp)
|
|
{
|
|
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
|
|
struct ice_adapter *ad =
|
|
ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
|
|
struct ice_vsi *vsi = pf->main_vsi;
|
|
struct ice_rx_queue *rxq;
|
|
const struct rte_memzone *rz;
|
|
uint32_t ring_size;
|
|
uint16_t len;
|
|
int use_def_burst_func = 1;
|
|
uint64_t offloads;
|
|
|
|
if (nb_desc % ICE_ALIGN_RING_DESC != 0 ||
|
|
nb_desc > ICE_MAX_RING_DESC ||
|
|
nb_desc < ICE_MIN_RING_DESC) {
|
|
PMD_INIT_LOG(ERR, "Number (%u) of receive descriptors is "
|
|
"invalid", nb_desc);
|
|
return -EINVAL;
|
|
}
|
|
|
|
offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
|
|
|
|
/* Free memory if needed */
|
|
if (dev->data->rx_queues[queue_idx]) {
|
|
ice_rx_queue_release(dev->data->rx_queues[queue_idx]);
|
|
dev->data->rx_queues[queue_idx] = NULL;
|
|
}
|
|
|
|
/* Allocate the rx queue data structure */
|
|
rxq = rte_zmalloc_socket(NULL,
|
|
sizeof(struct ice_rx_queue),
|
|
RTE_CACHE_LINE_SIZE,
|
|
socket_id);
|
|
if (!rxq) {
|
|
PMD_INIT_LOG(ERR, "Failed to allocate memory for "
|
|
"rx queue data structure");
|
|
return -ENOMEM;
|
|
}
|
|
rxq->mp = mp;
|
|
rxq->nb_rx_desc = nb_desc;
|
|
rxq->rx_free_thresh = rx_conf->rx_free_thresh;
|
|
rxq->queue_id = queue_idx;
|
|
rxq->offloads = offloads;
|
|
|
|
rxq->reg_idx = vsi->base_queue + queue_idx;
|
|
rxq->port_id = dev->data->port_id;
|
|
if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
|
|
rxq->crc_len = RTE_ETHER_CRC_LEN;
|
|
else
|
|
rxq->crc_len = 0;
|
|
|
|
rxq->drop_en = rx_conf->rx_drop_en;
|
|
rxq->vsi = vsi;
|
|
rxq->rx_deferred_start = rx_conf->rx_deferred_start;
|
|
rxq->proto_xtr = pf->proto_xtr != NULL ?
|
|
pf->proto_xtr[queue_idx] : PROTO_XTR_NONE;
|
|
|
|
/* Allocate the maximun number of RX ring hardware descriptor. */
|
|
len = ICE_MAX_RING_DESC;
|
|
|
|
/**
|
|
* Allocating a little more memory because vectorized/bulk_alloc Rx
|
|
* functions doesn't check boundaries each time.
|
|
*/
|
|
len += ICE_RX_MAX_BURST;
|
|
|
|
/* Allocate the maximum number of RX ring hardware descriptor. */
|
|
ring_size = sizeof(union ice_rx_flex_desc) * len;
|
|
ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
|
|
rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
|
|
ring_size, ICE_RING_BASE_ALIGN,
|
|
socket_id);
|
|
if (!rz) {
|
|
ice_rx_queue_release(rxq);
|
|
PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for RX");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
rxq->mz = rz;
|
|
/* Zero all the descriptors in the ring. */
|
|
memset(rz->addr, 0, ring_size);
|
|
|
|
rxq->rx_ring_dma = rz->iova;
|
|
rxq->rx_ring = rz->addr;
|
|
|
|
/* always reserve more for bulk alloc */
|
|
len = (uint16_t)(nb_desc + ICE_RX_MAX_BURST);
|
|
|
|
/* Allocate the software ring. */
|
|
rxq->sw_ring = rte_zmalloc_socket(NULL,
|
|
sizeof(struct ice_rx_entry) * len,
|
|
RTE_CACHE_LINE_SIZE,
|
|
socket_id);
|
|
if (!rxq->sw_ring) {
|
|
ice_rx_queue_release(rxq);
|
|
PMD_INIT_LOG(ERR, "Failed to allocate memory for SW ring");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ice_reset_rx_queue(rxq);
|
|
rxq->q_set = true;
|
|
dev->data->rx_queues[queue_idx] = rxq;
|
|
rxq->rx_rel_mbufs = _ice_rx_queue_release_mbufs;
|
|
|
|
use_def_burst_func = ice_check_rx_burst_bulk_alloc_preconditions(rxq);
|
|
|
|
if (!use_def_burst_func) {
|
|
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
|
|
"satisfied. Rx Burst Bulk Alloc function will be "
|
|
"used on port=%d, queue=%d.",
|
|
rxq->port_id, rxq->queue_id);
|
|
} else {
|
|
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
|
|
"not satisfied, Scattered Rx is requested. "
|
|
"on port=%d, queue=%d.",
|
|
rxq->port_id, rxq->queue_id);
|
|
ad->rx_bulk_alloc_allowed = false;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
ice_rx_queue_release(void *rxq)
|
|
{
|
|
struct ice_rx_queue *q = (struct ice_rx_queue *)rxq;
|
|
|
|
if (!q) {
|
|
PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
|
|
return;
|
|
}
|
|
|
|
q->rx_rel_mbufs(q);
|
|
rte_free(q->sw_ring);
|
|
rte_memzone_free(q->mz);
|
|
rte_free(q);
|
|
}
|
|
|
|
int
|
|
ice_tx_queue_setup(struct rte_eth_dev *dev,
|
|
uint16_t queue_idx,
|
|
uint16_t nb_desc,
|
|
unsigned int socket_id,
|
|
const struct rte_eth_txconf *tx_conf)
|
|
{
|
|
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
|
|
struct ice_vsi *vsi = pf->main_vsi;
|
|
struct ice_tx_queue *txq;
|
|
const struct rte_memzone *tz;
|
|
uint32_t ring_size;
|
|
uint16_t tx_rs_thresh, tx_free_thresh;
|
|
uint64_t offloads;
|
|
|
|
offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
|
|
|
|
if (nb_desc % ICE_ALIGN_RING_DESC != 0 ||
|
|
nb_desc > ICE_MAX_RING_DESC ||
|
|
nb_desc < ICE_MIN_RING_DESC) {
|
|
PMD_INIT_LOG(ERR, "Number (%u) of transmit descriptors is "
|
|
"invalid", nb_desc);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/**
|
|
* The following two parameters control the setting of the RS bit on
|
|
* transmit descriptors. TX descriptors will have their RS bit set
|
|
* after txq->tx_rs_thresh descriptors have been used. The TX
|
|
* descriptor ring will be cleaned after txq->tx_free_thresh
|
|
* descriptors are used or if the number of descriptors required to
|
|
* transmit a packet is greater than the number of free TX descriptors.
|
|
*
|
|
* The following constraints must be satisfied:
|
|
* - tx_rs_thresh must be greater than 0.
|
|
* - tx_rs_thresh must be less than the size of the ring minus 2.
|
|
* - tx_rs_thresh must be less than or equal to tx_free_thresh.
|
|
* - tx_rs_thresh must be a divisor of the ring size.
|
|
* - tx_free_thresh must be greater than 0.
|
|
* - tx_free_thresh must be less than the size of the ring minus 3.
|
|
* - tx_free_thresh + tx_rs_thresh must not exceed nb_desc.
|
|
*
|
|
* One descriptor in the TX ring is used as a sentinel to avoid a H/W
|
|
* race condition, hence the maximum threshold constraints. When set
|
|
* to zero use default values.
|
|
*/
|
|
tx_free_thresh = (uint16_t)(tx_conf->tx_free_thresh ?
|
|
tx_conf->tx_free_thresh :
|
|
ICE_DEFAULT_TX_FREE_THRESH);
|
|
/* force tx_rs_thresh to adapt an aggresive tx_free_thresh */
|
|
tx_rs_thresh =
|
|
(ICE_DEFAULT_TX_RSBIT_THRESH + tx_free_thresh > nb_desc) ?
|
|
nb_desc - tx_free_thresh : ICE_DEFAULT_TX_RSBIT_THRESH;
|
|
if (tx_conf->tx_rs_thresh)
|
|
tx_rs_thresh = tx_conf->tx_rs_thresh;
|
|
if (tx_rs_thresh + tx_free_thresh > nb_desc) {
|
|
PMD_INIT_LOG(ERR, "tx_rs_thresh + tx_free_thresh must not "
|
|
"exceed nb_desc. (tx_rs_thresh=%u "
|
|
"tx_free_thresh=%u nb_desc=%u port = %d queue=%d)",
|
|
(unsigned int)tx_rs_thresh,
|
|
(unsigned int)tx_free_thresh,
|
|
(unsigned int)nb_desc,
|
|
(int)dev->data->port_id,
|
|
(int)queue_idx);
|
|
return -EINVAL;
|
|
}
|
|
if (tx_rs_thresh >= (nb_desc - 2)) {
|
|
PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
|
|
"number of TX descriptors minus 2. "
|
|
"(tx_rs_thresh=%u port=%d queue=%d)",
|
|
(unsigned int)tx_rs_thresh,
|
|
(int)dev->data->port_id,
|
|
(int)queue_idx);
|
|
return -EINVAL;
|
|
}
|
|
if (tx_free_thresh >= (nb_desc - 3)) {
|
|
PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
|
|
"tx_free_thresh must be less than the "
|
|
"number of TX descriptors minus 3. "
|
|
"(tx_free_thresh=%u port=%d queue=%d)",
|
|
(unsigned int)tx_free_thresh,
|
|
(int)dev->data->port_id,
|
|
(int)queue_idx);
|
|
return -EINVAL;
|
|
}
|
|
if (tx_rs_thresh > tx_free_thresh) {
|
|
PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or "
|
|
"equal to tx_free_thresh. (tx_free_thresh=%u"
|
|
" tx_rs_thresh=%u port=%d queue=%d)",
|
|
(unsigned int)tx_free_thresh,
|
|
(unsigned int)tx_rs_thresh,
|
|
(int)dev->data->port_id,
|
|
(int)queue_idx);
|
|
return -EINVAL;
|
|
}
|
|
if ((nb_desc % tx_rs_thresh) != 0) {
|
|
PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
|
|
"number of TX descriptors. (tx_rs_thresh=%u"
|
|
" port=%d queue=%d)",
|
|
(unsigned int)tx_rs_thresh,
|
|
(int)dev->data->port_id,
|
|
(int)queue_idx);
|
|
return -EINVAL;
|
|
}
|
|
if (tx_rs_thresh > 1 && tx_conf->tx_thresh.wthresh != 0) {
|
|
PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
|
|
"tx_rs_thresh is greater than 1. "
|
|
"(tx_rs_thresh=%u port=%d queue=%d)",
|
|
(unsigned int)tx_rs_thresh,
|
|
(int)dev->data->port_id,
|
|
(int)queue_idx);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Free memory if needed. */
|
|
if (dev->data->tx_queues[queue_idx]) {
|
|
ice_tx_queue_release(dev->data->tx_queues[queue_idx]);
|
|
dev->data->tx_queues[queue_idx] = NULL;
|
|
}
|
|
|
|
/* Allocate the TX queue data structure. */
|
|
txq = rte_zmalloc_socket(NULL,
|
|
sizeof(struct ice_tx_queue),
|
|
RTE_CACHE_LINE_SIZE,
|
|
socket_id);
|
|
if (!txq) {
|
|
PMD_INIT_LOG(ERR, "Failed to allocate memory for "
|
|
"tx queue structure");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Allocate TX hardware ring descriptors. */
|
|
ring_size = sizeof(struct ice_tx_desc) * ICE_MAX_RING_DESC;
|
|
ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
|
|
tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
|
|
ring_size, ICE_RING_BASE_ALIGN,
|
|
socket_id);
|
|
if (!tz) {
|
|
ice_tx_queue_release(txq);
|
|
PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for TX");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
txq->mz = tz;
|
|
txq->nb_tx_desc = nb_desc;
|
|
txq->tx_rs_thresh = tx_rs_thresh;
|
|
txq->tx_free_thresh = tx_free_thresh;
|
|
txq->pthresh = tx_conf->tx_thresh.pthresh;
|
|
txq->hthresh = tx_conf->tx_thresh.hthresh;
|
|
txq->wthresh = tx_conf->tx_thresh.wthresh;
|
|
txq->queue_id = queue_idx;
|
|
|
|
txq->reg_idx = vsi->base_queue + queue_idx;
|
|
txq->port_id = dev->data->port_id;
|
|
txq->offloads = offloads;
|
|
txq->vsi = vsi;
|
|
txq->tx_deferred_start = tx_conf->tx_deferred_start;
|
|
|
|
txq->tx_ring_dma = tz->iova;
|
|
txq->tx_ring = tz->addr;
|
|
|
|
/* Allocate software ring */
|
|
txq->sw_ring =
|
|
rte_zmalloc_socket(NULL,
|
|
sizeof(struct ice_tx_entry) * nb_desc,
|
|
RTE_CACHE_LINE_SIZE,
|
|
socket_id);
|
|
if (!txq->sw_ring) {
|
|
ice_tx_queue_release(txq);
|
|
PMD_INIT_LOG(ERR, "Failed to allocate memory for SW TX ring");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ice_reset_tx_queue(txq);
|
|
txq->q_set = true;
|
|
dev->data->tx_queues[queue_idx] = txq;
|
|
txq->tx_rel_mbufs = _ice_tx_queue_release_mbufs;
|
|
ice_set_tx_function_flag(dev, txq);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
ice_dev_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
|
|
{
|
|
ice_rx_queue_release(dev->data->rx_queues[qid]);
|
|
}
|
|
|
|
void
|
|
ice_dev_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
|
|
{
|
|
ice_tx_queue_release(dev->data->tx_queues[qid]);
|
|
}
|
|
|
|
void
|
|
ice_tx_queue_release(void *txq)
|
|
{
|
|
struct ice_tx_queue *q = (struct ice_tx_queue *)txq;
|
|
|
|
if (!q) {
|
|
PMD_DRV_LOG(DEBUG, "Pointer to TX queue is NULL");
|
|
return;
|
|
}
|
|
|
|
q->tx_rel_mbufs(q);
|
|
rte_free(q->sw_ring);
|
|
rte_memzone_free(q->mz);
|
|
rte_free(q);
|
|
}
|
|
|
|
void
|
|
ice_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
|
|
struct rte_eth_rxq_info *qinfo)
|
|
{
|
|
struct ice_rx_queue *rxq;
|
|
|
|
rxq = dev->data->rx_queues[queue_id];
|
|
|
|
qinfo->mp = rxq->mp;
|
|
qinfo->scattered_rx = dev->data->scattered_rx;
|
|
qinfo->nb_desc = rxq->nb_rx_desc;
|
|
|
|
qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
|
|
qinfo->conf.rx_drop_en = rxq->drop_en;
|
|
qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
|
|
}
|
|
|
|
void
|
|
ice_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
|
|
struct rte_eth_txq_info *qinfo)
|
|
{
|
|
struct ice_tx_queue *txq;
|
|
|
|
txq = dev->data->tx_queues[queue_id];
|
|
|
|
qinfo->nb_desc = txq->nb_tx_desc;
|
|
|
|
qinfo->conf.tx_thresh.pthresh = txq->pthresh;
|
|
qinfo->conf.tx_thresh.hthresh = txq->hthresh;
|
|
qinfo->conf.tx_thresh.wthresh = txq->wthresh;
|
|
|
|
qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
|
|
qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
|
|
qinfo->conf.offloads = txq->offloads;
|
|
qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
|
|
}
|
|
|
|
uint32_t
|
|
ice_rx_queue_count(void *rx_queue)
|
|
{
|
|
#define ICE_RXQ_SCAN_INTERVAL 4
|
|
volatile union ice_rx_flex_desc *rxdp;
|
|
struct ice_rx_queue *rxq;
|
|
uint16_t desc = 0;
|
|
|
|
rxq = rx_queue;
|
|
rxdp = &rxq->rx_ring[rxq->rx_tail];
|
|
while ((desc < rxq->nb_rx_desc) &&
|
|
rte_le_to_cpu_16(rxdp->wb.status_error0) &
|
|
(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)) {
|
|
/**
|
|
* Check the DD bit of a rx descriptor of each 4 in a group,
|
|
* to avoid checking too frequently and downgrading performance
|
|
* too much.
