237060c4ad
The commit below added an address hint as starting address for 64-bit systems in case an explicit base virtual address was not set by the user. The justification for such hint was to help devices that work in VA mode and has a address range limitation to work smoothly with the eal memory subsystem. While the base address value selected may work fine for the eal initialization, it easily breaks when trying to register external memory using rte_extmem_register API. Trying to register anonymous memory on RH x86_64 machine took several minutes, during them the function eal_get_virtual_area repeatedly scanned for a good VA candidate. The attempt to guess which VA address will be free for mapping will always result in not portable, error prone code: * different application may use different libraries along w/ DPDK. One can never guess which library was called first and how much virtual memory it consumed. * external memory can be registered at any time in the application run time. In order not to break the existing secondary process design, this patch only limits the max number of tries that will be done with the address hint. When the number of tries exceeds the threshold the code will use the suggested address from kernel. Fixes: 1df21702873d ("mem: use address hint for mapping hugepages") Cc: stable@dpdk.org Signed-off-by: Shahaf Shuler <shahafs@mellanox.com> Tested-by: Anatoly Burakov <anatoly.burakov@intel.com> Acked-by: Alejandro Lucero <alejandro.lucero@netronome.com>
948 lines
24 KiB
C
948 lines
24 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2010-2014 Intel Corporation
|
|
*/
|
|
|
|
#include <fcntl.h>
|
|
#include <errno.h>
|
|
#include <stdio.h>
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
#include <stdarg.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include <inttypes.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/queue.h>
|
|
|
|
#include <rte_fbarray.h>
|
|
#include <rte_memory.h>
|
|
#include <rte_eal.h>
|
|
#include <rte_eal_memconfig.h>
|
|
#include <rte_errno.h>
|
|
#include <rte_log.h>
|
|
|
|
#include "eal_memalloc.h"
|
|
#include "eal_private.h"
|
|
#include "eal_internal_cfg.h"
|
|
#include "malloc_heap.h"
|
|
|
|
/*
|
|
* Try to mmap *size bytes in /dev/zero. If it is successful, return the
|
|
* pointer to the mmap'd area and keep *size unmodified. Else, retry
|
|
* with a smaller zone: decrease *size by hugepage_sz until it reaches
|
|
* 0. In this case, return NULL. Note: this function returns an address
|
|
* which is a multiple of hugepage size.
|
|
*/
|
|
|
|
#define MEMSEG_LIST_FMT "memseg-%" PRIu64 "k-%i-%i"
|
|
|
|
static void *next_baseaddr;
|
|
static uint64_t system_page_sz;
|
|
|
|
#ifdef RTE_ARCH_64
|
|
/*
|
|
* Linux kernel uses a really high address as starting address for serving
|
|
* mmaps calls. If there exists addressing limitations and IOVA mode is VA,
|
|
* this starting address is likely too high for those devices. However, it
|
|
* is possible to use a lower address in the process virtual address space
|
|
* as with 64 bits there is a lot of available space.
|
|
*
|
|
* Current known limitations are 39 or 40 bits. Setting the starting address
|
|
* at 4GB implies there are 508GB or 1020GB for mapping the available
|
|
* hugepages. This is likely enough for most systems, although a device with
|
|
* addressing limitations should call rte_mem_check_dma_mask for ensuring all
|
|
* memory is within supported range.
