numam-dpdk/drivers/net/ena/ena_ethdev.c
Michal Krawczyk fd97689058 net/ena: fix dev init with multi-process
The check for proc type in eth_ena_dev_init() should appear before
modyfing adapter structure.

Calling memset on ena_adapter from secondary process context, was
erasing all structure information, and it was causing the crash of the
main process.

Fixes: 1173fca25a ("ena: add polling-mode driver")
Cc: stable@dpdk.org

Signed-off-by: Michal Krawczyk <mk@semihalf.com>
2019-01-27 23:38:37 +01:00

2725 lines
75 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) 2015-2016 Amazon.com, Inc. or its affiliates.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of copyright holder nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <rte_ether.h>
#include <rte_ethdev_driver.h>
#include <rte_ethdev_pci.h>
#include <rte_tcp.h>
#include <rte_atomic.h>
#include <rte_dev.h>
#include <rte_errno.h>
#include <rte_version.h>
#include <rte_eal_memconfig.h>
#include <rte_net.h>
#include "ena_ethdev.h"
#include "ena_logs.h"
#include "ena_platform.h"
#include "ena_com.h"
#include "ena_eth_com.h"
#include <ena_common_defs.h>
#include <ena_regs_defs.h>
#include <ena_admin_defs.h>
#include <ena_eth_io_defs.h>
#define DRV_MODULE_VER_MAJOR 2
#define DRV_MODULE_VER_MINOR 0
#define DRV_MODULE_VER_SUBMINOR 0
#define ENA_IO_TXQ_IDX(q) (2 * (q))
#define ENA_IO_RXQ_IDX(q) (2 * (q) + 1)
/*reverse version of ENA_IO_RXQ_IDX*/
#define ENA_IO_RXQ_IDX_REV(q) ((q - 1) / 2)
/* While processing submitted and completed descriptors (rx and tx path
* respectively) in a loop it is desired to:
* - perform batch submissions while populating sumbissmion queue
* - avoid blocking transmission of other packets during cleanup phase
* Hence the utilization ratio of 1/8 of a queue size.
*/
#define ENA_RING_DESCS_RATIO(ring_size) (ring_size / 8)
#define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
#define TEST_BIT(val, bit_shift) (val & (1UL << bit_shift))
#define GET_L4_HDR_LEN(mbuf) \
((rte_pktmbuf_mtod_offset(mbuf, struct tcp_hdr *, \
mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
#define ENA_RX_RSS_TABLE_LOG_SIZE 7
#define ENA_RX_RSS_TABLE_SIZE (1 << ENA_RX_RSS_TABLE_LOG_SIZE)
#define ENA_HASH_KEY_SIZE 40
#define ETH_GSTRING_LEN 32
#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
#define ENA_MIN_RING_DESC 128
enum ethtool_stringset {
ETH_SS_TEST = 0,
ETH_SS_STATS,
};
struct ena_stats {
char name[ETH_GSTRING_LEN];
int stat_offset;
};
#define ENA_STAT_ENTRY(stat, stat_type) { \
.name = #stat, \
.stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
}
#define ENA_STAT_RX_ENTRY(stat) \
ENA_STAT_ENTRY(stat, rx)
#define ENA_STAT_TX_ENTRY(stat) \
ENA_STAT_ENTRY(stat, tx)
#define ENA_STAT_GLOBAL_ENTRY(stat) \
ENA_STAT_ENTRY(stat, dev)
#define ENA_MAX_RING_SIZE_RX 8192
#define ENA_MAX_RING_SIZE_TX 1024
/*
* Each rte_memzone should have unique name.
* To satisfy it, count number of allocation and add it to name.
*/
uint32_t ena_alloc_cnt;
static const struct ena_stats ena_stats_global_strings[] = {
ENA_STAT_GLOBAL_ENTRY(wd_expired),
ENA_STAT_GLOBAL_ENTRY(dev_start),
ENA_STAT_GLOBAL_ENTRY(dev_stop),
};
static const struct ena_stats ena_stats_tx_strings[] = {
ENA_STAT_TX_ENTRY(cnt),
ENA_STAT_TX_ENTRY(bytes),
ENA_STAT_TX_ENTRY(prepare_ctx_err),
ENA_STAT_TX_ENTRY(linearize),
ENA_STAT_TX_ENTRY(linearize_failed),
ENA_STAT_TX_ENTRY(tx_poll),
ENA_STAT_TX_ENTRY(doorbells),
ENA_STAT_TX_ENTRY(bad_req_id),
ENA_STAT_TX_ENTRY(available_desc),
};
static const struct ena_stats ena_stats_rx_strings[] = {
ENA_STAT_RX_ENTRY(cnt),
ENA_STAT_RX_ENTRY(bytes),
ENA_STAT_RX_ENTRY(refill_partial),
ENA_STAT_RX_ENTRY(bad_csum),
ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
ENA_STAT_RX_ENTRY(bad_desc_num),
ENA_STAT_RX_ENTRY(bad_req_id),
};
#define ENA_STATS_ARRAY_GLOBAL ARRAY_SIZE(ena_stats_global_strings)
#define ENA_STATS_ARRAY_TX ARRAY_SIZE(ena_stats_tx_strings)
#define ENA_STATS_ARRAY_RX ARRAY_SIZE(ena_stats_rx_strings)
#define QUEUE_OFFLOADS (DEV_TX_OFFLOAD_TCP_CKSUM |\
DEV_TX_OFFLOAD_UDP_CKSUM |\
DEV_TX_OFFLOAD_IPV4_CKSUM |\
DEV_TX_OFFLOAD_TCP_TSO)
#define MBUF_OFFLOADS (PKT_TX_L4_MASK |\
PKT_TX_IP_CKSUM |\
PKT_TX_TCP_SEG)
/** Vendor ID used by Amazon devices */
#define PCI_VENDOR_ID_AMAZON 0x1D0F
/** Amazon devices */
#define PCI_DEVICE_ID_ENA_VF 0xEC20
#define PCI_DEVICE_ID_ENA_LLQ_VF 0xEC21
#define ENA_TX_OFFLOAD_MASK (\
PKT_TX_L4_MASK | \
PKT_TX_IPV6 | \
PKT_TX_IPV4 | \
PKT_TX_IP_CKSUM | \
PKT_TX_TCP_SEG)
#define ENA_TX_OFFLOAD_NOTSUP_MASK \
(PKT_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
int ena_logtype_init;
int ena_logtype_driver;
static const struct rte_pci_id pci_id_ena_map[] = {
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_LLQ_VF) },
{ .device_id = 0 },
};
static struct ena_aenq_handlers aenq_handlers;
static int ena_device_init(struct ena_com_dev *ena_dev,
struct ena_com_dev_get_features_ctx *get_feat_ctx,
bool *wd_state);
static int ena_dev_configure(struct rte_eth_dev *dev);
static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts);
static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts);
static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
uint16_t nb_desc, unsigned int socket_id,
const struct rte_eth_txconf *tx_conf);
static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
uint16_t nb_desc, unsigned int socket_id,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mp);
static uint16_t eth_ena_recv_pkts(void *rx_queue,
struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
static void ena_init_rings(struct ena_adapter *adapter);
static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
static int ena_start(struct rte_eth_dev *dev);
static void ena_stop(struct rte_eth_dev *dev);
static void ena_close(struct rte_eth_dev *dev);
static int ena_dev_reset(struct rte_eth_dev *dev);
static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
static void ena_rx_queue_release(void *queue);
static void ena_tx_queue_release(void *queue);
static void ena_rx_queue_release_bufs(struct ena_ring *ring);
static void ena_tx_queue_release_bufs(struct ena_ring *ring);
static int ena_link_update(struct rte_eth_dev *dev,
int wait_to_complete);
static int ena_create_io_queue(struct ena_ring *ring);
static void ena_queue_stop(struct ena_ring *ring);
static void ena_queue_stop_all(struct rte_eth_dev *dev,
enum ena_ring_type ring_type);
static int ena_queue_start(struct ena_ring *ring);
static int ena_queue_start_all(struct rte_eth_dev *dev,
enum ena_ring_type ring_type);
static void ena_stats_restart(struct rte_eth_dev *dev);
static void ena_infos_get(struct rte_eth_dev *dev,
struct rte_eth_dev_info *dev_info);
static int ena_rss_reta_update(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size);
static int ena_rss_reta_query(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size);
static void ena_interrupt_handler_rte(void *cb_arg);
static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
static void ena_destroy_device(struct rte_eth_dev *eth_dev);
static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
static int ena_xstats_get_names(struct rte_eth_dev *dev,
struct rte_eth_xstat_name *xstats_names,
unsigned int n);
static int ena_xstats_get(struct rte_eth_dev *dev,
struct rte_eth_xstat *stats,
unsigned int n);
static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
const uint64_t *ids,
uint64_t *values,
unsigned int n);
static const struct eth_dev_ops ena_dev_ops = {
.dev_configure = ena_dev_configure,
.dev_infos_get = ena_infos_get,
