numam-dpdk/drivers/net/ice/ice_rxtx_vec_sse.c
Feifei Wang 4f76ac98b7 drivers/net: fix vector Rx comments
For the loop to process packets in Rx vector path, some notes for the
code are wrong, fix these errors.

Fixes: 7092be8437 ("fm10k: add vector Rx")
Fixes: c3def6a872 ("net/i40e: implement vector PMD for altivec")
Fixes: ae0eb310f2 ("net/i40e: implement vector PMD for ARM")
Fixes: 9ed94e5bb0 ("i40e: add vector Rx")
Fixes: 319c421f38 ("net/avf: enable SSE Rx Tx")
Fixes: 1162f5a0ef ("net/iavf: support flexible Rx descriptor in SSE path")
Fixes: c68a52b8b3 ("net/ice: support vector SSE in Rx")
Fixes: cf4b4708a8 ("ixgbe: improve slow-path perf with vector scattered Rx")
Cc: stable@dpdk.org

Suggested-by: Ruifeng Wang <ruifeng.wang@arm.com>
Signed-off-by: Feifei Wang <feifei.wang2@arm.com>
Reviewed-by: Ruifeng Wang <ruifeng.wang@arm.com>
2021-08-10 05:01:57 +02:00

809 lines
24 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2019 Intel Corporation
*/
#include "ice_rxtx_vec_common.h"
#include <tmmintrin.h>
#ifndef __INTEL_COMPILER
#pragma GCC diagnostic ignored "-Wcast-qual"
#endif
static inline __m128i
ice_flex_rxd_to_fdir_flags_vec(const __m128i fdir_id0_3)
{
#define FDID_MIS_MAGIC 0xFFFFFFFF
RTE_BUILD_BUG_ON(PKT_RX_FDIR != (1 << 2));
RTE_BUILD_BUG_ON(PKT_RX_FDIR_ID != (1 << 13));
const __m128i pkt_fdir_bit = _mm_set1_epi32(PKT_RX_FDIR |
PKT_RX_FDIR_ID);
/* desc->flow_id field == 0xFFFFFFFF means fdir mismatch */
const __m128i fdir_mis_mask = _mm_set1_epi32(FDID_MIS_MAGIC);
__m128i fdir_mask = _mm_cmpeq_epi32(fdir_id0_3,
fdir_mis_mask);
/* this XOR op results to bit-reverse the fdir_mask */
fdir_mask = _mm_xor_si128(fdir_mask, fdir_mis_mask);
const __m128i fdir_flags = _mm_and_si128(fdir_mask, pkt_fdir_bit);
return fdir_flags;
}
static inline void
ice_rxq_rearm(struct ice_rx_queue *rxq)
{
int i;
uint16_t rx_id;
volatile union ice_rx_flex_desc *rxdp;
struct ice_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
struct rte_mbuf *mb0, *mb1;
__m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
RTE_PKTMBUF_HEADROOM);
__m128i dma_addr0, dma_addr1;
rxdp = rxq->rx_ring + rxq->rxrearm_start;
/* Pull 'n' more MBUFs into the software ring */
if (rte_mempool_get_bulk(rxq->mp,
(void *)rxep,
ICE_RXQ_REARM_THRESH) < 0) {
if (rxq->rxrearm_nb + ICE_RXQ_REARM_THRESH >=
rxq->nb_rx_desc) {
dma_addr0 = _mm_setzero_si128();
for (i = 0; i < ICE_DESCS_PER_LOOP; i++) {
rxep[i].mbuf = &rxq->fake_mbuf;
_mm_store_si128((__m128i *)&rxdp[i].read,
dma_addr0);
}
}
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
ICE_RXQ_REARM_THRESH;
return;
}
/* Initialize the mbufs in vector, process 2 mbufs in one loop */
for (i = 0; i < ICE_RXQ_REARM_THRESH; i += 2, rxep += 2) {
__m128i vaddr0, vaddr1;
mb0 = rxep[0].mbuf;
mb1 = rxep[1].mbuf;
/* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
offsetof(struct rte_mbuf, buf_addr) + 8);
vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
/* convert pa to dma_addr hdr/data */
dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
/* add headroom to pa values */
dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
/* flush desc with pa dma_addr */
_mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
_mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
}
rxq->rxrearm_start += ICE_RXQ_REARM_THRESH;
if (rxq->rxrearm_start >= rxq->nb_rx_desc)
rxq->rxrearm_start = 0;
rxq->rxrearm_nb -= ICE_RXQ_REARM_THRESH;
rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
(rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
/* Update the tail pointer on the NIC */
ICE_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
}
static inline void
ice_rx_desc_to_olflags_v(struct ice_rx_queue *rxq, __m128i descs[4],
struct rte_mbuf **rx_pkts)
{
const __m128i mbuf_init = _mm_set_epi64x(0, rxq->mbuf_initializer);
__m128i rearm0, rearm1, rearm2, rearm3;
__m128i tmp_desc, flags, rss_vlan;
/* mask everything except checksum, RSS and VLAN flags.