|
|
*/
|
|
desc += ICE_RXQ_SCAN_INTERVAL;
|
|
rxdp += ICE_RXQ_SCAN_INTERVAL;
|
|
if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
|
|
rxdp = &(rxq->rx_ring[rxq->rx_tail +
|
|
desc - rxq->nb_rx_desc]);
|
|
}
|
|
|
|
return desc;
|
|
}
|
|
|
|
#define ICE_RX_FLEX_ERR0_BITS \
|
|
((1 << ICE_RX_FLEX_DESC_STATUS0_HBO_S) | \
|
|
(1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) | \
|
|
(1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S) | \
|
|
(1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S) | \
|
|
(1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S) | \
|
|
(1 << ICE_RX_FLEX_DESC_STATUS0_RXE_S))
|
|
|
|
/* Rx L3/L4 checksum */
|
|
static inline uint64_t
|
|
ice_rxd_error_to_pkt_flags(uint16_t stat_err0)
|
|
{
|
|
uint64_t flags = 0;
|
|
|
|
/* check if HW has decoded the packet and checksum */
|
|
if (unlikely(!(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_L3L4P_S))))
|
|
return 0;
|
|
|
|
if (likely(!(stat_err0 & ICE_RX_FLEX_ERR0_BITS))) {
|
|
flags |= (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD);
|
|
return flags;
|
|
}
|
|
|
|
if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S)))
|
|
flags |= PKT_RX_IP_CKSUM_BAD;
|
|
else
|
|
flags |= PKT_RX_IP_CKSUM_GOOD;
|
|
|
|
if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S)))
|
|
flags |= PKT_RX_L4_CKSUM_BAD;
|
|
else
|
|
flags |= PKT_RX_L4_CKSUM_GOOD;
|
|
|
|
if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S)))
|
|
flags |= PKT_RX_OUTER_IP_CKSUM_BAD;
|
|
|
|
if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S)))
|
|
flags |= PKT_RX_OUTER_L4_CKSUM_BAD;
|
|
else
|
|
flags |= PKT_RX_OUTER_L4_CKSUM_GOOD;
|
|
|
|
return flags;
|
|
}
|
|
|
|
static inline void
|
|
ice_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union ice_rx_flex_desc *rxdp)
|
|
{
|
|
if (rte_le_to_cpu_16(rxdp->wb.status_error0) &
|
|
(1 << ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S)) {
|
|
mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
|
|
mb->vlan_tci =
|
|
rte_le_to_cpu_16(rxdp->wb.l2tag1);
|
|
PMD_RX_LOG(DEBUG, "Descriptor l2tag1: %u",
|
|
rte_le_to_cpu_16(rxdp->wb.l2tag1));
|
|
} else {
|
|
mb->vlan_tci = 0;
|
|
}
|
|
|
|
#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
|
|
if (rte_le_to_cpu_16(rxdp->wb.status_error1) &
|
|
(1 << ICE_RX_FLEX_DESC_STATUS1_L2TAG2P_S)) {
|
|
mb->ol_flags |= PKT_RX_QINQ_STRIPPED | PKT_RX_QINQ |
|
|
PKT_RX_VLAN_STRIPPED | PKT_RX_VLAN;
|
|
mb->vlan_tci_outer = mb->vlan_tci;
|
|
mb->vlan_tci = rte_le_to_cpu_16(rxdp->wb.l2tag2_2nd);
|
|
PMD_RX_LOG(DEBUG, "Descriptor l2tag2_1: %u, l2tag2_2: %u",
|
|
rte_le_to_cpu_16(rxdp->wb.l2tag2_1st),
|
|
rte_le_to_cpu_16(rxdp->wb.l2tag2_2nd));
|
|
} else {
|
|
mb->vlan_tci_outer = 0;
|
|
}
|
|
#endif
|
|
PMD_RX_LOG(DEBUG, "Mbuf vlan_tci: %u, vlan_tci_outer: %u",
|
|
mb->vlan_tci, mb->vlan_tci_outer);
|
|
}
|
|
|
|
#define ICE_LOOK_AHEAD 8
|
|
#if (ICE_LOOK_AHEAD != 8)
|
|
#error "PMD ICE: ICE_LOOK_AHEAD must be 8\n"
|
|
#endif
|
|
static inline int
|
|
ice_rx_scan_hw_ring(struct ice_rx_queue *rxq)
|
|
{
|
|
volatile union ice_rx_flex_desc *rxdp;
|
|
struct ice_rx_entry *rxep;
|
|
struct rte_mbuf *mb;
|
|
uint16_t stat_err0;
|
|
uint16_t pkt_len;
|
|
int32_t s[ICE_LOOK_AHEAD], nb_dd;
|
|
int32_t i, j, nb_rx = 0;
|
|
uint64_t pkt_flags = 0;
|
|
uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
|
|
struct ice_vsi *vsi = rxq->vsi;
|
|
struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
|
|
uint64_t ts_ns;
|
|
struct ice_adapter *ad = rxq->vsi->adapter;
|
|
|
|
rxdp = &rxq->rx_ring[rxq->rx_tail];
|
|
rxep = &rxq->sw_ring[rxq->rx_tail];
|
|
|
|
stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
|
|
|
|
/* Make sure there is at least 1 packet to receive */
|
|
if (!(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
|
|
return 0;
|
|
|
|
/**
|
|
* Scan LOOK_AHEAD descriptors at a time to determine which
|
|
* descriptors reference packets that are ready to be received.
|
|
*/
|
|
for (i = 0; i < ICE_RX_MAX_BURST; i += ICE_LOOK_AHEAD,
|
|
rxdp += ICE_LOOK_AHEAD, rxep += ICE_LOOK_AHEAD) {
|
|
/* Read desc statuses backwards to avoid race condition */
|
|
for (j = ICE_LOOK_AHEAD - 1; j >= 0; j--)
|
|
s[j] = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
|
|
|
|
rte_smp_rmb();
|
|
|
|
/* Compute how many status bits were set */
|
|
for (j = 0, nb_dd = 0; j < ICE_LOOK_AHEAD; j++)
|
|
nb_dd += s[j] & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S);
|
|
|
|
nb_rx += nb_dd;
|
|
|
|
/* Translate descriptor info to mbuf parameters */
|
|
for (j = 0; j < nb_dd; j++) {
|
|
mb = rxep[j].mbuf;
|
|
pkt_len = (rte_le_to_cpu_16(rxdp[j].wb.pkt_len) &
|
|
ICE_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
|
|
mb->data_len = pkt_len;
|
|
mb->pkt_len = pkt_len;
|
|
mb->ol_flags = 0;
|
|
stat_err0 = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
|
|
pkt_flags = ice_rxd_error_to_pkt_flags(stat_err0);
|
|
mb->packet_type = ptype_tbl[ICE_RX_FLEX_DESC_PTYPE_M &
|
|
rte_le_to_cpu_16(rxdp[j].wb.ptype_flex_flags0)];
|
|
ice_rxd_to_vlan_tci(mb, &rxdp[j]);
|
|
rxq->rxd_to_pkt_fields(rxq, mb, &rxdp[j]);
|
|
|
|
if (rxq->offloads & DEV_RX_OFFLOAD_TIMESTAMP) {
|
|
ts_ns = ice_tstamp_convert_32b_64b(hw,
|
|
rte_le_to_cpu_32(rxdp[j].wb.flex_ts.ts_high));
|
|
if (ice_timestamp_dynflag > 0) {
|
|
*RTE_MBUF_DYNFIELD(mb,
|
|
ice_timestamp_dynfield_offset,
|
|
rte_mbuf_timestamp_t *) = ts_ns;
|
|
mb->ol_flags |= ice_timestamp_dynflag;
|
|
}
|
|
}
|
|
|
|
if (ad->ptp_ena && ((mb->packet_type &
|
|
RTE_PTYPE_L2_MASK) == RTE_PTYPE_L2_ETHER_TIMESYNC)) {
|
|
rxq->time_high =
|
|
rte_le_to_cpu_32(rxdp[j].wb.flex_ts.ts_high);
|
|
mb->timesync = rxq->queue_id;
|
|
pkt_flags |= PKT_RX_IEEE1588_PTP;
|
|
}
|
|
|
|
mb->ol_flags |= pkt_flags;
|
|
}
|
|
|
|
for (j = 0; j < ICE_LOOK_AHEAD; j++)
|
|
rxq->rx_stage[i + j] = rxep[j].mbuf;
|
|
|
|
if (nb_dd != ICE_LOOK_AHEAD)
|
|
break;
|
|
}
|
|
|
|
/* Clear software ring entries */
|
|
for (i = 0; i < nb_rx; i++)
|
|
rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
|
|
|
|
PMD_RX_LOG(DEBUG, "ice_rx_scan_hw_ring: "
|
|
"port_id=%u, queue_id=%u, nb_rx=%d",
|
|
rxq->port_id, rxq->queue_id, nb_rx);
|
|
|
|
return nb_rx;
|
|
}
|
|
|
|
static inline uint16_t
|
|
ice_rx_fill_from_stage(struct ice_rx_queue *rxq,
|
|
struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
uint16_t i;
|
|
struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
|
|
|
|
nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
|
|
|
|
for (i = 0; i < nb_pkts; i++)
|
|
rx_pkts[i] = stage[i];
|
|
|
|
rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
|
|
rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
|
|
|
|
return nb_pkts;
|
|
}
|
|
|
|
static inline int
|
|
ice_rx_alloc_bufs(struct ice_rx_queue *rxq)
|
|
{
|
|
volatile union ice_rx_flex_desc *rxdp;
|
|
struct ice_rx_entry *rxep;
|
|
struct rte_mbuf *mb;
|
|
uint16_t alloc_idx, i;
|
|
uint64_t dma_addr;
|
|
int diag;
|
|
|
|
/* Allocate buffers in bulk */
|
|
alloc_idx = (uint16_t)(rxq->rx_free_trigger -
|
|
(rxq->rx_free_thresh - 1));
|
|
rxep = &rxq->sw_ring[alloc_idx];
|
|
diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
|
|
rxq->rx_free_thresh);
|
|
if (unlikely(diag != 0)) {
|
|
PMD_RX_LOG(ERR, "Failed to get mbufs in bulk");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
rxdp = &rxq->rx_ring[alloc_idx];
|
|
for (i = 0; i < rxq->rx_free_thresh; i++) {
|
|
if (likely(i < (rxq->rx_free_thresh - 1)))
|
|
/* Prefetch next mbuf */
|
|
rte_prefetch0(rxep[i + 1].mbuf);
|
|
|
|
mb = rxep[i].mbuf;
|
|
rte_mbuf_refcnt_set(mb, 1);
|
|
mb->next = NULL;
|
|
mb->data_off = RTE_PKTMBUF_HEADROOM;
|
|
mb->nb_segs = 1;
|
|
mb->port = rxq->port_id;
|
|
dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
|
|
rxdp[i].read.hdr_addr = 0;
|
|
rxdp[i].read.pkt_addr = dma_addr;
|
|
}
|
|
|
|
/* Update rx tail regsiter */
|
|
ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->rx_free_trigger);
|
|
|
|
rxq->rx_free_trigger =
|
|
(uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
|
|
if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
|
|
rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline uint16_t
|
|
rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
|
|
{
|
|
struct ice_rx_queue *rxq = (struct ice_rx_queue *)rx_queue;
|
|
uint16_t nb_rx = 0;
|
|
|
|
if (!nb_pkts)
|
|
return 0;
|
|
|
|
if (rxq->rx_nb_avail)
|
|
return ice_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
|
|
|
|
nb_rx = (uint16_t)ice_rx_scan_hw_ring(rxq);
|
|
rxq->rx_next_avail = 0;
|
|
rxq->rx_nb_avail = nb_rx;
|
|
rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
|
|
|
|
if (rxq->rx_tail > rxq->rx_free_trigger) {
|
|
if (ice_rx_alloc_bufs(rxq) != 0) {
|
|
uint16_t i, j;
|
|
|
|
rxq->vsi->adapter->pf.dev_data->rx_mbuf_alloc_failed +=
|
|
rxq->rx_free_thresh;
|
|
PMD_RX_LOG(DEBUG, "Rx mbuf alloc failed for "
|
|
"port_id=%u, queue_id=%u",
|
|
rxq->port_id, rxq->queue_id);
|
|
rxq->rx_nb_avail = 0;
|
|
rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
|
|
for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
|
|
rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (rxq->rx_tail >= rxq->nb_rx_desc)
|
|
rxq->rx_tail = 0;
|
|
|
|
if (rxq->rx_nb_avail)
|
|
return ice_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint16_t
|
|
ice_recv_pkts_bulk_alloc(void *rx_queue,
|
|
struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
uint16_t nb_rx = 0;
|
|
uint16_t n;
|
|
uint16_t count;
|
|
|
|
if (unlikely(nb_pkts == 0))
|
|
return nb_rx;
|
|
|
|
if (likely(nb_pkts <= ICE_RX_MAX_BURST))
|
|
return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
|
|
|
|
while (nb_pkts) {
|
|
n = RTE_MIN(nb_pkts, ICE_RX_MAX_BURST);
|
|
count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
|
|
nb_rx = (uint16_t)(nb_rx + count);
|
|
nb_pkts = (uint16_t)(nb_pkts - count);
|
|
if (count < n)
|
|
break;
|
|
}
|
|
|
|
return nb_rx;
|
|
}
|
|
|
|
static uint16_t
|
|
ice_recv_scattered_pkts(void *rx_queue,
|
|
struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
struct ice_rx_queue *rxq = rx_queue;
|
|
volatile union ice_rx_flex_desc *rx_ring = rxq->rx_ring;
|
|
volatile union ice_rx_flex_desc *rxdp;
|
|
union ice_rx_flex_desc rxd;
|
|
struct ice_rx_entry *sw_ring = rxq->sw_ring;
|
|
struct ice_rx_entry *rxe;
|
|
struct rte_mbuf *first_seg = rxq->pkt_first_seg;
|
|
struct rte_mbuf *last_seg = rxq->pkt_last_seg;
|
|
struct rte_mbuf *nmb; /* new allocated mbuf */
|
|
struct rte_mbuf *rxm; /* pointer to store old mbuf in SW ring */
|
|
uint16_t rx_id = rxq->rx_tail;
|
|
uint16_t nb_rx = 0;
|
|
uint16_t nb_hold = 0;
|
|
uint16_t rx_packet_len;
|
|
uint16_t rx_stat_err0;
|
|
uint64_t dma_addr;
|
|
uint64_t pkt_flags;
|
|
uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
|
|
struct ice_vsi *vsi = rxq->vsi;
|
|
struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
|
|
uint64_t ts_ns;
|
|
struct ice_adapter *ad = rxq->vsi->adapter;
|
|
|
|
while (nb_rx < nb_pkts) {
|
|
rxdp = &rx_ring[rx_id];
|
|
rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
|
|
|
|
/* Check the DD bit first */
|
|
if (!(rx_stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
|
|
break;
|
|
|
|
/* allocate mbuf */
|
|
nmb = rte_mbuf_raw_alloc(rxq->mp);
|
|
if (unlikely(!nmb)) {
|
|
rxq->vsi->adapter->pf.dev_data->rx_mbuf_alloc_failed++;
|
|
break;
|
|
}
|
|
rxd = *rxdp; /* copy descriptor in ring to temp variable*/
|
|
|
|
nb_hold++;
|
|
rxe = &sw_ring[rx_id]; /* get corresponding mbuf in SW ring */
|
|
rx_id++;
|
|
if (unlikely(rx_id == rxq->nb_rx_desc))
|
|
rx_id = 0;
|
|
|
|
/* Prefetch next mbuf */
|
|
rte_prefetch0(sw_ring[rx_id].mbuf);
|
|
|
|
/**
|
|
* When next RX descriptor is on a cache line boundary,
|
|
* prefetch the next 4 RX descriptors and next 8 pointers
|
|
* to mbufs.