.rx_queue_setup = ena_rx_queue_setup,
.tx_queue_setup = ena_tx_queue_setup,
.dev_start = ena_start,
.dev_stop = ena_stop,
.link_update = ena_link_update,
.stats_get = ena_stats_get,
.xstats_get_names = ena_xstats_get_names,
.xstats_get = ena_xstats_get,
.xstats_get_by_id = ena_xstats_get_by_id,
.mtu_set = ena_mtu_set,
.rx_queue_release = ena_rx_queue_release,
.tx_queue_release = ena_tx_queue_release,
.dev_close = ena_close,
.dev_reset = ena_dev_reset,
.reta_update = ena_rss_reta_update,
.reta_query = ena_rss_reta_query,
};
#define NUMA_NO_NODE SOCKET_ID_ANY
static inline int ena_cpu_to_node(int cpu)
{
struct rte_config *config = rte_eal_get_configuration();
struct rte_fbarray *arr = &config->mem_config->memzones;
const struct rte_memzone *mz;
if (unlikely(cpu >= RTE_MAX_MEMZONE))
return NUMA_NO_NODE;
mz = rte_fbarray_get(arr, cpu);
return mz->socket_id;
}
static inline void ena_rx_mbuf_prepare(struct rte_mbuf *mbuf,
struct ena_com_rx_ctx *ena_rx_ctx)
{
uint64_t ol_flags = 0;
uint32_t packet_type = 0;
if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
packet_type |= RTE_PTYPE_L4_TCP;
else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
packet_type |= RTE_PTYPE_L4_UDP;
if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4)
packet_type |= RTE_PTYPE_L3_IPV4;
else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6)
packet_type |= RTE_PTYPE_L3_IPV6;
if (unlikely(ena_rx_ctx->l4_csum_err))
ol_flags |= PKT_RX_L4_CKSUM_BAD;
if (unlikely(ena_rx_ctx->l3_csum_err))
ol_flags |= PKT_RX_IP_CKSUM_BAD;
mbuf->ol_flags = ol_flags;
mbuf->packet_type = packet_type;
}
static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
struct ena_com_tx_ctx *ena_tx_ctx,
uint64_t queue_offloads)
{
struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
(queue_offloads & QUEUE_OFFLOADS)) {
/* check if TSO is required */
if ((mbuf->ol_flags & PKT_TX_TCP_SEG) &&
(queue_offloads & DEV_TX_OFFLOAD_TCP_TSO)) {
ena_tx_ctx->tso_enable = true;
ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
}
/* check if L3 checksum is needed */
if ((mbuf->ol_flags & PKT_TX_IP_CKSUM) &&
(queue_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM))
ena_tx_ctx->l3_csum_enable = true;
if (mbuf->ol_flags & PKT_TX_IPV6) {
ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
} else {
ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
/* set don't fragment (DF) flag */
if (mbuf->packet_type &
(RTE_PTYPE_L4_NONFRAG
| RTE_PTYPE_INNER_L4_NONFRAG))
ena_tx_ctx->df = true;
}
/* check if L4 checksum is needed */
if ((mbuf->ol_flags & PKT_TX_TCP_CKSUM) &&
(queue_offloads & DEV_TX_OFFLOAD_TCP_CKSUM)) {
ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
ena_tx_ctx->l4_csum_enable = true;
} else if ((mbuf->ol_flags & PKT_TX_UDP_CKSUM) &&
(queue_offloads & DEV_TX_OFFLOAD_UDP_CKSUM)) {
ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
ena_tx_ctx->l4_csum_enable = true;
} else {
ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
ena_tx_ctx->l4_csum_enable = false;
}
ena_meta->mss = mbuf->tso_segsz;
ena_meta->l3_hdr_len = mbuf->l3_len;
ena_meta->l3_hdr_offset = mbuf->l2_len;
ena_tx_ctx->meta_valid = true;
} else {
ena_tx_ctx->meta_valid = false;
}
}
static inline int validate_rx_req_id(struct ena_ring *rx_ring, uint16_t req_id)
{
if (likely(req_id < rx_ring->ring_size))
return 0;
RTE_LOG(ERR, PMD, "Invalid rx req_id: %hu\n", req_id);
rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
rx_ring->adapter->trigger_reset = true;
++rx_ring->rx_stats.bad_req_id;
return -EFAULT;
}
static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
{
struct ena_tx_buffer *tx_info = NULL;
if (likely(req_id < tx_ring->ring_size)) {
tx_info = &tx_ring->tx_buffer_info[req_id];
if (likely(tx_info->mbuf))
return 0;
}
if (tx_info)
RTE_LOG(ERR, PMD, "tx_info doesn't have valid mbuf\n");
else
RTE_LOG(ERR, PMD, "Invalid req_id: %hu\n", req_id);
/* Trigger device reset */
++tx_ring->tx_stats.bad_req_id;
tx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID;
tx_ring->adapter->trigger_reset = true;
return -EFAULT;
}
static void ena_config_host_info(struct ena_com_dev *ena_dev)
{
struct ena_admin_host_info *host_info;
int rc;
/* Allocate only the host info */
rc = ena_com_allocate_host_info(ena_dev);
if (rc) {
RTE_LOG(ERR, PMD, "Cannot allocate host info\n");
return;
}
host_info = ena_dev->host_attr.host_info;
host_info->os_type = ENA_ADMIN_OS_DPDK;
host_info->kernel_ver = RTE_VERSION;
snprintf((char *)host_info->kernel_ver_str,
sizeof(host_info->kernel_ver_str),
"%s", rte_version());
host_info->os_dist = RTE_VERSION;
snprintf((char *)host_info->os_dist_str,
sizeof(host_info->os_dist_str),
"%s", rte_version());
host_info->driver_version =
(DRV_MODULE_VER_MAJOR) |
(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
(DRV_MODULE_VER_SUBMINOR <<
ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
host_info->num_cpus = rte_lcore_count();
rc = ena_com_set_host_attributes(ena_dev);
if (rc) {
if (rc == -ENA_COM_UNSUPPORTED)
RTE_LOG(WARNING, PMD, "Cannot set host attributes\n");
else
RTE_LOG(ERR, PMD, "Cannot set host attributes\n");
goto err;
}
return;
err:
ena_com_delete_host_info(ena_dev);
}
/* This function calculates the number of xstats based on the current config */
static unsigned int ena_xstats_calc_num(struct rte_eth_dev *dev)
{
return ENA_STATS_ARRAY_GLOBAL +
(dev->data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
(dev->data->nb_rx_queues * ENA_STATS_ARRAY_RX);
}
static void ena_config_debug_area(struct ena_adapter *adapter)
{
u32 debug_area_size;
int rc, ss_count;
ss_count = ena_xstats_calc_num(adapter->rte_dev);
/* allocate 32 bytes for each string and 64bit for the value */
debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
if (rc) {
RTE_LOG(ERR, PMD, "Cannot allocate debug area\n");
return;
}
rc = ena_com_set_host_attributes(&adapter->ena_dev);
if (rc) {
if (rc == -ENA_COM_UNSUPPORTED)
RTE_LOG(WARNING, PMD, "Cannot set host attributes\n");
else
RTE_LOG(ERR, PMD, "Cannot set host attributes\n");
goto err;
}
return;
err:
ena_com_delete_debug_area(&adapter->ena_dev);
}
static void ena_close(struct rte_eth_dev *dev)
{
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
struct ena_adapter *adapter =
(struct ena_adapter *)(dev->data->dev_private);
if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
ena_stop(dev);
adapter->state = ENA_ADAPTER_STATE_CLOSED;
ena_rx_queue_release_all(dev);
ena_tx_queue_release_all(dev);
rte_free(adapter->drv_stats);
adapter->drv_stats = NULL;
rte_intr_disable(intr_handle);
rte_intr_callback_unregister(intr_handle,
ena_interrupt_handler_rte,
adapter);
/*
* MAC is not allocated dynamically. Setting NULL should prevent from
* release of the resource in the rte_eth_dev_release_port().
*/
dev->data->mac_addrs = NULL;
}
static int
ena_dev_reset(struct rte_eth_dev *dev)
{
int rc = 0;
ena_destroy_device(dev);
rc = eth_ena_dev_init(dev);
if (rc)
PMD_INIT_LOG(CRIT, "Cannot initialize device");
return rc;
}
static int ena_rss_reta_update(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
struct ena_adapter *adapter =
(struct ena_adapter *)(dev->data->dev_private);
struct ena_com_dev *ena_dev = &adapter->ena_dev;
int rc, i;
u16 entry_value;
int conf_idx;
int idx;
if ((reta_size == 0) || (reta_conf == NULL))
return -EINVAL;
if (reta_size > ENA_RX_RSS_TABLE_SIZE) {
RTE_LOG(WARNING, PMD,
"indirection table %d is bigger than supported (%d)\n",
reta_size, ENA_RX_RSS_TABLE_SIZE);
return -EINVAL;
}
for (i = 0 ; i < reta_size ; i++) {
/* each reta_conf is for 64 entries.