* bit6:4 for checksum.
* bit12 for RSS indication.
* bit13 for VLAN indication.
*/
const __m128i desc_mask = _mm_set_epi32(0x30f0, 0x30f0,
0x30f0, 0x30f0);
const __m128i cksum_mask = _mm_set_epi32(PKT_RX_IP_CKSUM_MASK |
PKT_RX_L4_CKSUM_MASK |
PKT_RX_OUTER_L4_CKSUM_MASK |
PKT_RX_OUTER_IP_CKSUM_BAD,
PKT_RX_IP_CKSUM_MASK |
PKT_RX_L4_CKSUM_MASK |
PKT_RX_OUTER_L4_CKSUM_MASK |
PKT_RX_OUTER_IP_CKSUM_BAD,
PKT_RX_IP_CKSUM_MASK |
PKT_RX_L4_CKSUM_MASK |
PKT_RX_OUTER_L4_CKSUM_MASK |
PKT_RX_OUTER_IP_CKSUM_BAD,
PKT_RX_IP_CKSUM_MASK |
PKT_RX_L4_CKSUM_MASK |
PKT_RX_OUTER_L4_CKSUM_MASK |
PKT_RX_OUTER_IP_CKSUM_BAD);
/* map the checksum, rss and vlan fields to the checksum, rss
* and vlan flag
*/
const __m128i cksum_flags =
_mm_set_epi8((PKT_RX_OUTER_L4_CKSUM_BAD >> 20 |
PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
(PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
(PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_BAD |
PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_BAD |
PKT_RX_IP_CKSUM_GOOD) >> 1,
(PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_GOOD |
PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_GOOD |
PKT_RX_IP_CKSUM_GOOD) >> 1,
/**
* shift right 20 bits to use the low two bits to indicate
* outer checksum status
* shift right 1 bit to make sure it not exceed 255
*/
(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_BAD |
PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_BAD |
PKT_RX_IP_CKSUM_GOOD) >> 1,
(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_GOOD |
PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_GOOD |
PKT_RX_IP_CKSUM_GOOD) >> 1);
const __m128i rss_vlan_flags = _mm_set_epi8(0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
PKT_RX_RSS_HASH, 0);
/* merge 4 descriptors */
flags = _mm_unpackhi_epi32(descs[0], descs[1]);
tmp_desc = _mm_unpackhi_epi32(descs[2], descs[3]);
tmp_desc = _mm_unpacklo_epi64(flags, tmp_desc);
tmp_desc = _mm_and_si128(tmp_desc, desc_mask);
/* checksum flags */
tmp_desc = _mm_srli_epi32(tmp_desc, 4);
flags = _mm_shuffle_epi8(cksum_flags, tmp_desc);
/* then we shift left 1 bit */
flags = _mm_slli_epi32(flags, 1);
__m128i l4_outer_mask = _mm_set_epi32(0x6, 0x6, 0x6, 0x6);
__m128i l4_outer_flags = _mm_and_si128(flags, l4_outer_mask);
l4_outer_flags = _mm_slli_epi32(l4_outer_flags, 20);
__m128i l3_l4_mask = _mm_set_epi32(~0x6, ~0x6, ~0x6, ~0x6);
__m128i l3_l4_flags = _mm_and_si128(flags, l3_l4_mask);
flags = _mm_or_si128(l3_l4_flags, l4_outer_flags);
/* we need to mask out the reduntant bits introduced by RSS or
* VLAN fields.