|
|
*/
|
|
static uint64_t baseaddr = 0x100000000;
|
|
#endif
|
|
|
|
#define MAX_MMAP_WITH_DEFINED_ADDR_TRIES 5
|
|
void *
|
|
eal_get_virtual_area(void *requested_addr, size_t *size,
|
|
size_t page_sz, int flags, int mmap_flags)
|
|
{
|
|
bool addr_is_hint, allow_shrink, unmap, no_align;
|
|
uint64_t map_sz;
|
|
void *mapped_addr, *aligned_addr;
|
|
uint8_t try = 0;
|
|
|
|
if (system_page_sz == 0)
|
|
system_page_sz = sysconf(_SC_PAGESIZE);
|
|
|
|
mmap_flags |= MAP_PRIVATE | MAP_ANONYMOUS;
|
|
|
|
RTE_LOG(DEBUG, EAL, "Ask a virtual area of 0x%zx bytes\n", *size);
|
|
|
|
addr_is_hint = (flags & EAL_VIRTUAL_AREA_ADDR_IS_HINT) > 0;
|
|
allow_shrink = (flags & EAL_VIRTUAL_AREA_ALLOW_SHRINK) > 0;
|
|
unmap = (flags & EAL_VIRTUAL_AREA_UNMAP) > 0;
|
|
|
|
if (next_baseaddr == NULL && internal_config.base_virtaddr != 0 &&
|
|
rte_eal_process_type() == RTE_PROC_PRIMARY)
|
|
next_baseaddr = (void *) internal_config.base_virtaddr;
|
|
|
|
#ifdef RTE_ARCH_64
|
|
if (next_baseaddr == NULL && internal_config.base_virtaddr == 0 &&
|
|
rte_eal_process_type() == RTE_PROC_PRIMARY)
|
|
next_baseaddr = (void *) baseaddr;
|
|
#endif
|
|
if (requested_addr == NULL && next_baseaddr != NULL) {
|
|
requested_addr = next_baseaddr;
|
|
requested_addr = RTE_PTR_ALIGN(requested_addr, page_sz);
|
|
addr_is_hint = true;
|
|
}
|
|
|
|
/* we don't need alignment of resulting pointer in the following cases:
|
|
*
|
|
* 1. page size is equal to system size
|
|
* 2. we have a requested address, and it is page-aligned, and we will
|
|
* be discarding the address if we get a different one.
|
|
*
|
|
* for all other cases, alignment is potentially necessary.
|
|
*/
|
|
no_align = (requested_addr != NULL &&
|
|
requested_addr == RTE_PTR_ALIGN(requested_addr, page_sz) &&
|
|
!addr_is_hint) ||
|
|
page_sz == system_page_sz;
|
|
|
|
do {
|
|
map_sz = no_align ? *size : *size + page_sz;
|
|
if (map_sz > SIZE_MAX) {
|
|
RTE_LOG(ERR, EAL, "Map size too big\n");
|
|
rte_errno = E2BIG;
|
|
return NULL;
|
|
}
|
|
|
|
mapped_addr = mmap(requested_addr, (size_t)map_sz, PROT_READ,
|
|
mmap_flags, -1, 0);
|
|
if (mapped_addr == MAP_FAILED && allow_shrink)
|
|
*size -= page_sz;
|
|
|
|
if (mapped_addr != MAP_FAILED && addr_is_hint &&
|
|
mapped_addr != requested_addr) {
|
|
try++;
|
|
next_baseaddr = RTE_PTR_ADD(next_baseaddr, page_sz);
|
|
if (try <= MAX_MMAP_WITH_DEFINED_ADDR_TRIES) {
|
|
/* hint was not used. Try with another offset */
|
|
munmap(mapped_addr, map_sz);
|
|
mapped_addr = MAP_FAILED;
|
|
requested_addr = next_baseaddr;
|
|
}
|
|
}
|
|
} while ((allow_shrink || addr_is_hint) &&
|
|
mapped_addr == MAP_FAILED && *size > 0);
|
|
|
|
/* align resulting address - if map failed, we will ignore the value
|
|
* anyway, so no need to add additional checks.
|
|
*/
|
|
aligned_addr = no_align ? mapped_addr :
|
|
RTE_PTR_ALIGN(mapped_addr, page_sz);
|
|
|
|
if (*size == 0) {
|
|
RTE_LOG(ERR, EAL, "Cannot get a virtual area of any size: %s\n",
|
|
strerror(errno));
|
|
rte_errno = errno;
|
|
return NULL;
|
|
} else if (mapped_addr == MAP_FAILED) {
|
|
RTE_LOG(ERR, EAL, "Cannot get a virtual area: %s\n",
|
|
strerror(errno));
|
|
/* pass errno up the call chain */
|
|
rte_errno = errno;
|
|
return NULL;
|
|
} else if (requested_addr != NULL && !addr_is_hint &&
|
|
aligned_addr != requested_addr) {
|
|
RTE_LOG(ERR, EAL, "Cannot get a virtual area at requested address: %p (got %p)\n",
|
|
requested_addr, aligned_addr);
|
|
munmap(mapped_addr, map_sz);
|
|
rte_errno = EADDRNOTAVAIL;
|
|
return NULL;
|
|
} else if (requested_addr != NULL && addr_is_hint &&
|
|
aligned_addr != requested_addr) {
|
|
RTE_LOG(WARNING, EAL, "WARNING! Base virtual address hint (%p != %p) not respected!\n",
|
|
requested_addr, aligned_addr);
|
|
RTE_LOG(WARNING, EAL, " This may cause issues with mapping memory into secondary processes\n");
|
|
} else if (next_baseaddr != NULL) {
|
|
next_baseaddr = RTE_PTR_ADD(aligned_addr, *size);
|
|
}
|
|
|
|
RTE_LOG(DEBUG, EAL, "Virtual area found at %p (size = 0x%zx)\n",
|
|
aligned_addr, *size);
|
|
|
|
if (unmap) {
|
|
munmap(mapped_addr, map_sz);
|
|
} else if (!no_align) {
|
|
void *map_end, *aligned_end;
|
|
size_t before_len, after_len;
|
|
|
|
/* when we reserve space with alignment, we add alignment to
|
|
* mapping size. On 32-bit, if 1GB alignment was requested, this
|
|
* would waste 1GB of address space, which is a luxury we cannot
|
|
* afford. so, if alignment was performed, check if any unneeded
|
|
* address space can be unmapped back.
