numam-dpdk/drivers/net/cxgbe/cxgbe_flow.c
Thomas Monjalon fb7ad441d4 ethdev: replace callback getting filter operations
Since rte_flow is the only API for filtering operations,
the legacy driver interface filter_ctrl was too much complicated
for the simple task of getting the struct rte_flow_ops.

The filter type RTE_ETH_FILTER_GENERIC and
the filter operarion RTE_ETH_FILTER_GET are removed.
The new driver callback flow_ops_get replaces filter_ctrl.

Signed-off-by: Thomas Monjalon <thomas@monjalon.net>
Acked-by: Ajit Khaparde <ajit.khaparde@broadcom.com>
Acked-by: Haiyue Wang <haiyue.wang@intel.com>
Acked-by: Rosen Xu <rosen.xu@intel.com>
Acked-by: Hemant Agrawal <hemant.agrawal@nxp.com>
Reviewed-by: Andrew Rybchenko <andrew.rybchenko@oktetlabs.ru>
Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>
2021-03-26 18:37:13 +01:00

1457 lines
39 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Chelsio Communications.
* All rights reserved.
*/
#include "base/common.h"
#include "cxgbe_flow.h"
#define __CXGBE_FILL_FS(__v, __m, fs, elem, e) \
do { \
if ((fs)->mask.elem && ((fs)->val.elem != (__v))) \
return rte_flow_error_set(e, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, \
NULL, "Redefined match item with" \
" different values found"); \
(fs)->val.elem = (__v); \
(fs)->mask.elem = (__m); \
} while (0)
#define __CXGBE_FILL_FS_MEMCPY(__v, __m, fs, elem) \
do { \
memcpy(&(fs)->val.elem, &(__v), sizeof(__v)); \
memcpy(&(fs)->mask.elem, &(__m), sizeof(__m)); \
} while (0)
#define CXGBE_FILL_FS(v, m, elem) \
__CXGBE_FILL_FS(v, m, fs, elem, e)
#define CXGBE_FILL_FS_MEMCPY(v, m, elem) \
__CXGBE_FILL_FS_MEMCPY(v, m, fs, elem)
static int
cxgbe_validate_item(const struct rte_flow_item *i, struct rte_flow_error *e)
{
/* rte_flow specification does not allow it. */
if (!i->spec && (i->mask || i->last))
return rte_flow_error_set(e, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM,
i, "last or mask given without spec");
/*
* We don't support it.
* Although, we can support values in last as 0's or last == spec.
* But this will not provide user with any additional functionality
* and will only increase the complexity for us.
*/
if (i->last)
return rte_flow_error_set(e, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM,
i, "last is not supported by chelsio pmd");
return 0;
}
/**
* Apart from the 4-tuple IPv4/IPv6 - TCP/UDP information,
* there's only 40-bits available to store match fields.
* So, to save space, optimize filter spec for some common
* known fields that hardware can parse against incoming
* packets automatically.
*/
static void
cxgbe_tweak_filter_spec(struct adapter *adap,
struct ch_filter_specification *fs)
{
/* Save 16-bit ethertype field space, by setting corresponding
* 1-bit flags in the filter spec for common known ethertypes.
* When hardware sees these flags, it automatically infers and
* matches incoming packets against the corresponding ethertype.
*/
if (fs->mask.ethtype == 0xffff) {
switch (fs->val.ethtype) {
case RTE_ETHER_TYPE_IPV4:
if (adap->params.tp.ethertype_shift < 0) {
fs->type = FILTER_TYPE_IPV4;
fs->val.ethtype = 0;
fs->mask.ethtype = 0;
}
break;
case RTE_ETHER_TYPE_IPV6:
if (adap->params.tp.ethertype_shift < 0) {
fs->type = FILTER_TYPE_IPV6;
fs->val.ethtype = 0;
fs->mask.ethtype = 0;
}
break;
case RTE_ETHER_TYPE_VLAN:
if (adap->params.tp.ethertype_shift < 0 &&
adap->params.tp.vlan_shift >= 0) {
fs->val.ivlan_vld = 1;
fs->mask.ivlan_vld = 1;
fs->val.ethtype = 0;
fs->mask.ethtype = 0;
}
break;
case RTE_ETHER_TYPE_QINQ:
if (adap->params.tp.ethertype_shift < 0 &&
adap->params.tp.vnic_shift >= 0) {
fs->val.ovlan_vld = 1;
fs->mask.ovlan_vld = 1;
fs->val.ethtype = 0;
fs->mask.ethtype = 0;
}
break;
default:
break;
}
}
}
static void
cxgbe_fill_filter_region(struct adapter *adap,
struct ch_filter_specification *fs)
{
struct tp_params *tp = &adap->params.tp;
u64 hash_filter_mask = tp->hash_filter_mask;
u64 ntuple_mask = 0;
fs->cap = 0;
if (!is_hashfilter(adap))
return;
if (fs->type) {
uint8_t biton[16] = {0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff};
uint8_t bitoff[16] = {0};
if (!memcmp(fs->val.lip, bitoff, sizeof(bitoff)) ||
!memcmp(fs->val.fip, bitoff, sizeof(bitoff)) ||
memcmp(fs->mask.lip, biton, sizeof(biton)) ||
memcmp(fs->mask.fip, biton, sizeof(biton)))
return;
} else {
uint32_t biton = 0xffffffff;
uint32_t bitoff = 0x0U;
if (!memcmp(fs->val.lip, &bitoff, sizeof(bitoff)) ||
!memcmp(fs->val.fip, &bitoff, sizeof(bitoff)) ||
memcmp(fs->mask.lip, &biton, sizeof(biton)) ||
memcmp(fs->mask.fip, &biton, sizeof(biton)))
return;
}
if (!fs->val.lport || fs->mask.lport != 0xffff)
return;
if (!fs->val.fport || fs->mask.fport != 0xffff)
return;
if (tp->protocol_shift >= 0)
ntuple_mask |= (u64)fs->mask.proto << tp->protocol_shift;
if (tp->ethertype_shift >= 0)