*/
flags = _mm_and_si128(flags, cksum_mask);
/* RSS, VLAN flag */
tmp_desc = _mm_srli_epi32(tmp_desc, 8);
rss_vlan = _mm_shuffle_epi8(rss_vlan_flags, tmp_desc);
/* merge the flags */
flags = _mm_or_si128(flags, rss_vlan);
if (rxq->fdir_enabled) {
const __m128i fdir_id0_1 =
_mm_unpackhi_epi32(descs[0], descs[1]);
const __m128i fdir_id2_3 =
_mm_unpackhi_epi32(descs[2], descs[3]);
const __m128i fdir_id0_3 =
_mm_unpackhi_epi64(fdir_id0_1, fdir_id2_3);
const __m128i fdir_flags =
ice_flex_rxd_to_fdir_flags_vec(fdir_id0_3);
/* merge with fdir_flags */
flags = _mm_or_si128(flags, fdir_flags);
/* write fdir_id to mbuf */
rx_pkts[0]->hash.fdir.hi =
_mm_extract_epi32(fdir_id0_3, 0);
rx_pkts[1]->hash.fdir.hi =
_mm_extract_epi32(fdir_id0_3, 1);
rx_pkts[2]->hash.fdir.hi =
_mm_extract_epi32(fdir_id0_3, 2);
rx_pkts[3]->hash.fdir.hi =
_mm_extract_epi32(fdir_id0_3, 3);
} /* if() on fdir_enabled */
/**
* At this point, we have the 4 sets of flags in the low 16-bits
* of each 32-bit value in flags.
* We want to extract these, and merge them with the mbuf init data
* so we can do a single 16-byte write to the mbuf to set the flags
* and all the other initialization fields. Extracting the
* appropriate flags means that we have to do a shift and blend for
* each mbuf before we do the write.
*/
rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(flags, 8), 0x30);
rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(flags, 4), 0x30);
rearm2 = _mm_blend_epi16(mbuf_init, flags, 0x30);
rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(flags, 4), 0x30);
/* write the rearm data and the olflags in one write */
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
offsetof(struct rte_mbuf, rearm_data) + 8);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16));
_mm_store_si128((__m128i *)&rx_pkts[0]->rearm_data, rearm0);
_mm_store_si128((__m128i *)&rx_pkts[1]->rearm_data, rearm1);
_mm_store_si128((__m128i *)&rx_pkts[2]->rearm_data, rearm2);
_mm_store_si128((__m128i *)&rx_pkts[3]->rearm_data, rearm3);
}
static inline void
ice_rx_desc_to_ptype_v(__m128i descs[4], struct rte_mbuf **rx_pkts,
uint32_t *ptype_tbl)
{
const __m128i ptype_mask = _mm_set_epi16(ICE_RX_FLEX_DESC_PTYPE_M, 0,
ICE_RX_FLEX_DESC_PTYPE_M, 0,
ICE_RX_FLEX_DESC_PTYPE_M, 0,
ICE_RX_FLEX_DESC_PTYPE_M, 0);
__m128i ptype_01 = _mm_unpacklo_epi32(descs[0], descs[1]);
__m128i ptype_23 = _mm_unpacklo_epi32(descs[2], descs[3]);
__m128i ptype_all = _mm_unpacklo_epi64(ptype_01, ptype_23);
ptype_all = _mm_and_si128(ptype_all, ptype_mask);
rx_pkts[0]->packet_type = ptype_tbl[_mm_extract_epi16(ptype_all, 1)];
rx_pkts[1]->packet_type = ptype_tbl[_mm_extract_epi16(ptype_all, 3)];
rx_pkts[2]->packet_type = ptype_tbl[_mm_extract_epi16(ptype_all, 5)];