|
|
*/
|
|
|
|
map_end = RTE_PTR_ADD(mapped_addr, (size_t)map_sz);
|
|
aligned_end = RTE_PTR_ADD(aligned_addr, *size);
|
|
|
|
/* unmap space before aligned mmap address */
|
|
before_len = RTE_PTR_DIFF(aligned_addr, mapped_addr);
|
|
if (before_len > 0)
|
|
munmap(mapped_addr, before_len);
|
|
|
|
/* unmap space after aligned end mmap address */
|
|
after_len = RTE_PTR_DIFF(map_end, aligned_end);
|
|
if (after_len > 0)
|
|
munmap(aligned_end, after_len);
|
|
}
|
|
|
|
return aligned_addr;
|
|
}
|
|
|
|
static struct rte_memseg *
|
|
virt2memseg(const void *addr, const struct rte_memseg_list *msl)
|
|
{
|
|
const struct rte_fbarray *arr;
|
|
void *start, *end;
|
|
int ms_idx;
|
|
|
|
if (msl == NULL)
|
|
return NULL;
|
|
|
|
/* a memseg list was specified, check if it's the right one */
|
|
start = msl->base_va;
|
|
end = RTE_PTR_ADD(start, msl->len);
|
|
|
|
if (addr < start || addr >= end)
|
|
return NULL;
|
|
|
|
/* now, calculate index */
|
|
arr = &msl->memseg_arr;
|
|
ms_idx = RTE_PTR_DIFF(addr, msl->base_va) / msl->page_sz;
|
|
return rte_fbarray_get(arr, ms_idx);
|
|
}
|
|
|
|
static struct rte_memseg_list *
|
|
virt2memseg_list(const void *addr)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
struct rte_memseg_list *msl;
|
|
int msl_idx;
|
|
|
|
for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS; msl_idx++) {
|
|
void *start, *end;
|
|
msl = &mcfg->memsegs[msl_idx];
|
|
|
|
start = msl->base_va;
|
|
end = RTE_PTR_ADD(start, msl->len);
|
|
if (addr >= start && addr < end)
|
|
break;
|
|
}
|
|
/* if we didn't find our memseg list */
|
|
if (msl_idx == RTE_MAX_MEMSEG_LISTS)
|
|
return NULL;
|
|
return msl;
|
|
}
|
|
|
|
__rte_experimental struct rte_memseg_list *
|
|
rte_mem_virt2memseg_list(const void *addr)
|
|
{
|
|
return virt2memseg_list(addr);
|
|
}
|
|
|
|
struct virtiova {
|
|
rte_iova_t iova;
|
|
void *virt;
|
|
};
|
|
static int
|
|
find_virt(const struct rte_memseg_list *msl __rte_unused,
|
|
const struct rte_memseg *ms, void *arg)
|
|
{
|
|
struct virtiova *vi = arg;
|
|
if (vi->iova >= ms->iova && vi->iova < (ms->iova + ms->len)) {
|
|
size_t offset = vi->iova - ms->iova;
|
|
vi->virt = RTE_PTR_ADD(ms->addr, offset);
|
|
/* stop the walk */
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
static int
|
|
find_virt_legacy(const struct rte_memseg_list *msl __rte_unused,
|
|
const struct rte_memseg *ms, size_t len, void *arg)
|
|
{
|
|
struct virtiova *vi = arg;
|
|
if (vi->iova >= ms->iova && vi->iova < (ms->iova + len)) {
|
|
size_t offset = vi->iova - ms->iova;
|
|
vi->virt = RTE_PTR_ADD(ms->addr, offset);
|
|
/* stop the walk */
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
__rte_experimental void *
|
|
rte_mem_iova2virt(rte_iova_t iova)
|
|
{
|
|
struct virtiova vi;
|
|
|
|
memset(&vi, 0, sizeof(vi));
|
|
|
|
vi.iova = iova;
|
|
/* for legacy mem, we can get away with scanning VA-contiguous segments,
|
|
* as we know they are PA-contiguous as well
|
|
*/
|
|
if (internal_config.legacy_mem)