ntuple_mask |= (u64)fs->mask.ethtype << tp->ethertype_shift;
if (tp->port_shift >= 0)
ntuple_mask |= (u64)fs->mask.iport << tp->port_shift;
if (tp->macmatch_shift >= 0)
ntuple_mask |= (u64)fs->mask.macidx << tp->macmatch_shift;
if (tp->vlan_shift >= 0 && fs->mask.ivlan_vld)
ntuple_mask |= (u64)(F_FT_VLAN_VLD | fs->mask.ivlan) <<
tp->vlan_shift;
if (tp->vnic_shift >= 0) {
if (fs->mask.ovlan_vld)
ntuple_mask |= (u64)(fs->val.ovlan_vld << 16 |
fs->mask.ovlan) << tp->vnic_shift;
else if (fs->mask.pfvf_vld)
ntuple_mask |= (u64)(fs->mask.pfvf_vld << 16 |
fs->mask.pf << 13 |
fs->mask.vf) << tp->vnic_shift;
}
if (tp->tos_shift >= 0)
ntuple_mask |= (u64)fs->mask.tos << tp->tos_shift;
if (ntuple_mask != hash_filter_mask)
return;
fs->cap = 1; /* use hash region */
}
static int
ch_rte_parsetype_eth(const void *dmask, const struct rte_flow_item *item,
struct ch_filter_specification *fs,
struct rte_flow_error *e)
{
const struct rte_flow_item_eth *spec = item->spec;
const struct rte_flow_item_eth *umask = item->mask;
const struct rte_flow_item_eth *mask;
/* If user has not given any mask, then use chelsio supported mask. */
mask = umask ? umask : (const struct rte_flow_item_eth *)dmask;
if (!spec)
return 0;
/* we don't support SRC_MAC filtering*/
if (!rte_is_zero_ether_addr(&spec->src) ||
(umask && !rte_is_zero_ether_addr(&umask->src)))
return rte_flow_error_set(e, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM,
item,
"src mac filtering not supported");
if (!rte_is_zero_ether_addr(&spec->dst) ||
(umask && !rte_is_zero_ether_addr(&umask->dst))) {
CXGBE_FILL_FS(0, 0x1ff, macidx);
CXGBE_FILL_FS_MEMCPY(spec->dst.addr_bytes, mask->dst.addr_bytes,
dmac);
}
if (spec->type || (umask && umask->type))
CXGBE_FILL_FS(be16_to_cpu(spec->type),
be16_to_cpu(mask->type), ethtype);
return 0;
}
static int
ch_rte_parsetype_port(const void *dmask, const struct rte_flow_item *item,
struct ch_filter_specification *fs,
struct rte_flow_error *e)
{
const struct rte_flow_item_phy_port *val = item->spec;
const struct rte_flow_item_phy_port *umask = item->mask;
const struct rte_flow_item_phy_port *mask;
mask = umask ? umask : (const struct rte_flow_item_phy_port *)dmask;
if (!val)
return 0; /* Wildcard, match all physical ports */
if (val->index > 0x7)
return rte_flow_error_set(e, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM,
item,
"port index up to 0x7 is supported");
if (val->index || (umask && umask->index))
CXGBE_FILL_FS(val->index, mask->index, iport);
return 0;
}
static int
ch_rte_parsetype_vlan(const void *dmask, const struct rte_flow_item *item,
struct ch_filter_specification *fs,
struct rte_flow_error *e)
{
const struct rte_flow_item_vlan *spec = item->spec;
const struct rte_flow_item_vlan *umask = item->mask;
const struct rte_flow_item_vlan *mask;
/* If user has not given any mask, then use chelsio supported mask. */
mask = umask ? umask : (const struct rte_flow_item_vlan *)dmask;
/* If ethertype is already set and is not VLAN (0x8100) or
* QINQ(0x88A8), then don't proceed further. Otherwise,
* reset the outer ethertype, so that it can be replaced by
* innermost ethertype. Note that hardware will automatically
* match against VLAN or QINQ packets, based on 'ivlan_vld' or
* 'ovlan_vld' bit set in Chelsio filter spec, respectively.
*/
if (fs->mask.ethtype) {
if (fs->val.ethtype != RTE_ETHER_TYPE_VLAN &&
fs->val.ethtype != RTE_ETHER_TYPE_QINQ)
return rte_flow_error_set(e, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Ethertype must be 0x8100 or 0x88a8");
}
if (fs->val.ethtype == RTE_ETHER_TYPE_QINQ) {
CXGBE_FILL_FS(1, 1, ovlan_vld);
if (spec) {
if (spec->tci || (umask && umask->tci))
CXGBE_FILL_FS(be16_to_cpu(spec->tci),
be16_to_cpu(mask->tci), ovlan);
fs->mask.ethtype = 0;
fs->val.ethtype = 0;
}
} else {
CXGBE_FILL_FS(1, 1, ivlan_vld);
if (spec) {
if (spec->tci || (umask && umask->tci))
CXGBE_FILL_FS(be16_to_cpu(spec->tci),
be16_to_cpu(mask->tci), ivlan);
fs->mask.ethtype = 0;
fs->val.ethtype = 0;
}
}
if (spec && (spec->inner_type || (umask && umask->inner_type)))
CXGBE_FILL_FS(be16_to_cpu(spec->inner_type),
be16_to_cpu(mask->inner_type), ethtype);
return 0;
}
static int
ch_rte_parsetype_pf(const void *dmask __rte_unused,
const struct rte_flow_item *item __rte_unused,
struct ch_filter_specification *fs,
struct rte_flow_error *e __rte_unused)
{
struct rte_flow *flow = (struct rte_flow *)fs->private;
struct rte_eth_dev *dev = flow->dev;
struct adapter *adap = ethdev2adap(dev);
CXGBE_FILL_FS(1, 1, pfvf_vld);
CXGBE_FILL_FS(adap->pf, 0x7, pf);
return 0;
}
static int
ch_rte_parsetype_vf(const void *dmask, const struct rte_flow_item *item,
struct ch_filter_specification *fs,
struct rte_flow_error *e)
{
const struct rte_flow_item_vf *umask = item->mask;
const struct rte_flow_item_vf *val = item->spec;
const struct rte_flow_item_vf *mask;