|
|
*/
|
|
if ((rx_id & 0x3) == 0) {
|
|
rte_prefetch0(&rx_ring[rx_id]);
|
|
rte_prefetch0(&sw_ring[rx_id]);
|
|
}
|
|
|
|
rxm = rxe->mbuf;
|
|
rxe->mbuf = nmb;
|
|
dma_addr =
|
|
rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
|
|
|
|
/* Set data buffer address and data length of the mbuf */
|
|
rxdp->read.hdr_addr = 0;
|
|
rxdp->read.pkt_addr = dma_addr;
|
|
rx_packet_len = rte_le_to_cpu_16(rxd.wb.pkt_len) &
|
|
ICE_RX_FLX_DESC_PKT_LEN_M;
|
|
rxm->data_len = rx_packet_len;
|
|
rxm->data_off = RTE_PKTMBUF_HEADROOM;
|
|
|
|
/**
|
|
* If this is the first buffer of the received packet, set the
|
|
* pointer to the first mbuf of the packet and initialize its
|
|
* context. Otherwise, update the total length and the number
|
|
* of segments of the current scattered packet, and update the
|
|
* pointer to the last mbuf of the current packet.
|
|
*/
|
|
if (!first_seg) {
|
|
first_seg = rxm;
|
|
first_seg->nb_segs = 1;
|
|
first_seg->pkt_len = rx_packet_len;
|
|
} else {
|
|
first_seg->pkt_len =
|
|
(uint16_t)(first_seg->pkt_len +
|
|
rx_packet_len);
|
|
first_seg->nb_segs++;
|
|
last_seg->next = rxm;
|
|
}
|
|
|
|
/**
|
|
* If this is not the last buffer of the received packet,
|
|
* update the pointer to the last mbuf of the current scattered
|
|
* packet and continue to parse the RX ring.
|
|
*/
|
|
if (!(rx_stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_EOF_S))) {
|
|
last_seg = rxm;
|
|
continue;
|
|
}
|
|
|
|
/**
|
|
* This is the last buffer of the received packet. If the CRC
|
|
* is not stripped by the hardware:
|
|
* - Subtract the CRC length from the total packet length.
|
|
* - If the last buffer only contains the whole CRC or a part
|
|
* of it, free the mbuf associated to the last buffer. If part
|
|
* of the CRC is also contained in the previous mbuf, subtract
|
|
* the length of that CRC part from the data length of the
|
|
* previous mbuf.
|
|
*/
|
|
rxm->next = NULL;
|
|
if (unlikely(rxq->crc_len > 0)) {
|
|
first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
|
|
if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
|
|
rte_pktmbuf_free_seg(rxm);
|
|
first_seg->nb_segs--;
|
|
last_seg->data_len =
|
|
(uint16_t)(last_seg->data_len -
|
|
(RTE_ETHER_CRC_LEN - rx_packet_len));
|
|
last_seg->next = NULL;
|
|
} else
|
|
rxm->data_len = (uint16_t)(rx_packet_len -
|
|
RTE_ETHER_CRC_LEN);
|
|
}
|
|
|
|
first_seg->port = rxq->port_id;
|
|
first_seg->ol_flags = 0;
|
|
first_seg->packet_type = ptype_tbl[ICE_RX_FLEX_DESC_PTYPE_M &
|
|
rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
|
|
ice_rxd_to_vlan_tci(first_seg, &rxd);
|
|
rxq->rxd_to_pkt_fields(rxq, first_seg, &rxd);
|
|
pkt_flags = ice_rxd_error_to_pkt_flags(rx_stat_err0);
|
|
|
|
if (rxq->offloads & DEV_RX_OFFLOAD_TIMESTAMP) {
|
|
ts_ns = ice_tstamp_convert_32b_64b(hw,
|
|
rte_le_to_cpu_32(rxd.wb.flex_ts.ts_high));
|
|
if (ice_timestamp_dynflag > 0) {
|
|
*RTE_MBUF_DYNFIELD(first_seg,
|
|
ice_timestamp_dynfield_offset,
|
|
rte_mbuf_timestamp_t *) = ts_ns;
|
|
first_seg->ol_flags |= ice_timestamp_dynflag;
|
|
}
|
|
}
|
|
|
|
if (ad->ptp_ena && ((first_seg->packet_type & RTE_PTYPE_L2_MASK)
|
|
== RTE_PTYPE_L2_ETHER_TIMESYNC)) {
|
|
rxq->time_high =
|
|
rte_le_to_cpu_32(rxd.wb.flex_ts.ts_high);
|
|
first_seg->timesync = rxq->queue_id;
|
|
pkt_flags |= PKT_RX_IEEE1588_PTP;
|
|
}
|
|
|
|
first_seg->ol_flags |= pkt_flags;
|
|
/* Prefetch data of first segment, if configured to do so. */
|
|
rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
|
|
first_seg->data_off));
|
|
rx_pkts[nb_rx++] = first_seg;
|
|
first_seg = NULL;
|
|
}
|
|
|
|
/* Record index of the next RX descriptor to probe. */
|
|
rxq->rx_tail = rx_id;
|
|
rxq->pkt_first_seg = first_seg;
|
|
rxq->pkt_last_seg = last_seg;
|
|
|
|
/**
|
|
* If the number of free RX descriptors is greater than the RX free
|
|
* threshold of the queue, advance the Receive Descriptor Tail (RDT)
|
|
* register. Update the RDT with the value of the last processed RX
|
|
* descriptor minus 1, to guarantee that the RDT register is never
|
|
* equal to the RDH register, which creates a "full" ring situtation
|
|
* from the hardware point of view.
|
|
*/
|
|
nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
|
|
if (nb_hold > rxq->rx_free_thresh) {
|
|
rx_id = (uint16_t)(rx_id == 0 ?
|
|
(rxq->nb_rx_desc - 1) : (rx_id - 1));
|
|
/* write TAIL register */
|
|
ICE_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
|
|
nb_hold = 0;
|
|
}
|
|
rxq->nb_rx_hold = nb_hold;
|
|
|
|
/* return received packet in the burst */
|
|
return nb_rx;
|
|
}
|
|
|
|
const uint32_t *
|
|
ice_dev_supported_ptypes_get(struct rte_eth_dev *dev)
|
|
{
|
|
struct ice_adapter *ad =
|
|
ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
|
|
const uint32_t *ptypes;
|
|
|
|
static const uint32_t ptypes_os[] = {
|
|
/* refers to ice_get_default_pkt_type() */
|
|
RTE_PTYPE_L2_ETHER,
|
|
RTE_PTYPE_L2_ETHER_TIMESYNC,
|
|
RTE_PTYPE_L2_ETHER_LLDP,
|
|
RTE_PTYPE_L2_ETHER_ARP,
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
|
|
RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
|
|
RTE_PTYPE_L4_FRAG,
|
|
RTE_PTYPE_L4_ICMP,
|
|
RTE_PTYPE_L4_NONFRAG,
|
|
RTE_PTYPE_L4_SCTP,
|
|
RTE_PTYPE_L4_TCP,
|
|
RTE_PTYPE_L4_UDP,
|
|
RTE_PTYPE_TUNNEL_GRENAT,
|
|
RTE_PTYPE_TUNNEL_IP,
|
|
RTE_PTYPE_INNER_L2_ETHER,
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
RTE_PTYPE_INNER_L4_SCTP,
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
RTE_PTYPE_UNKNOWN
|
|
};
|
|
|
|
static const uint32_t ptypes_comms[] = {
|
|
/* refers to ice_get_default_pkt_type() */
|
|
RTE_PTYPE_L2_ETHER,
|
|
RTE_PTYPE_L2_ETHER_TIMESYNC,
|
|
RTE_PTYPE_L2_ETHER_LLDP,
|
|
RTE_PTYPE_L2_ETHER_ARP,
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
|
|
RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
|
|
RTE_PTYPE_L4_FRAG,
|
|
RTE_PTYPE_L4_ICMP,
|
|
RTE_PTYPE_L4_NONFRAG,
|
|
RTE_PTYPE_L4_SCTP,
|
|
RTE_PTYPE_L4_TCP,
|
|
RTE_PTYPE_L4_UDP,
|
|
RTE_PTYPE_TUNNEL_GRENAT,
|
|
RTE_PTYPE_TUNNEL_IP,
|
|
RTE_PTYPE_INNER_L2_ETHER,
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
RTE_PTYPE_INNER_L4_SCTP,
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
RTE_PTYPE_TUNNEL_GTPC,
|
|
RTE_PTYPE_TUNNEL_GTPU,
|
|
RTE_PTYPE_L2_ETHER_PPPOE,
|
|
RTE_PTYPE_UNKNOWN
|
|
};
|
|
|
|
if (ad->active_pkg_type == ICE_PKG_TYPE_COMMS)
|
|
ptypes = ptypes_comms;
|
|
else
|
|
ptypes = ptypes_os;
|
|
|
|
if (dev->rx_pkt_burst == ice_recv_pkts ||
|
|
dev->rx_pkt_burst == ice_recv_pkts_bulk_alloc ||
|
|
dev->rx_pkt_burst == ice_recv_scattered_pkts)
|
|
return ptypes;
|
|
|
|
#ifdef RTE_ARCH_X86
|
|
if (dev->rx_pkt_burst == ice_recv_pkts_vec ||
|
|
dev->rx_pkt_burst == ice_recv_scattered_pkts_vec ||
|
|
#ifdef CC_AVX512_SUPPORT
|
|
dev->rx_pkt_burst == ice_recv_pkts_vec_avx512 ||
|
|
dev->rx_pkt_burst == ice_recv_pkts_vec_avx512_offload ||
|
|
dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx512 ||
|
|
dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx512_offload ||
|
|
#endif
|
|
dev->rx_pkt_burst == ice_recv_pkts_vec_avx2 ||
|
|
dev->rx_pkt_burst == ice_recv_pkts_vec_avx2_offload ||
|
|
dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx2 ||
|
|
dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx2_offload)
|
|
return ptypes;
|
|
#endif
|
|
|
|
return NULL;
|
|
}
|
|
|
|
int
|
|
ice_rx_descriptor_status(void *rx_queue, uint16_t offset)
|
|
{
|
|
volatile union ice_rx_flex_desc *rxdp;
|
|
struct ice_rx_queue *rxq = rx_queue;
|
|
uint32_t desc;
|
|
|
|
if (unlikely(offset >= rxq->nb_rx_desc))
|
|
return -EINVAL;
|
|
|
|
if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
|
|
return RTE_ETH_RX_DESC_UNAVAIL;
|
|
|
|
desc = rxq->rx_tail + offset;
|
|
if (desc >= rxq->nb_rx_desc)
|
|
desc -= rxq->nb_rx_desc;
|
|
|
|
rxdp = &rxq->rx_ring[desc];
|
|
if (rte_le_to_cpu_16(rxdp->wb.status_error0) &
|
|
(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S))
|
|
return RTE_ETH_RX_DESC_DONE;
|
|
|
|
return RTE_ETH_RX_DESC_AVAIL;
|
|
}
|
|
|
|
int
|
|
ice_tx_descriptor_status(void *tx_queue, uint16_t offset)
|
|
{
|
|
struct ice_tx_queue *txq = tx_queue;
|
|
volatile uint64_t *status;
|
|
uint64_t mask, expect;
|
|
uint32_t desc;
|
|
|
|
if (unlikely(offset >= txq->nb_tx_desc))
|
|
return -EINVAL;
|
|
|
|
desc = txq->tx_tail + offset;
|
|
/* go to next desc that has the RS bit */
|
|
desc = ((desc + txq->tx_rs_thresh - 1) / txq->tx_rs_thresh) *
|
|
txq->tx_rs_thresh;
|
|
if (desc >= txq->nb_tx_desc) {
|
|
desc -= txq->nb_tx_desc;
|
|
if (desc >= txq->nb_tx_desc)
|
|
desc -= txq->nb_tx_desc;
|
|
}
|
|
|
|
status = &txq->tx_ring[desc].cmd_type_offset_bsz;
|
|
mask = rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M);
|
|
expect = rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE <<
|
|
ICE_TXD_QW1_DTYPE_S);
|
|
if ((*status & mask) == expect)
|
|
return RTE_ETH_TX_DESC_DONE;
|
|
|
|
return RTE_ETH_TX_DESC_FULL;
|
|
}
|
|
|
|
void
|
|
ice_free_queues(struct rte_eth_dev *dev)
|
|
{
|
|
uint16_t i;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++) {
|
|
if (!dev->data->rx_queues[i])
|
|
continue;
|
|
ice_rx_queue_release(dev->data->rx_queues[i]);
|
|
dev->data->rx_queues[i] = NULL;
|
|
}
|
|
dev->data->nb_rx_queues = 0;
|
|
|
|
for (i = 0; i < dev->data->nb_tx_queues; i++) {
|
|
if (!dev->data->tx_queues[i])
|
|
continue;
|
|
ice_tx_queue_release(dev->data->tx_queues[i]);
|
|
dev->data->tx_queues[i] = NULL;
|
|
}
|
|
dev->data->nb_tx_queues = 0;
|
|
}
|
|
|
|
#define ICE_FDIR_NUM_TX_DESC ICE_MIN_RING_DESC
|
|
#define ICE_FDIR_NUM_RX_DESC ICE_MIN_RING_DESC
|
|
|
|
int
|
|
ice_fdir_setup_tx_resources(struct ice_pf *pf)
|
|
{
|
|
struct ice_tx_queue *txq;
|
|
const struct rte_memzone *tz = NULL;
|
|
uint32_t ring_size;
|
|
struct rte_eth_dev *dev;
|
|
|
|
if (!pf) {
|
|
PMD_DRV_LOG(ERR, "PF is not available");
|
|
return -EINVAL;
|
|
}
|
|
|
|
dev = &rte_eth_devices[pf->adapter->pf.dev_data->port_id];
|
|
|
|
/* Allocate the TX queue data structure. */
|
|
txq = rte_zmalloc_socket("ice fdir tx queue",
|
|
sizeof(struct ice_tx_queue),
|
|
RTE_CACHE_LINE_SIZE,
|
|
SOCKET_ID_ANY);
|
|
if (!txq) {
|
|
PMD_DRV_LOG(ERR, "Failed to allocate memory for "
|
|
"tx queue structure.");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Allocate TX hardware ring descriptors. */
|
|
ring_size = sizeof(struct ice_tx_desc) * ICE_FDIR_NUM_TX_DESC;
|
|
ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
|
|
|
|
tz = rte_eth_dma_zone_reserve(dev, "fdir_tx_ring",
|
|
ICE_FDIR_QUEUE_ID, ring_size,
|
|
ICE_RING_BASE_ALIGN, SOCKET_ID_ANY);
|
|
if (!tz) {
|
|
ice_tx_queue_release(txq);
|
|
PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX.");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
txq->mz = tz;
|
|
txq->nb_tx_desc = ICE_FDIR_NUM_TX_DESC;
|
|
txq->queue_id = ICE_FDIR_QUEUE_ID;
|
|
txq->reg_idx = pf->fdir.fdir_vsi->base_queue;
|
|
txq->vsi = pf->fdir.fdir_vsi;
|
|
|
|
txq->tx_ring_dma = tz->iova;
|
|
txq->tx_ring = (struct ice_tx_desc *)tz->addr;
|
|
/*
|
|
* don't need to allocate software ring and reset for the fdir
|
|
* program queue just set the queue has been configured.