|
|
rte_memseg_contig_walk(find_virt_legacy, &vi);
|
|
else
|
|
rte_memseg_walk(find_virt, &vi);
|
|
|
|
return vi.virt;
|
|
}
|
|
|
|
__rte_experimental struct rte_memseg *
|
|
rte_mem_virt2memseg(const void *addr, const struct rte_memseg_list *msl)
|
|
{
|
|
return virt2memseg(addr, msl != NULL ? msl :
|
|
rte_mem_virt2memseg_list(addr));
|
|
}
|
|
|
|
static int
|
|
physmem_size(const struct rte_memseg_list *msl, void *arg)
|
|
{
|
|
uint64_t *total_len = arg;
|
|
|
|
if (msl->external)
|
|
return 0;
|
|
|
|
*total_len += msl->memseg_arr.count * msl->page_sz;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* get the total size of memory */
|
|
uint64_t
|
|
rte_eal_get_physmem_size(void)
|
|
{
|
|
uint64_t total_len = 0;
|
|
|
|
rte_memseg_list_walk(physmem_size, &total_len);
|
|
|
|
return total_len;
|
|
}
|
|
|
|
static int
|
|
dump_memseg(const struct rte_memseg_list *msl, const struct rte_memseg *ms,
|
|
void *arg)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
int msl_idx, ms_idx, fd;
|
|
FILE *f = arg;
|
|
|
|
msl_idx = msl - mcfg->memsegs;
|
|
if (msl_idx < 0 || msl_idx >= RTE_MAX_MEMSEG_LISTS)
|
|
return -1;
|
|
|
|
ms_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
|
|
if (ms_idx < 0)
|
|
return -1;
|
|
|
|
fd = eal_memalloc_get_seg_fd(msl_idx, ms_idx);
|
|
fprintf(f, "Segment %i-%i: IOVA:0x%"PRIx64", len:%zu, "
|
|
"virt:%p, socket_id:%"PRId32", "
|
|
"hugepage_sz:%"PRIu64", nchannel:%"PRIx32", "
|
|
"nrank:%"PRIx32" fd:%i\n",
|
|
msl_idx, ms_idx,
|
|
ms->iova,
|
|
ms->len,
|
|
ms->addr,
|
|
ms->socket_id,
|
|
ms->hugepage_sz,
|
|
ms->nchannel,
|
|
ms->nrank,
|
|
fd);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Defining here because declared in rte_memory.h, but the actual implementation
|
|
* is in eal_common_memalloc.c, like all other memalloc internals.
|
|
*/
|
|
int __rte_experimental
|
|
rte_mem_event_callback_register(const char *name, rte_mem_event_callback_t clb,
|
|
void *arg)
|
|
{
|
|
/* FreeBSD boots with legacy mem enabled by default */
|
|
if (internal_config.legacy_mem) {
|
|
RTE_LOG(DEBUG, EAL, "Registering mem event callbacks not supported\n");
|
|
rte_errno = ENOTSUP;
|
|
return -1;
|
|
}
|
|
return eal_memalloc_mem_event_callback_register(name, clb, arg);
|
|
}
|
|
|
|
int __rte_experimental
|
|
rte_mem_event_callback_unregister(const char *name, void *arg)
|
|
{
|
|
/* FreeBSD boots with legacy mem enabled by default */
|
|
if (internal_config.legacy_mem) {
|
|
RTE_LOG(DEBUG, EAL, "Registering mem event callbacks not supported\n");
|
|
rte_errno = ENOTSUP;
|
|
return -1;
|
|
}
|
|
return eal_memalloc_mem_event_callback_unregister(name, arg);
|
|
}
|
|
|
|
int __rte_experimental
|
|
rte_mem_alloc_validator_register(const char *name,
|
|
rte_mem_alloc_validator_t clb, int socket_id, size_t limit)
|
|
{
|
|
/* FreeBSD boots with legacy mem enabled by default */
|
|
if (internal_config.legacy_mem) {
|
|
RTE_LOG(DEBUG, EAL, "Registering mem alloc validators not supported\n");