/* If user has not given any mask, then use chelsio supported mask. */
mask = umask ? umask : (const struct rte_flow_item_vf *)dmask;
CXGBE_FILL_FS(1, 1, pfvf_vld);
if (!val)
return 0; /* Wildcard, match all Vf */
if (val->id > UCHAR_MAX)
return rte_flow_error_set(e, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"VF ID > MAX(255)");
if (val->id || (umask && umask->id))
CXGBE_FILL_FS(val->id, mask->id, vf);
return 0;
}
static int
ch_rte_parsetype_udp(const void *dmask, const struct rte_flow_item *item,
struct ch_filter_specification *fs,
struct rte_flow_error *e)
{
const struct rte_flow_item_udp *val = item->spec;
const struct rte_flow_item_udp *umask = item->mask;
const struct rte_flow_item_udp *mask;
mask = umask ? umask : (const struct rte_flow_item_udp *)dmask;
if (mask->hdr.dgram_len || mask->hdr.dgram_cksum)
return rte_flow_error_set(e, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM,
item,
"udp: only src/dst port supported");
CXGBE_FILL_FS(IPPROTO_UDP, 0xff, proto);
if (!val)
return 0;
if (val->hdr.src_port || (umask && umask->hdr.src_port))
CXGBE_FILL_FS(be16_to_cpu(val->hdr.src_port),
be16_to_cpu(mask->hdr.src_port), fport);
if (val->hdr.dst_port || (umask && umask->hdr.dst_port))
CXGBE_FILL_FS(be16_to_cpu(val->hdr.dst_port),
be16_to_cpu(mask->hdr.dst_port), lport);
return 0;
}
static int
ch_rte_parsetype_tcp(const void *dmask, const struct rte_flow_item *item,
struct ch_filter_specification *fs,
struct rte_flow_error *e)
{
const struct rte_flow_item_tcp *val = item->spec;
const struct rte_flow_item_tcp *umask = item->mask;
const struct rte_flow_item_tcp *mask;
mask = umask ? umask : (const struct rte_flow_item_tcp *)dmask;
if (mask->hdr.sent_seq || mask->hdr.recv_ack || mask->hdr.data_off ||
mask->hdr.tcp_flags || mask->hdr.rx_win || mask->hdr.cksum ||
mask->hdr.tcp_urp)
return rte_flow_error_set(e, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM,
item,
"tcp: only src/dst port supported");
CXGBE_FILL_FS(IPPROTO_TCP, 0xff, proto);
if (!val)
return 0;
if (val->hdr.src_port || (umask && umask->hdr.src_port))
CXGBE_FILL_FS(be16_to_cpu(val->hdr.src_port),
be16_to_cpu(mask->hdr.src_port), fport);
if (val->hdr.dst_port || (umask && umask->hdr.dst_port))
CXGBE_FILL_FS(be16_to_cpu(val->hdr.dst_port),
be16_to_cpu(mask->hdr.dst_port), lport);
return 0;
}
static int
ch_rte_parsetype_ipv4(const void *dmask, const struct rte_flow_item *item,
struct ch_filter_specification *fs,
struct rte_flow_error *e)
{
const struct rte_flow_item_ipv4 *val = item->spec;
const struct rte_flow_item_ipv4 *umask = item->mask;
const struct rte_flow_item_ipv4 *mask;
mask = umask ? umask : (const struct rte_flow_item_ipv4 *)dmask;
if (mask->hdr.time_to_live)
return rte_flow_error_set(e, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM,
item, "ttl is not supported");
if (fs->mask.ethtype &&
(fs->val.ethtype != RTE_ETHER_TYPE_IPV4))
return rte_flow_error_set(e, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Couldn't find IPv4 ethertype");
fs->type = FILTER_TYPE_IPV4;
if (!val)
return 0; /* ipv4 wild card */
if (val->hdr.next_proto_id || (umask && umask->hdr.next_proto_id))
CXGBE_FILL_FS(val->hdr.next_proto_id, mask->hdr.next_proto_id,
proto);
if (val->hdr.dst_addr || (umask && umask->hdr.dst_addr))
CXGBE_FILL_FS_MEMCPY(val->hdr.dst_addr, mask->hdr.dst_addr,
lip);
if (val->hdr.src_addr || (umask && umask->hdr.src_addr))
CXGBE_FILL_FS_MEMCPY(val->hdr.src_addr, mask->hdr.src_addr,
fip);
if (val->hdr.type_of_service || (umask && umask->hdr.type_of_service))
CXGBE_FILL_FS(val->hdr.type_of_service,
mask->hdr.type_of_service, tos);
return 0;
}
static int
ch_rte_parsetype_ipv6(const void *dmask, const struct rte_flow_item *item,
struct ch_filter_specification *fs,
struct rte_flow_error *e)
{
const struct rte_flow_item_ipv6 *val = item->spec;
const struct rte_flow_item_ipv6 *umask = item->mask;
const struct rte_flow_item_ipv6 *mask;
u32 vtc_flow, vtc_flow_mask;
u8 z[16] = { 0 };
mask = umask ? umask : (const struct rte_flow_item_ipv6 *)dmask;
vtc_flow_mask = be32_to_cpu(mask->hdr.vtc_flow);
if (vtc_flow_mask & RTE_IPV6_HDR_FL_MASK ||
mask->hdr.payload_len || mask->hdr.hop_limits)
return rte_flow_error_set(e, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM,
item,
"flow/hop are not supported");
if (fs->mask.ethtype &&
(fs->val.ethtype != RTE_ETHER_TYPE_IPV6))
return rte_flow_error_set(e, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Couldn't find IPv6 ethertype");
fs->type = FILTER_TYPE_IPV6;
if (!val)
return 0; /* ipv6 wild card */
if (val->hdr.proto || (umask && umask->hdr.proto))
CXGBE_FILL_FS(val->hdr.proto, mask->hdr.proto, proto);
vtc_flow = be32_to_cpu(val->hdr.vtc_flow);
if (val->hdr.vtc_flow || (umask && umask->hdr.vtc_flow))
CXGBE_FILL_FS((vtc_flow & RTE_IPV6_HDR_TC_MASK) >>
RTE_IPV6_HDR_TC_SHIFT,
