99a2dd955f
There is no reason for the DPDK libraries to all have 'librte_' prefix on the directory names. This prefix makes the directory names longer and also makes it awkward to add features referring to individual libraries in the build - should the lib names be specified with or without the prefix. Therefore, we can just remove the library prefix and use the library's unique name as the directory name, i.e. 'eal' rather than 'librte_eal' Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
509 lines
14 KiB
C
509 lines
14 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2010-2018 Intel Corporation
|
|
*/
|
|
|
|
#ifndef _RTE_EAL_H_
|
|
#define _RTE_EAL_H_
|
|
|
|
/**
|
|
* @file
|
|
*
|
|
* EAL Configuration API
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
#include <sched.h>
|
|
#include <time.h>
|
|
|
|
#include <rte_config.h>
|
|
#include <rte_compat.h>
|
|
#include <rte_per_lcore.h>
|
|
#include <rte_bus.h>
|
|
#include <rte_uuid.h>
|
|
|
|
#include <rte_pci_dev_feature_defs.h>
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
#define RTE_MAGIC 19820526 /**< Magic number written by the main partition when ready. */
|
|
|
|
/* Maximum thread_name length. */
|
|
#define RTE_MAX_THREAD_NAME_LEN 16
|
|
|
|
/**
|
|
* The type of process in a linux, multi-process setup
|
|
*/
|
|
enum rte_proc_type_t {
|
|
RTE_PROC_AUTO = -1, /* allow auto-detection of primary/secondary */
|
|
RTE_PROC_PRIMARY = 0, /* set to zero, so primary is the default */
|
|
RTE_PROC_SECONDARY,
|
|
|
|
RTE_PROC_INVALID
|
|
};
|
|
|
|
/**
|
|
* Get the process type in a multi-process setup
|
|
*
|
|
* @return
|
|
* The process type
|
|
*/
|
|
enum rte_proc_type_t rte_eal_process_type(void);
|
|
|
|
/**
|
|
* Request iopl privilege for all RPL.
|
|
*
|
|
* This function should be called by pmds which need access to ioports.
|
|
|
|
* @return
|
|
* - On success, returns 0.
|
|
* - On failure, returns -1.
|
|
*/
|
|
int rte_eal_iopl_init(void);
|
|
|
|
/**
|
|
* Initialize the Environment Abstraction Layer (EAL).
|
|
*
|
|
* This function is to be executed on the MAIN lcore only, as soon
|
|
* as possible in the application's main() function.
|
|
* It puts the WORKER lcores in the WAIT state.
|
|
*
|
|
* @param argc
|
|
* A non-negative value. If it is greater than 0, the array members
|
|
* for argv[0] through argv[argc] (non-inclusive) shall contain pointers
|
|
* to strings.
|
|
* @param argv
|
|
* An array of strings. The contents of the array, as well as the strings
|
|
* which are pointed to by the array, may be modified by this function.
|
|
* @return
|
|
* - On success, the number of parsed arguments, which is greater or
|
|
* equal to zero. After the call to rte_eal_init(),
|
|
* all arguments argv[x] with x < ret may have been modified by this
|
|
* function call and should not be further interpreted by the
|
|
* application. The EAL does not take any ownership of the memory used
|
|
* for either the argv array, or its members.
|
|
* - On failure, -1 and rte_errno is set to a value indicating the cause
|
|
* for failure. In some instances, the application will need to be
|
|
* restarted as part of clearing the issue.
|
|
*
|
|
* Error codes returned via rte_errno:
|
|
* EACCES indicates a permissions issue.
|
|
*
|
|
* EAGAIN indicates either a bus or system resource was not available,
|
|
* setup may be attempted again.
|
|
*
|
|
* EALREADY indicates that the rte_eal_init function has already been
|
|
* called, and cannot be called again.
|
|
*
|
|
* EFAULT indicates the tailq configuration name was not found in
|
|
* memory configuration.
|
|
*
|
|
* EINVAL indicates invalid parameters were passed as argv/argc.
|
|
*
|
|
* ENOMEM indicates failure likely caused by an out-of-memory condition.
|
|
*
|
|
* ENODEV indicates memory setup issues.
|
|
*
|
|
* ENOTSUP indicates that the EAL cannot initialize on this system.
|
|
*
|
|
* EPROTO indicates that the PCI bus is either not present, or is not
|
|
* readable by the eal.
|
|
*
|
|
* ENOEXEC indicates that a service core failed to launch successfully.
|
|
*/
|
|
int rte_eal_init(int argc, char **argv);
|
|
|
|
/**
|
|
* Clean up the Environment Abstraction Layer (EAL)
|
|
*
|
|
* This function must be called to release any internal resources that EAL has
|
|
* allocated during rte_eal_init(). After this call, no DPDK function calls may
|
|
* be made. It is expected that common usage of this function is to call it
|
|
* just before terminating the process.