|
|
rte_errno = ENOTSUP;
|
|
return -1;
|
|
}
|
|
return eal_memalloc_mem_alloc_validator_register(name, clb, socket_id,
|
|
limit);
|
|
}
|
|
|
|
int __rte_experimental
|
|
rte_mem_alloc_validator_unregister(const char *name, int socket_id)
|
|
{
|
|
/* FreeBSD boots with legacy mem enabled by default */
|
|
if (internal_config.legacy_mem) {
|
|
RTE_LOG(DEBUG, EAL, "Registering mem alloc validators not supported\n");
|
|
rte_errno = ENOTSUP;
|
|
return -1;
|
|
}
|
|
return eal_memalloc_mem_alloc_validator_unregister(name, socket_id);
|
|
}
|
|
|
|
/* Dump the physical memory layout on console */
|
|
void
|
|
rte_dump_physmem_layout(FILE *f)
|
|
{
|
|
rte_memseg_walk(dump_memseg, f);
|
|
}
|
|
|
|
static int
|
|
check_iova(const struct rte_memseg_list *msl __rte_unused,
|
|
const struct rte_memseg *ms, void *arg)
|
|
{
|
|
uint64_t *mask = arg;
|
|
rte_iova_t iova;
|
|
|
|
/* higher address within segment */
|
|
iova = (ms->iova + ms->len) - 1;
|
|
if (!(iova & *mask))
|
|
return 0;
|
|
|
|
RTE_LOG(DEBUG, EAL, "memseg iova %"PRIx64", len %zx, out of range\n",
|
|
ms->iova, ms->len);
|
|
|
|
RTE_LOG(DEBUG, EAL, "\tusing dma mask %"PRIx64"\n", *mask);
|
|
return 1;
|
|
}
|
|
|
|
#define MAX_DMA_MASK_BITS 63
|
|
|
|
/* check memseg iovas are within the required range based on dma mask */
|
|
static int __rte_experimental
|
|
check_dma_mask(uint8_t maskbits, bool thread_unsafe)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
uint64_t mask;
|
|
int ret;
|
|
|
|
/* Sanity check. We only check width can be managed with 64 bits
|
|
* variables. Indeed any higher value is likely wrong. */
|
|
if (maskbits > MAX_DMA_MASK_BITS) {
|
|
RTE_LOG(ERR, EAL, "wrong dma mask size %u (Max: %u)\n",
|
|
maskbits, MAX_DMA_MASK_BITS);
|
|
return -1;
|
|
}
|
|
|
|
/* create dma mask */
|
|
mask = ~((1ULL << maskbits) - 1);
|
|
|
|
if (thread_unsafe)
|
|
ret = rte_memseg_walk_thread_unsafe(check_iova, &mask);
|
|
else
|
|
ret = rte_memseg_walk(check_iova, &mask);
|
|
|
|
if (ret)
|
|
/*
|
|
* Dma mask precludes hugepage usage.
|
|
* This device can not be used and we do not need to keep
|
|
* the dma mask.
|
|
*/
|
|
return 1;
|
|
|
|
/*
|
|
* we need to keep the more restricted maskbit for checking
|
|
* potential dynamic memory allocation in the future.
|
|
*/
|
|
mcfg->dma_maskbits = mcfg->dma_maskbits == 0 ? maskbits :
|
|
RTE_MIN(mcfg->dma_maskbits, maskbits);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int __rte_experimental
|
|
rte_mem_check_dma_mask(uint8_t maskbits)
|
|
{
|
|
return check_dma_mask(maskbits, false);
|
|
}
|
|
|
|
int __rte_experimental
|
|
rte_mem_check_dma_mask_thread_unsafe(uint8_t maskbits)
|
|
{
|
|
return check_dma_mask(maskbits, true);
|
|
}
|
|
|
|
/*
|
|
* Set dma mask to use when memory initialization is done.
|
|
*
|
|
* This function should ONLY be used by code executed before the memory
|
|
* initialization. PMDs should use rte_mem_check_dma_mask if addressing
|
|
* limitations by the device.