|
|
*/
|
|
txq->q_set = true;
|
|
pf->fdir.txq = txq;
|
|
|
|
txq->tx_rel_mbufs = _ice_tx_queue_release_mbufs;
|
|
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
int
|
|
ice_fdir_setup_rx_resources(struct ice_pf *pf)
|
|
{
|
|
struct ice_rx_queue *rxq;
|
|
const struct rte_memzone *rz = NULL;
|
|
uint32_t ring_size;
|
|
struct rte_eth_dev *dev;
|
|
|
|
if (!pf) {
|
|
PMD_DRV_LOG(ERR, "PF is not available");
|
|
return -EINVAL;
|
|
}
|
|
|
|
dev = &rte_eth_devices[pf->adapter->pf.dev_data->port_id];
|
|
|
|
/* Allocate the RX queue data structure. */
|
|
rxq = rte_zmalloc_socket("ice fdir rx queue",
|
|
sizeof(struct ice_rx_queue),
|
|
RTE_CACHE_LINE_SIZE,
|
|
SOCKET_ID_ANY);
|
|
if (!rxq) {
|
|
PMD_DRV_LOG(ERR, "Failed to allocate memory for "
|
|
"rx queue structure.");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Allocate RX hardware ring descriptors. */
|
|
ring_size = sizeof(union ice_32byte_rx_desc) * ICE_FDIR_NUM_RX_DESC;
|
|
ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
|
|
|
|
rz = rte_eth_dma_zone_reserve(dev, "fdir_rx_ring",
|
|
ICE_FDIR_QUEUE_ID, ring_size,
|
|
ICE_RING_BASE_ALIGN, SOCKET_ID_ANY);
|
|
if (!rz) {
|
|
ice_rx_queue_release(rxq);
|
|
PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX.");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
rxq->mz = rz;
|
|
rxq->nb_rx_desc = ICE_FDIR_NUM_RX_DESC;
|
|
rxq->queue_id = ICE_FDIR_QUEUE_ID;
|
|
rxq->reg_idx = pf->fdir.fdir_vsi->base_queue;
|
|
rxq->vsi = pf->fdir.fdir_vsi;
|
|
|
|
rxq->rx_ring_dma = rz->iova;
|
|
memset(rz->addr, 0, ICE_FDIR_NUM_RX_DESC *
|
|
sizeof(union ice_32byte_rx_desc));
|
|
rxq->rx_ring = (union ice_rx_flex_desc *)rz->addr;
|
|
|
|
/*
|
|
* Don't need to allocate software ring and reset for the fdir
|
|
* rx queue, just set the queue has been configured.
|
|
*/
|
|
rxq->q_set = true;
|
|
pf->fdir.rxq = rxq;
|
|
|
|
rxq->rx_rel_mbufs = _ice_rx_queue_release_mbufs;
|
|
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
uint16_t
|
|
ice_recv_pkts(void *rx_queue,
|
|
struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
struct ice_rx_queue *rxq = rx_queue;
|
|
volatile union ice_rx_flex_desc *rx_ring = rxq->rx_ring;
|
|
volatile union ice_rx_flex_desc *rxdp;
|
|
union ice_rx_flex_desc rxd;
|
|
struct ice_rx_entry *sw_ring = rxq->sw_ring;
|
|
struct ice_rx_entry *rxe;
|
|
struct rte_mbuf *nmb; /* new allocated mbuf */
|
|
struct rte_mbuf *rxm; /* pointer to store old mbuf in SW ring */
|
|
uint16_t rx_id = rxq->rx_tail;
|
|
uint16_t nb_rx = 0;
|
|
uint16_t nb_hold = 0;
|
|
uint16_t rx_packet_len;
|
|
uint16_t rx_stat_err0;
|
|
uint64_t dma_addr;
|
|
uint64_t pkt_flags;
|
|
uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
|
|
struct ice_vsi *vsi = rxq->vsi;
|
|
struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
|
|
uint64_t ts_ns;
|
|
struct ice_adapter *ad = rxq->vsi->adapter;
|
|
|
|
while (nb_rx < nb_pkts) {
|
|
rxdp = &rx_ring[rx_id];
|
|
rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
|
|
|
|
/* Check the DD bit first */
|
|
if (!(rx_stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
|
|
break;
|
|
|
|
/* allocate mbuf */
|
|
nmb = rte_mbuf_raw_alloc(rxq->mp);
|
|
if (unlikely(!nmb)) {
|
|
rxq->vsi->adapter->pf.dev_data->rx_mbuf_alloc_failed++;
|
|
break;
|
|
}
|
|
rxd = *rxdp; /* copy descriptor in ring to temp variable*/
|
|
|
|
nb_hold++;
|
|
rxe = &sw_ring[rx_id]; /* get corresponding mbuf in SW ring */
|
|
rx_id++;
|
|
if (unlikely(rx_id == rxq->nb_rx_desc))
|
|
rx_id = 0;
|
|
rxm = rxe->mbuf;
|
|
rxe->mbuf = nmb;
|
|
dma_addr =
|
|
rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
|
|
|
|
/**
|
|
* fill the read format of descriptor with physic address in
|
|
* new allocated mbuf: nmb
|
|
*/
|
|
rxdp->read.hdr_addr = 0;
|
|
rxdp->read.pkt_addr = dma_addr;
|
|
|
|
/* calculate rx_packet_len of the received pkt */
|
|
rx_packet_len = (rte_le_to_cpu_16(rxd.wb.pkt_len) &
|
|
ICE_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
|
|
|
|
/* fill old mbuf with received descriptor: rxd */
|
|
rxm->data_off = RTE_PKTMBUF_HEADROOM;
|
|
rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
|
|
rxm->nb_segs = 1;
|
|
rxm->next = NULL;
|
|
rxm->pkt_len = rx_packet_len;
|
|
rxm->data_len = rx_packet_len;
|
|
rxm->port = rxq->port_id;
|
|
rxm->packet_type = ptype_tbl[ICE_RX_FLEX_DESC_PTYPE_M &
|
|
rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
|
|
ice_rxd_to_vlan_tci(rxm, &rxd);
|
|
rxq->rxd_to_pkt_fields(rxq, rxm, &rxd);
|
|
pkt_flags = ice_rxd_error_to_pkt_flags(rx_stat_err0);
|
|
|
|
if (rxq->offloads & DEV_RX_OFFLOAD_TIMESTAMP) {
|
|
ts_ns = ice_tstamp_convert_32b_64b(hw,
|
|
rte_le_to_cpu_32(rxd.wb.flex_ts.ts_high));
|
|
if (ice_timestamp_dynflag > 0) {
|
|
*RTE_MBUF_DYNFIELD(rxm,
|
|
ice_timestamp_dynfield_offset,
|
|
rte_mbuf_timestamp_t *) = ts_ns;
|
|
rxm->ol_flags |= ice_timestamp_dynflag;
|
|
}
|
|
}
|
|
|
|
if (ad->ptp_ena && ((rxm->packet_type & RTE_PTYPE_L2_MASK) ==
|
|
RTE_PTYPE_L2_ETHER_TIMESYNC)) {
|
|
rxq->time_high =
|
|
rte_le_to_cpu_32(rxd.wb.flex_ts.ts_high);
|
|
rxm->timesync = rxq->queue_id;
|
|
pkt_flags |= PKT_RX_IEEE1588_PTP;
|
|
}
|
|
|
|
rxm->ol_flags |= pkt_flags;
|
|
/* copy old mbuf to rx_pkts */
|
|
rx_pkts[nb_rx++] = rxm;
|
|
}
|
|
rxq->rx_tail = rx_id;
|
|
/**
|
|
* If the number of free RX descriptors is greater than the RX free
|
|
* threshold of the queue, advance the receive tail register of queue.
|
|
* Update that register with the value of the last processed RX
|
|
* descriptor minus 1.
|
|
*/
|
|
nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
|
|
if (nb_hold > rxq->rx_free_thresh) {
|
|
rx_id = (uint16_t)(rx_id == 0 ?
|
|
(rxq->nb_rx_desc - 1) : (rx_id - 1));
|
|
/* write TAIL register */
|
|
ICE_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
|
|
nb_hold = 0;
|
|
}
|
|
rxq->nb_rx_hold = nb_hold;
|
|
|
|
/* return received packet in the burst */
|
|
return nb_rx;
|
|
}
|
|
|
|
static inline void
|
|
ice_parse_tunneling_params(uint64_t ol_flags,
|
|
union ice_tx_offload tx_offload,
|
|
uint32_t *cd_tunneling)
|
|
{
|
|
/* EIPT: External (outer) IP header type */
|
|
if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
|
|
*cd_tunneling |= ICE_TX_CTX_EIPT_IPV4;
|
|
else if (ol_flags & PKT_TX_OUTER_IPV4)
|
|
*cd_tunneling |= ICE_TX_CTX_EIPT_IPV4_NO_CSUM;
|
|
else if (ol_flags & PKT_TX_OUTER_IPV6)
|
|
*cd_tunneling |= ICE_TX_CTX_EIPT_IPV6;
|
|
|
|
/* EIPLEN: External (outer) IP header length, in DWords */
|
|
*cd_tunneling |= (tx_offload.outer_l3_len >> 2) <<
|
|
ICE_TXD_CTX_QW0_EIPLEN_S;
|
|
|
|
/* L4TUNT: L4 Tunneling Type */
|
|
switch (ol_flags & PKT_TX_TUNNEL_MASK) {
|
|
case PKT_TX_TUNNEL_IPIP:
|
|
/* for non UDP / GRE tunneling, set to 00b */
|
|
break;
|
|
case PKT_TX_TUNNEL_VXLAN:
|
|
case PKT_TX_TUNNEL_GTP:
|
|
case PKT_TX_TUNNEL_GENEVE:
|
|
*cd_tunneling |= ICE_TXD_CTX_UDP_TUNNELING;
|
|
break;
|
|
case PKT_TX_TUNNEL_GRE:
|
|
*cd_tunneling |= ICE_TXD_CTX_GRE_TUNNELING;
|
|
break;
|
|
default:
|
|
PMD_TX_LOG(ERR, "Tunnel type not supported");
|
|
return;
|
|
}
|
|
|
|
/* L4TUNLEN: L4 Tunneling Length, in Words
|
|
*
|
|
* We depend on app to set rte_mbuf.l2_len correctly.
|
|
* For IP in GRE it should be set to the length of the GRE
|
|
* header;
|
|
* For MAC in GRE or MAC in UDP it should be set to the length
|
|
* of the GRE or UDP headers plus the inner MAC up to including
|
|
* its last Ethertype.
|
|
* If MPLS labels exists, it should include them as well.