(vtc_flow_mask & RTE_IPV6_HDR_TC_MASK) >>
RTE_IPV6_HDR_TC_SHIFT,
tos);
if (memcmp(val->hdr.dst_addr, z, sizeof(val->hdr.dst_addr)) ||
(umask &&
memcmp(umask->hdr.dst_addr, z, sizeof(umask->hdr.dst_addr))))
CXGBE_FILL_FS_MEMCPY(val->hdr.dst_addr, mask->hdr.dst_addr,
lip);
if (memcmp(val->hdr.src_addr, z, sizeof(val->hdr.src_addr)) ||
(umask &&
memcmp(umask->hdr.src_addr, z, sizeof(umask->hdr.src_addr))))
CXGBE_FILL_FS_MEMCPY(val->hdr.src_addr, mask->hdr.src_addr,
fip);
return 0;
}
static int
cxgbe_rtef_parse_attr(struct rte_flow *flow, const struct rte_flow_attr *attr,
struct rte_flow_error *e)
{
if (attr->egress)
return rte_flow_error_set(e, ENOTSUP, RTE_FLOW_ERROR_TYPE_ATTR,
attr, "attribute:<egress> is"
" not supported !");
if (attr->group > 0)
return rte_flow_error_set(e, ENOTSUP, RTE_FLOW_ERROR_TYPE_ATTR,
attr, "group parameter is"
" not supported.");
flow->fidx = attr->priority ? attr->priority - 1 : FILTER_ID_MAX;
return 0;
}
static inline int check_rxq(struct rte_eth_dev *dev, uint16_t rxq)
{
struct port_info *pi = ethdev2pinfo(dev);
if (rxq > pi->n_rx_qsets)
return -EINVAL;
return 0;
}
static int cxgbe_validate_fidxondel(struct filter_entry *f, unsigned int fidx)
{
struct adapter *adap = ethdev2adap(f->dev);
struct ch_filter_specification fs = f->fs;
u8 nentries;
if (fidx >= adap->tids.nftids) {
dev_err(adap, "invalid flow index %d.\n", fidx);
return -EINVAL;
}
nentries = cxgbe_filter_slots(adap, fs.type);
if (!cxgbe_is_filter_set(&adap->tids, fidx, nentries)) {
dev_err(adap, "Already free fidx:%d f:%p\n", fidx, f);
return -EINVAL;
}
return 0;
}
static int
cxgbe_validate_fidxonadd(struct ch_filter_specification *fs,
struct adapter *adap, unsigned int fidx)
{
u8 nentries;
nentries = cxgbe_filter_slots(adap, fs->type);
if (cxgbe_is_filter_set(&adap->tids, fidx, nentries)) {
dev_err(adap, "filter index: %d is busy.\n", fidx);
return -EBUSY;
}
if (fidx >= adap->tids.nftids) {
dev_err(adap, "filter index (%u) >= max(%u)\n",
fidx, adap->tids.nftids);
return -ERANGE;
}
return 0;
}
static int
cxgbe_verify_fidx(struct rte_flow *flow, unsigned int fidx, uint8_t del)
{
if (flow->fs.cap)
return 0; /* Hash filters */
return del ? cxgbe_validate_fidxondel(flow->f, fidx) :
cxgbe_validate_fidxonadd(&flow->fs,
ethdev2adap(flow->dev), fidx);
}
static int cxgbe_get_fidx(struct rte_flow *flow, unsigned int *fidx)
{
struct ch_filter_specification *fs = &flow->fs;
struct adapter *adap = ethdev2adap(flow->dev);
/* For tcam get the next available slot, if default value specified */
if (flow->fidx == FILTER_ID_MAX) {
u8 nentries;
int idx;
nentries = cxgbe_filter_slots(adap, fs->type);
idx = cxgbe_alloc_ftid(adap, nentries);
if (idx < 0) {
dev_err(adap, "unable to get a filter index in tcam\n");
return -ENOMEM;
}
*fidx = (unsigned int)idx;
} else {
*fidx = flow->fidx;
}
return 0;
}
static int
cxgbe_get_flow_item_index(const struct rte_flow_item items[], u32 type)
{
const struct rte_flow_item *i;
int j, index = -ENOENT;
for (i = items, j = 0; i->type != RTE_FLOW_ITEM_TYPE_END; i++, j++) {
if (i->type == type) {
index = j;
break;
}
}
return index;
}
static int
ch_rte_parse_nat(uint8_t nmode, struct ch_filter_specification *fs)
{
/* nmode:
* BIT_0 = [src_ip], BIT_1 = [dst_ip]
* BIT_2 = [src_port], BIT_3 = [dst_port]
*
* Only below cases are supported as per our spec.
*/
switch (nmode) {
case 0: /* 0000b */
fs->nat_mode = NAT_MODE_NONE;
break;
case 2: /* 0010b */
fs->nat_mode = NAT_MODE_DIP;
break;
case 5: /* 0101b */
fs->nat_mode = NAT_MODE_SIP_SP;
break;
case 7: /* 0111b */
fs->nat_mode = NAT_MODE_DIP_SIP_SP;
break;
case 10: /* 1010b */
fs->nat_mode = NAT_MODE_DIP_DP;
break;
case 11: /* 1011b */
fs->nat_mode = NAT_MODE_DIP_DP_SIP;
break;
case 14: /* 1110b */
fs->nat_mode = NAT_MODE_DIP_DP_SP;
break;
case 15: /* 1111b */
fs->nat_mode = NAT_MODE_ALL;
break;
default:
return -EINVAL;
}
return 0;
}
static int
ch_rte_parse_atype_switch(const struct rte_flow_action *a,
const struct rte_flow_item items[],
uint8_t *nmode,
struct ch_filter_specification *fs,
struct rte_flow_error *e)
{
const struct rte_flow_action_of_set_vlan_vid *vlanid;
const struct rte_flow_action_of_set_vlan_pcp *vlanpcp;
const struct rte_flow_action_of_push_vlan *pushvlan;
const struct rte_flow_action_set_ipv4 *ipv4;
const struct rte_flow_action_set_ipv6 *ipv6;
const struct rte_flow_action_set_tp *tp_port;
const struct rte_flow_action_phy_port *port;
const struct rte_flow_action_set_mac *mac;
int item_index;
u16 tmp_vlan;
switch (a->type) {
case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
vlanid = (const struct rte_flow_action_of_set_vlan_vid *)
a->conf;
/* If explicitly asked to push a new VLAN header,
* then don't set rewrite mode. Otherwise, the
* incoming VLAN packets will get their VLAN fields
* rewritten, instead of adding an additional outer
* VLAN header.