* to support 128 we use 2 conf of 64
*/
conf_idx = i / RTE_RETA_GROUP_SIZE;
idx = i % RTE_RETA_GROUP_SIZE;
if (TEST_BIT(reta_conf[conf_idx].mask, idx)) {
entry_value =
ENA_IO_RXQ_IDX(reta_conf[conf_idx].reta[idx]);
rc = ena_com_indirect_table_fill_entry(ena_dev,
i,
entry_value);
if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
RTE_LOG(ERR, PMD,
"Cannot fill indirect table\n");
return rc;
}
}
}
rc = ena_com_indirect_table_set(ena_dev);
if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
RTE_LOG(ERR, PMD, "Cannot flush the indirect table\n");
return rc;
}
RTE_LOG(DEBUG, PMD, "%s(): RSS configured %d entries for port %d\n",
__func__, reta_size, adapter->rte_dev->data->port_id);
return 0;
}
/* Query redirection table. */
static int ena_rss_reta_query(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
struct ena_adapter *adapter =
(struct ena_adapter *)(dev->data->dev_private);
struct ena_com_dev *ena_dev = &adapter->ena_dev;
int rc;
int i;
u32 indirect_table[ENA_RX_RSS_TABLE_SIZE] = {0};
int reta_conf_idx;
int reta_idx;
if (reta_size == 0 || reta_conf == NULL ||
(reta_size > RTE_RETA_GROUP_SIZE && ((reta_conf + 1) == NULL)))
return -EINVAL;
rc = ena_com_indirect_table_get(ena_dev, indirect_table);
if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
RTE_LOG(ERR, PMD, "cannot get indirect table\n");
return -ENOTSUP;
}
for (i = 0 ; i < reta_size ; i++) {
reta_conf_idx = i / RTE_RETA_GROUP_SIZE;
reta_idx = i % RTE_RETA_GROUP_SIZE;
if (TEST_BIT(reta_conf[reta_conf_idx].mask, reta_idx))
reta_conf[reta_conf_idx].reta[reta_idx] =
ENA_IO_RXQ_IDX_REV(indirect_table[i]);
}
return 0;
}
static int ena_rss_init_default(struct ena_adapter *adapter)
{
struct ena_com_dev *ena_dev = &adapter->ena_dev;
uint16_t nb_rx_queues = adapter->rte_dev->data->nb_rx_queues;
int rc, i;
u32 val;
rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
if (unlikely(rc)) {
RTE_LOG(ERR, PMD, "Cannot init indirect table\n");
goto err_rss_init;
}
for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
val = i % nb_rx_queues;
rc = ena_com_indirect_table_fill_entry(ena_dev, i,
ENA_IO_RXQ_IDX(val));
if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
RTE_LOG(ERR, PMD, "Cannot fill indirect table\n");
goto err_fill_indir;
}
}
rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
RTE_LOG(INFO, PMD, "Cannot fill hash function\n");
goto err_fill_indir;
}
rc = ena_com_set_default_hash_ctrl(ena_dev);
if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
RTE_LOG(INFO, PMD, "Cannot fill hash control\n");
goto err_fill_indir;
}
rc = ena_com_indirect_table_set(ena_dev);
if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
RTE_LOG(ERR, PMD, "Cannot flush the indirect table\n");
goto err_fill_indir;
}
RTE_LOG(DEBUG, PMD, "RSS configured for port %d\n",
adapter->rte_dev->data->port_id);
return 0;
err_fill_indir:
ena_com_rss_destroy(ena_dev);
err_rss_init:
return rc;
}
static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
{
struct ena_ring **queues = (struct ena_ring **)dev->data->rx_queues;
int nb_queues = dev->data->nb_rx_queues;
int i;
for (i = 0; i < nb_queues; i++)
ena_rx_queue_release(queues[i]);
}
static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
{
struct ena_ring **queues = (struct ena_ring **)dev->data->tx_queues;
int nb_queues = dev->data->nb_tx_queues;
int i;
for (i = 0; i < nb_queues; i++)
ena_tx_queue_release(queues[i]);
}
static void ena_rx_queue_release(void *queue)
{
struct ena_ring *ring = (struct ena_ring *)queue;
/* Free ring resources */
if (ring->rx_buffer_info)
rte_free(ring->rx_buffer_info);
ring->rx_buffer_info = NULL;
if (ring->rx_refill_buffer)
rte_free(ring->rx_refill_buffer);
ring->rx_refill_buffer = NULL;
if (ring->empty_rx_reqs)
rte_free(ring->empty_rx_reqs);
ring->empty_rx_reqs = NULL;
ring->configured = 0;
RTE_LOG(NOTICE, PMD, "RX Queue %d:%d released\n",
ring->port_id, ring->id);
}
static void ena_tx_queue_release(void *queue)
{
struct ena_ring *ring = (struct ena_ring *)queue;
/* Free ring resources */
if (ring->push_buf_intermediate_buf)
rte_free(ring->push_buf_intermediate_buf);
if (ring->tx_buffer_info)
rte_free(ring->tx_buffer_info);
if (ring->empty_tx_reqs)
rte_free(ring->empty_tx_reqs);
ring->empty_tx_reqs = NULL;
ring->tx_buffer_info = NULL;
ring->push_buf_intermediate_buf = NULL;
ring->configured = 0;
RTE_LOG(NOTICE, PMD, "TX Queue %d:%d released\n",
ring->port_id, ring->id);
}
static void ena_rx_queue_release_bufs(struct ena_ring *ring)
{
unsigned int i;
for (i = 0; i < ring->ring_size; ++i)
if (ring->rx_buffer_info[i]) {
rte_mbuf_raw_free(ring->rx_buffer_info[i]);
ring->rx_buffer_info[i] = NULL;
}
}
static void ena_tx_queue_release_bufs(struct ena_ring *ring)
{
unsigned int i;
for (i = 0; i < ring->ring_size; ++i) {
struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
if (tx_buf->mbuf)
rte_pktmbuf_free(tx_buf->mbuf);
}
}
static int ena_link_update(struct rte_eth_dev *dev,
__rte_unused int wait_to_complete)
{
struct rte_eth_link *link = &dev->data->dev_link;
struct ena_adapter *adapter;
adapter = (struct ena_adapter *)(dev->data->dev_private);
link->link_status = adapter->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
link->link_speed = ETH_SPEED_NUM_NONE;
link->link_duplex = ETH_LINK_FULL_DUPLEX;
return 0;
}
static int ena_queue_start_all(struct rte_eth_dev *dev,
enum ena_ring_type ring_type)
{
struct ena_adapter *adapter =
(struct ena_adapter *)(dev->data->dev_private);
struct ena_ring *queues = NULL;
int nb_queues;
int i = 0;
int rc = 0;
if (ring_type == ENA_RING_TYPE_RX) {
queues = adapter->rx_ring;
nb_queues = dev->data->nb_rx_queues;
} else {
queues = adapter->tx_ring;
nb_queues = dev->data->nb_tx_queues;
}
for (i = 0; i < nb_queues; i++) {
if (queues[i].configured) {
if (ring_type == ENA_RING_TYPE_RX) {
ena_assert_msg(
dev->data->rx_queues[i] == &queues[i],
"Inconsistent state of rx queues\n");
} else {
ena_assert_msg(
dev->data->tx_queues[i] == &queues[i],
"Inconsistent state of tx queues\n");
}
rc = ena_queue_start(&queues[i]);
if (rc) {
PMD_INIT_LOG(ERR,
"failed to start queue %d type(%d)",
i, ring_type);
goto err;
}
}
}
return 0;
err:
while (i--)
if (queues[i].configured)
ena_queue_stop(&queues[i]);
return rc;
}
static uint32_t ena_get_mtu_conf(struct ena_adapter *adapter)
{
uint32_t max_frame_len = adapter->max_mtu;
if (adapter->rte_eth_dev_data->dev_conf.rxmode.offloads &
DEV_RX_OFFLOAD_JUMBO_FRAME)
max_frame_len =
adapter->rte_eth_dev_data->dev_conf.rxmode.max_rx_pkt_len;
return max_frame_len;
}
static int ena_check_valid_conf(struct ena_adapter *adapter)
{
uint32_t max_frame_len = ena_get_mtu_conf(adapter);
if (max_frame_len > adapter->max_mtu || max_frame_len < ENA_MIN_MTU) {
PMD_INIT_LOG(ERR, "Unsupported MTU of %d. "
"max mtu: %d, min mtu: %d",
max_frame_len, adapter->max_mtu, ENA_MIN_MTU);
return ENA_COM_UNSUPPORTED;
}
return 0;
}
static int
ena_calc_queue_size(struct ena_calc_queue_size_ctx *ctx)
{
struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
struct ena_com_dev *ena_dev = ctx->ena_dev;
uint32_t tx_queue_size = ENA_MAX_RING_SIZE_TX;
uint32_t rx_queue_size = ENA_MAX_RING_SIZE_RX;
if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
struct ena_admin_queue_ext_feature_fields *max_queue_ext =
&ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
rx_queue_size = RTE_MIN(rx_queue_size,
max_queue_ext->max_rx_cq_depth);
rx_queue_size = RTE_MIN(rx_queue_size,
max_queue_ext->max_rx_sq_depth);
tx_queue_size = RTE_MIN(tx_queue_size,
max_queue_ext->max_tx_cq_depth);
if (ena_dev->tx_mem_queue_type ==
ENA_ADMIN_PLACEMENT_POLICY_DEV) {
tx_queue_size = RTE_MIN(tx_queue_size,
llq->max_llq_depth);
} else {
tx_queue_size = RTE_MIN(tx_queue_size,
max_queue_ext->max_tx_sq_depth);
}
ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
max_queue_ext->max_per_packet_rx_descs);
ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
max_queue_ext->max_per_packet_tx_descs);
} else {
struct ena_admin_queue_feature_desc *max_queues =
&ctx->get_feat_ctx->max_queues;
rx_queue_size = RTE_MIN(rx_queue_size,
max_queues->max_cq_depth);
rx_queue_size = RTE_MIN(rx_queue_size,
max_queues->max_sq_depth);
tx_queue_size = RTE_MIN(tx_queue_size,
max_queues->max_cq_depth);
if (ena_dev->tx_mem_queue_type ==
ENA_ADMIN_PLACEMENT_POLICY_DEV) {
tx_queue_size = RTE_MIN(tx_queue_size,
llq->max_llq_depth);
} else {
tx_queue_size = RTE_MIN(tx_queue_size,
max_queues->max_sq_depth);
}
ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
max_queues->max_packet_tx_descs);
ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
max_queues->max_packet_rx_descs);
}
/* Round down to the nearest power of 2 */
rx_queue_size = rte_align32prevpow2(rx_queue_size);
tx_queue_size = rte_align32prevpow2(tx_queue_size);
if (unlikely(rx_queue_size == 0 || tx_queue_size == 0)) {