|
|
*/
|
|
void __rte_experimental
|
|
rte_mem_set_dma_mask(uint8_t maskbits)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
|
|
mcfg->dma_maskbits = mcfg->dma_maskbits == 0 ? maskbits :
|
|
RTE_MIN(mcfg->dma_maskbits, maskbits);
|
|
}
|
|
|
|
/* return the number of memory channels */
|
|
unsigned rte_memory_get_nchannel(void)
|
|
{
|
|
return rte_eal_get_configuration()->mem_config->nchannel;
|
|
}
|
|
|
|
/* return the number of memory rank */
|
|
unsigned rte_memory_get_nrank(void)
|
|
{
|
|
return rte_eal_get_configuration()->mem_config->nrank;
|
|
}
|
|
|
|
static int
|
|
rte_eal_memdevice_init(void)
|
|
{
|
|
struct rte_config *config;
|
|
|
|
if (rte_eal_process_type() == RTE_PROC_SECONDARY)
|
|
return 0;
|
|
|
|
config = rte_eal_get_configuration();
|
|
config->mem_config->nchannel = internal_config.force_nchannel;
|
|
config->mem_config->nrank = internal_config.force_nrank;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Lock page in physical memory and prevent from swapping. */
|
|
int
|
|
rte_mem_lock_page(const void *virt)
|
|
{
|
|
unsigned long virtual = (unsigned long)virt;
|
|
int page_size = getpagesize();
|
|
unsigned long aligned = (virtual & ~(page_size - 1));
|
|
return mlock((void *)aligned, page_size);
|
|
}
|
|
|
|
int __rte_experimental
|
|
rte_memseg_contig_walk_thread_unsafe(rte_memseg_contig_walk_t func, void *arg)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
int i, ms_idx, ret = 0;
|
|
|
|
for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
|
|
struct rte_memseg_list *msl = &mcfg->memsegs[i];
|
|
const struct rte_memseg *ms;
|
|
struct rte_fbarray *arr;
|
|
|
|
if (msl->memseg_arr.count == 0)
|
|
continue;
|
|
|
|
arr = &msl->memseg_arr;
|
|
|
|
ms_idx = rte_fbarray_find_next_used(arr, 0);
|
|
while (ms_idx >= 0) {
|
|
int n_segs;
|
|
size_t len;
|
|
|
|
ms = rte_fbarray_get(arr, ms_idx);
|
|
|
|
/* find how many more segments there are, starting with
|
|
* this one.
|
|
*/
|
|
n_segs = rte_fbarray_find_contig_used(arr, ms_idx);
|
|
len = n_segs * msl->page_sz;
|
|
|
|
ret = func(msl, ms, len, arg);
|
|
if (ret)
|
|
return ret;
|
|
ms_idx = rte_fbarray_find_next_used(arr,
|
|
ms_idx + n_segs);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int __rte_experimental
|
|
rte_memseg_contig_walk(rte_memseg_contig_walk_t func, void *arg)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
int ret = 0;
|
|
|
|
/* do not allow allocations/frees/init while we iterate */
|
|
rte_rwlock_read_lock(&mcfg->memory_hotplug_lock);
|
|
ret = rte_memseg_contig_walk_thread_unsafe(func, arg);
|
|
rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int __rte_experimental
|
|
rte_memseg_walk_thread_unsafe(rte_memseg_walk_t func, void *arg)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
int i, ms_idx, ret = 0;
|
|
|
|
for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
|
|
struct rte_memseg_list *msl = &mcfg->memsegs[i];
|
|
const struct rte_memseg *ms;
|
|
struct rte_fbarray *arr;
|
|
|
|
if (msl->memseg_arr.count == 0)
|
|
continue;
|
|
|
|
arr = &msl->memseg_arr;
|
|
|
|
ms_idx = rte_fbarray_find_next_used(arr, 0);
|
|
while (ms_idx >= 0) {
|
|
ms = rte_fbarray_get(arr, ms_idx);
|
|
ret = func(msl, ms, arg);
|
|
if (ret)
|
|
return ret;
|
|
ms_idx = rte_fbarray_find_next_used(arr, ms_idx + 1);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int __rte_experimental
|
|
rte_memseg_walk(rte_memseg_walk_t func, void *arg)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
int ret = 0;
|
|
|
|
/* do not allow allocations/frees/init while we iterate */
|
|
rte_rwlock_read_lock(&mcfg->memory_hotplug_lock);
|
|
ret = rte_memseg_walk_thread_unsafe(func, arg);