|
|
*
|
|
* @return
|
|
* - 0 Successfully released all internal EAL resources.
|
|
* - -EFAULT There was an error in releasing all resources.
|
|
*/
|
|
int rte_eal_cleanup(void);
|
|
|
|
/**
|
|
* Check if a primary process is currently alive
|
|
*
|
|
* This function returns true when a primary process is currently
|
|
* active.
|
|
*
|
|
* @param config_file_path
|
|
* The config_file_path argument provided should point at the location
|
|
* that the primary process will create its config file. If NULL, the default
|
|
* config file path is used.
|
|
*
|
|
* @return
|
|
* - If alive, returns 1.
|
|
* - If dead, returns 0.
|
|
*/
|
|
int rte_eal_primary_proc_alive(const char *config_file_path);
|
|
|
|
/**
|
|
* Disable multiprocess.
|
|
*
|
|
* This function can be called to indicate that multiprocess won't be used for
|
|
* the rest of the application life.
|
|
*
|
|
* @return
|
|
* - true if called from a primary process that had no secondary processes
|
|
* attached,
|
|
* - false, otherwise.
|
|
*/
|
|
__rte_experimental
|
|
bool rte_mp_disable(void);
|
|
|
|
#define RTE_MP_MAX_FD_NUM 8 /* The max amount of fds */
|
|
#define RTE_MP_MAX_NAME_LEN 64 /* The max length of action name */
|
|
#define RTE_MP_MAX_PARAM_LEN 256 /* The max length of param */
|
|
struct rte_mp_msg {
|
|
char name[RTE_MP_MAX_NAME_LEN];
|
|
int len_param;
|
|
int num_fds;
|
|
uint8_t param[RTE_MP_MAX_PARAM_LEN];
|
|
int fds[RTE_MP_MAX_FD_NUM];
|
|
};
|
|
|
|
struct rte_mp_reply {
|
|
int nb_sent;
|
|
int nb_received;
|
|
struct rte_mp_msg *msgs; /* caller to free */
|
|
};
|
|
|
|
/**
|
|
* Action function typedef used by other components.
|
|
*
|
|
* As we create socket channel for primary/secondary communication, use
|
|
* this function typedef to register action for coming messages.
|
|
*
|
|
* @note When handling IPC request callbacks, the reply must be sent even in
|
|
* cases of error handling. Simply returning success or failure will *not*
|
|
* send a response to the requestor.
|
|
* Implementation of error signalling mechanism is up to the application.
|
|
*
|
|
* @note No memory allocations should take place inside the callback.
|
|
*/
|
|
typedef int (*rte_mp_t)(const struct rte_mp_msg *msg, const void *peer);
|
|
|
|
/**
|
|
* Asynchronous reply function typedef used by other components.
|
|
*
|
|
* As we create socket channel for primary/secondary communication, use
|
|
* this function typedef to register action for coming responses to asynchronous
|
|
* requests.
|
|
*
|
|
* @note When handling IPC request callbacks, the reply must be sent even in
|
|
* cases of error handling. Simply returning success or failure will *not*
|
|
* send a response to the requestor.
|
|
* Implementation of error signalling mechanism is up to the application.
|
|
*
|
|
* @note No memory allocations should take place inside the callback.
|
|
*/
|
|
typedef int (*rte_mp_async_reply_t)(const struct rte_mp_msg *request,
|
|
const struct rte_mp_reply *reply);
|
|
|
|
/**
|
|
* @warning
|
|
* @b EXPERIMENTAL: this API may change without prior notice
|
|
*
|
|
* Register an action function for primary/secondary communication.
|
|
*
|
|
* Call this function to register an action, if the calling component wants
|
|
* to response the messages from the corresponding component in its primary
|
|
* process or secondary processes.
|
|
*
|
|
* @note IPC may be unsupported in certain circumstances, so caller should check
|
|
* for ENOTSUP error.
|
|
*
|
|
* @param name
|
|
* The name argument plays as the nonredundant key to find the action.
|
|
*
|
|
* @param action
|
|
* The action argument is the function pointer to the action function.
|
|
*
|
|
* @return
|
|
* - 0 on success.
|
|
* - (<0) on failure.
|
|
*/
|
|
__rte_experimental
|
|
int
|
|
rte_mp_action_register(const char *name, rte_mp_t action);
|
|
|
|
/**
|
|
* @warning
|
|
* @b EXPERIMENTAL: this API may change without prior notice
|
|
*
|
|
* Unregister an action function for primary/secondary communication.