|
|
*/
|
|
*cd_tunneling |= (tx_offload.l2_len >> 1) <<
|
|
ICE_TXD_CTX_QW0_NATLEN_S;
|
|
|
|
/**
|
|
* Calculate the tunneling UDP checksum.
|
|
* Shall be set only if L4TUNT = 01b and EIPT is not zero
|
|
*/
|
|
if (!(*cd_tunneling & ICE_TX_CTX_EIPT_NONE) &&
|
|
(*cd_tunneling & ICE_TXD_CTX_UDP_TUNNELING))
|
|
*cd_tunneling |= ICE_TXD_CTX_QW0_L4T_CS_M;
|
|
}
|
|
|
|
static inline void
|
|
ice_txd_enable_checksum(uint64_t ol_flags,
|
|
uint32_t *td_cmd,
|
|
uint32_t *td_offset,
|
|
union ice_tx_offload tx_offload)
|
|
{
|
|
/* Set MACLEN */
|
|
if (ol_flags & PKT_TX_TUNNEL_MASK)
|
|
*td_offset |= (tx_offload.outer_l2_len >> 1)
|
|
<< ICE_TX_DESC_LEN_MACLEN_S;
|
|
else
|
|
*td_offset |= (tx_offload.l2_len >> 1)
|
|
<< ICE_TX_DESC_LEN_MACLEN_S;
|
|
|
|
/* Enable L3 checksum offloads */
|
|
if (ol_flags & PKT_TX_IP_CKSUM) {
|
|
*td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
|
|
*td_offset |= (tx_offload.l3_len >> 2) <<
|
|
ICE_TX_DESC_LEN_IPLEN_S;
|
|
} else if (ol_flags & PKT_TX_IPV4) {
|
|
*td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
|
|
*td_offset |= (tx_offload.l3_len >> 2) <<
|
|
ICE_TX_DESC_LEN_IPLEN_S;
|
|
} else if (ol_flags & PKT_TX_IPV6) {
|
|
*td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
|
|
*td_offset |= (tx_offload.l3_len >> 2) <<
|
|
ICE_TX_DESC_LEN_IPLEN_S;
|
|
}
|
|
|
|
if (ol_flags & PKT_TX_TCP_SEG) {
|
|
*td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
|
|
*td_offset |= (tx_offload.l4_len >> 2) <<
|
|
ICE_TX_DESC_LEN_L4_LEN_S;
|
|
return;
|
|
}
|
|
|
|
/* Enable L4 checksum offloads */
|
|
switch (ol_flags & PKT_TX_L4_MASK) {
|
|
case PKT_TX_TCP_CKSUM:
|
|
*td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
|
|
*td_offset |= (sizeof(struct rte_tcp_hdr) >> 2) <<
|
|
ICE_TX_DESC_LEN_L4_LEN_S;
|
|
break;
|
|
case PKT_TX_SCTP_CKSUM:
|
|
*td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
|
|
*td_offset |= (sizeof(struct rte_sctp_hdr) >> 2) <<
|
|
ICE_TX_DESC_LEN_L4_LEN_S;
|
|
break;
|
|
case PKT_TX_UDP_CKSUM:
|
|
*td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
|
|
*td_offset |= (sizeof(struct rte_udp_hdr) >> 2) <<
|
|
ICE_TX_DESC_LEN_L4_LEN_S;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static inline int
|
|
ice_xmit_cleanup(struct ice_tx_queue *txq)
|
|
{
|
|
struct ice_tx_entry *sw_ring = txq->sw_ring;
|
|
volatile struct ice_tx_desc *txd = txq->tx_ring;
|
|
uint16_t last_desc_cleaned = txq->last_desc_cleaned;
|
|
uint16_t nb_tx_desc = txq->nb_tx_desc;
|
|
uint16_t desc_to_clean_to;
|
|
uint16_t nb_tx_to_clean;
|
|
|
|
/* Determine the last descriptor needing to be cleaned */
|
|
desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
|
|
if (desc_to_clean_to >= nb_tx_desc)
|
|
desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
|
|
|
|
/* Check to make sure the last descriptor to clean is done */
|
|
desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
|
|
if (!(txd[desc_to_clean_to].cmd_type_offset_bsz &
|
|
rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))) {
|
|
PMD_TX_LOG(DEBUG, "TX descriptor %4u is not done "
|
|
"(port=%d queue=%d) value=0x%"PRIx64"\n",
|
|
desc_to_clean_to,
|
|
txq->port_id, txq->queue_id,
|
|
txd[desc_to_clean_to].cmd_type_offset_bsz);
|
|
/* Failed to clean any descriptors */
|
|
return -1;
|
|
}
|
|
|
|
/* Figure out how many descriptors will be cleaned */
|
|
if (last_desc_cleaned > desc_to_clean_to)
|
|
nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
|
|
desc_to_clean_to);
|
|
else
|
|
nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
|
|
last_desc_cleaned);
|
|
|
|
/* The last descriptor to clean is done, so that means all the
|
|
* descriptors from the last descriptor that was cleaned
|
|
* up to the last descriptor with the RS bit set
|
|
* are done. Only reset the threshold descriptor.
|
|
*/
|
|
txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
|
|
|
|
/* Update the txq to reflect the last descriptor that was cleaned */
|
|
txq->last_desc_cleaned = desc_to_clean_to;
|
|
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Construct the tx flags */
|
|
static inline uint64_t
|
|
ice_build_ctob(uint32_t td_cmd,
|
|
uint32_t td_offset,
|
|
uint16_t size,
|
|
uint32_t td_tag)
|
|
{
|
|
return rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DATA |
|
|
((uint64_t)td_cmd << ICE_TXD_QW1_CMD_S) |
|
|
((uint64_t)td_offset << ICE_TXD_QW1_OFFSET_S) |
|
|
((uint64_t)size << ICE_TXD_QW1_TX_BUF_SZ_S) |
|
|
((uint64_t)td_tag << ICE_TXD_QW1_L2TAG1_S));
|
|
}
|
|
|
|
/* Check if the context descriptor is needed for TX offloading */
|
|
static inline uint16_t
|
|
ice_calc_context_desc(uint64_t flags)
|
|
{
|
|
static uint64_t mask = PKT_TX_TCP_SEG |
|
|
PKT_TX_QINQ |
|
|
PKT_TX_OUTER_IP_CKSUM |
|
|
PKT_TX_TUNNEL_MASK |
|
|
PKT_TX_IEEE1588_TMST;
|
|
|
|
return (flags & mask) ? 1 : 0;
|
|
}
|
|
|
|
/* set ice TSO context descriptor */
|
|
static inline uint64_t
|
|
ice_set_tso_ctx(struct rte_mbuf *mbuf, union ice_tx_offload tx_offload)
|
|
{
|
|
uint64_t ctx_desc = 0;
|
|
uint32_t cd_cmd, hdr_len, cd_tso_len;
|
|
|
|
if (!tx_offload.l4_len) {
|
|
PMD_TX_LOG(DEBUG, "L4 length set to 0");
|
|
return ctx_desc;
|
|
}
|
|
|
|
hdr_len = tx_offload.l2_len + tx_offload.l3_len + tx_offload.l4_len;
|
|
hdr_len += (mbuf->ol_flags & PKT_TX_TUNNEL_MASK) ?
|
|
tx_offload.outer_l2_len + tx_offload.outer_l3_len : 0;
|
|
|
|
cd_cmd = ICE_TX_CTX_DESC_TSO;
|
|
cd_tso_len = mbuf->pkt_len - hdr_len;
|
|
ctx_desc |= ((uint64_t)cd_cmd << ICE_TXD_CTX_QW1_CMD_S) |
|
|
((uint64_t)cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
|
|
((uint64_t)mbuf->tso_segsz << ICE_TXD_CTX_QW1_MSS_S);
|
|
|
|
return ctx_desc;
|
|
}
|
|
|
|
/* HW requires that TX buffer size ranges from 1B up to (16K-1)B. */
|
|
#define ICE_MAX_DATA_PER_TXD \
|
|
(ICE_TXD_QW1_TX_BUF_SZ_M >> ICE_TXD_QW1_TX_BUF_SZ_S)
|
|
/* Calculate the number of TX descriptors needed for each pkt */
|
|
static inline uint16_t
|
|
ice_calc_pkt_desc(struct rte_mbuf *tx_pkt)
|
|
{
|
|
struct rte_mbuf *txd = tx_pkt;
|
|
uint16_t count = 0;
|
|
|
|
while (txd != NULL) {
|
|
count += DIV_ROUND_UP(txd->data_len, ICE_MAX_DATA_PER_TXD);
|
|
txd = txd->next;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
uint16_t
|
|
ice_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
|
|
{
|
|
struct ice_tx_queue *txq;
|
|
volatile struct ice_tx_desc *tx_ring;
|
|
volatile struct ice_tx_desc *txd;
|
|
struct ice_tx_entry *sw_ring;
|
|
struct ice_tx_entry *txe, *txn;
|
|
struct rte_mbuf *tx_pkt;
|
|
struct rte_mbuf *m_seg;
|
|
uint32_t cd_tunneling_params;
|
|
uint16_t tx_id;
|
|
uint16_t nb_tx;
|
|
uint16_t nb_used;
|
|
uint16_t nb_ctx;
|
|
uint32_t td_cmd = 0;
|
|
uint32_t td_offset = 0;
|
|
uint32_t td_tag = 0;
|
|
uint16_t tx_last;
|
|
uint16_t slen;
|
|
uint64_t buf_dma_addr;
|
|
uint64_t ol_flags;
|
|
union ice_tx_offload tx_offload = {0};
|
|
|
|
txq = tx_queue;
|
|
sw_ring = txq->sw_ring;
|
|
tx_ring = txq->tx_ring;
|
|
tx_id = txq->tx_tail;
|
|
txe = &sw_ring[tx_id];
|
|
|
|
/* Check if the descriptor ring needs to be cleaned. */
|
|
if (txq->nb_tx_free < txq->tx_free_thresh)
|
|
(void)ice_xmit_cleanup(txq);
|
|
|
|
for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
|
|
tx_pkt = *tx_pkts++;
|
|
|
|
td_cmd = 0;
|
|
td_tag = 0;
|
|
td_offset = 0;
|
|
ol_flags = tx_pkt->ol_flags;
|
|
tx_offload.l2_len = tx_pkt->l2_len;
|
|
tx_offload.l3_len = tx_pkt->l3_len;
|
|
tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
|
|
tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
|
|
tx_offload.l4_len = tx_pkt->l4_len;
|
|
tx_offload.tso_segsz = tx_pkt->tso_segsz;
|
|
/* Calculate the number of context descriptors needed. */
|
|
nb_ctx = ice_calc_context_desc(ol_flags);
|
|
|
|
/* The number of descriptors that must be allocated for
|
|
* a packet equals to the number of the segments of that
|
|
* packet plus the number of context descriptor if needed.
|
|
* Recalculate the needed tx descs when TSO enabled in case
|
|
* the mbuf data size exceeds max data size that hw allows
|
|
* per tx desc.