*/
if (fs->newvlan != VLAN_INSERT)
fs->newvlan = VLAN_REWRITE;
tmp_vlan = fs->vlan & 0xe000;
fs->vlan = (be16_to_cpu(vlanid->vlan_vid) & 0xfff) | tmp_vlan;
break;
case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
vlanpcp = (const struct rte_flow_action_of_set_vlan_pcp *)
a->conf;
/* If explicitly asked to push a new VLAN header,
* then don't set rewrite mode. Otherwise, the
* incoming VLAN packets will get their VLAN fields
* rewritten, instead of adding an additional outer
* VLAN header.
*/
if (fs->newvlan != VLAN_INSERT)
fs->newvlan = VLAN_REWRITE;
tmp_vlan = fs->vlan & 0xfff;
fs->vlan = (vlanpcp->vlan_pcp << 13) | tmp_vlan;
break;
case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
pushvlan = (const struct rte_flow_action_of_push_vlan *)
a->conf;
if (be16_to_cpu(pushvlan->ethertype) != RTE_ETHER_TYPE_VLAN)
return rte_flow_error_set(e, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, a,
"only ethertype 0x8100 "
"supported for push vlan.");
fs->newvlan = VLAN_INSERT;
break;
case RTE_FLOW_ACTION_TYPE_OF_POP_VLAN:
fs->newvlan = VLAN_REMOVE;
break;
case RTE_FLOW_ACTION_TYPE_PHY_PORT:
port = (const struct rte_flow_action_phy_port *)a->conf;
fs->eport = port->index;
break;
case RTE_FLOW_ACTION_TYPE_SET_IPV4_SRC:
item_index = cxgbe_get_flow_item_index(items,
RTE_FLOW_ITEM_TYPE_IPV4);
if (item_index < 0)
return rte_flow_error_set(e, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, a,
"No RTE_FLOW_ITEM_TYPE_IPV4 "
"found.");
ipv4 = (const struct rte_flow_action_set_ipv4 *)a->conf;
memcpy(fs->nat_fip, &ipv4->ipv4_addr, sizeof(ipv4->ipv4_addr));
*nmode |= 1 << 0;
break;
case RTE_FLOW_ACTION_TYPE_SET_IPV4_DST:
item_index = cxgbe_get_flow_item_index(items,
RTE_FLOW_ITEM_TYPE_IPV4);
if (item_index < 0)
return rte_flow_error_set(e, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, a,
"No RTE_FLOW_ITEM_TYPE_IPV4 "
"found.");
ipv4 = (const struct rte_flow_action_set_ipv4 *)a->conf;
memcpy(fs->nat_lip, &ipv4->ipv4_addr, sizeof(ipv4->ipv4_addr));
*nmode |= 1 << 1;
break;
case RTE_FLOW_ACTION_TYPE_SET_IPV6_SRC:
item_index = cxgbe_get_flow_item_index(items,
RTE_FLOW_ITEM_TYPE_IPV6);
if (item_index < 0)
return rte_flow_error_set(e, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, a,
"No RTE_FLOW_ITEM_TYPE_IPV6 "
"found.");
ipv6 = (const struct rte_flow_action_set_ipv6 *)a->conf;
memcpy(fs->nat_fip, ipv6->ipv6_addr, sizeof(ipv6->ipv6_addr));
*nmode |= 1 << 0;
break;
case RTE_FLOW_ACTION_TYPE_SET_IPV6_DST:
item_index = cxgbe_get_flow_item_index(items,
RTE_FLOW_ITEM_TYPE_IPV6);
if (item_index < 0)
return rte_flow_error_set(e, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, a,
"No RTE_FLOW_ITEM_TYPE_IPV6 "
"found.");
ipv6 = (const struct rte_flow_action_set_ipv6 *)a->conf;
memcpy(fs->nat_lip, ipv6->ipv6_addr, sizeof(ipv6->ipv6_addr));
*nmode |= 1 << 1;
break;
case RTE_FLOW_ACTION_TYPE_SET_TP_SRC:
item_index = cxgbe_get_flow_item_index(items,
RTE_FLOW_ITEM_TYPE_TCP);
if (item_index < 0) {
item_index =
cxgbe_get_flow_item_index(items,
RTE_FLOW_ITEM_TYPE_UDP);
if (item_index < 0)
return rte_flow_error_set(e, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, a,
"No RTE_FLOW_ITEM_TYPE_TCP or "
"RTE_FLOW_ITEM_TYPE_UDP found");
}
tp_port = (const struct rte_flow_action_set_tp *)a->conf;
fs->nat_fport = be16_to_cpu(tp_port->port);
*nmode |= 1 << 2;
break;
case RTE_FLOW_ACTION_TYPE_SET_TP_DST:
item_index = cxgbe_get_flow_item_index(items,
RTE_FLOW_ITEM_TYPE_TCP);
if (item_index < 0) {
item_index =
cxgbe_get_flow_item_index(items,
RTE_FLOW_ITEM_TYPE_UDP);
if (item_index < 0)
return rte_flow_error_set(e, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, a,
"No RTE_FLOW_ITEM_TYPE_TCP or "
"RTE_FLOW_ITEM_TYPE_UDP found");
}
tp_port = (const struct rte_flow_action_set_tp *)a->conf;
fs->nat_lport = be16_to_cpu(tp_port->port);
*nmode |= 1 << 3;
break;
case RTE_FLOW_ACTION_TYPE_MAC_SWAP:
item_index = cxgbe_get_flow_item_index(items,
RTE_FLOW_ITEM_TYPE_ETH);
if (item_index < 0)
return rte_flow_error_set(e, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, a,
"No RTE_FLOW_ITEM_TYPE_ETH "
"found");
fs->swapmac = 1;
break;
case RTE_FLOW_ACTION_TYPE_SET_MAC_SRC:
item_index = cxgbe_get_flow_item_index(items,
RTE_FLOW_ITEM_TYPE_ETH);
if (item_index < 0)
return rte_flow_error_set(e, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, a,
"No RTE_FLOW_ITEM_TYPE_ETH "
"found");
mac = (const struct rte_flow_action_set_mac *)a->conf;
fs->newsmac = 1;
memcpy(fs->smac, mac->mac_addr, sizeof(fs->smac));
break;
case RTE_FLOW_ACTION_TYPE_SET_MAC_DST:
item_index = cxgbe_get_flow_item_index(items,
RTE_FLOW_ITEM_TYPE_ETH);
if (item_index < 0)
return rte_flow_error_set(e, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, a,
"No RTE_FLOW_ITEM_TYPE_ETH found");
mac = (const struct rte_flow_action_set_mac *)a->conf;
fs->newdmac = 1;
memcpy(fs->dmac, mac->mac_addr, sizeof(fs->dmac));
break;
default:
/* We are not supposed to come here */
return rte_flow_error_set(e, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, a,
"Action not supported");
}
return 0;
}
static int
cxgbe_rtef_parse_actions(struct rte_flow *flow,
const struct rte_flow_item items[],
const struct rte_flow_action action[],
struct rte_flow_error *e)
{
struct ch_filter_specification *fs = &flow->fs;