rx_pkts[3]->packet_type = ptype_tbl[_mm_extract_epi16(ptype_all, 7)];
}
/**
* vPMD raw receive routine, only accept(nb_pkts >= ICE_DESCS_PER_LOOP)
*
* Notice:
* - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
* - floor align nb_pkts to a ICE_DESCS_PER_LOOP power-of-two
*/
static inline uint16_t
_ice_recv_raw_pkts_vec(struct ice_rx_queue *rxq, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts, uint8_t *split_packet)
{
volatile union ice_rx_flex_desc *rxdp;
struct ice_rx_entry *sw_ring;
uint16_t nb_pkts_recd;
int pos;
uint64_t var;
uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
__m128i crc_adjust = _mm_set_epi16
(0, 0, 0, /* ignore non-length fields */
-rxq->crc_len, /* sub crc on data_len */
0, /* ignore high-16bits of pkt_len */
-rxq->crc_len, /* sub crc on pkt_len */
0, 0 /* ignore pkt_type field */
);
const __m128i zero = _mm_setzero_si128();
/* mask to shuffle from desc. to mbuf */
const __m128i shuf_msk = _mm_set_epi8
(0xFF, 0xFF,
0xFF, 0xFF, /* rss hash parsed separately */
11, 10, /* octet 10~11, 16 bits vlan_macip */
5, 4, /* octet 4~5, 16 bits data_len */
0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */
5, 4, /* octet 4~5, low 16 bits pkt_len */
0xFF, 0xFF, /* pkt_type set as unknown */
0xFF, 0xFF /* pkt_type set as unknown */
);
const __m128i eop_shuf_mask = _mm_set_epi8(0xFF, 0xFF,
0xFF, 0xFF,
0xFF, 0xFF,
0xFF, 0xFF,
0xFF, 0xFF,
0xFF, 0xFF,
0x04, 0x0C,
0x00, 0x08);
/**
* compile-time check the above crc_adjust layout is correct.
* NOTE: the first field (lowest address) is given last in set_epi16
* call above.
*/
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
/* 4 packets DD mask */
const __m128i dd_check = _mm_set_epi64x(0x0000000100000001LL,
0x0000000100000001LL);
/* 4 packets EOP mask */
const __m128i eop_check = _mm_set_epi64x(0x0000000200000002LL,
0x0000000200000002LL);
/* nb_pkts has to be floor-aligned to ICE_DESCS_PER_LOOP */
nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, ICE_DESCS_PER_LOOP);
/* Just the act of getting into the function from the application is
* going to cost about 7 cycles
*/
rxdp = rxq->rx_ring + rxq->rx_tail;
rte_prefetch0(rxdp);
/* See if we need to rearm the RX queue - gives the prefetch a bit
* of time to act
*/
if (rxq->rxrearm_nb > ICE_RXQ_REARM_THRESH)
ice_rxq_rearm(rxq);
/* Before we start moving massive data around, check to see if
* there is actually a packet available
*/
if (!(rxdp->wb.status_error0 &
rte_cpu_to_le_32(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
return 0;
/**
* Compile-time verify the shuffle mask
* NOTE: some field positions already verified above, but duplicated
* here for completeness in case of future modifications.