PMD_INIT_LOG(ERR, "Invalid queue size");
return -EFAULT;
}
ctx->rx_queue_size = rx_queue_size;
ctx->tx_queue_size = tx_queue_size;
return 0;
}
static void ena_stats_restart(struct rte_eth_dev *dev)
{
struct ena_adapter *adapter =
(struct ena_adapter *)(dev->data->dev_private);
rte_atomic64_init(&adapter->drv_stats->ierrors);
rte_atomic64_init(&adapter->drv_stats->oerrors);
rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
rte_atomic64_init(&adapter->drv_stats->rx_drops);
}
static int ena_stats_get(struct rte_eth_dev *dev,
struct rte_eth_stats *stats)
{
struct ena_admin_basic_stats ena_stats;
struct ena_adapter *adapter =
(struct ena_adapter *)(dev->data->dev_private);
struct ena_com_dev *ena_dev = &adapter->ena_dev;
int rc;
int i;
int max_rings_stats;
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return -ENOTSUP;
memset(&ena_stats, 0, sizeof(ena_stats));
rc = ena_com_get_dev_basic_stats(ena_dev, &ena_stats);
if (unlikely(rc)) {
RTE_LOG(ERR, PMD, "Could not retrieve statistics from ENA\n");
return rc;
}
/* Set of basic statistics from ENA */
stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
ena_stats.rx_pkts_low);
stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
ena_stats.tx_pkts_low);
stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
ena_stats.rx_bytes_low);
stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
ena_stats.tx_bytes_low);
/* Driver related stats */
stats->imissed = rte_atomic64_read(&adapter->drv_stats->rx_drops);
stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
RTE_ETHDEV_QUEUE_STAT_CNTRS);
for (i = 0; i < max_rings_stats; ++i) {
struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
stats->q_ibytes[i] = rx_stats->bytes;
stats->q_ipackets[i] = rx_stats->cnt;
stats->q_errors[i] = rx_stats->bad_desc_num +
rx_stats->bad_req_id;
}
max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
RTE_ETHDEV_QUEUE_STAT_CNTRS);
for (i = 0; i < max_rings_stats; ++i) {
struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
stats->q_obytes[i] = tx_stats->bytes;
stats->q_opackets[i] = tx_stats->cnt;
}
return 0;
}
static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
{
struct ena_adapter *adapter;
struct ena_com_dev *ena_dev;
int rc = 0;
ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
adapter = (struct ena_adapter *)(dev->data->dev_private);
ena_dev = &adapter->ena_dev;
ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
if (mtu > ena_get_mtu_conf(adapter) || mtu < ENA_MIN_MTU) {
RTE_LOG(ERR, PMD,
"Invalid MTU setting. new_mtu: %d "
"max mtu: %d min mtu: %d\n",
mtu, ena_get_mtu_conf(adapter), ENA_MIN_MTU);
return -EINVAL;
}
rc = ena_com_set_dev_mtu(ena_dev, mtu);
if (rc)
RTE_LOG(ERR, PMD, "Could not set MTU: %d\n", mtu);
else
RTE_LOG(NOTICE, PMD, "Set MTU: %d\n", mtu);
return rc;
}
static int ena_start(struct rte_eth_dev *dev)
{
struct ena_adapter *adapter =
(struct ena_adapter *)(dev->data->dev_private);
uint64_t ticks;
int rc = 0;
rc = ena_check_valid_conf(adapter);
if (rc)
return rc;
rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
if (rc)
return rc;
rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
if (rc)
goto err_start_tx;
if (adapter->rte_dev->data->dev_conf.rxmode.mq_mode &
ETH_MQ_RX_RSS_FLAG && adapter->rte_dev->data->nb_rx_queues > 0) {
rc = ena_rss_init_default(adapter);
if (rc)
goto err_rss_init;
}
ena_stats_restart(dev);
adapter->timestamp_wd = rte_get_timer_cycles();
adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
ticks = rte_get_timer_hz();
rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
ena_timer_wd_callback, adapter);
++adapter->dev_stats.dev_start;
adapter->state = ENA_ADAPTER_STATE_RUNNING;
return 0;
err_rss_init:
ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
err_start_tx:
ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
return rc;
}
static void ena_stop(struct rte_eth_dev *dev)
{
struct ena_adapter *adapter =
(struct ena_adapter *)(dev->data->dev_private);
struct ena_com_dev *ena_dev = &adapter->ena_dev;
int rc;
rte_timer_stop_sync(&adapter->timer_wd);
ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
if (adapter->trigger_reset) {
rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
if (rc)
RTE_LOG(ERR, PMD, "Device reset failed rc=%d\n", rc);
}
++adapter->dev_stats.dev_stop;
adapter->state = ENA_ADAPTER_STATE_STOPPED;
}
static int ena_create_io_queue(struct ena_ring *ring)
{
struct ena_adapter *adapter;
struct ena_com_dev *ena_dev;
struct ena_com_create_io_ctx ctx =
/* policy set to _HOST just to satisfy icc compiler */
{ ENA_ADMIN_PLACEMENT_POLICY_HOST,
0, 0, 0, 0, 0 };
uint16_t ena_qid;
unsigned int i;
int rc;
adapter = ring->adapter;
ena_dev = &adapter->ena_dev;
if (ring->type == ENA_RING_TYPE_TX) {
ena_qid = ENA_IO_TXQ_IDX(ring->id);
ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
ctx.queue_size = adapter->tx_ring_size;
for (i = 0; i < ring->ring_size; i++)
ring->empty_tx_reqs[i] = i;
} else {
ena_qid = ENA_IO_RXQ_IDX(ring->id);
ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
ctx.queue_size = adapter->rx_ring_size;
for (i = 0; i < ring->ring_size; i++)
ring->empty_rx_reqs[i] = i;
}
ctx.qid = ena_qid;
ctx.msix_vector = -1; /* interrupts not used */
ctx.numa_node = ena_cpu_to_node(ring->id);
rc = ena_com_create_io_queue(ena_dev, &ctx);
if (rc) {
RTE_LOG(ERR, PMD,
"failed to create io queue #%d (qid:%d) rc: %d\n",
ring->id, ena_qid, rc);
return rc;
}
rc = ena_com_get_io_handlers(ena_dev, ena_qid,
&ring->ena_com_io_sq,
&ring->ena_com_io_cq);
if (rc) {
RTE_LOG(ERR, PMD,
"Failed to get io queue handlers. queue num %d rc: %d\n",
ring->id, rc);
ena_com_destroy_io_queue(ena_dev, ena_qid);
return rc;
}
if (ring->type == ENA_RING_TYPE_TX)
ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
return 0;
}
static void ena_queue_stop(struct ena_ring *ring)
{
struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
if (ring->type == ENA_RING_TYPE_RX) {
ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
ena_rx_queue_release_bufs(ring);
} else {
ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
ena_tx_queue_release_bufs(ring);
}
}
static void ena_queue_stop_all(struct rte_eth_dev *dev,
enum ena_ring_type ring_type)
{
struct ena_adapter *adapter =
(struct ena_adapter *)(dev->data->dev_private);
struct ena_ring *queues = NULL;
uint16_t nb_queues, i;
if (ring_type == ENA_RING_TYPE_RX) {
queues = adapter->rx_ring;
nb_queues = dev->data->nb_rx_queues;
} else {
queues = adapter->tx_ring;
nb_queues = dev->data->nb_tx_queues;
}
for (i = 0; i < nb_queues; ++i)
if (queues[i].configured)
ena_queue_stop(&queues[i]);
}
static int ena_queue_start(struct ena_ring *ring)
{
int rc, bufs_num;
ena_assert_msg(ring->configured == 1,
"Trying to start unconfigured queue\n");
rc = ena_create_io_queue(ring);
if (rc) {
PMD_INIT_LOG(ERR, "Failed to create IO queue!");
return rc;
}
ring->next_to_clean = 0;
ring->next_to_use = 0;
if (ring->type == ENA_RING_TYPE_TX) {
ring->tx_stats.available_desc =
ena_com_free_desc(ring->ena_com_io_sq);
return 0;
}
bufs_num = ring->ring_size - 1;
rc = ena_populate_rx_queue(ring, bufs_num);
if (rc != bufs_num) {
ena_com_destroy_io_queue(&ring->adapter->ena_dev,
ENA_IO_RXQ_IDX(ring->id));
PMD_INIT_LOG(ERR, "Failed to populate rx ring !");
return ENA_COM_FAULT;
}
return 0;
}
static int ena_tx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx,
uint16_t nb_desc,
__rte_unused unsigned int socket_id,
const struct rte_eth_txconf *tx_conf)
{
struct ena_ring *txq = NULL;
struct ena_adapter *adapter =
(struct ena_adapter *)(dev->data->dev_private);
unsigned int i;
txq = &adapter->tx_ring[queue_idx];
if (txq->configured) {
RTE_LOG(CRIT, PMD,
"API violation. Queue %d is already configured\n",
queue_idx);
return ENA_COM_FAULT;
}
if (!rte_is_power_of_2(nb_desc)) {
RTE_LOG(ERR, PMD,
"Unsupported size of TX queue: %d is not a power of 2.\n",
nb_desc);
return -EINVAL;
}
if (nb_desc > adapter->tx_ring_size) {
RTE_LOG(ERR, PMD,
"Unsupported size of TX queue (max size: %d)\n",
adapter->tx_ring_size);
return -EINVAL;
}
if (nb_desc == RTE_ETH_DEV_FALLBACK_TX_RINGSIZE)
nb_desc = adapter->tx_ring_size;
txq->port_id = dev->data->port_id;
txq->next_to_clean = 0;
txq->next_to_use = 0;
txq->ring_size = nb_desc;
txq->tx_buffer_info = rte_zmalloc("txq->tx_buffer_info",
sizeof(struct ena_tx_buffer) *
txq->ring_size,
RTE_CACHE_LINE_SIZE);
if (!txq->tx_buffer_info) {
RTE_LOG(ERR, PMD, "failed to alloc mem for tx buffer info\n");
return -ENOMEM;
}
txq->empty_tx_reqs = rte_zmalloc("txq->empty_tx_reqs",
sizeof(u16) * txq->ring_size,
RTE_CACHE_LINE_SIZE);
if (!txq->empty_tx_reqs) {
RTE_LOG(ERR, PMD, "failed to alloc mem for tx reqs\n");
rte_free(txq->tx_buffer_info);
return -ENOMEM;
}
txq->push_buf_intermediate_buf =
rte_zmalloc("txq->push_buf_intermediate_buf",
txq->tx_max_header_size,