|
|
*
|
|
* Call this function to unregister an action if the calling component does
|
|
* not want to response the messages from the corresponding component in its
|
|
* primary process or secondary processes.
|
|
*
|
|
* @note IPC may be unsupported in certain circumstances, so caller should check
|
|
* for ENOTSUP error.
|
|
*
|
|
* @param name
|
|
* The name argument plays as the nonredundant key to find the action.
|
|
*
|
|
*/
|
|
__rte_experimental
|
|
void
|
|
rte_mp_action_unregister(const char *name);
|
|
|
|
/**
|
|
* @warning
|
|
* @b EXPERIMENTAL: this API may change without prior notice
|
|
*
|
|
* Send a message to the peer process.
|
|
*
|
|
* This function will send a message which will be responded by the action
|
|
* identified by name in the peer process.
|
|
*
|
|
* @param msg
|
|
* The msg argument contains the customized message.
|
|
*
|
|
* @return
|
|
* - On success, return 0.
|
|
* - On failure, return -1, and the reason will be stored in rte_errno.
|
|
*/
|
|
__rte_experimental
|
|
int
|
|
rte_mp_sendmsg(struct rte_mp_msg *msg);
|
|
|
|
/**
|
|
* @warning
|
|
* @b EXPERIMENTAL: this API may change without prior notice
|
|
*
|
|
* Send a request to the peer process and expect a reply.
|
|
*
|
|
* This function sends a request message to the peer process, and will
|
|
* block until receiving reply message from the peer process.
|
|
*
|
|
* @note The caller is responsible to free reply->replies.
|
|
*
|
|
* @note This API must not be used inside memory-related or IPC callbacks, and
|
|
* no memory allocations should take place inside such callback.
|
|
*
|
|
* @note IPC may be unsupported in certain circumstances, so caller should check
|
|
* for ENOTSUP error.
|
|
*
|
|
* @param req
|
|
* The req argument contains the customized request message.
|
|
*
|
|
* @param reply
|
|
* The reply argument will be for storing all the replied messages;
|
|
* the caller is responsible for free reply->msgs.
|
|
*
|
|
* @param ts
|
|
* The ts argument specifies how long we can wait for the peer(s) to reply.
|
|
*
|
|
* @return
|
|
* - On success, return 0.
|
|
* - On failure, return -1, and the reason will be stored in rte_errno.
|
|
*/
|
|
__rte_experimental
|
|
int
|
|
rte_mp_request_sync(struct rte_mp_msg *req, struct rte_mp_reply *reply,
|
|
const struct timespec *ts);
|
|
|
|
/**
|
|
* @warning
|
|
* @b EXPERIMENTAL: this API may change without prior notice
|
|
*
|
|
* Send a request to the peer process and expect a reply in a separate callback.
|
|
*
|
|
* This function sends a request message to the peer process, and will not
|
|
* block. Instead, reply will be received in a separate callback.
|
|
*
|
|
* @note IPC may be unsupported in certain circumstances, so caller should check
|
|
* for ENOTSUP error.
|
|
*
|
|
* @param req
|
|
* The req argument contains the customized request message.
|
|
*
|
|
* @param ts
|
|
* The ts argument specifies how long we can wait for the peer(s) to reply.
|
|
*
|
|
* @param clb
|
|
* The callback to trigger when all responses for this request have arrived.
|
|
*
|
|
* @return
|
|
* - On success, return 0.
|
|
* - On failure, return -1, and the reason will be stored in rte_errno.
|
|
*/
|
|
__rte_experimental
|
|
int
|
|
rte_mp_request_async(struct rte_mp_msg *req, const struct timespec *ts,
|
|
rte_mp_async_reply_t clb);
|
|
|
|
/**
|
|
* @warning
|
|
* @b EXPERIMENTAL: this API may change without prior notice
|
|
*
|
|
* Send a reply to the peer process.
|
|
*
|
|
* This function will send a reply message in response to a request message
|
|
* received previously.
|
|
*
|
|
* @note When handling IPC request callbacks, the reply must be sent even in
|
|
* cases of error handling. Simply returning success or failure will *not*
|
|
* send a response to the requestor.
|
|
* Implementation of error signalling mechanism is up to the application.
|
|
*
|
|
* @param msg
|
|
* The msg argument contains the customized message.
|
|
*
|
|
* @param peer
|
|
* The peer argument is the pointer to the peer socket path.
|
|
*
|
|
* @return
|
|
* - On success, return 0.
|
|
* - On failure, return -1, and the reason will be stored in rte_errno.
|
|
*/
|
|
__rte_experimental
|
|
int
|
|
rte_mp_reply(struct rte_mp_msg *msg, const char *peer);
|
|
|
|
/**
|
|
* Usage function typedef used by the application usage function.