*/
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
/* Cache is empty -> need to scan the buffer rings, but first move
* the next 'n' mbufs into the cache
*/
sw_ring = &rxq->sw_ring[rxq->rx_tail];
/* A. load 4 packet in one loop
* [A*. mask out 4 unused dirty field in desc]
* B. copy 4 mbuf point from swring to rx_pkts
* C. calc the number of DD bits among the 4 packets
* [C*. extract the end-of-packet bit, if requested]
* D. fill info. from desc to mbuf
*/
for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
pos += ICE_DESCS_PER_LOOP,
rxdp += ICE_DESCS_PER_LOOP) {
__m128i descs[ICE_DESCS_PER_LOOP];
__m128i pkt_mb0, pkt_mb1, pkt_mb2, pkt_mb3;
__m128i staterr, sterr_tmp1, sterr_tmp2;
/* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */
__m128i mbp1;
#if defined(RTE_ARCH_X86_64)
__m128i mbp2;
#endif
/* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */
mbp1 = _mm_loadu_si128((__m128i *)&sw_ring[pos]);
/* Read desc statuses backwards to avoid race condition */
/* A.1 load desc[3] */
descs[3] = _mm_loadu_si128((__m128i *)(rxdp + 3));
rte_compiler_barrier();
/* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */
_mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);
#if defined(RTE_ARCH_X86_64)
/* B.1 load 2 64 bit mbuf points */
mbp2 = _mm_loadu_si128((__m128i *)&sw_ring[pos + 2]);
#endif
/* A.1 load desc[2-0] */
descs[2] = _mm_loadu_si128((__m128i *)(rxdp + 2));
rte_compiler_barrier();
descs[1] = _mm_loadu_si128((__m128i *)(rxdp + 1));
rte_compiler_barrier();
descs[0] = _mm_loadu_si128((__m128i *)(rxdp));
#if defined(RTE_ARCH_X86_64)
/* B.2 copy 2 mbuf point into rx_pkts */
_mm_storeu_si128((__m128i *)&rx_pkts[pos + 2], mbp2);
#endif
if (split_packet) {
rte_mbuf_prefetch_part2(rx_pkts[pos]);
rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
}
/* avoid compiler reorder optimization */
rte_compiler_barrier();
/* D.1 pkt 3,4 convert format from desc to pktmbuf */
pkt_mb3 = _mm_shuffle_epi8(descs[3], shuf_msk);
pkt_mb2 = _mm_shuffle_epi8(descs[2], shuf_msk);
/* D.1 pkt 1,2 convert format from desc to pktmbuf */
pkt_mb1 = _mm_shuffle_epi8(descs[1], shuf_msk);
pkt_mb0 = _mm_shuffle_epi8(descs[0], shuf_msk);
/* C.1 4=>2 filter staterr info only */
sterr_tmp2 = _mm_unpackhi_epi32(descs[3], descs[2]);
/* C.1 4=>2 filter staterr info only */
sterr_tmp1 = _mm_unpackhi_epi32(descs[1], descs[0]);
ice_rx_desc_to_olflags_v(rxq, descs, &rx_pkts[pos]);
/* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
pkt_mb3 = _mm_add_epi16(pkt_mb3, crc_adjust);
pkt_mb2 = _mm_add_epi16(pkt_mb2, crc_adjust);
/* D.2 pkt 1,2 set in_port/nb_seg and remove crc */
pkt_mb1 = _mm_add_epi16(pkt_mb1, crc_adjust);
pkt_mb0 = _mm_add_epi16(pkt_mb0, crc_adjust);
#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
/**
* needs to load 2nd 16B of each desc for RSS hash parsing,
* will cause performance drop to get into this context.
*/
if (rxq->vsi->adapter->pf.dev_data->dev_conf.rxmode.offloads &
DEV_RX_OFFLOAD_RSS_HASH) {
/* load bottom half of every 32B desc */
const __m128i raw_desc_bh3 =
_mm_load_si128
((void *)(&rxdp[3].wb.status_error1));
rte_compiler_barrier();
const __m128i raw_desc_bh2 =
_mm_load_si128
((void *)(&rxdp[2].wb.status_error1));
rte_compiler_barrier();
const __m128i raw_desc_bh1 =
_mm_load_si128
((void *)(&rxdp[1].wb.status_error1));
rte_compiler_barrier();
const __m128i raw_desc_bh0 =
_mm_load_si128
((void *)(&rxdp[0].wb.status_error1));
/**
* to shift the 32b RSS hash value to the
* highest 32b of each 128b before mask
*/
__m128i rss_hash3 =
_mm_slli_epi64(raw_desc_bh3, 32);