|
|
*/
|
|
if (ol_flags & PKT_TX_TCP_SEG)
|
|
nb_used = (uint16_t)(ice_calc_pkt_desc(tx_pkt) +
|
|
nb_ctx);
|
|
else
|
|
nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
|
|
tx_last = (uint16_t)(tx_id + nb_used - 1);
|
|
|
|
/* Circular ring */
|
|
if (tx_last >= txq->nb_tx_desc)
|
|
tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
|
|
|
|
if (nb_used > txq->nb_tx_free) {
|
|
if (ice_xmit_cleanup(txq) != 0) {
|
|
if (nb_tx == 0)
|
|
return 0;
|
|
goto end_of_tx;
|
|
}
|
|
if (unlikely(nb_used > txq->tx_rs_thresh)) {
|
|
while (nb_used > txq->nb_tx_free) {
|
|
if (ice_xmit_cleanup(txq) != 0) {
|
|
if (nb_tx == 0)
|
|
return 0;
|
|
goto end_of_tx;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Descriptor based VLAN insertion */
|
|
if (ol_flags & (PKT_TX_VLAN | PKT_TX_QINQ)) {
|
|
td_cmd |= ICE_TX_DESC_CMD_IL2TAG1;
|
|
td_tag = tx_pkt->vlan_tci;
|
|
}
|
|
|
|
/* Fill in tunneling parameters if necessary */
|
|
cd_tunneling_params = 0;
|
|
if (ol_flags & PKT_TX_TUNNEL_MASK)
|
|
ice_parse_tunneling_params(ol_flags, tx_offload,
|
|
&cd_tunneling_params);
|
|
|
|
/* Enable checksum offloading */
|
|
if (ol_flags & ICE_TX_CKSUM_OFFLOAD_MASK)
|
|
ice_txd_enable_checksum(ol_flags, &td_cmd,
|
|
&td_offset, tx_offload);
|
|
|
|
if (nb_ctx) {
|
|
/* Setup TX context descriptor if required */
|
|
volatile struct ice_tx_ctx_desc *ctx_txd =
|
|
(volatile struct ice_tx_ctx_desc *)
|
|
&tx_ring[tx_id];
|
|
uint16_t cd_l2tag2 = 0;
|
|
uint64_t cd_type_cmd_tso_mss = ICE_TX_DESC_DTYPE_CTX;
|
|
|
|
txn = &sw_ring[txe->next_id];
|
|
RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
|
|
if (txe->mbuf) {
|
|
rte_pktmbuf_free_seg(txe->mbuf);
|
|
txe->mbuf = NULL;
|
|
}
|
|
|
|
if (ol_flags & PKT_TX_TCP_SEG)
|
|
cd_type_cmd_tso_mss |=
|
|
ice_set_tso_ctx(tx_pkt, tx_offload);
|
|
else if (ol_flags & PKT_TX_IEEE1588_TMST)
|
|
cd_type_cmd_tso_mss |=
|
|
((uint64_t)ICE_TX_CTX_DESC_TSYN <<
|
|
ICE_TXD_CTX_QW1_CMD_S);
|
|
|
|
ctx_txd->tunneling_params =
|
|
rte_cpu_to_le_32(cd_tunneling_params);
|
|
|
|
/* TX context descriptor based double VLAN insert */
|
|
if (ol_flags & PKT_TX_QINQ) {
|
|
cd_l2tag2 = tx_pkt->vlan_tci_outer;
|
|
cd_type_cmd_tso_mss |=
|
|
((uint64_t)ICE_TX_CTX_DESC_IL2TAG2 <<
|
|
ICE_TXD_CTX_QW1_CMD_S);
|
|
}
|
|
ctx_txd->l2tag2 = rte_cpu_to_le_16(cd_l2tag2);
|
|
ctx_txd->qw1 =
|
|
rte_cpu_to_le_64(cd_type_cmd_tso_mss);
|
|
|
|
txe->last_id = tx_last;
|
|
tx_id = txe->next_id;
|
|
txe = txn;
|
|
}
|
|
m_seg = tx_pkt;
|
|
|
|
do {
|
|
txd = &tx_ring[tx_id];
|
|
txn = &sw_ring[txe->next_id];
|
|
|
|
if (txe->mbuf)
|
|
rte_pktmbuf_free_seg(txe->mbuf);
|
|
txe->mbuf = m_seg;
|
|
|
|
/* Setup TX Descriptor */
|
|
slen = m_seg->data_len;
|
|
buf_dma_addr = rte_mbuf_data_iova(m_seg);
|
|
|
|
while ((ol_flags & PKT_TX_TCP_SEG) &&
|
|
unlikely(slen > ICE_MAX_DATA_PER_TXD)) {
|
|
txd->buf_addr = rte_cpu_to_le_64(buf_dma_addr);
|
|
txd->cmd_type_offset_bsz =
|
|
rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DATA |
|
|
((uint64_t)td_cmd << ICE_TXD_QW1_CMD_S) |
|
|
((uint64_t)td_offset << ICE_TXD_QW1_OFFSET_S) |
|
|
((uint64_t)ICE_MAX_DATA_PER_TXD <<
|
|
ICE_TXD_QW1_TX_BUF_SZ_S) |
|
|
((uint64_t)td_tag << ICE_TXD_QW1_L2TAG1_S));
|
|
|
|
buf_dma_addr += ICE_MAX_DATA_PER_TXD;
|
|
slen -= ICE_MAX_DATA_PER_TXD;
|
|
|
|
txe->last_id = tx_last;
|
|
tx_id = txe->next_id;
|
|
txe = txn;
|
|
txd = &tx_ring[tx_id];
|
|
txn = &sw_ring[txe->next_id];
|
|
}
|
|
|
|
txd->buf_addr = rte_cpu_to_le_64(buf_dma_addr);
|
|
txd->cmd_type_offset_bsz =
|
|
rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DATA |
|
|
((uint64_t)td_cmd << ICE_TXD_QW1_CMD_S) |
|
|
((uint64_t)td_offset << ICE_TXD_QW1_OFFSET_S) |
|
|
((uint64_t)slen << ICE_TXD_QW1_TX_BUF_SZ_S) |
|
|
((uint64_t)td_tag << ICE_TXD_QW1_L2TAG1_S));
|
|
|
|
txe->last_id = tx_last;
|
|
tx_id = txe->next_id;
|
|
txe = txn;
|
|
m_seg = m_seg->next;
|
|
} while (m_seg);
|
|
|
|
/* fill the last descriptor with End of Packet (EOP) bit */
|
|
td_cmd |= ICE_TX_DESC_CMD_EOP;
|
|
txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
|
|
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
|
|
|
|
/* set RS bit on the last descriptor of one packet */
|
|
if (txq->nb_tx_used >= txq->tx_rs_thresh) {
|
|
PMD_TX_LOG(DEBUG,
|
|
"Setting RS bit on TXD id="
|
|
"%4u (port=%d queue=%d)",
|
|
tx_last, txq->port_id, txq->queue_id);
|
|
|
|
td_cmd |= ICE_TX_DESC_CMD_RS;
|
|
|
|
/* Update txq RS bit counters */
|
|
txq->nb_tx_used = 0;
|
|
}
|
|
txd->cmd_type_offset_bsz |=
|
|
rte_cpu_to_le_64(((uint64_t)td_cmd) <<
|
|
ICE_TXD_QW1_CMD_S);
|
|
}
|
|
end_of_tx:
|
|
/* update Tail register */
|
|
ICE_PCI_REG_WRITE(txq->qtx_tail, tx_id);
|
|
txq->tx_tail = tx_id;
|
|
|
|
return nb_tx;
|
|
}
|
|
|
|
static __rte_always_inline int
|
|
ice_tx_free_bufs(struct ice_tx_queue *txq)
|
|
{
|
|
struct ice_tx_entry *txep;
|
|
uint16_t i;
|
|
|
|
if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
|
|
rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M)) !=
|
|
rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))
|
|
return 0;
|
|
|
|
txep = &txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)];
|
|
|
|
for (i = 0; i < txq->tx_rs_thresh; i++)
|
|
rte_prefetch0((txep + i)->mbuf);
|
|
|
|
if (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE) {
|
|
for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
|
|
rte_mempool_put(txep->mbuf->pool, txep->mbuf);
|
|
txep->mbuf = NULL;
|
|
}
|
|
} else {
|
|
for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
|
|
rte_pktmbuf_free_seg(txep->mbuf);
|
|
txep->mbuf = NULL;
|
|
}
|
|
}
|
|
|
|
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
|
|
txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
|
|
if (txq->tx_next_dd >= txq->nb_tx_desc)
|
|
txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
|
|
|
|
return txq->tx_rs_thresh;
|
|
}
|
|
|
|
static int
|
|
ice_tx_done_cleanup_full(struct ice_tx_queue *txq,
|
|
uint32_t free_cnt)
|
|
{
|
|
struct ice_tx_entry *swr_ring = txq->sw_ring;
|
|
uint16_t i, tx_last, tx_id;
|
|
uint16_t nb_tx_free_last;
|
|
uint16_t nb_tx_to_clean;
|
|
uint32_t pkt_cnt;
|
|
|
|
/* Start free mbuf from the next of tx_tail */
|
|
tx_last = txq->tx_tail;
|
|
tx_id = swr_ring[tx_last].next_id;
|
|
|
|
if (txq->nb_tx_free == 0 && ice_xmit_cleanup(txq))
|
|
return 0;
|
|
|
|
nb_tx_to_clean = txq->nb_tx_free;
|
|
nb_tx_free_last = txq->nb_tx_free;
|
|
if (!free_cnt)
|
|
free_cnt = txq->nb_tx_desc;
|
|
|
|
/* Loop through swr_ring to count the amount of
|
|
* freeable mubfs and packets.
|
|
*/
|
|
for (pkt_cnt = 0; pkt_cnt < free_cnt; ) {
|
|
for (i = 0; i < nb_tx_to_clean &&
|
|
pkt_cnt < free_cnt &&
|
|
tx_id != tx_last; i++) {
|
|
if (swr_ring[tx_id].mbuf != NULL) {
|
|
rte_pktmbuf_free_seg(swr_ring[tx_id].mbuf);
|
|
swr_ring[tx_id].mbuf = NULL;
|
|
|
|
/*
|
|
* last segment in the packet,
|
|
* increment packet count
|
|
*/
|
|
pkt_cnt += (swr_ring[tx_id].last_id == tx_id);
|
|
}
|
|
|
|
tx_id = swr_ring[tx_id].next_id;
|
|
}
|
|
|
|
if (txq->tx_rs_thresh > txq->nb_tx_desc -
|
|
txq->nb_tx_free || tx_id == tx_last)
|
|
break;
|
|
|
|
if (pkt_cnt < free_cnt) {
|
|
if (ice_xmit_cleanup(txq))
|
|
break;
|
|
|
|
nb_tx_to_clean = txq->nb_tx_free - nb_tx_free_last;
|
|
nb_tx_free_last = txq->nb_tx_free;
|
|
}
|
|
}
|
|
|
|
return (int)pkt_cnt;
|
|
}
|
|
|
|
#ifdef RTE_ARCH_X86
|
|
static int
|
|
ice_tx_done_cleanup_vec(struct ice_tx_queue *txq __rte_unused,
|
|
uint32_t free_cnt __rte_unused)
|
|
{
|
|
return -ENOTSUP;
|
|
}
|
|
#endif
|
|
|
|
static int
|
|
ice_tx_done_cleanup_simple(struct ice_tx_queue *txq,
|
|
uint32_t free_cnt)
|
|
{
|
|
int i, n, cnt;
|
|
|
|
if (free_cnt == 0 || free_cnt > txq->nb_tx_desc)
|
|
free_cnt = txq->nb_tx_desc;
|
|
|
|
cnt = free_cnt - free_cnt % txq->tx_rs_thresh;
|
|
|
|
for (i = 0; i < cnt; i += n) {
|
|
if (txq->nb_tx_desc - txq->nb_tx_free < txq->tx_rs_thresh)
|
|
break;
|
|
|
|
n = ice_tx_free_bufs(txq);
|
|
|
|
if (n == 0)
|
|
break;
|
|
}
|
|
|
|
return i;
|
|
}
|
|
|
|
int
|
|
ice_tx_done_cleanup(void *txq, uint32_t free_cnt)
|
|
{
|
|
struct ice_tx_queue *q = (struct ice_tx_queue *)txq;
|
|
struct rte_eth_dev *dev = &rte_eth_devices[q->port_id];
|
|
struct ice_adapter *ad =
|
|
ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
|
|
|
|
#ifdef RTE_ARCH_X86
|
|
if (ad->tx_vec_allowed)
|
|
return ice_tx_done_cleanup_vec(q, free_cnt);
|
|
#endif
|
|
if (ad->tx_simple_allowed)
|
|
return ice_tx_done_cleanup_simple(q, free_cnt);
|
|
else
|
|
return ice_tx_done_cleanup_full(q, free_cnt);
|
|
}
|
|
|
|
/* Populate 4 descriptors with data from 4 mbufs */
|
|
static inline void
|
|
tx4(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkts)
|
|
{
|
|
uint64_t dma_addr;
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < 4; i++, txdp++, pkts++) {
|
|
dma_addr = rte_mbuf_data_iova(*pkts);
|
|
txdp->buf_addr = rte_cpu_to_le_64(dma_addr);
|
|
txdp->cmd_type_offset_bsz =
|
|
ice_build_ctob((uint32_t)ICE_TD_CMD, 0,
|
|
(*pkts)->data_len, 0);
|
|
}
|
|
}
|
|
|
|
/* Populate 1 descriptor with data from 1 mbuf */
|
|
static inline void
|
|
tx1(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkts)
|
|
{
|
|
uint64_t dma_addr;
|
|
|
|
dma_addr = rte_mbuf_data_iova(*pkts);
|
|
txdp->buf_addr = rte_cpu_to_le_64(dma_addr);
|
|
txdp->cmd_type_offset_bsz =
|
|
ice_build_ctob((uint32_t)ICE_TD_CMD, 0,
|
|
(*pkts)->data_len, 0);
|
|
}
|
|
|
|
static inline void
|
|
ice_tx_fill_hw_ring(struct ice_tx_queue *txq, struct rte_mbuf **pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
volatile struct ice_tx_desc *txdp = &txq->tx_ring[txq->tx_tail];
|
|
struct ice_tx_entry *txep = &txq->sw_ring[txq->tx_tail];
|
|
const int N_PER_LOOP = 4;
|
|
const int N_PER_LOOP_MASK = N_PER_LOOP - 1;
|
|
int mainpart, leftover;
|
|
int i, j;
|
|
|
|
/**
|
|
* Process most of the packets in chunks of N pkts. Any
|
|
* leftover packets will get processed one at a time.
|
|
*/
|
|
mainpart = nb_pkts & ((uint32_t)~N_PER_LOOP_MASK);
|
|
leftover = nb_pkts & ((uint32_t)N_PER_LOOP_MASK);
|
|
for (i = 0; i < mainpart; i += N_PER_LOOP) {
|
|
/* Copy N mbuf pointers to the S/W ring */
|
|
for (j = 0; j < N_PER_LOOP; ++j)
|
|
(txep + i + j)->mbuf = *(pkts + i + j);
|
|
tx4(txdp + i, pkts + i);
|
|
}
|
|
|
|
if (unlikely(leftover > 0)) {
|
|
for (i = 0; i < leftover; ++i) {
|
|
(txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
|
|
tx1(txdp + mainpart + i, pkts + mainpart + i);
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline uint16_t
|
|
tx_xmit_pkts(struct ice_tx_queue *txq,
|
|
struct rte_mbuf **tx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
volatile struct ice_tx_desc *txr = txq->tx_ring;
|
|
uint16_t n = 0;
|
|
|
|
/**
|
|
* Begin scanning the H/W ring for done descriptors when the number
|
|
* of available descriptors drops below tx_free_thresh. For each done
|
|
* descriptor, free the associated buffer.