uint8_t nmode = 0, nat_ipv4 = 0, nat_ipv6 = 0;
uint8_t vlan_set_vid = 0, vlan_set_pcp = 0;
const struct rte_flow_action_queue *q;
const struct rte_flow_action *a;
char abit = 0;
int ret;
for (a = action; a->type != RTE_FLOW_ACTION_TYPE_END; a++) {
switch (a->type) {
case RTE_FLOW_ACTION_TYPE_VOID:
continue;
case RTE_FLOW_ACTION_TYPE_DROP:
if (abit++)
return rte_flow_error_set(e, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, a,
"specify only 1 pass/drop");
fs->action = FILTER_DROP;
break;
case RTE_FLOW_ACTION_TYPE_QUEUE:
q = (const struct rte_flow_action_queue *)a->conf;
if (!q)
return rte_flow_error_set(e, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, q,
"specify rx queue index");
if (check_rxq(flow->dev, q->index))
return rte_flow_error_set(e, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, q,
"Invalid rx queue");
if (abit++)
return rte_flow_error_set(e, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, a,
"specify only 1 pass/drop");
fs->action = FILTER_PASS;
fs->dirsteer = 1;
fs->iq = q->index;
break;
case RTE_FLOW_ACTION_TYPE_COUNT:
fs->hitcnts = 1;
break;
case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
vlan_set_vid++;
goto action_switch;
case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
vlan_set_pcp++;
goto action_switch;
case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
case RTE_FLOW_ACTION_TYPE_OF_POP_VLAN:
case RTE_FLOW_ACTION_TYPE_PHY_PORT:
case RTE_FLOW_ACTION_TYPE_MAC_SWAP:
case RTE_FLOW_ACTION_TYPE_SET_IPV4_SRC:
case RTE_FLOW_ACTION_TYPE_SET_IPV4_DST:
nat_ipv4++;
goto action_switch;
case RTE_FLOW_ACTION_TYPE_SET_IPV6_SRC:
case RTE_FLOW_ACTION_TYPE_SET_IPV6_DST:
nat_ipv6++;
goto action_switch;
case RTE_FLOW_ACTION_TYPE_SET_TP_SRC:
case RTE_FLOW_ACTION_TYPE_SET_TP_DST:
case RTE_FLOW_ACTION_TYPE_SET_MAC_SRC:
case RTE_FLOW_ACTION_TYPE_SET_MAC_DST:
action_switch:
/* We allow multiple switch actions, but switch is
* not compatible with either queue or drop
*/
if (abit++ && fs->action != FILTER_SWITCH)
return rte_flow_error_set(e, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, a,
"overlapping action specified");
if (nat_ipv4 && nat_ipv6)
return rte_flow_error_set(e, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, a,
"Can't have one address ipv4 and the"
" other ipv6");
ret = ch_rte_parse_atype_switch(a, items, &nmode, fs,
e);
if (ret)
return ret;
fs->action = FILTER_SWITCH;
break;
default:
/* Not supported action : return error */
return rte_flow_error_set(e, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION,
a, "Action not supported");
}
}
if (fs->newvlan == VLAN_REWRITE && (!vlan_set_vid || !vlan_set_pcp))
return rte_flow_error_set(e, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, a,
"Both OF_SET_VLAN_VID and "
"OF_SET_VLAN_PCP must be specified");
if (ch_rte_parse_nat(nmode, fs))
return rte_flow_error_set(e, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, a,
"invalid settings for swich action");
return 0;
}
static struct chrte_fparse parseitem[] = {
[RTE_FLOW_ITEM_TYPE_ETH] = {
.fptr = ch_rte_parsetype_eth,
.dmask = &(const struct rte_flow_item_eth){
.dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
.src.addr_bytes = "\x00\x00\x00\x00\x00\x00",
.type = 0xffff,
}
},
[RTE_FLOW_ITEM_TYPE_PHY_PORT] = {
.fptr = ch_rte_parsetype_port,
.dmask = &(const struct rte_flow_item_phy_port){
.index = 0x7,
}
},
[RTE_FLOW_ITEM_TYPE_VLAN] = {
.fptr = ch_rte_parsetype_vlan,
.dmask = &(const struct rte_flow_item_vlan){
.tci = 0xffff,
.inner_type = 0xffff,
}
},
[RTE_FLOW_ITEM_TYPE_IPV4] = {
.fptr = ch_rte_parsetype_ipv4,
.dmask = &(const struct rte_flow_item_ipv4) {
.hdr = {
.src_addr = RTE_BE32(0xffffffff),
.dst_addr = RTE_BE32(0xffffffff),
.type_of_service = 0xff,
},
},
},
[RTE_FLOW_ITEM_TYPE_IPV6] = {
.fptr = ch_rte_parsetype_ipv6,
.dmask = &(const struct rte_flow_item_ipv6) {
.hdr = {
.src_addr =
"\xff\xff\xff\xff\xff\xff\xff\xff"
"\xff\xff\xff\xff\xff\xff\xff\xff",
.dst_addr =
"\xff\xff\xff\xff\xff\xff\xff\xff"
"\xff\xff\xff\xff\xff\xff\xff\xff",
.vtc_flow = RTE_BE32(0xff000000),
},
},
},
[RTE_FLOW_ITEM_TYPE_UDP] = {
.fptr = ch_rte_parsetype_udp,
.dmask = &rte_flow_item_udp_mask,
},
[RTE_FLOW_ITEM_TYPE_TCP] = {
.fptr = ch_rte_parsetype_tcp,
.dmask = &rte_flow_item_tcp_mask,
},
[RTE_FLOW_ITEM_TYPE_PF] = {
.fptr = ch_rte_parsetype_pf,
.dmask = NULL,
},
[RTE_FLOW_ITEM_TYPE_VF] = {
.fptr = ch_rte_parsetype_vf,
.dmask = &(const struct rte_flow_item_vf){
.id = 0xffffffff,
}
},
};
static int
cxgbe_rtef_parse_items(struct rte_flow *flow,
const struct rte_flow_item items[],
struct rte_flow_error *e)
{
struct adapter *adap = ethdev2adap(flow->dev);
const struct rte_flow_item *i;
char repeat[ARRAY_SIZE(parseitem)] = {0};
for (i = items; i->type != RTE_FLOW_ITEM_TYPE_END; i++) {
struct chrte_fparse *idx;
int ret;
if (i->type >= ARRAY_SIZE(parseitem))
return rte_flow_error_set(e, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
i, "Item not supported");
switch (i->type) {
case RTE_FLOW_ITEM_TYPE_VOID:
continue;
default:
/* check if item is repeated */
if (repeat[i->type] &&
i->type != RTE_FLOW_ITEM_TYPE_VLAN)
return rte_flow_error_set(e, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM, i,
"parse items cannot be repeated(except void/vlan)");
repeat[i->type] = 1;
/* validate the item */