RTE_CACHE_LINE_SIZE);
if (!txq->push_buf_intermediate_buf) {
RTE_LOG(ERR, PMD, "failed to alloc push buff for LLQ\n");
rte_free(txq->tx_buffer_info);
rte_free(txq->empty_tx_reqs);
return -ENOMEM;
}
for (i = 0; i < txq->ring_size; i++)
txq->empty_tx_reqs[i] = i;
if (tx_conf != NULL) {
txq->offloads =
tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
}
/* Store pointer to this queue in upper layer */
txq->configured = 1;
dev->data->tx_queues[queue_idx] = txq;
return 0;
}
static int ena_rx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx,
uint16_t nb_desc,
__rte_unused unsigned int socket_id,
__rte_unused const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mp)
{
struct ena_adapter *adapter =
(struct ena_adapter *)(dev->data->dev_private);
struct ena_ring *rxq = NULL;
int i;
rxq = &adapter->rx_ring[queue_idx];
if (rxq->configured) {
RTE_LOG(CRIT, PMD,
"API violation. Queue %d is already configured\n",
queue_idx);
return ENA_COM_FAULT;
}
if (nb_desc == RTE_ETH_DEV_FALLBACK_RX_RINGSIZE)
nb_desc = adapter->rx_ring_size;
if (!rte_is_power_of_2(nb_desc)) {
RTE_LOG(ERR, PMD,
"Unsupported size of RX queue: %d is not a power of 2.\n",
nb_desc);
return -EINVAL;
}
if (nb_desc > adapter->rx_ring_size) {
RTE_LOG(ERR, PMD,
"Unsupported size of RX queue (max size: %d)\n",
adapter->rx_ring_size);
return -EINVAL;
}
rxq->port_id = dev->data->port_id;
rxq->next_to_clean = 0;
rxq->next_to_use = 0;
rxq->ring_size = nb_desc;
rxq->mb_pool = mp;
rxq->rx_buffer_info = rte_zmalloc("rxq->buffer_info",
sizeof(struct rte_mbuf *) * nb_desc,
RTE_CACHE_LINE_SIZE);
if (!rxq->rx_buffer_info) {
RTE_LOG(ERR, PMD, "failed to alloc mem for rx buffer info\n");
return -ENOMEM;
}
rxq->rx_refill_buffer = rte_zmalloc("rxq->rx_refill_buffer",
sizeof(struct rte_mbuf *) * nb_desc,
RTE_CACHE_LINE_SIZE);
if (!rxq->rx_refill_buffer) {
RTE_LOG(ERR, PMD, "failed to alloc mem for rx refill buffer\n");
rte_free(rxq->rx_buffer_info);
rxq->rx_buffer_info = NULL;
return -ENOMEM;
}
rxq->empty_rx_reqs = rte_zmalloc("rxq->empty_rx_reqs",
sizeof(uint16_t) * nb_desc,
RTE_CACHE_LINE_SIZE);
if (!rxq->empty_rx_reqs) {
RTE_LOG(ERR, PMD, "failed to alloc mem for empty rx reqs\n");
rte_free(rxq->rx_buffer_info);
rxq->rx_buffer_info = NULL;
rte_free(rxq->rx_refill_buffer);
rxq->rx_refill_buffer = NULL;
return -ENOMEM;
}
for (i = 0; i < nb_desc; i++)
rxq->empty_rx_reqs[i] = i;
/* Store pointer to this queue in upper layer */
rxq->configured = 1;
dev->data->rx_queues[queue_idx] = rxq;
return 0;
}
static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
{
unsigned int i;
int rc;
uint16_t ring_size = rxq->ring_size;
uint16_t ring_mask = ring_size - 1;
uint16_t next_to_use = rxq->next_to_use;
uint16_t in_use, req_id;
struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
if (unlikely(!count))
return 0;
in_use = rxq->next_to_use - rxq->next_to_clean;
ena_assert_msg(((in_use + count) < ring_size), "bad ring state\n");
/* get resources for incoming packets */
rc = rte_mempool_get_bulk(rxq->mb_pool, (void **)mbufs, count);
if (unlikely(rc < 0)) {
rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
++rxq->rx_stats.mbuf_alloc_fail;
PMD_RX_LOG(DEBUG, "there are no enough free buffers");
return 0;
}
for (i = 0; i < count; i++) {
uint16_t next_to_use_masked = next_to_use & ring_mask;
struct rte_mbuf *mbuf = mbufs[i];
struct ena_com_buf ebuf;
if (likely((i + 4) < count))
rte_prefetch0(mbufs[i + 4]);
req_id = rxq->empty_rx_reqs[next_to_use_masked];
rc = validate_rx_req_id(rxq, req_id);
if (unlikely(rc < 0))
break;
rxq->rx_buffer_info[req_id] = mbuf;
/* prepare physical address for DMA transaction */
ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
/* pass resource to device */
rc = ena_com_add_single_rx_desc(rxq->ena_com_io_sq,
&ebuf, req_id);
if (unlikely(rc)) {
RTE_LOG(WARNING, PMD, "failed adding rx desc\n");
rxq->rx_buffer_info[req_id] = NULL;
break;
}
next_to_use++;
}
if (unlikely(i < count)) {
RTE_LOG(WARNING, PMD, "refilled rx qid %d with only %d "
"buffers (from %d)\n", rxq->id, i, count);
rte_mempool_put_bulk(rxq->mb_pool, (void **)(&mbufs[i]),
count - i);
++rxq->rx_stats.refill_partial;
}
/* When we submitted free recources to device... */
if (likely(i > 0)) {
/* ...let HW know that it can fill buffers with data
*
* Add memory barrier to make sure the desc were written before
* issue a doorbell
*/
rte_wmb();
ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
rxq->next_to_use = next_to_use;
}
return i;
}
static int ena_device_init(struct ena_com_dev *ena_dev,
struct ena_com_dev_get_features_ctx *get_feat_ctx,
bool *wd_state)
{
uint32_t aenq_groups;
int rc;
bool readless_supported;
/* Initialize mmio registers */
rc = ena_com_mmio_reg_read_request_init(ena_dev);
if (rc) {
RTE_LOG(ERR, PMD, "failed to init mmio read less\n");
return rc;
}
/* The PCIe configuration space revision id indicate if mmio reg
* read is disabled.
*/
readless_supported =
!(((struct rte_pci_device *)ena_dev->dmadev)->id.class_id
& ENA_MMIO_DISABLE_REG_READ);
ena_com_set_mmio_read_mode(ena_dev, readless_supported);
/* reset device */
rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
if (rc) {
RTE_LOG(ERR, PMD, "cannot reset device\n");
goto err_mmio_read_less;
}
/* check FW version */
rc = ena_com_validate_version(ena_dev);
if (rc) {
RTE_LOG(ERR, PMD, "device version is too low\n");
goto err_mmio_read_less;
}
ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
/* ENA device administration layer init */
rc = ena_com_admin_init(ena_dev, &aenq_handlers);
if (rc) {
RTE_LOG(ERR, PMD,
"cannot initialize ena admin queue with device\n");
goto err_mmio_read_less;
}
/* To enable the msix interrupts the driver needs to know the number
* of queues. So the driver uses polling mode to retrieve this
* information.
*/
ena_com_set_admin_polling_mode(ena_dev, true);
ena_config_host_info(ena_dev);
/* Get Device Attributes and features */
rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
if (rc) {
RTE_LOG(ERR, PMD,
"cannot get attribute for ena device rc= %d\n", rc);
goto err_admin_init;
}
aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
BIT(ENA_ADMIN_NOTIFICATION) |
BIT(ENA_ADMIN_KEEP_ALIVE) |
BIT(ENA_ADMIN_FATAL_ERROR) |
BIT(ENA_ADMIN_WARNING);
aenq_groups &= get_feat_ctx->aenq.supported_groups;
rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
if (rc) {
RTE_LOG(ERR, PMD, "Cannot configure aenq groups rc: %d\n", rc);
goto err_admin_init;
}
*wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
return 0;
err_admin_init:
ena_com_admin_destroy(ena_dev);
err_mmio_read_less:
ena_com_mmio_reg_read_request_destroy(ena_dev);
return rc;
}
static void ena_interrupt_handler_rte(void *cb_arg)
{
struct ena_adapter *adapter = (struct ena_adapter *)cb_arg;
struct ena_com_dev *ena_dev = &adapter->ena_dev;
ena_com_admin_q_comp_intr_handler(ena_dev);
if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
ena_com_aenq_intr_handler(ena_dev, adapter);
}
static void check_for_missing_keep_alive(struct ena_adapter *adapter)
{
if (!adapter->wd_state)
return;
if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
return;
if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
adapter->keep_alive_timeout)) {
RTE_LOG(ERR, PMD, "Keep alive timeout\n");
adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
adapter->trigger_reset = true;
++adapter->dev_stats.wd_expired;
}
}
/* Check if admin queue is enabled */
static void check_for_admin_com_state(struct ena_adapter *adapter)
{
if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
RTE_LOG(ERR, PMD, "ENA admin queue is not in running state!\n");
adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
adapter->trigger_reset = true;
}
}
static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
void *arg)
{
struct ena_adapter *adapter = (struct ena_adapter *)arg;
struct rte_eth_dev *dev = adapter->rte_dev;
check_for_missing_keep_alive(adapter);
check_for_admin_com_state(adapter);
if (unlikely(adapter->trigger_reset)) {
RTE_LOG(ERR, PMD, "Trigger reset is on\n");
_rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
NULL);
}
}
static inline void
set_default_llq_configurations(struct ena_llq_configurations *llq_config)
{
llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_128B;
llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
llq_config->llq_num_decs_before_header =
ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
llq_config->llq_ring_entry_size_value = 128;
}
static int
ena_set_queues_placement_policy(struct ena_adapter *adapter,
struct ena_com_dev *ena_dev,
struct ena_admin_feature_llq_desc *llq,
struct ena_llq_configurations *llq_default_configurations)
{
int rc;
u32 llq_feature_mask;
llq_feature_mask = 1 << ENA_ADMIN_LLQ;
if (!(ena_dev->supported_features & llq_feature_mask)) {
RTE_LOG(INFO, PMD,