|
|
*/
|
|
if (txq->nb_tx_free < txq->tx_free_thresh)
|
|
ice_tx_free_bufs(txq);
|
|
|
|
/* Use available descriptor only */
|
|
nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
|
|
if (unlikely(!nb_pkts))
|
|
return 0;
|
|
|
|
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
|
|
if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
|
|
n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
|
|
ice_tx_fill_hw_ring(txq, tx_pkts, n);
|
|
txr[txq->tx_next_rs].cmd_type_offset_bsz |=
|
|
rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
|
|
ICE_TXD_QW1_CMD_S);
|
|
txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
|
|
txq->tx_tail = 0;
|
|
}
|
|
|
|
/* Fill hardware descriptor ring with mbuf data */
|
|
ice_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
|
|
txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
|
|
|
|
/* Determin if RS bit needs to be set */
|
|
if (txq->tx_tail > txq->tx_next_rs) {
|
|
txr[txq->tx_next_rs].cmd_type_offset_bsz |=
|
|
rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
|
|
ICE_TXD_QW1_CMD_S);
|
|
txq->tx_next_rs =
|
|
(uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
|
|
if (txq->tx_next_rs >= txq->nb_tx_desc)
|
|
txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
|
|
}
|
|
|
|
if (txq->tx_tail >= txq->nb_tx_desc)
|
|
txq->tx_tail = 0;
|
|
|
|
/* Update the tx tail register */
|
|
ICE_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail);
|
|
|
|
return nb_pkts;
|
|
}
|
|
|
|
static uint16_t
|
|
ice_xmit_pkts_simple(void *tx_queue,
|
|
struct rte_mbuf **tx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
uint16_t nb_tx = 0;
|
|
|
|
if (likely(nb_pkts <= ICE_TX_MAX_BURST))
|
|
return tx_xmit_pkts((struct ice_tx_queue *)tx_queue,
|
|
tx_pkts, nb_pkts);
|
|
|
|
while (nb_pkts) {
|
|
uint16_t ret, num = (uint16_t)RTE_MIN(nb_pkts,
|
|
ICE_TX_MAX_BURST);
|
|
|
|
ret = tx_xmit_pkts((struct ice_tx_queue *)tx_queue,
|
|
&tx_pkts[nb_tx], num);
|
|
nb_tx = (uint16_t)(nb_tx + ret);
|
|
nb_pkts = (uint16_t)(nb_pkts - ret);
|
|
if (ret < num)
|
|
break;
|
|
}
|
|
|
|
return nb_tx;
|
|
}
|
|
|
|
void __rte_cold
|
|
ice_set_rx_function(struct rte_eth_dev *dev)
|
|
{
|
|
PMD_INIT_FUNC_TRACE();
|
|
struct ice_adapter *ad =
|
|
ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
|
|
#ifdef RTE_ARCH_X86
|
|
struct ice_rx_queue *rxq;
|
|
int i;
|
|
int rx_check_ret = -1;
|
|
|
|
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
|
|
ad->rx_use_avx512 = false;
|
|
ad->rx_use_avx2 = false;
|
|
rx_check_ret = ice_rx_vec_dev_check(dev);
|
|
if (ad->ptp_ena)
|
|
rx_check_ret = -1;
|
|
if (rx_check_ret >= 0 && ad->rx_bulk_alloc_allowed &&
|
|
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
|
|
ad->rx_vec_allowed = true;
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++) {
|
|
rxq = dev->data->rx_queues[i];
|
|
if (rxq && ice_rxq_vec_setup(rxq)) {
|
|
ad->rx_vec_allowed = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512 &&
|
|
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
|
|
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1)
|
|
#ifdef CC_AVX512_SUPPORT
|
|
ad->rx_use_avx512 = true;
|
|
#else
|
|
PMD_DRV_LOG(NOTICE,
|
|
"AVX512 is not supported in build env");
|
|
#endif
|
|
if (!ad->rx_use_avx512 &&
|
|
(rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
|
|
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
|
|
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
|
|
ad->rx_use_avx2 = true;
|
|
|
|
} else {
|
|
ad->rx_vec_allowed = false;
|
|
}
|
|
}
|
|
|
|
if (ad->rx_vec_allowed) {
|
|
if (dev->data->scattered_rx) {
|
|
if (ad->rx_use_avx512) {
|
|
#ifdef CC_AVX512_SUPPORT
|
|
if (rx_check_ret == ICE_VECTOR_OFFLOAD_PATH) {
|
|
PMD_DRV_LOG(NOTICE,
|
|
"Using AVX512 OFFLOAD Vector Scattered Rx (port %d).",
|
|
dev->data->port_id);
|
|
dev->rx_pkt_burst =
|
|
ice_recv_scattered_pkts_vec_avx512_offload;
|
|
} else {
|
|
PMD_DRV_LOG(NOTICE,
|
|
"Using AVX512 Vector Scattered Rx (port %d).",
|
|
dev->data->port_id);
|
|
dev->rx_pkt_burst =
|
|
ice_recv_scattered_pkts_vec_avx512;
|
|
}
|
|
#endif
|
|
} else if (ad->rx_use_avx2) {
|
|
if (rx_check_ret == ICE_VECTOR_OFFLOAD_PATH) {
|
|
PMD_DRV_LOG(NOTICE,
|
|
"Using AVX2 OFFLOAD Vector Scattered Rx (port %d).",
|
|
dev->data->port_id);
|
|
dev->rx_pkt_burst =
|
|
ice_recv_scattered_pkts_vec_avx2_offload;
|
|
} else {
|
|
PMD_DRV_LOG(NOTICE,
|
|
"Using AVX2 Vector Scattered Rx (port %d).",
|
|
dev->data->port_id);
|
|
dev->rx_pkt_burst =
|
|
ice_recv_scattered_pkts_vec_avx2;
|
|
}
|
|
} else {
|
|
PMD_DRV_LOG(DEBUG,
|
|
"Using Vector Scattered Rx (port %d).",
|
|
dev->data->port_id);
|
|
dev->rx_pkt_burst = ice_recv_scattered_pkts_vec;
|
|
}
|
|
} else {
|
|
if (ad->rx_use_avx512) {
|
|
#ifdef CC_AVX512_SUPPORT
|
|
if (rx_check_ret == ICE_VECTOR_OFFLOAD_PATH) {
|
|
PMD_DRV_LOG(NOTICE,
|
|
"Using AVX512 OFFLOAD Vector Rx (port %d).",
|
|
dev->data->port_id);
|
|
dev->rx_pkt_burst =
|
|
ice_recv_pkts_vec_avx512_offload;
|
|
} else {
|
|
PMD_DRV_LOG(NOTICE,
|
|
"Using AVX512 Vector Rx (port %d).",
|
|
dev->data->port_id);
|
|
dev->rx_pkt_burst =
|
|
ice_recv_pkts_vec_avx512;
|
|
}
|
|
#endif
|
|
} else if (ad->rx_use_avx2) {
|
|
if (rx_check_ret == ICE_VECTOR_OFFLOAD_PATH) {
|
|
PMD_DRV_LOG(NOTICE,
|
|
"Using AVX2 OFFLOAD Vector Rx (port %d).",
|
|
dev->data->port_id);
|
|
dev->rx_pkt_burst =
|
|
ice_recv_pkts_vec_avx2_offload;
|
|
} else {
|
|
PMD_DRV_LOG(NOTICE,
|
|
"Using AVX2 Vector Rx (port %d).",
|
|
dev->data->port_id);
|
|
dev->rx_pkt_burst =
|
|
ice_recv_pkts_vec_avx2;
|
|
}
|
|
} else {
|
|
PMD_DRV_LOG(DEBUG,
|
|
"Using Vector Rx (port %d).",
|
|
dev->data->port_id);
|
|
dev->rx_pkt_burst = ice_recv_pkts_vec;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
#endif
|
|
|
|
if (dev->data->scattered_rx) {
|
|
/* Set the non-LRO scattered function */
|
|
PMD_INIT_LOG(DEBUG,
|
|
"Using a Scattered function on port %d.",
|
|
dev->data->port_id);
|
|
dev->rx_pkt_burst = ice_recv_scattered_pkts;
|
|
} else if (ad->rx_bulk_alloc_allowed) {
|
|
PMD_INIT_LOG(DEBUG,
|
|
"Rx Burst Bulk Alloc Preconditions are "
|
|
"satisfied. Rx Burst Bulk Alloc function "
|
|
"will be used on port %d.",
|
|
dev->data->port_id);
|
|
dev->rx_pkt_burst = ice_recv_pkts_bulk_alloc;
|
|
} else {
|
|
PMD_INIT_LOG(DEBUG,
|
|
"Rx Burst Bulk Alloc Preconditions are not "
|
|
"satisfied, Normal Rx will be used on port %d.",
|
|
dev->data->port_id);
|
|
dev->rx_pkt_burst = ice_recv_pkts;
|
|
}
|
|
}
|
|
|
|
static const struct {
|
|
eth_rx_burst_t pkt_burst;
|
|
const char *info;
|
|
} ice_rx_burst_infos[] = {
|
|
{ ice_recv_scattered_pkts, "Scalar Scattered" },
|
|
{ ice_recv_pkts_bulk_alloc, "Scalar Bulk Alloc" },
|
|
{ ice_recv_pkts, "Scalar" },
|
|
#ifdef RTE_ARCH_X86
|
|
#ifdef CC_AVX512_SUPPORT
|
|
{ ice_recv_scattered_pkts_vec_avx512, "Vector AVX512 Scattered" },
|
|
{ ice_recv_scattered_pkts_vec_avx512_offload, "Offload Vector AVX512 Scattered" },
|
|
{ ice_recv_pkts_vec_avx512, "Vector AVX512" },
|
|
{ ice_recv_pkts_vec_avx512_offload, "Offload Vector AVX512" },
|
|
#endif
|
|
{ ice_recv_scattered_pkts_vec_avx2, "Vector AVX2 Scattered" },
|
|
{ ice_recv_scattered_pkts_vec_avx2_offload, "Offload Vector AVX2 Scattered" },
|
|
{ ice_recv_pkts_vec_avx2, "Vector AVX2" },
|
|
{ ice_recv_pkts_vec_avx2_offload, "Offload Vector AVX2" },
|
|
{ ice_recv_scattered_pkts_vec, "Vector SSE Scattered" },
|
|
{ ice_recv_pkts_vec, "Vector SSE" },
|
|
#endif
|
|
};
|
|
|
|
int
|
|
ice_rx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
|
|
struct rte_eth_burst_mode *mode)
|
|
{
|
|
eth_rx_burst_t pkt_burst = dev->rx_pkt_burst;
|
|
int ret = -EINVAL;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < RTE_DIM(ice_rx_burst_infos); ++i) {
|
|
if (pkt_burst == ice_rx_burst_infos[i].pkt_burst) {
|
|
snprintf(mode->info, sizeof(mode->info), "%s",
|
|
ice_rx_burst_infos[i].info);
|
|
ret = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void __rte_cold
|
|
ice_set_tx_function_flag(struct rte_eth_dev *dev, struct ice_tx_queue *txq)
|
|
{
|
|
struct ice_adapter *ad =
|
|
ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
|
|
|
|
/* Use a simple Tx queue if possible (only fast free is allowed) */
|
|
ad->tx_simple_allowed =
|
|
(txq->offloads ==
|
|
(txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE) &&
|
|
txq->tx_rs_thresh >= ICE_TX_MAX_BURST);
|
|
|
|
if (ad->tx_simple_allowed)
|
|
PMD_INIT_LOG(DEBUG, "Simple Tx can be enabled on Tx queue %u.",
|
|
txq->queue_id);
|
|
else
|
|
PMD_INIT_LOG(DEBUG,
|
|
"Simple Tx can NOT be enabled on Tx queue %u.",
|
|
txq->queue_id);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* TX prep functions
|
|
*
|
|
**********************************************************************/
|
|
/* The default values of TSO MSS */
|
|
#define ICE_MIN_TSO_MSS 64
|
|
#define ICE_MAX_TSO_MSS 9728
|
|
#define ICE_MAX_TSO_FRAME_SIZE 262144
|
|
uint16_t
|
|
ice_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
int i, ret;
|
|
uint64_t ol_flags;
|
|
struct rte_mbuf *m;
|
|
|
|
for (i = 0; i < nb_pkts; i++) {
|
|
m = tx_pkts[i];
|
|
ol_flags = m->ol_flags;
|
|
|
|
if (ol_flags & PKT_TX_TCP_SEG &&
|
|
(m->tso_segsz < ICE_MIN_TSO_MSS ||
|
|
m->tso_segsz > ICE_MAX_TSO_MSS ||
|
|
m->pkt_len > ICE_MAX_TSO_FRAME_SIZE)) {
|
|
/**
|
|
* MSS outside the range are considered malicious
|
|
*/
|
|
rte_errno = EINVAL;
|
|
return i;
|
|
}
|
|
|
|
#ifdef RTE_ETHDEV_DEBUG_TX
|
|
ret = rte_validate_tx_offload(m);
|
|
if (ret != 0) {
|
|
rte_errno = -ret;
|
|
return i;
|
|
}
|
|
#endif
|
|
ret = rte_net_intel_cksum_prepare(m);
|
|
if (ret != 0) {
|
|
rte_errno = -ret;
|
|
return i;
|
|
}
|
|
}
|
|
return i;
|
|
}
|
|
|
|
void __rte_cold
|
|
ice_set_tx_function(struct rte_eth_dev *dev)
|
|
{
|
|
struct ice_adapter *ad =
|
|
ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
|
|
#ifdef RTE_ARCH_X86
|
|
struct ice_tx_queue *txq;
|
|
int i;
|
|
int tx_check_ret = -1;
|
|
|
|
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
|
|
ad->tx_use_avx2 = false;
|
|
ad->tx_use_avx512 = false;
|
|
tx_check_ret = ice_tx_vec_dev_check(dev);
|
|
if (tx_check_ret >= 0 &&
|
|
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
|
|
ad->tx_vec_allowed = true;
|
|
|
|
if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512 &&
|
|
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
|
|
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1)
|
|
#ifdef CC_AVX512_SUPPORT
|
|
ad->tx_use_avx512 = true;
|
|
#else
|
|
PMD_DRV_LOG(NOTICE,
|
|
"AVX512 is not supported in build env");
|
|
#endif
|
|
if (!ad->tx_use_avx512 &&
|
|
(rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
|
|
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
|
|
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
|
|
ad->tx_use_avx2 = true;
|
|
|
|
if (!ad->tx_use_avx2 && !ad->tx_use_avx512 &&
|
|
tx_check_ret == ICE_VECTOR_OFFLOAD_PATH)
|
|
ad->tx_vec_allowed = false;
|
|
|
|
if (ad->tx_vec_allowed) {
|
|
for (i = 0; i < dev->data->nb_tx_queues; i++) {
|
|
txq = dev->data->tx_queues[i];
|
|
if (txq && ice_txq_vec_setup(txq)) {
|
|
ad->tx_vec_allowed = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
ad->tx_vec_allowed = false;
|
|
}
|
|
}
|
|
|
|
if (ad->tx_vec_allowed) {
|
|
dev->tx_pkt_prepare = NULL;
|
|
if (ad->tx_use_avx512) {
|
|
#ifdef CC_AVX512_SUPPORT
|
|
if (tx_check_ret == ICE_VECTOR_OFFLOAD_PATH) {
|
|
PMD_DRV_LOG(NOTICE,
|
|
"Using AVX512 OFFLOAD Vector Tx (port %d).",
|
|
dev->data->port_id);
|
|
dev->tx_pkt_burst =
|
|
ice_xmit_pkts_vec_avx512_offload;
|
|
dev->tx_pkt_prepare = ice_prep_pkts;
|
|
} else {
|
|
PMD_DRV_LOG(NOTICE,
|
|
"Using AVX512 Vector Tx (port %d).",
|
|
dev->data->port_id);
|
|
dev->tx_pkt_burst = ice_xmit_pkts_vec_avx512;
|
|
}
|
|
#endif
|
|
} else {
|
|
if (tx_check_ret == ICE_VECTOR_OFFLOAD_PATH) {
|
|
PMD_DRV_LOG(NOTICE,
|
|
"Using AVX2 OFFLOAD Vector Tx (port %d).",
|
|
dev->data->port_id);
|
|
dev->tx_pkt_burst =
|
|
ice_xmit_pkts_vec_avx2_offload;
|
|
dev->tx_pkt_prepare = ice_prep_pkts;
|
|
} else {
|
|
PMD_DRV_LOG(DEBUG, "Using %sVector Tx (port %d).",
|
|
ad->tx_use_avx2 ? "avx2 " : "",
|
|
dev->data->port_id);
|
|
dev->tx_pkt_burst = ad->tx_use_avx2 ?