ret = cxgbe_validate_item(i, e);
if (ret)
return ret;
idx = &flow->item_parser[i->type];
if (!idx || !idx->fptr) {
return rte_flow_error_set(e, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM, i,
"Item not supported");
} else {
ret = idx->fptr(idx->dmask, i, &flow->fs, e);
if (ret)
return ret;
}
}
}
cxgbe_tweak_filter_spec(adap, &flow->fs);
cxgbe_fill_filter_region(adap, &flow->fs);
return 0;
}
static int
cxgbe_flow_parse(struct rte_flow *flow,
const struct rte_flow_attr *attr,
const struct rte_flow_item item[],
const struct rte_flow_action action[],
struct rte_flow_error *e)
{
int ret;
/* parse user request into ch_filter_specification */
ret = cxgbe_rtef_parse_attr(flow, attr, e);
if (ret)
return ret;
ret = cxgbe_rtef_parse_items(flow, item, e);
if (ret)
return ret;
return cxgbe_rtef_parse_actions(flow, item, action, e);
}
static int __cxgbe_flow_create(struct rte_eth_dev *dev, struct rte_flow *flow)
{
struct ch_filter_specification *fs = &flow->fs;
struct adapter *adap = ethdev2adap(dev);
struct tid_info *t = &adap->tids;
struct filter_ctx ctx;
unsigned int fidx;
int err;
if (cxgbe_get_fidx(flow, &fidx))
return -ENOMEM;
if (cxgbe_verify_fidx(flow, fidx, 0))
return -1;
t4_init_completion(&ctx.completion);
/* go create the filter */
err = cxgbe_set_filter(dev, fidx, fs, &ctx);
if (err) {
dev_err(adap, "Error %d while creating filter.\n", err);
return err;
}
/* Poll the FW for reply */
err = cxgbe_poll_for_completion(&adap->sge.fw_evtq,
CXGBE_FLOW_POLL_MS,
CXGBE_FLOW_POLL_CNT,
&ctx.completion);
if (err) {
dev_err(adap, "Filter set operation timed out (%d)\n", err);
return err;
}
if (ctx.result) {
dev_err(adap, "Hardware error %d while creating the filter.\n",
ctx.result);
return ctx.result;
}
if (fs->cap) { /* to destroy the filter */
flow->fidx = ctx.tid;
flow->f = lookup_tid(t, ctx.tid);
} else {
flow->fidx = fidx;
flow->f = &adap->tids.ftid_tab[fidx];
}
return 0;
}
static struct rte_flow *
cxgbe_flow_create(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
const struct rte_flow_item item[],
const struct rte_flow_action action[],
struct rte_flow_error *e)
{
struct adapter *adap = ethdev2adap(dev);
struct rte_flow *flow;
int ret;
flow = t4_os_alloc(sizeof(struct rte_flow));
if (!flow) {
rte_flow_error_set(e, ENOMEM, RTE_FLOW_ERROR_TYPE_HANDLE,
NULL, "Unable to allocate memory for"
" filter_entry");
return NULL;
}
flow->item_parser = parseitem;
flow->dev = dev;
flow->fs.private = (void *)flow;
if (cxgbe_flow_parse(flow, attr, item, action, e)) {
t4_os_free(flow);
return NULL;
}
t4_os_lock(&adap->flow_lock);
/* go, interact with cxgbe_filter */
ret = __cxgbe_flow_create(dev, flow);
t4_os_unlock(&adap->flow_lock);
if (ret) {
rte_flow_error_set(e, ret, RTE_FLOW_ERROR_TYPE_HANDLE,
NULL, "Unable to create flow rule");
t4_os_free(flow);
return NULL;
}
flow->f->private = flow; /* Will be used during flush */
return flow;
}
static int __cxgbe_flow_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
{
struct adapter *adap = ethdev2adap(dev);
struct filter_entry *f = flow->f;
struct ch_filter_specification *fs;
struct filter_ctx ctx;
int err;
fs = &f->fs;
if (cxgbe_verify_fidx(flow, flow->fidx, 1))
return -1;
t4_init_completion(&ctx.completion);
err = cxgbe_del_filter(dev, flow->fidx, fs, &ctx);
if (err) {
dev_err(adap, "Error %d while deleting filter.\n", err);
return err;
}
/* Poll the FW for reply */
err = cxgbe_poll_for_completion(&adap->sge.fw_evtq,
CXGBE_FLOW_POLL_MS,
CXGBE_FLOW_POLL_CNT,
&ctx.completion);
if (err) {
dev_err(adap, "Filter delete operation timed out (%d)\n", err);
return err;
}
if (ctx.result) {
dev_err(adap, "Hardware error %d while deleting the filter.\n",
ctx.result);
return ctx.result;
}
return 0;
}
static int
cxgbe_flow_destroy(struct rte_eth_dev *dev, struct rte_flow *flow,
struct rte_flow_error *e)
{
struct adapter *adap = ethdev2adap(dev);
int ret;
t4_os_lock(&adap->flow_lock);
ret = __cxgbe_flow_destroy(dev, flow);
t4_os_unlock(&adap->flow_lock);
if (ret)
return rte_flow_error_set(e, ret, RTE_FLOW_ERROR_TYPE_HANDLE,
flow, "error destroying filter.");
t4_os_free(flow);
return 0;
}
static int __cxgbe_flow_query(struct rte_flow *flow, u64 *count,
u64 *byte_count)
{
struct adapter *adap = ethdev2adap(flow->dev);
struct ch_filter_specification fs = flow->f->fs;
unsigned int fidx = flow->fidx;
int ret = 0;
ret = cxgbe_get_filter_count(adap, fidx, count, fs.cap, 0);
if (ret)
return ret;
return cxgbe_get_filter_count(adap, fidx, byte_count, fs.cap, 1);
}
static int
cxgbe_flow_query(struct rte_eth_dev *dev, struct rte_flow *flow,
const struct rte_flow_action *action, void *data,
struct rte_flow_error *e)
{
struct adapter *adap = ethdev2adap(flow->dev);
struct ch_filter_specification fs;
struct rte_flow_query_count *c;
struct filter_entry *f;
int ret;
RTE_SET_USED(dev);
f = flow->f;
fs = f->fs;
if (action->type != RTE_FLOW_ACTION_TYPE_COUNT)
return rte_flow_error_set(e, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION, NULL,
"only count supported for query");
/*
* This is a valid operation, Since we are allowed to do chelsio
* specific operations in rte side of our code but not vise-versa
*
* So, fs can be queried/modified here BUT rte_flow_query_count
* cannot be worked on by the lower layer since we want to maintain
* it as rte_flow agnostic.