__m128i rss_hash2 =
_mm_slli_epi64(raw_desc_bh2, 32);
__m128i rss_hash1 =
_mm_slli_epi64(raw_desc_bh1, 32);
__m128i rss_hash0 =
_mm_slli_epi64(raw_desc_bh0, 32);
__m128i rss_hash_msk =
_mm_set_epi32(0xFFFFFFFF, 0, 0, 0);
rss_hash3 = _mm_and_si128
(rss_hash3, rss_hash_msk);
rss_hash2 = _mm_and_si128
(rss_hash2, rss_hash_msk);
rss_hash1 = _mm_and_si128
(rss_hash1, rss_hash_msk);
rss_hash0 = _mm_and_si128
(rss_hash0, rss_hash_msk);
pkt_mb3 = _mm_or_si128(pkt_mb3, rss_hash3);
pkt_mb2 = _mm_or_si128(pkt_mb2, rss_hash2);
pkt_mb1 = _mm_or_si128(pkt_mb1, rss_hash1);
pkt_mb0 = _mm_or_si128(pkt_mb0, rss_hash0);
} /* if() on RSS hash parsing */
#endif
/* C.2 get 4 pkts staterr value */
staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);
/* D.3 copy final 3,4 data to rx_pkts */
_mm_storeu_si128
((void *)&rx_pkts[pos + 3]->rx_descriptor_fields1,
pkt_mb3);
_mm_storeu_si128
((void *)&rx_pkts[pos + 2]->rx_descriptor_fields1,
pkt_mb2);
/* C* extract and record EOP bit */
if (split_packet) {
/* and with mask to extract bits, flipping 1-0 */
__m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
/* the staterr values are not in order, as the count
* of dd bits doesn't care. However, for end of
* packet tracking, we do care, so shuffle. This also
* compresses the 32-bit values to 8-bit
*/
eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
/* store the resulting 32-bit value */
*(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
split_packet += ICE_DESCS_PER_LOOP;
}
/* C.3 calc available number of desc */
staterr = _mm_and_si128(staterr, dd_check);
staterr = _mm_packs_epi32(staterr, zero);
/* D.3 copy final 1,2 data to rx_pkts */
_mm_storeu_si128
((void *)&rx_pkts[pos + 1]->rx_descriptor_fields1,
pkt_mb1);
_mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
pkt_mb0);
ice_rx_desc_to_ptype_v(descs, &rx_pkts[pos], ptype_tbl);
/* C.4 calc avaialbe number of desc */
var = __builtin_popcountll(_mm_cvtsi128_si64(staterr));
nb_pkts_recd += var;
if (likely(var != ICE_DESCS_PER_LOOP))
break;
}
/* Update our internal tail pointer */
rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
return nb_pkts_recd;
}
/**
* Notice:
* - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
* - nb_pkts > ICE_VPMD_RX_BURST, only scan ICE_VPMD_RX_BURST
* numbers of DD bits
*/
uint16_t
ice_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
return _ice_recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
}
/**
* vPMD receive routine that reassembles single burst of 32 scattered packets
*
* Notice:
* - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
*/
static uint16_t
ice_recv_scattered_burst_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct ice_rx_queue *rxq = rx_queue;
uint8_t split_flags[ICE_VPMD_RX_BURST] = {0};
/* get some new buffers */
uint16_t nb_bufs = _ice_recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
split_flags);
if (nb_bufs == 0)
return 0;
/* happy day case, full burst + no packets to be joined */
const uint64_t *split_fl64 = (uint64_t *)split_flags;
if (!rxq->pkt_first_seg &&
split_fl64[0] == 0 && split_fl64[1] == 0 &&
split_fl64[2] == 0 && split_fl64[3] == 0)
return nb_bufs;
/* reassemble any packets that need reassembly*/
unsigned int i = 0;
if (!rxq->pkt_first_seg) {
/* find the first split flag, and only reassemble then*/
while (i < nb_bufs && !split_flags[i])
i++;
if (i == nb_bufs)
return nb_bufs;
rxq->pkt_first_seg = rx_pkts[i];
}
return i + ice_rx_reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
&split_flags[i]);
}
/**
* vPMD receive routine that reassembles scattered packets.