"LLQ is not supported. Fallback to host mode policy.\n");
ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
return 0;
}
rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
if (unlikely(rc)) {
PMD_INIT_LOG(WARNING, "Failed to config dev mode. "
"Fallback to host mode policy.");
ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
return 0;
}
/* Nothing to config, exit */
if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
return 0;
if (!adapter->dev_mem_base) {
RTE_LOG(ERR, PMD, "Unable to access LLQ bar resource. "
"Fallback to host mode policy.\n.");
ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
return 0;
}
ena_dev->mem_bar = adapter->dev_mem_base;
return 0;
}
static int ena_calc_io_queue_num(struct ena_com_dev *ena_dev,
struct ena_com_dev_get_features_ctx *get_feat_ctx)
{
uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, io_queue_num;
/* Regular queues capabilities */
if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
struct ena_admin_queue_ext_feature_fields *max_queue_ext =
&get_feat_ctx->max_queue_ext.max_queue_ext;
io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
max_queue_ext->max_rx_cq_num);
io_tx_sq_num = max_queue_ext->max_tx_sq_num;
io_tx_cq_num = max_queue_ext->max_tx_cq_num;
} else {
struct ena_admin_queue_feature_desc *max_queues =
&get_feat_ctx->max_queues;
io_tx_sq_num = max_queues->max_sq_num;
io_tx_cq_num = max_queues->max_cq_num;
io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
}
/* In case of LLQ use the llq number in the get feature cmd */
if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
io_queue_num = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
io_queue_num = RTE_MIN(io_queue_num, io_tx_sq_num);
io_queue_num = RTE_MIN(io_queue_num, io_tx_cq_num);
if (unlikely(io_queue_num == 0)) {
RTE_LOG(ERR, PMD, "Number of IO queues should not be 0\n");
return -EFAULT;
}
return io_queue_num;
}
static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
{
struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
struct rte_pci_device *pci_dev;
struct rte_intr_handle *intr_handle;
struct ena_adapter *adapter =
(struct ena_adapter *)(eth_dev->data->dev_private);
struct ena_com_dev *ena_dev = &adapter->ena_dev;
struct ena_com_dev_get_features_ctx get_feat_ctx;
struct ena_llq_configurations llq_config;
const char *queue_type_str;
int rc;
static int adapters_found;
bool wd_state;
eth_dev->dev_ops = &ena_dev_ops;
eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
memset(adapter, 0, sizeof(struct ena_adapter));
ena_dev = &adapter->ena_dev;
adapter->rte_eth_dev_data = eth_dev->data;
adapter->rte_dev = eth_dev;
pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
adapter->pdev = pci_dev;
PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d",
pci_dev->addr.domain,
pci_dev->addr.bus,
pci_dev->addr.devid,
pci_dev->addr.function);
intr_handle = &pci_dev->intr_handle;
adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
if (!adapter->regs) {
PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)",
ENA_REGS_BAR);
return -ENXIO;
}
ena_dev->reg_bar = adapter->regs;
ena_dev->dmadev = adapter->pdev;
adapter->id_number = adapters_found;
snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
adapter->id_number);
/* device specific initialization routine */
rc = ena_device_init(ena_dev, &get_feat_ctx, &wd_state);
if (rc) {
PMD_INIT_LOG(CRIT, "Failed to init ENA device");
goto err;
}
adapter->wd_state = wd_state;
set_default_llq_configurations(&llq_config);
rc = ena_set_queues_placement_policy(adapter, ena_dev,
&get_feat_ctx.llq, &llq_config);
if (unlikely(rc)) {
PMD_INIT_LOG(CRIT, "Failed to set placement policy");
return rc;
}
if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
queue_type_str = "Regular";
else
queue_type_str = "Low latency";
RTE_LOG(INFO, PMD, "Placement policy: %s\n", queue_type_str);
calc_queue_ctx.ena_dev = ena_dev;
calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
adapter->num_queues = ena_calc_io_queue_num(ena_dev,
&get_feat_ctx);
rc = ena_calc_queue_size(&calc_queue_ctx);
if (unlikely((rc != 0) || (adapter->num_queues <= 0))) {
rc = -EFAULT;
goto err_device_destroy;
}
adapter->tx_ring_size = calc_queue_ctx.tx_queue_size;
adapter->rx_ring_size = calc_queue_ctx.rx_queue_size;
adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
/* prepare ring structures */
ena_init_rings(adapter);
ena_config_debug_area(adapter);
/* Set max MTU for this device */
adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
/* set device support for TSO */
adapter->tso4_supported = get_feat_ctx.offload.tx &
ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK;
/* Copy MAC address and point DPDK to it */
eth_dev->data->mac_addrs = (struct ether_addr *)adapter->mac_addr;
ether_addr_copy((struct ether_addr *)get_feat_ctx.dev_attr.mac_addr,
(struct ether_addr *)adapter->mac_addr);
/*
* Pass the information to the rte_eth_dev_close() that it should also
* release the private port resources.
*/
eth_dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE;
adapter->drv_stats = rte_zmalloc("adapter stats",
sizeof(*adapter->drv_stats),
RTE_CACHE_LINE_SIZE);
if (!adapter->drv_stats) {
RTE_LOG(ERR, PMD, "failed to alloc mem for adapter stats\n");
rc = -ENOMEM;
goto err_delete_debug_area;
}
rte_intr_callback_register(intr_handle,
ena_interrupt_handler_rte,
adapter);
rte_intr_enable(intr_handle);
ena_com_set_admin_polling_mode(ena_dev, false);
ena_com_admin_aenq_enable(ena_dev);
if (adapters_found == 0)
rte_timer_subsystem_init();
rte_timer_init(&adapter->timer_wd);
adapters_found++;
adapter->state = ENA_ADAPTER_STATE_INIT;
return 0;
err_delete_debug_area:
ena_com_delete_debug_area(ena_dev);
err_device_destroy:
ena_com_delete_host_info(ena_dev);
ena_com_admin_destroy(ena_dev);
err:
return rc;
}
static void ena_destroy_device(struct rte_eth_dev *eth_dev)
{
struct ena_adapter *adapter =
(struct ena_adapter *)(eth_dev->data->dev_private);
struct ena_com_dev *ena_dev = &adapter->ena_dev;
if (adapter->state == ENA_ADAPTER_STATE_FREE)
return;
ena_com_set_admin_running_state(ena_dev, false);
if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
ena_close(eth_dev);
ena_com_delete_debug_area(ena_dev);
ena_com_delete_host_info(ena_dev);
ena_com_abort_admin_commands(ena_dev);
ena_com_wait_for_abort_completion(ena_dev);
ena_com_admin_destroy(ena_dev);
ena_com_mmio_reg_read_request_destroy(ena_dev);
adapter->state = ENA_ADAPTER_STATE_FREE;
}
static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
{
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
ena_destroy_device(eth_dev);
eth_dev->dev_ops = NULL;
eth_dev->rx_pkt_burst = NULL;
eth_dev->tx_pkt_burst = NULL;
eth_dev->tx_pkt_prepare = NULL;
return 0;
}
static int ena_dev_configure(struct rte_eth_dev *dev)
{
struct ena_adapter *adapter =
(struct ena_adapter *)(dev->data->dev_private);
adapter->state = ENA_ADAPTER_STATE_CONFIG;
adapter->tx_selected_offloads = dev->data->dev_conf.txmode.offloads;
adapter->rx_selected_offloads = dev->data->dev_conf.rxmode.offloads;
return 0;
}
static void ena_init_rings(struct ena_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_queues; i++) {
struct ena_ring *ring = &adapter->tx_ring[i];
ring->configured = 0;
ring->type = ENA_RING_TYPE_TX;
ring->adapter = adapter;
ring->id = i;
ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
ring->sgl_size = adapter->max_tx_sgl_size;
}
for (i = 0; i < adapter->num_queues; i++) {
struct ena_ring *ring = &adapter->rx_ring[i];
ring->configured = 0;
ring->type = ENA_RING_TYPE_RX;
ring->adapter = adapter;
ring->id = i;
ring->sgl_size = adapter->max_rx_sgl_size;
}
}
static void ena_infos_get(struct rte_eth_dev *dev,
struct rte_eth_dev_info *dev_info)
{
struct ena_adapter *adapter;
struct ena_com_dev *ena_dev;
struct ena_com_dev_get_features_ctx feat;
uint64_t rx_feat = 0, tx_feat = 0;
int rc = 0;
ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
adapter = (struct ena_adapter *)(dev->data->dev_private);
ena_dev = &adapter->ena_dev;
ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
dev_info->speed_capa =
ETH_LINK_SPEED_1G |
ETH_LINK_SPEED_2_5G |
ETH_LINK_SPEED_5G |
ETH_LINK_SPEED_10G |
ETH_LINK_SPEED_25G |
ETH_LINK_SPEED_40G |
ETH_LINK_SPEED_50G |
ETH_LINK_SPEED_100G;
/* Get supported features from HW */
rc = ena_com_get_dev_attr_feat(ena_dev, &feat);
if (unlikely(rc)) {
RTE_LOG(ERR, PMD,
"Cannot get attribute for ena device rc= %d\n", rc);
return;
}
/* Set Tx & Rx features available for device */
if (feat.offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
tx_feat |= DEV_TX_OFFLOAD_TCP_TSO;
if (feat.offload.tx &
ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
tx_feat |= DEV_TX_OFFLOAD_IPV4_CKSUM |
DEV_TX_OFFLOAD_UDP_CKSUM |
DEV_TX_OFFLOAD_TCP_CKSUM;
if (feat.offload.rx_supported &
ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
rx_feat |= DEV_RX_OFFLOAD_IPV4_CKSUM |
DEV_RX_OFFLOAD_UDP_CKSUM |
DEV_RX_OFFLOAD_TCP_CKSUM;
rx_feat |= DEV_RX_OFFLOAD_JUMBO_FRAME;
/* Inform framework about available features */
dev_info->rx_offload_capa = rx_feat;
dev_info->rx_queue_offload_capa = rx_feat;
dev_info->tx_offload_capa = tx_feat;
dev_info->tx_queue_offload_capa = tx_feat;
dev_info->flow_type_rss_offloads = ETH_RSS_IP | ETH_RSS_TCP |
ETH_RSS_UDP;
dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
dev_info->max_rx_pktlen = adapter->max_mtu;
dev_info->max_mac_addrs = 1;
dev_info->max_rx_queues = adapter->num_queues;
dev_info->max_tx_queues = adapter->num_queues;
dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
adapter->tx_supported_offloads = tx_feat;
adapter->rx_supported_offloads = rx_feat;
dev_info->rx_desc_lim.nb_max = adapter->rx_ring_size;
dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
adapter->max_rx_sgl_size);
dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
adapter->max_rx_sgl_size);
dev_info->tx_desc_lim.nb_max = adapter->tx_ring_size;
dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
adapter->max_tx_sgl_size);
dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
adapter->max_tx_sgl_size);
}
static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
unsigned int ring_size = rx_ring->ring_size;
unsigned int ring_mask = ring_size - 1;
uint16_t next_to_clean = rx_ring->next_to_clean;
uint16_t desc_in_use = 0;
uint16_t req_id;
unsigned int recv_idx = 0;
struct rte_mbuf *mbuf = NULL;
struct rte_mbuf *mbuf_head = NULL;
struct rte_mbuf *mbuf_prev = NULL;
struct rte_mbuf **rx_buff_info = rx_ring->rx_buffer_info;
unsigned int completed;
struct ena_com_rx_ctx ena_rx_ctx;
int rc = 0;
/* Check adapter state */
if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
RTE_LOG(ALERT, PMD,
"Trying to receive pkts while device is NOT running\n");
return 0;
}
desc_in_use = rx_ring->next_to_use - next_to_clean;
if (unlikely(nb_pkts > desc_in_use))
nb_pkts = desc_in_use;
for (completed = 0; completed < nb_pkts; completed++) {
int segments = 0;
ena_rx_ctx.max_bufs = rx_ring->sgl_size;
ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
ena_rx_ctx.descs = 0;
/* receive packet context */
rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
rx_ring->ena_com_io_sq,
&ena_rx_ctx);
if (unlikely(rc)) {
RTE_LOG(ERR, PMD, "ena_com_rx_pkt error %d\n", rc);
rx_ring->adapter->reset_reason =
ENA_REGS_RESET_TOO_MANY_RX_DESCS;
rx_ring->adapter->trigger_reset = true;
++rx_ring->rx_stats.bad_desc_num;
return 0;
}
if (unlikely(ena_rx_ctx.descs == 0))
break;
while (segments < ena_rx_ctx.descs) {
req_id = ena_rx_ctx.ena_bufs[segments].req_id;
rc = validate_rx_req_id(rx_ring, req_id);
if (unlikely(rc)) {
if (segments != 0)
rte_mbuf_raw_free(mbuf_head);
break;
}
mbuf = rx_buff_info[req_id];
rx_buff_info[req_id] = NULL;
mbuf->data_len = ena_rx_ctx.ena_bufs[segments].len;
mbuf->data_off = RTE_PKTMBUF_HEADROOM;
mbuf->refcnt = 1;
mbuf->next = NULL;
if (unlikely(segments == 0)) {
mbuf->nb_segs = ena_rx_ctx.descs;
mbuf->port = rx_ring->port_id;
mbuf->pkt_len = 0;
mbuf_head = mbuf;
} else {
/* for multi-segment pkts create mbuf chain */
mbuf_prev->next = mbuf;
}
mbuf_head->pkt_len += mbuf->data_len;
mbuf_prev = mbuf;
rx_ring->empty_rx_reqs[next_to_clean & ring_mask] =
req_id;
segments++;
next_to_clean++;
}
if (unlikely(rc))
break;
/* fill mbuf attributes if any */
ena_rx_mbuf_prepare(mbuf_head, &ena_rx_ctx);
if (unlikely(mbuf_head->ol_flags &
(PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD)))
++rx_ring->rx_stats.bad_csum;
mbuf_head->hash.rss = ena_rx_ctx.hash;
/* pass to DPDK application head mbuf */
rx_pkts[recv_idx] = mbuf_head;
recv_idx++;
rx_ring->rx_stats.bytes += mbuf_head->pkt_len;
}
rx_ring->rx_stats.cnt += recv_idx;
rx_ring->next_to_clean = next_to_clean;
desc_in_use = desc_in_use - completed + 1;
/* Burst refill to save doorbells, memory barriers, const interval */
if (ring_size - desc_in_use > ENA_RING_DESCS_RATIO(ring_size)) {
ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
ena_populate_rx_queue(rx_ring, ring_size - desc_in_use);
}
return recv_idx;
}
static uint16_t
eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
int32_t ret;
uint32_t i;
struct rte_mbuf *m;
struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
struct ipv4_hdr *ip_hdr;
uint64_t ol_flags;
uint16_t frag_field;
for (i = 0; i != nb_pkts; i++) {
m = tx_pkts[i];
ol_flags = m->ol_flags;
if (!(ol_flags & PKT_TX_IPV4))
continue;
/* If there was not L2 header length specified, assume it is
* length of the ethernet header.
*/
if (unlikely(m->l2_len == 0))
m->l2_len = sizeof(struct ether_hdr);
ip_hdr = rte_pktmbuf_mtod_offset(m, struct ipv4_hdr *,
m->l2_len);
frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
if ((frag_field & IPV4_HDR_DF_FLAG) != 0) {
m->packet_type |= RTE_PTYPE_L4_NONFRAG;
/* If IPv4 header has DF flag enabled and TSO support is
* disabled, partial chcecksum should not be calculated.
*/
if (!tx_ring->adapter->tso4_supported)
continue;
}
if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) != 0 ||
(ol_flags & PKT_TX_L4_MASK) ==
PKT_TX_SCTP_CKSUM) {
rte_errno = -ENOTSUP;
return i;
}
#ifdef RTE_LIBRTE_ETHDEV_DEBUG
ret = rte_validate_tx_offload(m);
if (ret != 0) {
rte_errno = ret;
return i;
}
#endif
/* In case we are supposed to TSO and have DF not set (DF=0)
* hardware must be provided with partial checksum, otherwise
* it will take care of necessary calculations.
*/
ret = rte_net_intel_cksum_flags_prepare(m,
ol_flags & ~PKT_TX_TCP_SEG);
if (ret != 0) {
rte_errno = ret;
return i;
}
}
return i;
}
static void ena_update_hints(struct ena_adapter *adapter,
struct ena_admin_ena_hw_hints *hints)
{
if (hints->admin_completion_tx_timeout)
adapter->ena_dev.admin_queue.completion_timeout =
hints->admin_completion_tx_timeout * 1000;
if (hints->mmio_read_timeout)
/* convert to usec */
adapter->ena_dev.mmio_read.reg_read_to =
hints->mmio_read_timeout * 1000;
if (hints->driver_watchdog_timeout) {
if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
else
// Convert msecs to ticks
adapter->keep_alive_timeout =
(hints->driver_watchdog_timeout *
rte_get_timer_hz()) / 1000;
}
}
static int ena_check_and_linearize_mbuf(struct ena_ring *tx_ring,
struct rte_mbuf *mbuf)
{
struct ena_com_dev *ena_dev;
int num_segments, header_len, rc;
ena_dev = &tx_ring->adapter->ena_dev;
num_segments = mbuf->nb_segs;
header_len = mbuf->data_len;
if (likely(num_segments < tx_ring->sgl_size))
return 0;
if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
(num_segments == tx_ring->sgl_size) &&
(header_len < tx_ring->tx_max_header_size))
return 0;
++tx_ring->tx_stats.linearize;
rc = rte_pktmbuf_linearize(mbuf);
if (unlikely(rc)) {
RTE_LOG(WARNING, PMD, "Mbuf linearize failed\n");
rte_atomic64_inc(&tx_ring->adapter->drv_stats->ierrors);
++tx_ring->tx_stats.linearize_failed;
return rc;
}
return rc;
}
static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
uint16_t next_to_use = tx_ring->next_to_use;
uint16_t next_to_clean = tx_ring->next_to_clean;
struct rte_mbuf *mbuf;
uint16_t seg_len;
unsigned int ring_size = tx_ring->ring_size;
unsigned int ring_mask = ring_size - 1;
struct ena_com_tx_ctx ena_tx_ctx;
struct ena_tx_buffer *tx_info;
struct ena_com_buf *ebuf;
uint16_t rc, req_id, total_tx_descs = 0;
uint16_t sent_idx = 0, empty_tx_reqs;
uint16_t push_len = 0;
uint16_t delta = 0;
int nb_hw_desc;
uint32_t total_length;
/* Check adapter state */
if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
RTE_LOG(ALERT, PMD,
"Trying to xmit pkts while device is NOT running\n");
return 0;
}
empty_tx_reqs = ring_size - (next_to_use - next_to_clean);
if (nb_pkts > empty_tx_reqs)
nb_pkts = empty_tx_reqs;
for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
mbuf = tx_pkts[sent_idx];
total_length = 0;
rc = ena_check_and_linearize_mbuf(tx_ring, mbuf);
if (unlikely(rc))
break;
req_id = tx_ring->empty_tx_reqs[next_to_use & ring_mask];
tx_info = &tx_ring->tx_buffer_info[req_id];
tx_info->mbuf = mbuf;
tx_info->num_of_bufs = 0;
ebuf = tx_info->bufs;
/* Prepare TX context */
memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
memset(&ena_tx_ctx.ena_meta, 0x0,
sizeof(struct ena_com_tx_meta));
ena_tx_ctx.ena_bufs = ebuf;
ena_tx_ctx.req_id = req_id;
delta = 0;
seg_len = mbuf->data_len;
if (tx_ring->tx_mem_queue_type ==
ENA_ADMIN_PLACEMENT_POLICY_DEV) {
push_len = RTE_MIN(mbuf->pkt_len,
tx_ring->tx_max_header_size);
ena_tx_ctx.header_len = push_len;
if (likely(push_len <= seg_len)) {
/* If the push header is in the single segment,
* then just point it to the 1st mbuf data.
*/
ena_tx_ctx.push_header =
rte_pktmbuf_mtod(mbuf, uint8_t *);
} else {
/* If the push header lays in the several
* segments, copy it to the intermediate buffer.