|
|
rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int __rte_experimental
|
|
rte_memseg_list_walk_thread_unsafe(rte_memseg_list_walk_t func, void *arg)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
int i, ret = 0;
|
|
|
|
for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
|
|
struct rte_memseg_list *msl = &mcfg->memsegs[i];
|
|
|
|
if (msl->base_va == NULL)
|
|
continue;
|
|
|
|
ret = func(msl, arg);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int __rte_experimental
|
|
rte_memseg_list_walk(rte_memseg_list_walk_t func, void *arg)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
int ret = 0;
|
|
|
|
/* do not allow allocations/frees/init while we iterate */
|
|
rte_rwlock_read_lock(&mcfg->memory_hotplug_lock);
|
|
ret = rte_memseg_list_walk_thread_unsafe(func, arg);
|
|
rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int __rte_experimental
|
|
rte_memseg_get_fd_thread_unsafe(const struct rte_memseg *ms)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
struct rte_memseg_list *msl;
|
|
struct rte_fbarray *arr;
|
|
int msl_idx, seg_idx, ret;
|
|
|
|
if (ms == NULL) {
|
|
rte_errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
msl = rte_mem_virt2memseg_list(ms->addr);
|
|
if (msl == NULL) {
|
|
rte_errno = EINVAL;
|
|
return -1;
|
|
}
|
|
arr = &msl->memseg_arr;
|
|
|
|
msl_idx = msl - mcfg->memsegs;
|
|
seg_idx = rte_fbarray_find_idx(arr, ms);
|
|
|
|
if (!rte_fbarray_is_used(arr, seg_idx)) {
|
|
rte_errno = ENOENT;
|
|
return -1;
|
|
}
|
|
|
|
/* segment fd API is not supported for external segments */
|
|
if (msl->external) {
|
|
rte_errno = ENOTSUP;
|
|
return -1;
|
|
}
|
|
|
|
ret = eal_memalloc_get_seg_fd(msl_idx, seg_idx);
|
|
if (ret < 0) {
|
|
rte_errno = -ret;
|
|
ret = -1;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int __rte_experimental
|
|
rte_memseg_get_fd(const struct rte_memseg *ms)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
int ret;
|
|
|
|
rte_rwlock_read_lock(&mcfg->memory_hotplug_lock);
|
|
ret = rte_memseg_get_fd_thread_unsafe(ms);
|
|
rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int __rte_experimental
|
|
rte_memseg_get_fd_offset_thread_unsafe(const struct rte_memseg *ms,
|
|
size_t *offset)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
struct rte_memseg_list *msl;
|
|
struct rte_fbarray *arr;
|
|
int msl_idx, seg_idx, ret;
|
|
|
|
if (ms == NULL || offset == NULL) {
|
|
rte_errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
msl = rte_mem_virt2memseg_list(ms->addr);
|
|
if (msl == NULL) {
|
|
rte_errno = EINVAL;
|
|
return -1;
|
|
}
|
|
arr = &msl->memseg_arr;
|
|
|
|
msl_idx = msl - mcfg->memsegs;
|
|
seg_idx = rte_fbarray_find_idx(arr, ms);
|
|
|
|
if (!rte_fbarray_is_used(arr, seg_idx)) {
|
|
rte_errno = ENOENT;
|
|
return -1;
|
|
}
|
|
|
|
/* segment fd API is not supported for external segments */
|
|
if (msl->external) {
|
|
rte_errno = ENOTSUP;
|
|
return -1;
|
|
}
|
|
|
|
ret = eal_memalloc_get_seg_fd_offset(msl_idx, seg_idx, offset);
|
|
if (ret < 0) {
|
|
rte_errno = -ret;
|
|
ret = -1;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int __rte_experimental
|
|
rte_memseg_get_fd_offset(const struct rte_memseg *ms, size_t *offset)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
int ret;
|
|
|
|
rte_rwlock_read_lock(&mcfg->memory_hotplug_lock);
|
|
ret = rte_memseg_get_fd_offset_thread_unsafe(ms, offset);
|
|
rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int __rte_experimental
|
|
rte_extmem_register(void *va_addr, size_t len, rte_iova_t iova_addrs[],
|
|
unsigned int n_pages, size_t page_sz)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