|
|
ice_xmit_pkts_vec_avx2 :
|
|
ice_xmit_pkts_vec;
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
if (ad->tx_simple_allowed) {
|
|
PMD_INIT_LOG(DEBUG, "Simple tx finally be used.");
|
|
dev->tx_pkt_burst = ice_xmit_pkts_simple;
|
|
dev->tx_pkt_prepare = NULL;
|
|
} else {
|
|
PMD_INIT_LOG(DEBUG, "Normal tx finally be used.");
|
|
dev->tx_pkt_burst = ice_xmit_pkts;
|
|
dev->tx_pkt_prepare = ice_prep_pkts;
|
|
}
|
|
}
|
|
|
|
static const struct {
|
|
eth_tx_burst_t pkt_burst;
|
|
const char *info;
|
|
} ice_tx_burst_infos[] = {
|
|
{ ice_xmit_pkts_simple, "Scalar Simple" },
|
|
{ ice_xmit_pkts, "Scalar" },
|
|
#ifdef RTE_ARCH_X86
|
|
#ifdef CC_AVX512_SUPPORT
|
|
{ ice_xmit_pkts_vec_avx512, "Vector AVX512" },
|
|
{ ice_xmit_pkts_vec_avx512_offload, "Offload Vector AVX512" },
|
|
#endif
|
|
{ ice_xmit_pkts_vec_avx2, "Vector AVX2" },
|
|
{ ice_xmit_pkts_vec, "Vector SSE" },
|
|
#endif
|
|
};
|
|
|
|
int
|
|
ice_tx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
|
|
struct rte_eth_burst_mode *mode)
|
|
{
|
|
eth_tx_burst_t pkt_burst = dev->tx_pkt_burst;
|
|
int ret = -EINVAL;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < RTE_DIM(ice_tx_burst_infos); ++i) {
|
|
if (pkt_burst == ice_tx_burst_infos[i].pkt_burst) {
|
|
snprintf(mode->info, sizeof(mode->info), "%s",
|
|
ice_tx_burst_infos[i].info);
|
|
ret = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* For each value it means, datasheet of hardware can tell more details
|
|
*
|
|
* @note: fix ice_dev_supported_ptypes_get() if any change here.
|
|
*/
|
|
static inline uint32_t
|
|
ice_get_default_pkt_type(uint16_t ptype)
|
|
{
|
|
static const uint32_t type_table[ICE_MAX_PKT_TYPE]
|
|
__rte_cache_aligned = {
|
|
/* L2 types */
|
|
/* [0] reserved */
|
|
[1] = RTE_PTYPE_L2_ETHER,
|
|
[2] = RTE_PTYPE_L2_ETHER_TIMESYNC,
|
|
/* [3] - [5] reserved */
|
|
[6] = RTE_PTYPE_L2_ETHER_LLDP,
|
|
/* [7] - [10] reserved */
|
|
[11] = RTE_PTYPE_L2_ETHER_ARP,
|
|
/* [12] - [21] reserved */
|
|
|
|
/* Non tunneled IPv4 */
|
|
[22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_FRAG,
|
|
[23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_NONFRAG,
|
|
[24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
/* [25] reserved */
|
|
[26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_TCP,
|
|
[27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_SCTP,
|
|
[28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_ICMP,
|
|
|
|
/* IPv4 --> IPv4 */
|
|
[29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[30] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[31] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
/* [32] reserved */
|
|
[33] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[34] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_SCTP,
|
|
[35] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
|
|
/* IPv4 --> IPv6 */
|
|
[36] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[37] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[38] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
/* [39] reserved */
|
|
[40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_SCTP,
|
|
[42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
|
|
/* IPv4 --> GRE/Teredo/VXLAN */
|
|
[43] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT,
|
|
|
|
/* IPv4 --> GRE/Teredo/VXLAN --> IPv4 */
|
|
[44] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
/* [47] reserved */
|
|
[48] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_SCTP,
|
|
[50] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
|
|
/* IPv4 --> GRE/Teredo/VXLAN --> IPv6 */
|
|
[51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[53] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
/* [54] reserved */
|
|
[55] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[56] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_SCTP,
|
|
[57] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
|
|
/* IPv4 --> GRE/Teredo/VXLAN --> MAC */
|
|
[58] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
|
|
|
|
/* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
|
|
[59] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[60] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
/* [62] reserved */
|
|
[63] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[64] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_SCTP,
|
|
[65] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
|
|
/* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
|
|
[66] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[67] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[68] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
/* [69] reserved */
|
|
[70] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[71] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_SCTP,
|
|
[72] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
/* [73] - [87] reserved */
|
|
|
|
/* Non tunneled IPv6 */
|
|
[88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_FRAG,
|
|
[89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_NONFRAG,
|
|
[90] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
/* [91] reserved */
|
|
[92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_TCP,
|
|
[93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_SCTP,
|
|
[94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_ICMP,
|
|
|
|
/* IPv6 --> IPv4 */
|
|
[95] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[96] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[97] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
/* [98] reserved */
|
|
[99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[100] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_SCTP,
|
|
[101] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
|
|
/* IPv6 --> IPv6 */
|
|
[102] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[103] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[104] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
/* [105] reserved */
|
|
[106] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[107] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_SCTP,
|
|
[108] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
|
|
/* IPv6 --> GRE/Teredo/VXLAN */
|
|
[109] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT,
|
|
|
|
/* IPv6 --> GRE/Teredo/VXLAN --> IPv4 */
|
|
[110] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[111] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[112] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
/* [113] reserved */
|
|
[114] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[115] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_SCTP,
|
|
[116] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
|
|
/* IPv6 --> GRE/Teredo/VXLAN --> IPv6 */
|
|
[117] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[118] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[119] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
/* [120] reserved */
|
|
[121] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[122] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_SCTP,
|
|
[123] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
|
|
/* IPv6 --> GRE/Teredo/VXLAN --> MAC */
|
|
[124] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
|
|
|
|
/* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
|
|
[125] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[126] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[127] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
/* [128] reserved */
|
|
[129] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[130] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_SCTP,
|
|
[131] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
|
|
/* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
|
|
[132] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[133] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[134] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
/* [135] reserved */
|
|
[136] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[137] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_SCTP,
|
|
[138] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
/* [139] - [299] reserved */
|
|
|
|
/* PPPoE */
|
|
[300] = RTE_PTYPE_L2_ETHER_PPPOE,
|
|
[301] = RTE_PTYPE_L2_ETHER_PPPOE,
|
|
|
|
/* PPPoE --> IPv4 */
|
|
[302] = RTE_PTYPE_L2_ETHER_PPPOE |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_FRAG,
|
|
[303] = RTE_PTYPE_L2_ETHER_PPPOE |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_NONFRAG,
|
|
[304] = RTE_PTYPE_L2_ETHER_PPPOE |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
[305] = RTE_PTYPE_L2_ETHER_PPPOE |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_TCP,
|
|
[306] = RTE_PTYPE_L2_ETHER_PPPOE |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_SCTP,
|
|
[307] = RTE_PTYPE_L2_ETHER_PPPOE |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_ICMP,
|
|
|
|
/* PPPoE --> IPv6 */
|
|
[308] = RTE_PTYPE_L2_ETHER_PPPOE |
|
|
RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_FRAG,
|
|
[309] = RTE_PTYPE_L2_ETHER_PPPOE |
|
|
RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_NONFRAG,
|
|
[310] = RTE_PTYPE_L2_ETHER_PPPOE |
|
|
RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
[311] = RTE_PTYPE_L2_ETHER_PPPOE |
|
|
RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_TCP,
|
|
[312] = RTE_PTYPE_L2_ETHER_PPPOE |
|
|
RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_SCTP,
|
|
[313] = RTE_PTYPE_L2_ETHER_PPPOE |
|
|
RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_ICMP,
|
|
/* [314] - [324] reserved */
|
|
|
|
/* IPv4/IPv6 --> GTPC/GTPU */
|
|
[325] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPC,
|
|
[326] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPC,
|
|
[327] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPC,
|
|
[328] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPC,
|
|
[329] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPU,
|
|
[330] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPU,
|
|
|
|
/* IPv4 --> GTPU --> IPv4 */
|
|
[331] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPU |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[332] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPU |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[333] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPU |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
[334] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPU |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[335] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPU |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
|
|
/* IPv6 --> GTPU --> IPv4 */
|
|
[336] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPU |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[337] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPU |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[338] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPU |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
[339] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPU |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[340] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPU |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
|
|
/* IPv4 --> GTPU --> IPv6 */
|
|
[341] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPU |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[342] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPU |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[343] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPU |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
[344] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPU |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[345] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPU |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
|
|
/* IPv6 --> GTPU --> IPv6 */
|
|
[346] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPU |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[347] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPU |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[348] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPU |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
[349] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPU |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[350] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPU |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
|
|
/* IPv4 --> UDP ECPRI */
|
|
[372] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
[373] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
[374] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
[375] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
[376] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
[377] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
[378] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
[379] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
[380] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
[381] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
|
|
/* IPV6 --> UDP ECPRI */
|
|
[382] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
[383] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
[384] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
[385] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
[386] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
[387] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
[388] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
[389] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
[390] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
[391] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
/* All others reserved */
|
|
};
|
|
|
|
return type_table[ptype];
|
|
}
|
|
|
|
void __rte_cold
|
|
ice_set_default_ptype_table(struct rte_eth_dev *dev)
|
|
{
|
|
struct ice_adapter *ad =
|
|
ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
|
|
int i;
|
|
|
|
for (i = 0; i < ICE_MAX_PKT_TYPE; i++)
|
|
ad->ptype_tbl[i] = ice_get_default_pkt_type(i);
|
|
}
|
|
|
|
#define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_S 1
|
|
#define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_M \
|
|
(0x3UL << ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_S)
|
|
#define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_ADD 0
|
|
#define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_DEL 0x1
|
|
|
|
#define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_S 4
|
|
#define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_M \
|
|
(1 << ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_S)
|
|
#define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_S 5
|
|
#define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_M \
|
|
(1 << ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_S)
|
|
|
|
/*
|
|
* check the programming status descriptor in rx queue.
|
|
* done after Programming Flow Director is programmed on
|
|
* tx queue
|
|
*/
|
|
static inline int
|
|
ice_check_fdir_programming_status(struct ice_rx_queue *rxq)
|
|
{
|
|
volatile union ice_32byte_rx_desc *rxdp;
|
|
uint64_t qword1;
|
|
uint32_t rx_status;
|
|
uint32_t error;
|
|
uint32_t id;
|
|
int ret = -EAGAIN;
|
|
|
|
rxdp = (volatile union ice_32byte_rx_desc *)
|
|
(&rxq->rx_ring[rxq->rx_tail]);
|
|
qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
|
|
rx_status = (qword1 & ICE_RXD_QW1_STATUS_M)
|
|
>> ICE_RXD_QW1_STATUS_S;
|
|
|
|
if (rx_status & (1 << ICE_RX_DESC_STATUS_DD_S)) {
|
|
ret = 0;
|
|
error = (qword1 & ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_M) >>
|
|
ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_S;
|
|
id = (qword1 & ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_M) >>
|
|
ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_S;
|
|
if (error) {
|
|
if (id == ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_ADD)
|
|
PMD_DRV_LOG(ERR, "Failed to add FDIR rule.");
|
|
else if (id == ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_DEL)
|
|
PMD_DRV_LOG(ERR, "Failed to remove FDIR rule.");
|
|
ret = -EINVAL;
|
|
goto err;
|
|
}
|
|
error = (qword1 & ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_M) >>
|
|
ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_S;
|
|
if (error) {
|
|
PMD_DRV_LOG(ERR, "Failed to create FDIR profile.");
|
|
ret = -EINVAL;
|
|
}
|
|
err:
|
|
rxdp->wb.qword1.status_error_len = 0;
|
|
rxq->rx_tail++;
|
|
if (unlikely(rxq->rx_tail == rxq->nb_rx_desc))
|
|
rxq->rx_tail = 0;
|
|
if (rxq->rx_tail == 0)
|
|
ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
|
|
else
|
|
ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->rx_tail - 1);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
#define ICE_FDIR_MAX_WAIT_US 10000
|
|
|
|
int
|
|
ice_fdir_programming(struct ice_pf *pf, struct ice_fltr_desc *fdir_desc)
|
|
{
|
|
struct ice_tx_queue *txq = pf->fdir.txq;
|
|
struct ice_rx_queue *rxq = pf->fdir.rxq;
|
|
volatile struct ice_fltr_desc *fdirdp;
|
|
volatile struct ice_tx_desc *txdp;
|
|
uint32_t td_cmd;
|
|
uint16_t i;
|
|
|
|
fdirdp = (volatile struct ice_fltr_desc *)
|
|
(&txq->tx_ring[txq->tx_tail]);
|
|
fdirdp->qidx_compq_space_stat = fdir_desc->qidx_compq_space_stat;
|
|
fdirdp->dtype_cmd_vsi_fdid = fdir_desc->dtype_cmd_vsi_fdid;
|
|
|
|
txdp = &txq->tx_ring[txq->tx_tail + 1];
|
|
txdp->buf_addr = rte_cpu_to_le_64(pf->fdir.dma_addr);
|
|
td_cmd = ICE_TX_DESC_CMD_EOP |
|
|
ICE_TX_DESC_CMD_RS |
|
|
ICE_TX_DESC_CMD_DUMMY;
|
|
|
|
txdp->cmd_type_offset_bsz =
|
|
ice_build_ctob(td_cmd, 0, ICE_FDIR_PKT_LEN, 0);
|
|
|
|
txq->tx_tail += 2;
|
|
if (txq->tx_tail >= txq->nb_tx_desc)
|
|
txq->tx_tail = 0;
|
|
/* Update the tx tail register */
|
|
ICE_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
|
|
for (i = 0; i < ICE_FDIR_MAX_WAIT_US; i++) {
|
|
if ((txdp->cmd_type_offset_bsz &
|
|
rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M)) ==
|
|
rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))
|
|
break;
|
|
rte_delay_us(1);
|
|
}
|
|
if (i >= ICE_FDIR_MAX_WAIT_US) {
|
|
PMD_DRV_LOG(ERR,
|
|
"Failed to program FDIR filter: time out to get DD on tx queue.");
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
for (; i < ICE_FDIR_MAX_WAIT_US; i++) {
|
|
int ret;
|
|
|
|
ret = ice_check_fdir_programming_status(rxq);
|
|
if (ret == -EAGAIN)
|
|
rte_delay_us(1);
|
|
else
|
|
return ret;
|
|
}
|
|
|
|
PMD_DRV_LOG(ERR,
|
|
"Failed to program FDIR filter: programming status reported.");
|
|
return -ETIMEDOUT;
|
|
|
|
|
|
}
|