|
|
*
|
|
* Use this function typedef to define and call rte_set_application_usage_hook()
|
|
* routine.
|
|
*/
|
|
typedef void (*rte_usage_hook_t)(const char * prgname);
|
|
|
|
/**
|
|
* Add application usage routine callout from the eal_usage() routine.
|
|
*
|
|
* This function allows the application to include its usage message
|
|
* in the EAL system usage message. The routine rte_set_application_usage_hook()
|
|
* needs to be called before the rte_eal_init() routine in the application.
|
|
*
|
|
* This routine is optional for the application and will behave as if the set
|
|
* routine was never called as the default behavior.
|
|
*
|
|
* @param usage_func
|
|
* The func argument is a function pointer to the application usage routine.
|
|
* Called function is defined using rte_usage_hook_t typedef, which is of
|
|
* the form void rte_usage_func(const char * prgname).
|
|
*
|
|
* Calling this routine with a NULL value will reset the usage hook routine and
|
|
* return the current value, which could be NULL.
|
|
* @return
|
|
* - Returns the current value of the rte_application_usage pointer to allow
|
|
* the caller to daisy chain the usage routines if needing more then one.
|
|
*/
|
|
rte_usage_hook_t
|
|
rte_set_application_usage_hook(rte_usage_hook_t usage_func);
|
|
|
|
/**
|
|
* Whether EAL is using huge pages (disabled by --no-huge option).
|
|
* The no-huge mode is not compatible with all drivers or features.
|
|
*
|
|
* @return
|
|
* Nonzero if hugepages are enabled.
|
|
*/
|
|
int rte_eal_has_hugepages(void);
|
|
|
|
/**
|
|
* Whether EAL is using PCI bus.
|
|
* Disabled by --no-pci option.
|
|
*
|
|
* @return
|
|
* Nonzero if the PCI bus is enabled.
|
|
*/
|
|
int rte_eal_has_pci(void);
|
|
|
|
/**
|
|
* Whether the EAL was asked to create UIO device.
|
|
*
|
|
* @return
|
|
* Nonzero if true.
|
|
*/
|
|
int rte_eal_create_uio_dev(void);
|
|
|
|
/**
|
|
* The user-configured vfio interrupt mode.
|
|
*
|
|
* @return
|
|
* Interrupt mode configured with the command line,
|
|
* RTE_INTR_MODE_NONE by default.
|
|
*/
|
|
enum rte_intr_mode rte_eal_vfio_intr_mode(void);
|
|
|
|
/**
|
|
* @warning
|
|
* @b EXPERIMENTAL: this API may change without prior notice
|
|
*
|
|
* Copy the user-configured vfio VF token.
|
|
*
|
|
* @param vf_token
|
|
* vfio VF token configured with the command line is copied
|
|
* into this parameter, zero uuid by default.
|
|
*/
|
|
__rte_experimental
|
|
void rte_eal_vfio_get_vf_token(rte_uuid_t vf_token);
|
|
|
|
/**
|
|
* A wrap API for syscall gettid.
|
|
*
|
|
* @return
|
|
* On success, returns the thread ID of calling process.
|
|
* It is always successful.
|
|
*/
|
|
int rte_sys_gettid(void);
|
|
|
|
RTE_DECLARE_PER_LCORE(int, _thread_id);
|
|
|
|
/**
|
|
* Get system unique thread id.
|
|
*
|
|
* @return
|
|
* On success, returns the thread ID of calling process.
|
|
* It is always successful.
|
|
*/
|
|
static inline int rte_gettid(void)
|
|
{
|
|
if (RTE_PER_LCORE(_thread_id) == -1)
|
|
RTE_PER_LCORE(_thread_id) = rte_sys_gettid();
|
|
return RTE_PER_LCORE(_thread_id);
|
|
}
|
|
|
|
/**
|
|
* Get the iova mode
|
|
*
|
|
* @return
|
|
* enum rte_iova_mode value.
|
|
*/
|
|
enum rte_iova_mode rte_eal_iova_mode(void);
|
|
|
|
/**
|
|
* Get user provided pool ops name for mbuf
|
|
*
|
|
* @return
|
|
* returns user provided pool ops name.
|
|
*/
|
|
const char *
|
|
rte_eal_mbuf_user_pool_ops(void);
|
|
|
|
/**
|
|
* Get the runtime directory of DPDK
|
|
*
|
|
* @return
|
|
* The runtime directory path of DPDK
|
|
*/
|
|
const char *
|
|
rte_eal_get_runtime_dir(void);
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif /* _RTE_EAL_H_ */
|