unsigned int socket_id, n;
|
|
int ret = 0;
|
|
|
|
if (va_addr == NULL || page_sz == 0 || len == 0 ||
|
|
!rte_is_power_of_2(page_sz) ||
|
|
RTE_ALIGN(len, page_sz) != len ||
|
|
((len / page_sz) != n_pages && iova_addrs != NULL) ||
|
|
!rte_is_aligned(va_addr, page_sz)) {
|
|
rte_errno = EINVAL;
|
|
return -1;
|
|
}
|
|
rte_rwlock_write_lock(&mcfg->memory_hotplug_lock);
|
|
|
|
/* make sure the segment doesn't already exist */
|
|
if (malloc_heap_find_external_seg(va_addr, len) != NULL) {
|
|
rte_errno = EEXIST;
|
|
ret = -1;
|
|
goto unlock;
|
|
}
|
|
|
|
/* get next available socket ID */
|
|
socket_id = mcfg->next_socket_id;
|
|
if (socket_id > INT32_MAX) {
|
|
RTE_LOG(ERR, EAL, "Cannot assign new socket ID's\n");
|
|
rte_errno = ENOSPC;
|
|
ret = -1;
|
|
goto unlock;
|
|
}
|
|
|
|
/* we can create a new memseg */
|
|
n = len / page_sz;
|
|
if (malloc_heap_create_external_seg(va_addr, iova_addrs, n,
|
|
page_sz, "extmem", socket_id) == NULL) {
|
|
ret = -1;
|
|
goto unlock;
|
|
}
|
|
|
|
/* memseg list successfully created - increment next socket ID */
|
|
mcfg->next_socket_id++;
|
|
unlock:
|
|
rte_rwlock_write_unlock(&mcfg->memory_hotplug_lock);
|
|
return ret;
|
|
}
|
|
|
|
int __rte_experimental
|
|
rte_extmem_unregister(void *va_addr, size_t len)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
struct rte_memseg_list *msl;
|
|
int ret = 0;
|
|
|
|
if (va_addr == NULL || len == 0) {
|
|
rte_errno = EINVAL;
|
|
return -1;
|
|
}
|
|
rte_rwlock_write_lock(&mcfg->memory_hotplug_lock);
|
|
|
|
/* find our segment */
|
|
msl = malloc_heap_find_external_seg(va_addr, len);
|
|
if (msl == NULL) {
|
|
rte_errno = ENOENT;
|
|
ret = -1;
|
|
goto unlock;
|
|
}
|
|
|
|
ret = malloc_heap_destroy_external_seg(msl);
|
|
unlock:
|
|
rte_rwlock_write_unlock(&mcfg->memory_hotplug_lock);
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
sync_memory(void *va_addr, size_t len, bool attach)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
struct rte_memseg_list *msl;
|
|
int ret = 0;
|
|
|
|
if (va_addr == NULL || len == 0) {
|
|
rte_errno = EINVAL;
|
|
return -1;
|
|
}
|
|
rte_rwlock_write_lock(&mcfg->memory_hotplug_lock);
|
|
|
|
/* find our segment */
|
|
msl = malloc_heap_find_external_seg(va_addr, len);
|
|
if (msl == NULL) {
|
|
rte_errno = ENOENT;
|
|
ret = -1;
|
|
goto unlock;
|
|
}
|
|
if (attach)
|
|
ret = rte_fbarray_attach(&msl->memseg_arr);
|
|
else
|
|
ret = rte_fbarray_detach(&msl->memseg_arr);
|
|
|
|
unlock:
|
|
rte_rwlock_write_unlock(&mcfg->memory_hotplug_lock);
|
|
return ret;
|
|
}
|
|
|
|
int __rte_experimental
|
|
rte_extmem_attach(void *va_addr, size_t len)
|
|
{
|
|
return sync_memory(va_addr, len, true);
|
|
}
|
|
|
|
int __rte_experimental
|
|
rte_extmem_detach(void *va_addr, size_t len)
|
|
{
|
|
return sync_memory(va_addr, len, false);
|
|
}
|
|
|
|
/* init memory subsystem */
|
|
int
|
|
rte_eal_memory_init(void)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
int retval;
|
|
RTE_LOG(DEBUG, EAL, "Setting up physically contiguous memory...\n");
|
|
|
|
if (!mcfg)
|
|
return -1;
|
|
|
|
/* lock mem hotplug here, to prevent races while we init */
|
|
rte_rwlock_read_lock(&mcfg->memory_hotplug_lock);
|
|
|
|
if (rte_eal_memseg_init() < 0)
|
|
goto fail;
|
|
|
|
if (eal_memalloc_init() < 0)
|
|
goto fail;
|
|
|
|
retval = rte_eal_process_type() == RTE_PROC_PRIMARY ?
|
|
rte_eal_hugepage_init() :
|
|
rte_eal_hugepage_attach();
|
|
if (retval < 0)
|
|
goto fail;
|
|
|
|
if (internal_config.no_shconf == 0 && rte_eal_memdevice_init() < 0)
|
|
goto fail;
|
|
|
|
return 0;
|
|
fail:
|
|
rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock);
|
|
return -1;
|
|
}
|