Konstantin Ananyev 4269eae463 acl: use scalar method fastest for some cases
Previous improvements made scalar method the fastest one
for tiny bunch of packets (< 4).
That allows us to remove specific vector code-path for small number of packets
(search_sse_2) and always use scalar method for such cases.

Signed-off-by: Konstantin Ananyev <konstantin.ananyev@intel.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
2015-01-28 17:11:25 +01:00

264 lines
7.8 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _ACL_RUN_H_
#define _ACL_RUN_H_
#include <rte_acl.h>
#include "acl.h"
#define MAX_SEARCHES_AVX16 16
#define MAX_SEARCHES_SSE8 8
#define MAX_SEARCHES_SSE4 4
#define MAX_SEARCHES_SCALAR 2
#define GET_NEXT_4BYTES(prm, idx) \
(*((const int32_t *)((prm)[(idx)].data + *(prm)[idx].data_index++)))
#define RTE_ACL_NODE_INDEX ((uint32_t)~RTE_ACL_NODE_TYPE)
#define SCALAR_QRANGE_MULT 0x01010101
#define SCALAR_QRANGE_MASK 0x7f7f7f7f
#define SCALAR_QRANGE_MIN 0x80808080
/*
* Structure to manage N parallel trie traversals.
* The runtime trie traversal routines can process 8, 4, or 2 tries
* in parallel. Each packet may require multiple trie traversals (up to 4).
* This structure is used to fill the slots (0 to n-1) for parallel processing
* with the trie traversals needed for each packet.
*/
struct acl_flow_data {
uint32_t num_packets;
/* number of packets processed */
uint32_t started;
/* number of trie traversals in progress */
uint32_t trie;
/* current trie index (0 to N-1) */
uint32_t cmplt_size;
uint32_t total_packets;
uint32_t categories;
/* number of result categories per packet. */
/* maximum number of packets to process */
const uint64_t *trans;
const uint8_t **data;
uint32_t *results;
struct completion *last_cmplt;
struct completion *cmplt_array;
};
/*
* Structure to maintain running results for
* a single packet (up to 4 tries).
*/
struct completion {
uint32_t *results; /* running results. */
int32_t priority[RTE_ACL_MAX_CATEGORIES]; /* running priorities. */
uint32_t count; /* num of remaining tries */
/* true for allocated struct */
} __attribute__((aligned(XMM_SIZE)));
/*
* One parms structure for each slot in the search engine.
*/
struct parms {
const uint8_t *data;
/* input data for this packet */
const uint32_t *data_index;
/* data indirection for this trie */
struct completion *cmplt;
/* completion data for this packet */
};
/*
* Define an global idle node for unused engine slots
*/
static const uint32_t idle[UINT8_MAX + 1];
/*
* Allocate a completion structure to manage the tries for a packet.
*/
static inline struct completion *
alloc_completion(struct completion *p, uint32_t size, uint32_t tries,
uint32_t *results)
{
uint32_t n;
for (n = 0; n < size; n++) {
if (p[n].count == 0) {
/* mark as allocated and set number of tries. */
p[n].count = tries;
p[n].results = results;
return &(p[n]);
}
}
/* should never get here */
return NULL;
}
/*
* Resolve priority for a single result trie.
*/
static inline void
resolve_single_priority(uint64_t transition, int n,
const struct rte_acl_ctx *ctx, struct parms *parms,
const struct rte_acl_match_results *p)
{
if (parms[n].cmplt->count == ctx->num_tries ||
parms[n].cmplt->priority[0] <=
p[transition].priority[0]) {
parms[n].cmplt->priority[0] = p[transition].priority[0];
parms[n].cmplt->results[0] = p[transition].results[0];
}
}
/*
* Routine to fill a slot in the parallel trie traversal array (parms) from
* the list of packets (flows).
*/
static inline uint64_t
acl_start_next_trie(struct acl_flow_data *flows, struct parms *parms, int n,
const struct rte_acl_ctx *ctx)
{
uint64_t transition;
/* if there are any more packets to process */
if (flows->num_packets < flows->total_packets) {
parms[n].data = flows->data[flows->num_packets];
parms[n].data_index = ctx->trie[flows->trie].data_index;
/* if this is the first trie for this packet */
if (flows->trie == 0) {
flows->last_cmplt = alloc_completion(flows->cmplt_array,
flows->cmplt_size, ctx->num_tries,
flows->results +
flows->num_packets * flows->categories);
}
/* set completion parameters and starting index for this slot */
parms[n].cmplt = flows->last_cmplt;
transition =
flows->trans[parms[n].data[*parms[n].data_index++] +
ctx->trie[flows->trie].root_index];
/*
* if this is the last trie for this packet,
* then setup next packet.
*/
flows->trie++;
if (flows->trie >= ctx->num_tries) {
flows->trie = 0;
flows->num_packets++;
}
/* keep track of number of active trie traversals */
flows->started++;
/* no more tries to process, set slot to an idle position */
} else {
transition = ctx->idle;
parms[n].data = (const uint8_t *)idle;
parms[n].data_index = idle;
}
return transition;
}
static inline void
acl_set_flow(struct acl_flow_data *flows, struct completion *cmplt,
uint32_t cmplt_size, const uint8_t **data, uint32_t *results,
uint32_t data_num, uint32_t categories, const uint64_t *trans)
{
flows->num_packets = 0;
flows->started = 0;
flows->trie = 0;
flows->last_cmplt = NULL;
flows->cmplt_array = cmplt;
flows->total_packets = data_num;
flows->categories = categories;
flows->cmplt_size = cmplt_size;
flows->data = data;
flows->results = results;
flows->trans = trans;
}
typedef void (*resolve_priority_t)
(uint64_t transition, int n, const struct rte_acl_ctx *ctx,
struct parms *parms, const struct rte_acl_match_results *p,
uint32_t categories);
/*
* Detect matches. If a match node transition is found, then this trie
* traversal is complete and fill the slot with the next trie
* to be processed.
*/
static inline uint64_t
acl_match_check(uint64_t transition, int slot,
const struct rte_acl_ctx *ctx, struct parms *parms,
struct acl_flow_data *flows, resolve_priority_t resolve_priority)
{
const struct rte_acl_match_results *p;
p = (const struct rte_acl_match_results *)
(flows->trans + ctx->match_index);
if (transition & RTE_ACL_NODE_MATCH) {
/* Remove flags from index and decrement active traversals */
transition &= RTE_ACL_NODE_INDEX;
flows->started--;
/* Resolve priorities for this trie and running results */
if (flows->categories == 1)
resolve_single_priority(transition, slot, ctx,
parms, p);
else
resolve_priority(transition, slot, ctx, parms,
p, flows->categories);
/* Count down completed tries for this search request */
parms[slot].cmplt->count--;
/* Fill the slot with the next trie or idle trie */
transition = acl_start_next_trie(flows, parms, slot, ctx);
}
return transition;
}
#endif /* _ACL_RUN_H_ */