*/
if (!fs.hitcnts)
return rte_flow_error_set(e, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION,
&fs, "filter hit counters were not"
" enabled during filter creation");
c = (struct rte_flow_query_count *)data;
t4_os_lock(&adap->flow_lock);
ret = __cxgbe_flow_query(flow, &c->hits, &c->bytes);
if (ret) {
rte_flow_error_set(e, -ret, RTE_FLOW_ERROR_TYPE_ACTION,
f, "cxgbe pmd failed to perform query");
goto out;
}
/* Query was successful */
c->bytes_set = 1;
c->hits_set = 1;
if (c->reset)
cxgbe_clear_filter_count(adap, flow->fidx, f->fs.cap, true);
out:
t4_os_unlock(&adap->flow_lock);
return ret;
}
static int
cxgbe_flow_validate(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
const struct rte_flow_item item[],
const struct rte_flow_action action[],
struct rte_flow_error *e)
{
struct adapter *adap = ethdev2adap(dev);
struct rte_flow *flow;
unsigned int fidx;
int ret = 0;
flow = t4_os_alloc(sizeof(struct rte_flow));
if (!flow)
return rte_flow_error_set(e, ENOMEM, RTE_FLOW_ERROR_TYPE_HANDLE,
NULL,
"Unable to allocate memory for filter_entry");
flow->item_parser = parseitem;
flow->dev = dev;
flow->fs.private = (void *)flow;
ret = cxgbe_flow_parse(flow, attr, item, action, e);
if (ret) {
t4_os_free(flow);
return ret;
}
if (cxgbe_validate_filter(adap, &flow->fs)) {
t4_os_free(flow);
return rte_flow_error_set(e, EINVAL, RTE_FLOW_ERROR_TYPE_HANDLE,
NULL,
"validation failed. Check f/w config file.");
}
t4_os_lock(&adap->flow_lock);
if (cxgbe_get_fidx(flow, &fidx)) {
ret = rte_flow_error_set(e, ENOMEM, RTE_FLOW_ERROR_TYPE_HANDLE,
NULL, "no memory in tcam.");
goto out;
}
if (cxgbe_verify_fidx(flow, fidx, 0)) {
ret = rte_flow_error_set(e, EINVAL, RTE_FLOW_ERROR_TYPE_HANDLE,
NULL, "validation failed");
goto out;
}
out:
t4_os_unlock(&adap->flow_lock);
t4_os_free(flow);
return ret;
}
/*
* @ret : > 0 filter destroyed succsesfully
* < 0 error destroying filter
* == 1 filter not active / not found
*/
static int
cxgbe_check_n_destroy(struct filter_entry *f, struct rte_eth_dev *dev)
{
if (f && (f->valid || f->pending) &&
f->dev == dev && /* Only if user has asked for this port */
f->private) /* We (rte_flow) created this filter */
return __cxgbe_flow_destroy(dev, (struct rte_flow *)f->private);
return 1;
}
static int cxgbe_flow_flush(struct rte_eth_dev *dev, struct rte_flow_error *e)
{
struct adapter *adap = ethdev2adap(dev);
unsigned int i;
int ret = 0;
t4_os_lock(&adap->flow_lock);
if (adap->tids.ftid_tab) {
struct filter_entry *f = &adap->tids.ftid_tab[0];
for (i = 0; i < adap->tids.nftids; i++, f++) {
ret = cxgbe_check_n_destroy(f, dev);
if (ret < 0) {
rte_flow_error_set(e, ret,
RTE_FLOW_ERROR_TYPE_HANDLE,
f->private,
"error destroying TCAM "
"filter.");
goto out;
}
}
}
if (is_hashfilter(adap) && adap->tids.tid_tab) {
struct filter_entry *f;
for (i = adap->tids.hash_base; i <= adap->tids.ntids; i++) {
f = (struct filter_entry *)adap->tids.tid_tab[i];
ret = cxgbe_check_n_destroy(f, dev);
if (ret < 0) {
rte_flow_error_set(e, ret,
RTE_FLOW_ERROR_TYPE_HANDLE,
f->private,
"error destroying HASH "
"filter.");
goto out;
}
}
}
out:
t4_os_unlock(&adap->flow_lock);
return ret >= 0 ? 0 : ret;
}
static const struct rte_flow_ops cxgbe_flow_ops = {
.validate = cxgbe_flow_validate,
.create = cxgbe_flow_create,
.destroy = cxgbe_flow_destroy,
.flush = cxgbe_flow_flush,
.query = cxgbe_flow_query,
.isolate = NULL,
};
int
cxgbe_dev_flow_ops_get(struct rte_eth_dev *dev __rte_unused,
const struct rte_flow_ops **ops)
{
*ops = &cxgbe_flow_ops;
return 0;
}