*/
rte_pktmbuf_read(mbuf, 0, push_len,
tx_ring->push_buf_intermediate_buf);
ena_tx_ctx.push_header =
tx_ring->push_buf_intermediate_buf;
delta = push_len - seg_len;
}
} /* there's no else as we take advantage of memset zeroing */
/* Set TX offloads flags, if applicable */
ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads);
if (unlikely(mbuf->ol_flags &
(PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD)))
rte_atomic64_inc(&tx_ring->adapter->drv_stats->ierrors);
rte_prefetch0(tx_pkts[(sent_idx + 4) & ring_mask]);
/* Process first segment taking into
* consideration pushed header
*/
if (seg_len > push_len) {
ebuf->paddr = mbuf->buf_iova +
mbuf->data_off +
push_len;
ebuf->len = seg_len - push_len;
ebuf++;
tx_info->num_of_bufs++;
}
total_length += mbuf->data_len;
while ((mbuf = mbuf->next) != NULL) {
seg_len = mbuf->data_len;
/* Skip mbufs if whole data is pushed as a header */
if (unlikely(delta > seg_len)) {
delta -= seg_len;
continue;
}
ebuf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
ebuf->len = seg_len - delta;
total_length += ebuf->len;
ebuf++;
tx_info->num_of_bufs++;
delta = 0;
}
ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
if (ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
&ena_tx_ctx)) {
RTE_LOG(DEBUG, PMD, "llq tx max burst size of queue %d"
" achieved, writing doorbell to send burst\n",
tx_ring->id);
rte_wmb();
ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
}
/* prepare the packet's descriptors to dma engine */
rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq,
&ena_tx_ctx, &nb_hw_desc);
if (unlikely(rc)) {
++tx_ring->tx_stats.prepare_ctx_err;
break;
}
tx_info->tx_descs = nb_hw_desc;
next_to_use++;
tx_ring->tx_stats.cnt += tx_info->num_of_bufs;
tx_ring->tx_stats.bytes += total_length;
}
tx_ring->tx_stats.available_desc =
ena_com_free_desc(tx_ring->ena_com_io_sq);
/* If there are ready packets to be xmitted... */
if (sent_idx > 0) {
/* ...let HW do its best :-) */
rte_wmb();
ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
tx_ring->tx_stats.doorbells++;
tx_ring->next_to_use = next_to_use;
}
/* Clear complete packets */
while (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) >= 0) {
rc = validate_tx_req_id(tx_ring, req_id);
if (rc)
break;
/* Get Tx info & store how many descs were processed */
tx_info = &tx_ring->tx_buffer_info[req_id];
total_tx_descs += tx_info->tx_descs;
/* Free whole mbuf chain */
mbuf = tx_info->mbuf;
rte_pktmbuf_free(mbuf);
tx_info->mbuf = NULL;
/* Put back descriptor to the ring for reuse */
tx_ring->empty_tx_reqs[next_to_clean & ring_mask] = req_id;
next_to_clean++;
/* If too many descs to clean, leave it for another run */
if (unlikely(total_tx_descs > ENA_RING_DESCS_RATIO(ring_size)))
break;
}
tx_ring->tx_stats.available_desc =
ena_com_free_desc(tx_ring->ena_com_io_sq);
if (total_tx_descs > 0) {
/* acknowledge completion of sent packets */
tx_ring->next_to_clean = next_to_clean;
ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
}
tx_ring->tx_stats.tx_poll++;
return sent_idx;
}
/**
* DPDK callback to retrieve names of extended device statistics
*
* @param dev
* Pointer to Ethernet device structure.
* @param[out] xstats_names
* Buffer to insert names into.
* @param n
* Number of names.
*
* @return
* Number of xstats names.
*/
static int ena_xstats_get_names(struct rte_eth_dev *dev,
struct rte_eth_xstat_name *xstats_names,
unsigned int n)
{
unsigned int xstats_count = ena_xstats_calc_num(dev);
unsigned int stat, i, count = 0;
if (n < xstats_count || !xstats_names)
return xstats_count;
for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
strcpy(xstats_names[count].name,
ena_stats_global_strings[stat].name);
for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
snprintf(xstats_names[count].name,
sizeof(xstats_names[count].name),
"rx_q%d_%s", i,
ena_stats_rx_strings[stat].name);
for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
snprintf(xstats_names[count].name,
sizeof(xstats_names[count].name),
"tx_q%d_%s", i,
ena_stats_tx_strings[stat].name);
return xstats_count;
}
/**
* DPDK callback to get extended device statistics.
*
* @param dev
* Pointer to Ethernet device structure.
* @param[out] stats
* Stats table output buffer.
* @param n
* The size of the stats table.
*
* @return
* Number of xstats on success, negative on failure.
*/
static int ena_xstats_get(struct rte_eth_dev *dev,
struct rte_eth_xstat *xstats,
unsigned int n)
{
struct ena_adapter *adapter =
(struct ena_adapter *)(dev->data->dev_private);
unsigned int xstats_count = ena_xstats_calc_num(dev);
unsigned int stat, i, count = 0;
int stat_offset;
void *stats_begin;
if (n < xstats_count)
return xstats_count;
if (!xstats)
return 0;
for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
stat_offset = ena_stats_rx_strings[stat].stat_offset;
stats_begin = &adapter->dev_stats;
xstats[count].id = count;
xstats[count].value = *((uint64_t *)
((char *)stats_begin + stat_offset));
}
for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
stat_offset = ena_stats_rx_strings[stat].stat_offset;
stats_begin = &adapter->rx_ring[i].rx_stats;
xstats[count].id = count;
xstats[count].value = *((uint64_t *)
((char *)stats_begin + stat_offset));
}
}
for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
stat_offset = ena_stats_tx_strings[stat].stat_offset;
stats_begin = &adapter->tx_ring[i].rx_stats;
xstats[count].id = count;
xstats[count].value = *((uint64_t *)
((char *)stats_begin + stat_offset));
}
}
return count;
}
static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
const uint64_t *ids,
uint64_t *values,
unsigned int n)
{
struct ena_adapter *adapter =
(struct ena_adapter *)(dev->data->dev_private);
uint64_t id;
uint64_t rx_entries, tx_entries;
unsigned int i;
int qid;
int valid = 0;
for (i = 0; i < n; ++i) {
id = ids[i];
/* Check if id belongs to global statistics */
if (id < ENA_STATS_ARRAY_GLOBAL) {
values[i] = *((uint64_t *)&adapter->dev_stats + id);
++valid;
continue;
}
/* Check if id belongs to rx queue statistics */
id -= ENA_STATS_ARRAY_GLOBAL;
rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
if (id < rx_entries) {
qid = id % dev->data->nb_rx_queues;
id /= dev->data->nb_rx_queues;
values[i] = *((uint64_t *)
&adapter->rx_ring[qid].rx_stats + id);
++valid;
continue;
}
/* Check if id belongs to rx queue statistics */
id -= rx_entries;
tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
if (id < tx_entries) {
qid = id % dev->data->nb_tx_queues;
id /= dev->data->nb_tx_queues;
values[i] = *((uint64_t *)
&adapter->tx_ring[qid].tx_stats + id);
++valid;
continue;
}
}
return valid;
}
/*********************************************************************
* PMD configuration
*********************************************************************/
static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_probe(pci_dev,
sizeof(struct ena_adapter), eth_ena_dev_init);
}
static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
}
static struct rte_pci_driver rte_ena_pmd = {
.id_table = pci_id_ena_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
RTE_PCI_DRV_WC_ACTIVATE,
.probe = eth_ena_pci_probe,
.remove = eth_ena_pci_remove,
};
RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
RTE_INIT(ena_init_log)
{
ena_logtype_init = rte_log_register("pmd.net.ena.init");
if (ena_logtype_init >= 0)
rte_log_set_level(ena_logtype_init, RTE_LOG_NOTICE);
ena_logtype_driver = rte_log_register("pmd.net.ena.driver");
if (ena_logtype_driver >= 0)
rte_log_set_level(ena_logtype_driver, RTE_LOG_NOTICE);
}
/******************************************************************************
******************************** AENQ Handlers *******************************
*****************************************************************************/
static void ena_update_on_link_change(void *adapter_data,
struct ena_admin_aenq_entry *aenq_e)
{
struct rte_eth_dev *eth_dev;
struct ena_adapter *adapter;
struct ena_admin_aenq_link_change_desc *aenq_link_desc;
uint32_t status;
adapter = (struct ena_adapter *)adapter_data;
aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
eth_dev = adapter->rte_dev;
status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
adapter->link_status = status;
ena_link_update(eth_dev, 0);
_rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
}
static void ena_notification(void *data,
struct ena_admin_aenq_entry *aenq_e)
{
struct ena_adapter *adapter = (struct ena_adapter *)data;
struct ena_admin_ena_hw_hints *hints;
if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
RTE_LOG(WARNING, PMD, "Invalid group(%x) expected %x\n",
aenq_e->aenq_common_desc.group,
ENA_ADMIN_NOTIFICATION);
switch (aenq_e->aenq_common_desc.syndrom) {
case ENA_ADMIN_UPDATE_HINTS:
hints = (struct ena_admin_ena_hw_hints *)
(&aenq_e->inline_data_w4);
ena_update_hints(adapter, hints);
break;
default:
RTE_LOG(ERR, PMD, "Invalid aenq notification link state %d\n",
aenq_e->aenq_common_desc.syndrom);
}
}
static void ena_keep_alive(void *adapter_data,
__rte_unused struct ena_admin_aenq_entry *aenq_e)
{
struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
struct ena_admin_aenq_keep_alive_desc *desc;
uint64_t rx_drops;
adapter->timestamp_wd = rte_get_timer_cycles();
desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
rte_atomic64_set(&adapter->drv_stats->rx_drops, rx_drops);
}
/**
* This handler will called for unknown event group or unimplemented handlers
**/
static void unimplemented_aenq_handler(__rte_unused void *data,
__rte_unused struct ena_admin_aenq_entry *aenq_e)
{
RTE_LOG(ERR, PMD, "Unknown event was received or event with "
"unimplemented handler\n");
}
static struct ena_aenq_handlers aenq_handlers = {
.handlers = {
[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
[ENA_ADMIN_NOTIFICATION] = ena_notification,
[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive
},
.unimplemented_handler = unimplemented_aenq_handler
};