*/
uint16_t
ice_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
uint16_t retval = 0;
while (nb_pkts > ICE_VPMD_RX_BURST) {
uint16_t burst;
burst = ice_recv_scattered_burst_vec(rx_queue,
rx_pkts + retval,
ICE_VPMD_RX_BURST);
retval += burst;
nb_pkts -= burst;
if (burst < ICE_VPMD_RX_BURST)
return retval;
}
return retval + ice_recv_scattered_burst_vec(rx_queue,
rx_pkts + retval,
nb_pkts);
}
static inline void
ice_vtx1(volatile struct ice_tx_desc *txdp, struct rte_mbuf *pkt,
uint64_t flags)
{
uint64_t high_qw =
(ICE_TX_DESC_DTYPE_DATA |
((uint64_t)flags << ICE_TXD_QW1_CMD_S) |
((uint64_t)pkt->data_len << ICE_TXD_QW1_TX_BUF_SZ_S));
__m128i descriptor = _mm_set_epi64x(high_qw,
pkt->buf_iova + pkt->data_off);
_mm_store_si128((__m128i *)txdp, descriptor);
}
static inline void
ice_vtx(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkt,
uint16_t nb_pkts, uint64_t flags)
{
int i;
for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
ice_vtx1(txdp, *pkt, flags);
}
static uint16_t
ice_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
volatile struct ice_tx_desc *txdp;
struct ice_tx_entry *txep;
uint16_t n, nb_commit, tx_id;
uint64_t flags = ICE_TD_CMD;
uint64_t rs = ICE_TX_DESC_CMD_RS | ICE_TD_CMD;
int i;
/* cross rx_thresh boundary is not allowed */
nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
if (txq->nb_tx_free < txq->tx_free_thresh)
ice_tx_free_bufs_vec(txq);
nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
nb_commit = nb_pkts;
if (unlikely(nb_pkts == 0))
return 0;
tx_id = txq->tx_tail;
txdp = &txq->tx_ring[tx_id];
txep = &txq->sw_ring[tx_id];
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
n = (uint16_t)(txq->nb_tx_desc - tx_id);
if (nb_commit >= n) {
ice_tx_backlog_entry(txep, tx_pkts, n);
for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
ice_vtx1(txdp, *tx_pkts, flags);
ice_vtx1(txdp, *tx_pkts++, rs);
nb_commit = (uint16_t)(nb_commit - n);
tx_id = 0;
txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
/* avoid reach the end of ring */
txdp = &txq->tx_ring[tx_id];
txep = &txq->sw_ring[tx_id];
}
ice_tx_backlog_entry(txep, tx_pkts, nb_commit);
ice_vtx(txdp, tx_pkts, nb_commit, flags);
tx_id = (uint16_t)(tx_id + nb_commit);
if (tx_id > txq->tx_next_rs) {
txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
ICE_TXD_QW1_CMD_S);
txq->tx_next_rs =
(uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
}
txq->tx_tail = tx_id;
ICE_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail);
return nb_pkts;
}
uint16_t
ice_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
uint16_t nb_tx = 0;
struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
while (nb_pkts) {
uint16_t ret, num;
num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
ret = ice_xmit_fixed_burst_vec(tx_queue, &tx_pkts[nb_tx], num);
nb_tx += ret;
nb_pkts -= ret;
if (ret < num)
break;
}
return nb_tx;
}
int __rte_cold
ice_rxq_vec_setup(struct ice_rx_queue *rxq)
{
if (!rxq)
return -1;
rxq->rx_rel_mbufs = _ice_rx_queue_release_mbufs_vec;
return ice_rxq_vec_setup_default(rxq);
}
int __rte_cold
ice_txq_vec_setup(struct ice_tx_queue __rte_unused *txq)
{
if (!txq)
return -1;
txq->tx_rel_mbufs = _ice_tx_queue_release_mbufs_vec;
return 0;
}
int __rte_cold
ice_rx_vec_dev_check(struct rte_eth_dev *dev)
{
return ice_rx_vec_dev_check_default(dev);
}
int __rte_cold
ice_tx_vec_dev_check(struct rte_eth_dev *dev)
{
return ice_tx_vec_dev_check_default(dev);
}